
THE KALTON CALCULUS

GILLES GODEFROY

Abstract. This article provides a glimpse at Nigel Kalton’s contribution to interpolation of Ba-

nach spaces. Examples and concepts which look unrelated at first sight, such as quasi-linear maps,

non-trivial twisted sums and interpolating operators are shown to be relevant to the same theory.

1. Introduction

Nigel Kalton’s death occured on 31 August, 2010. He had suffered a devastating stroke two

days earlier. When it happened, I was in charge of a short course in the summer school at Le

Touquet, and the main topic of this course was Nigel’s work. The last lecture began with the very

sad announcement of his death. We were quite a few, in this school, who had been priviledged to

collaborate with Nigel, and to benefit from his generosity, his tremendous mathematical power and

his amazing insights. The feeling of loss was - and still is - dreadful. There is no such person as a

substitute for Nigel. However, we can still try our best to attract attention towards his work and

to the ideas which can be found in the gold mine of his articles - and sometimes, even, between his

lines. The present work is such an attempt.

This short note focus on some of Nigel Kalton’s contributions to interpolation theory of Banach

spaces (surveyed in [27]) where he created a usable frame, in which it makes perfect sense to

speak of the logarithm of a sequence space or of the derived space to an interpolation line at

a given Banach space. Important examples, which might look strange when first met, figure in

this frame as canonical objects: for instance, the Kalton-Peck space Z2 is the derived space at l2

to the interpolation line of the lp spaces. We will therefore display differentiation of interpolation

lines, extrapolation in given directions, and the corresponding calculus on the “manifold” of Banach

spaces. This will lead us to unexpected connections with commutators and the trace class operators.

Altogether, Nigel Kalton’s global approach will reveal a network of links, which express the profound

unity of analysis, when seen from his towering point of view. The reader may wish to consult [10]

for further examples of his unifying power.

This note contains a few technical statements, but it is nothing more than a glance at Nigel

Kalton’s work from a distance, in order to provide the reader with some intuition on what goes on.

This outline cannot be used as a substitute for an actual reading of the original articles. Hence

any reader who wants to understand fully these results - and use them in his/her own research -

is invited to dwell into Nigel’s computations and proofs. It should be stressed that quite exotic

tools, such as non-linear liftings, discontinuous linear functionals, quasi-linear maps and non locally
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convex twisted sums are used in this work, in such a way that they provide useful information on

classical and main-stream analysis. There is no better way to underline the width and depth of

Nigel Kalton’s unique vision.

2. Distances between Banach spaces.

The Banach-Mazur functional dBM is a classical tool for estimating the “distance” between

two isomorphic Banach spaces - or equivalently, the distance between two equivalent norms and

similar functionals such as the Lipschitz distance dL can be defined when more general notions of

isomorphisms are taken into consideration. However, it appears necessary to design notions which

reflect similarities between Banach spaces which are not isomorphic (even in a weakened meaning

of the word) but still share common features. Such notions show up in the modern theory of metric

spaces developed by M. Gromov and his followers, where it is important to decide when two spaces

have the same shape.

In [28], “distances” are defined between somewhat similar spaces, such as `p and `q when p and

q are close to each other. Precisely, if X and Y are two subspaces of a Banach space Z, let Λ(X,Y )

be the Hausdorff distance between BX and BY , that is

Λ(X,Y ) = max{ sup
x∈BX

inf
y∈BY

‖x− y‖, sup
y∈BY

inf
x∈BX

‖y − x‖}.

The Kadets distance dK(X,Y ) is the infimum of Λ(X̃, Ỹ ) over all Banach spaces Z containing

isometric copies X̃ and Ỹ of X and Y . The Kadets distance is a pseudo-metric which is controlled

from above by dBM , but there are non-isomorphic Banach spaces X and Y such that dK(X,Y ) = 0.

The Gromov-Hausdorff distance dGH is a non-linear analogue of the Kadets distance, defined

along the same lines, except that the infimum is taken over all metric spaces containing isometric

copies of X and Y . Of course, dGH ≤ dK and for instance dGH(`p, `1) → 0 as p → 1 while

dK(`p, `1) = 1 for all p > 1.

In some cases, however, convergence in the Gromov-Hausdorff sense implies convergence for the

Kadets distance. Let X be a Banach space, and let X0 be a dense linear subspace of X. A map

F = X0 → K is quasilinear if:

(i) F (αx) = αF (x) for x ∈ X0 and α ∈ K.

(ii) There is C ∈ R such that

|F (x+ y)− F (x)− F (y)| ≤ C(‖x‖+ ‖y‖)

for all (x, y) ∈ X2
0 .

A Banach space X is called a K−space if any such F satisfies

|F (

n∑
i=1

xi)−
n∑
i=1

F (xi)| ≤ C
n∑
i=1

‖xi‖ (1)

for some constant C and all x1, . . . , xn ∈ X0.

This condition turns out to be equivalent with approximation of quasi-linear maps by linear

ones. Along these lines, it turns out that if X is a K−space then dGH(Xn, X) → 0 implies that

dK(Xn, X) → 0. What makes this statement interesting is the existence of natural examples of

K−spaces: it is shown in [31] that every quotient space of a L∞-space is a K-space, and in [19]
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that a Banach space with non-trivial type is a K-space. In fact, Nigel Kalton conjectured that a

Banach space is a K-space exactly when its dual space has non-trivial cotype. On the other hand,

`1 is not a K-space since the Kadets and Gromov-Hausdorff distances do not coincide at `1.

The space c0 is particularly interesting in this respect: it follows from Sobczyk’s theorem that

if dGH(Xn, c0) → 0 we have not only that dK(Xn, c0) → 0 (since c0 is a K-space), but actually

dBM (Xn, c0) → 0 [28]. It follows for instance that if the uniform distance between X and c0 is

small then X is linearly isomorphic to c0 [11, Theorem 5.7]. We recall that it is not known whether

a space which is uniformly homeomorphic to c0 is linearly isomorphic to c0 (see [11]).

These weaker distances naturally apply to interpolation theory, which provides families of Banach

spaces which are not isomorphic but tightly related. For the convenience of the reader, we now

outline the basics of complex interpolation. We restrict our discussion to an important special case.

Let W be some complex Banach space and let X0 and X1 be two closed subspaces of W . We denote

S = {z ∈ C; 0 < Re(z) < 1}

and F is the space of analytic functions F : S −→ W which extend continuously to S̄ and such

that {F (it); t ∈ R} is a bounded subset of X0 and {F (1 + it); t ∈ R} is a bounded subset of X1.

The space F is normed by

‖F‖F = max
j=0,1

sup{‖F (j + it)‖Xj ; t ∈ R}.

For θ ∈ (0, 1) and x ∈W , we define

‖x‖θ = inf{‖F‖F;F (θ) = x}

and

Xθ = {x ∈W ; ‖x‖θ <∞}

If W0 = span{Xθ; θ ∈ (0, 1)}, a linear map T : W0 −→W0 is called interpolating if F 7−→ T ◦ F is

defined and bounded on F. If T is interpolating, then T (Xθ) ⊆ Xθ for all θ ∈ (0, 1).

The above space Xθ = [X0, X1]θ is said to be obtained from X0 and X1 by the complex inter-

polation method. The link with the Kadets distance is provided by the following result from [28]:

for 0 < θ < φ < 1

dK(Xθ, Xφ) ≤ 2
sin[π (φ−θ)

2 ]

sin[π (φ+θ)
2 ]

.

This continuity of the interpretation method with respect to the Kadets distance permits to apply

connectedness arguments. Indeed, let us call a property (P ) stable if there exists α > 0 so that if X

has (P ), and dK(X,Y ) < α, then Y has (P ). For instance, each of the following properties (P ) is

stable: separability, reflexivity, X ⊇ `1, super-reflexivity, type(X) > 1. Connectedness thus shows

that if 0 < θ < 1 and Xθ = [X0, X1]θ has (P ), then Xϕ has (P ) for every ϕ ∈ (0, 1). And this

line of thought opens an exciting field of research. It can be shown that the connected component

of any separable Banach space X contains all isomorphic copies of X. It follows from [35] that

the connected component of `2 contains all super-reflexive Banach lattices, and it is not known

whether it contains all super-reflexive spaces. It is conjectured that the component of c0 consists

of all spaces isomorphic to a subspace of c0.
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3. Twisted sums.

The Kadets and Gromov-Hausdorff distances clearly are metric notions, but interpolation points

to some kind of differential structure, which we will outline. It turns out that this “tangent”

structure leads to the consideration of twisted sums. And we will be bound to leave the locally

convex world and to allow quasi-Banach spaces to enter the picture.

We recall that metrizable complete topological vector spaces (on K = R or C) are called F -

spaces. Their topology is induced by an F−norm, that is, a map Λ from the space X to R+ such

that

(i) Λ(x) > 0 if x 6= 0.

(ii) Λ(αx) ≤ Λ(x) if |α| ≤ 1.

(iii) limα→0 Λ(αx) = Λ(0) = 0.

(iv) Λ(x+ y) ≤ Λ(x) + Λ(y) for all (x, y) ∈ X.

The space X is locally bounded if and only if its topology can be generated by a quasi-norm

‖ · ‖, namely a map ‖ · ‖ : X → R+ such that:

(i) ‖x‖ > 0 if x 6= 0

(ii) ‖αx‖ = |α|‖x‖ for all x ∈ Xand α ∈ K
(iii) ‖x+ y‖ ≤ C(‖x‖+ ‖y‖) for all (x, y) ∈ X2

where C ≥ 1 is the “modulus of concavity” of the quasi-norm. An F -space is called a quasi-Banach

space when its topology is generated by a quasi-norm, or equivalently by the Aoki-Rolewicz theorem,

by a p-subadditive quasi-norm ||| · |||, i.e. a quasi-norm which satisfies the condition

(iv) |||x+ y|||p ≤ |||x|||p + |||y|||p

for all (x, y) ∈ X2 and p > 0 given by p = (1 + log2(C))−1.

We refer to [30] for an authoritative book on F -spaces.

Let X and Y be quasi-Banach spaces. We say that Z is an extension of X by Y if

Z/Y ' X

An extension Z is also called a twisted sum of X and Y (a non-trivial twisted sum if Y is not

complemented in Z), and we refer to [4] for a comprehensive survey of this matter.

We extend the definition given above in the case of scalar-valued functions to call a map Ω :

X −→ Y quasi-linear if Ω(λx) = λΩ(x) for all x ∈ X and λ ∈ K, and if there is C > 0 such that

‖Ω(x1 + x2)− Ω(x1)− Ω(x2)‖ ≤ C(‖x1‖+ ‖x2‖)

for all x1, x2 ∈ X. For any quasi-linear map Ω, we can define the extension X ⊕Ω Y of X by Y to

be the space X ⊕ Y equipped with the quasi-norm

‖(x, y)‖ = ‖x‖+ ‖y − Ω(x)‖

Even when X and Y are Banach spaces X ⊕Ω Y is not, unless Ω actually satisfies the analogue

of condition (1): for all n ≥ 1 and all (xk)

‖
n∑
k=1

Ω(xk)− Ω(

n∑
k=1

xk)‖ ≤ C
n∑
k=1

‖xk‖.
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It will always be so when X is a K−space [19]. It turns out that every extension can actually

be obtained through such an Ω: if q : Z −→ X is the quotient map, one takes Ω = S − R where

qS = qR = IdX , S is homogenous (but not necessarily linear) such that ‖S(x)‖ ≤ 2‖x‖, and R is

linear (but not necessarily continuous). The existence of a bounded linear projection from X ⊕Ω Y

onto Y (in other words, the triviality of the extension) is equivalent to the existence of a linear

map L : X −→ Y such that

‖Ω(x)− L(x)‖ ≤ C‖x‖

for all x ∈ X.

When X = Y , the space x⊕Ω X is called a self-extension of X and it is denoted

X ⊕Ω X = dΩX.

Let us illustrate this approach with three important examples. The Ribe space E = `1 ⊕F R
from [36] is obtained by considering the quasilinear functional

F (x) =
∞∑
k=1

xk log |xk| −
( ∞∑
k=1

xk

)
log
∣∣∣ ∞∑
k=1

xk

∣∣∣
on the dense subspace c00 of finitely supported sequences in `1. For showing that (1) fails for this

F , it suffices to compute

F (

n∑
i=1

ei)−
n∑
i=1

F (ei) = −n log(n).

The Ribe space is therefore a non-trivial twisted sum of `1 with a one-dimensional space and its

existence solves negatively the three-space problem for local convexity.

We will see now that the Ribe space is closely related with another famous twisted sum. When

X = `2, a non-trivial self-extension of `2 is called a twisted Hilbert space, and it was shown in [9]

that such spaces exist, and thus being isomorphic to a Hilbert space fails the three-space property.

An alternative example, the Kalton-Peck space Z2, is constructed in [29] with the help of the Ribe

functional: let Ω = `2 −→ RN be defined by

Ω((ξn)) = (ξn log(
|ξn|
‖ξ‖2

))n≥1

(and Ω(0) = 0). The space Z2 = dΩ`2 is then the space of pairs of sequences ((ξn), (ηn)) such that

‖(ξ, η)‖ =

( ∞∑
n=1

|ξn|2
) 1

2

+

( ∞∑
n=1

∣∣∣ηn − ξn log
|ξn|
‖ξ‖2

∣∣∣2) 1
2

<∞.

The space Z2 is a Banach space since `2 is a K−space. This space Z2 exhibits remarkable features,

which are not yet fully understood although that space was constructed more than 30 years ago.

It is plain that Z2 has an unconditional F.D.D. consisting of 2-dimensional spaces; however it

has no unconditional basis and no local unconditional structure [15]. Actually, an unconditional

F.D.D. with spaces of bounded dimension provides an unconditional basis which can be chosen

from the subspaces if the space has local unconditional structure [3]. It is unknown, however, if a

twisted Hilbert space can have local unconditional structure; the best result so far is that it has no

unconditional basis in full generality [21]. The space Z2 is also an example of a symplectic Banach

space which is not the direct sum of two isotropic subspaces [32]. In fact, intuition suggests that
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the space Z2 is “even-dimensional” and thus that it should not be isomorphic to its hyperplanes:

this 30-years old conjecture is still open. We note along these lines that spaces with 2-dimensional

unconditional F.D.D. but no unconditional basis (such as Z2) show up in the classification results

established in [33], which play a crucial role in Gowers’ homogeneous space theorem [13].

Finally, as so often in N. Kalton’s work, the conceptual frame in which the construction is

completed provides flexibility and leads to more results. If F = R −→ C is any Lipschitz map and

E is a Banach sequence space, we may consider the following quasi-linear map on E:

ΩF (ξ) = (ξnF (log
|ξn|
‖ξ‖E

))n≥1

and then define

dΩFE = E ⊕ΩF E.

Taking E = `2 and F (t) = t1+iα (α 6= 0) provides a complex Banach space Z(α) (actually, a

twisted Hilbert space) which is not complex-isomorphic to its conjugate space Z(α) = Z(−α). The

existence of such spaces had been shown in [1] and [39] by probabilistic methods.

4. A differential structure.

The notation dΩX is reminiscent of differential calculus, and this is not a chance. With the

above notation of the complex interpolation method, and following R. Rochberg and G. Weiss [38],

we define a derived space dXθ ⊆W ×W by dXθ = {(x1, x2) : ‖(x1, x2)‖dXθ <∞} where

‖(x1, x2)‖dXθ = inf{‖F‖F : F (z) = x1, F
′(z) = x2}.

The space Y = {(x1, x2) ∈ dXθ : x1 = 0} is isometric to Xθ and so is dXθ/Y . Hence dXθ is a

self-extension of Xθ. By the above, one has

dXθ = dΩXθ

for some quasi-linear map Ω : Xθ −→ W . It turns out that Ω(x) = F ′(z), where F ∈ F is such

that ‖F‖F ≤ C‖x‖θ and F (z) = x, does the work. Now, if T is an interpolating operator then

(x1, x2) −→ (Tx1, Tx2) is bounded on dXθ and this translates into “commutator estimates”:

‖T (Ω(x))− Ω(T (x))‖θ ≤ C‖x‖θ

for all x ∈ Xθ.

A first example of interpolation line is provided by the sequence spaces `p (1 ≤ p ≤ ∞). The

above calculations applied to X0 = `1 and X1 = `∞ provide the Kalton-Peck space Z2 = dX1/2,

which thus appears to be the derived space at l2 to the interpolation line of the lp spaces.

Similar calculations are possible for the function spaces Lp(T). For this interpolation scale, the

Hilbert transform H is a very important example of interpolating operator and the Rochberg-Weiss

commutator estimate becomes in this case

‖H(f log |f |)−H(f) log |H(f)|‖p ≤ Cp‖f‖

for 1 < p <∞ and some Cp <∞.
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Following [22] and [23], we now relate this differential calculus with entropy functions of function

spaces. For sake of simplicity, we restrict ourselves to the special case of sequence spaces. If X is

a sequence space, its entropy function ΦX is defined for positive sequences u by

ΦX(u) = sup
‖x‖X≤1

∞∑
k=1

uk log |xk|.

If X0 and X1 are separable sequence spaces, the interpolation spaces Xθ are given by the Calderon

formula Xθ = X1−θ
0 Xθ

1 , that is:

‖x‖θ = inf{‖x0‖1−θ0 ‖x2‖θ1 ; |x| = |x0|1−θ|x1|θ}.

The entropy function ΦX may be thought of as the logarithm of the sequence space X. Indeed one

has

ΦXθ = (1− θ)ΦX0 + θΦX1

and by the Lozanovsky factorization theorem

ΦX + ΦX∗ = Φ`1

where Φ`1 is the Ribe functional, while

Φ`p =
1

p
Φ`1

and Φ`∞ = 0. It now becomes natural to see the Hilbert space as the geometric mean between any

sequence space X and its dual X∗.

It turns out that entropy functions of peculiar sequence spaces provide special quasi-Banach

spaces. Here is an important example from [18]. We recall that a separable quasi-Banach space Y

is called minimal if it does not have any weaker Hausdorff vector topology. This condition happens

to be equivalent to the non-existence of basic sequences in Y . In [18], Nigel Kalton constructs a

twisted sum Y of `1 and a one-dimensional space E, with no basic sequence since every infinite-

dimensional closed subspace of Y contains E. This is reminiscent of Gowers-Maurey’s construction

of a Banach space XGM without unconditional basic sequence [14], which is such that for any

infinite-dimensional subspaces U and V of XGM

inf{‖u− v‖;u ∈ U, v ∈ V, ‖u‖ = ‖v‖ = 1} = 0.

And indeed, Gowers’ modification [12] of the original construction, used in his solution of the

hyperplane problem, provides a space X with an unconditional basis whose entropy function ΦX

yields to a minimal extension K⊕ΦX `1 with no basic sequence [18], and which is therefore a minimal

quasi-Banach space. Note that for any infinite dimensional subspace J of c00, this function ΦX = F

satisfies

sup{|F (x)| : x ∈ J, ‖x‖ ≤ 1} =∞,

hence ΦX = F is distorted in the sense of [34].

Minimal quasi-Banach spaces M are pretty strange objects: every one-to-one continuous linear

map from M into a Hausdorff topological vector space is actually an isomorphism on its range!

However existing examples are “non-isotropic” in the sense where they contain a distinguished line,

namely the orthogonal of the dual space. It in not known whether an even stranger example exists
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which would exhibit this behaviour everywhere, in other words a quasi-Banach space containing no

infinite-dimensional proper closed subspace.

To close the circle of ideas relating the entropy functions with derived spaces, we note that if

Xθ = X1−θ
0 Xθ

1 then dXθ = dΩXθ = Xθ ⊕Ω Xθ where the quasi-linear map Ω satisfies

|〈x∗,Ω(x)〉 − Φ(xx∗)| ≤ C‖x‖Xθ‖x
∗‖X∗θ

where Φ = ΦX1 − ΦX0 and (xx∗) denotes the pointwise product of the sequences x and x∗.

5. Extrapolation.

The map “X 7→ ΦX” is logarithmic-like, but in order to complete the picture we conversely need

an exponential functor which associates a sequence space (or more generally, a function space) to

a quasi-linear map Φ. This can be done as follows: if Φ : c+
00 −→ R is any functional, there exists

a Banach sequence space X such that ΦX = Φ if and only if Φ and (Φ`1 −Φ) are convex functions

and Φ is positively homogeneous [23], and the space X has unit ball

BX = {(xk);
∞∑
k=1

uk log |xk| ≤ Φ(u) for allu ≥ 0}.

This exponential map leads to what I suggest to call the Kalton calculus, which bears an uncanny

resemblance with the exponentation from a Lie algebra to its Lie group, and creates “lines” from

infintesimals; in other words, yields to extrapolation. Here is a bunch of examples.

If X is a p-convex (1 < p < 2) and p∗-concave discrete lattice, then X = Y 1/p for some sequence

space Y and so (1
pΦ`1 −ΦX) is convex. Similarly p∗-concavity means that (1

pΦ`1 −ΦX∗) is convex.

Now the equation

ΦX = (1− θ)Φ + θΦ`2

= (1− θ)Φ +
θ

2
Φ`1

provides a convex function Φ such that (Φ`1 − Φ) is also convex and thus Φ = ΦZ for some Z.

Exponentiating, we find X = Z1−θ`θ2 (a result from [35]).

Special properties of the derived space dΩXθ can “spread out” by exponentation to a segment

{Xϕ; |ϕ− θ| < ε}. Our examples are function spaces. If X0 and X1 are acceptable function spaces

on T and R is the vector-valued Riesz transform, then there is δ > 0 such that R is bounded on

Xθ for |θ − θ0| < δ if and only if ‖RΩ − ΩR‖Xθ0 < ∞. It follows that there exist twisted Hilbert

spaces which are not U.M.D. [23] although the Kalton-Peck space Z2 is U.M.D. [24]. We note at

this point that higher order derivatives can be considered, and this has been done e.g. in [2] and

[37].

As seen before, differentiating interpolation lines yield quasi-linear maps Ω such that dXθ =

dΩXθ. Let us consider the special case where the space X1 is obtained from X0 through a change

of weight. In this case, the quasi-linear map Ω enjoys a commutation property with multiplication

operators, namely

‖Ω(ax)− aΩ(x)‖Xθ ≤ C‖a‖∞‖x‖Xθ .

These special maps are called centralizers in [22] and the corresponding space dΩXθ is a lattice

twisted sum. Centralizers yield to extrapolation results: if for instance X is a super-reflexive Banach
8



sequence space and Ω is a real centralizer on X, then there exist super-reflexive Banach sequence

spaces X0 and X1 such that X = X
1/2
0 X

1/2
1 = X1/2 and moreover dX1/2 ' dΩX.

We now recall the Rochberg-Weiss commutator estimates: if Xθ = X1−θ
0 Xθ

1 and dXθ = dΩXθ

then

‖T (Ω(x))− Ω(T (x))‖Xθ ≤ C‖x‖Xθ (2)

for interpolating operators T . When, for instance, Ω is a centralizer, this estimate says that Ω

nearly commutes not only with multiplication operators, but with all interpolating operators.

Now the extrapolation technique allows a change of perspective: starting from an operator T

on X, we may consider all pairs (X0, X1) such that X = X1−θ
0 Xθ

1 and T is interpolating between

X0 and X1 and get a whole family of estimates on T . Indeed any such line through X gives birth

to a quasi-linear map Ω, and thus to the corresponding Rochberg-Weiss estimates (2). We have

seen that given a quasi-linear map Φ which satisfy mild necessary conditions, one can construct

a space Y such that Φ = ΦY . Hence, given a space X, when the function ΦX can be written in

various ways as a convex combination of proper quasi-linear maps, a bunch of interpolation lines

passing through X can be constructed. And since each interpolation line carries estimates which

apply to every interpolating operator, it follows that operators wich interpolate around X satisfy a

collection of inequalities, yielding for instance to a new symmetric tangent space which is the range

of interpolating bilinear forms. We illustrate this approach with two basic examples.

The case X = `p yields to the family of quasi-linear maps

ΦG(u) =
∞∑
n=1

unG(log |un|)

where G runs through the family G of 1-Lipschitz maps from R to R whose derivative is compactly

supported. This leads to considering the quasi-Banach space hsym1 defined by

‖ξ‖hsym1
=

∞∑
k=1

|ξk|+ sup
G∈G

ΦG(ξ) <∞.

This “tangent space” hsym1 is conveniently described as the space of sequence (ξk) in `1 such that

∞∑
n=1

1

n
|ξ1 + ξ2 + · · ·+ ξn| <∞.

The same steps applied to function spaces Lp(µ) lead to the symmetric Hardy function space

H1
sym(µ) of all functions f ∈ L1(µ) such that

‖f‖H1
sym

=

∫
|f |dµ+ sup

G∈G

∫
|f |G(log |f |)dµ <∞.

Commutator estimates on interpolating operators then show the following theorem [22]:

Theorem 5.1. Suppose 1 < p0 < p < p1 <∞ and p−1 + q−1 = 1. Suppose that T : Lpj −→ Lpj is

linear bounded for j = 0, 1. Then the bilinear form

BT (f, g) = f.T ∗g − g.Tf

is bounded from Lp × Lq to H1
sym.
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The above dot denotes of course the pointivise product of functions.

This theorem can be applied to a variety of interpolating operators. The Riesz projection gives

applications to harmonic analysis. Indeed, when T is the Riesz projection on L2(T), the theorem

shows that if f and g belongs to H1(T) and g(0) = 0 the following inequality holds:

‖fg‖H1
sym
≤ C‖f‖2‖g‖2

and thus since H1
0 = H2.H2

0 , one gets for every function h ∈ H1 with h(0) = 0

‖h‖H1
sym
≤ C‖h‖1

This result, first shown in [5] and [6], somehow means that functions in H1(T) have a quite

symmetric behavior around their singularities. Conversely, real-valued functions in H1
sym(T) are

real parts of functions in H1(T) .

Finally, the ideas developed above have non-commutative applications, and the bridge which

brings to the non-commutative world is the concept of trace. If X is a symmetric Banach sequence

space, we denote CX the space of all operators T on `2 whose sequence (sn(T ))n≥1 of singular

numbers belongs to X. When X0 and X1 are reflexive then

[CX0 , CX1 ]θ = CX1−θ
0 Xθ

1
= CXθ

and interpolation tools apply to the spaces CX .

Let C`1 = C1 be the ideal of trace-class (or nuclear) operators on `2. A trace on C1 is a linear map

τ such that τ(AB) = τ(BA) for all A ∈ C1 and all bounded operators B. We denote Comm(C1)

the linear span of all commutators

[A,B] = AB −BA

with A ∈ C1 and B bounded. Clearly, if S ∈ C1 then S ∈ Comm(C1) if and only if τ(S) = 0 for

every trace τ . It was shown in [41] that Comm(C1) is strictly contained in {T ∈ C1; tr(T ) = 0}, or

equivalently that there exist discontinuous traces on C1. The precise description of Comm(C1) was

obtained in [25] by interpolation arguments and it reads as follows:

Theorem 5.2. Let T ∈ C1 be a trace-class operator. Then T ∈ Comm(C1) if and only if its

eigenvalue sequence λn(T ))n≥1 belongs to h1
sym.

It was shown in [25] that every T ∈ Comm(C1) is the sum of 6 commutators, but this number

has now been put down to 3 and the case of general ideas of operators is also treated in [7, 8, 26].
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