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Foreword

This paper deals with the computation of the essential norm of a composition operator induced on the
Banach space of Hölder functions on a general metric space by a Lipschitz self map of the metric space.
The structure of spaces of Lipschitz and Hölder functions and their preduals on general metric spaces
was studied by Kalton in [8].

First of all, we give a lower bound on the essential norm of a composition operator using standard
facts about weakly null sequences. Next, we make the assumption that the dual of the Banach space
of Hölder functions has the approximation property to obtain an upper bound. The proof of this upper
bound depends on some results involving shrinking compact approximating sequences that are derived
from the work of Kalton [7].

It is natural to ask for some examples where the dual of the Banach space of Hölder functions has the
approximation property. This happens, according to Kalton [8], if the metric space is uniformly discrete.
Also, when the Banach space of Hölder functions is isomorphic to c0, its dual is isomorphic to `1 and
therefore it has the approximation property.

A classical result of Bonic, Frampton and Tromba [3] ensures that the Banach space of Hölder functions
on a metric space is isomorphic to c0 whenever the metric space is an infinite compact subset of a finite
dimensional normed linear space. This result was corrected by Weaver [12], who asked whether such an
isomorphism could be extended to any compact metric space. Kalton answered this question negatively
by proving that a compact convex subset of a Hilbert space containing the origin has the property that
the Banach space of Hölder functions on the convex set is isomorphic to c0 if and only if the convex set
is finite dimensional. Kalton conjectured that this holds in full generality for all Banach spaces.

Let us recall now that a metric space satisfies the doubling condition (or hasfinite Assouad dimension)
if there is an integer n such that for any δ > 0, every closed ball of radius δ can be covered by at most
n closed balls of radius δ/2. A theorem of Assouad [1] asserts that whenever a metric space satisfies the
doubling condition, every snowflake of the metric space Lipschitz embeds in the euclidean space. Using
this result, Kalton [8] observed that if a compact metric space satisfies the doubling condition, then the
Banach space of Hölder functions on the metric space is isomorphic to c0. Furthermore, he also showed
that the converse is false by means of a counterexample.
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Abstract. Let (X, d) be a pointed compact metric space, let 0 < α < 1, and let ϕ : X → X be a

base point preserving Lipschitz map. We prove that the essential norm of the composition operator Cϕ
induced by the symbol ϕ on the spaces lip0(X, dα) and Lip0(X, dα) is given by the formula

‖Cϕ‖e = lim
t→0

sup
0<d(x,y)<t

d(ϕ(x), ϕ(y))α

d(x, y)α

whenever the dual space lip0(X, dα)∗ has the approximation property. This happens in particular when
X is an infinite compact subset of a finite-dimensional normed linear space.

1. Introduction

Let (X, d) be a compact metric space with a distinguished point e ∈ X and 0 < α < 1. The formula
dα(x, y) = d(x, y)α defines a new metric on X, and the metric space (X, dα) is said to be a Hölder metric
space of order α. As usual, K denotes the field of real or complex numbers.

The Lipschitz space Lip0(X, dα) is the Banach space of all Lipschitz functions f : X → K on the Hölder
metric space (X, dα) for which f(e) = 0 under the standard Lipschitz norm

Lα(f) = sup

{
|f(x)− f(y)|
d(x, y)α

: x, y ∈ X, x 6= y

}
.

Notice that the Lipschitz functions on (X, dα) are precisely the Hölder functions of order α on (X, d).
The little Lipschitz space lip0(X, dα) is the closed subspace consisting of those functions f ∈ Lip0(X, dα)

that satisfy the following local flatness condition:

lim
t→0

sup
0<d(x,y)<t

|f(x)− f(y)|
d(x, y)α

= 0.

The Lipschitz space Lip0(X, dα) has a canonical predual F(X, dα), the free Lipschitz space on (X, dα),
also known as the Arens-Eells space in [12], that can be defined as the closed linear span of the point
evaluations

δx(f) = f(x) (x ∈ X, f ∈ Lip0(X, dα))

in the dual space Lip0(X, dα)∗. As it turns out, F(X, dα) is itself the dual space of lip0(X, dα). The
structure of spaces of Lipschitz and Hölder functions and their preduals on general metric spaces was
studied by Kalton in [8]. We refer to the book [12] by Weaver for a complete study of the spaces of
Lipschitz functions.

We denote by L(E) the algebra of all bounded linear operators on a Banach space E, and by K(E),
the closed ideal of all compact operators on E. The essential norm ‖T‖e of an operator T ∈ L(E) is just
the distance from T to K(E), that is,

‖T‖e = inf {‖T −K‖ : K ∈ K(E)} .
It is clear that an operator T ∈ L(E) is compact if and only if ‖T‖e = 0.

Recall that a Banach space E is said to have the approximation property if the identity operator on E
can be approximated uniformly on every compact subset of E by operators of finite rank.

Let (X, d) be a pointed compact metric space with base point e ∈ X, let 0 < α < 1, and let ϕ : X → X
be a Lipschitz mapping that preserves the base point, that is, ϕ(e) = e and

L(ϕ) := sup

{
d(ϕ(x), ϕ(y))

d(x, y)
: x, y ∈ X, x 6= y

}
<∞.

The composition operator Cϕ : lip0(X, dα)→ lip0(X, dα) is defined by the expression

(Cϕf)(x) = f(ϕ(x)) (x ∈ X, f ∈ lip0(X, dα)) .

The aim of this paper is to give lower and upper estimates for the essential norm of the composition
operator Cϕ on lip0(X, dα) in terms of ϕ. Results along these lines were obtained by Montes-Rodŕıguez
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[10, 11] and more recently by Galindo and Lindström [4], and also by Galindo, Lindström and Stević [5].
In Section 2, we compute the norm of Cϕ. We show that

‖Cϕ‖ = sup
x 6=y

d(ϕ(x), ϕ(y))α

d(x, y)α
.

The prototype of a formula as above with α = 1 was provided by Weaver in [12, Proposition 1.8.2] for the
composition operator Cϕ on the space Lip0(X, d). In Section 3, we give a lower bound for the essential
norm of the operator Cϕ, namely

lim
t→0

sup
0<d(x,y)<t

d(ϕ(x), ϕ(y))α

d(x, y)α
≤ ‖Cϕ‖e .

Section 4 contains our main result. When the dual space lip0(X, dα)∗ has the approximation property,
we show that

‖Cϕ‖e ≤ lim
t→0

sup
0<d(x,y)<t

d(ϕ(x), ϕ(y))α

d(x, y)α
.

The proof of this inequality depends on some results involving shrinking compact approximating sequences
on lip0(X, dα). Using the fact that the space Lip0(X, dα) is isometrically isomorphic to the second dual
of lip0(X, dα), and the relationship between the essential norm of an operator and its adjoint, we derive
in Section 5 the same formula for the essential norm of the operator Cϕ on Lip0(X, dα).

It is natural to ask for some examples where the dual space lip0(X, dα)∗ has the approximation property.
For instance, this happens if X is uniformly discrete, that is, infx 6=y d(x, y) > 0 (see [8, Proposition 4.4]).
Also, lip0(X, dα)∗ has the approximation property whenever the space lip0(X, dα) is isomorphic to c0 and
hence Lip0(X, dα) is isomorphic to `∞ and F(X, dα) is isomorphic to `1.

A classical result of Bonic, Frampton and Tromba [3] ensures that lip0(X, dα) is isomorphic to c0
whenever X is an infinite compact subset of a finite-dimensional normed linear space. This result was
corrected by Weaver, who asked whether such an isomorphism could be extended to any compact metric
space [12, p. 98]. Kalton answered this question negatively by proving that a compact convex subset X
of a Hilbert space containing the origin has the property that lip0(X, dα) is isomorphic to c0 if and only
if X is finite-dimensional [8, Theorem 8.3]. In fact this statement is true for every general Banach space
in place of a Hilbert space if 0 < α ≤ 1/2 [8, Theorem 8.5] and for any Banach space that has nontrivial
Rademacher type if 0 < α < 1 [8, Theorem 8.4]. Kalton conjectured that this holds in full generality for
all Banach spaces.

Let us recall now that a metric space (X, d) satisfies the doubling condition (or has finite Assouad
dimension) if there is an integer n such that for any δ > 0, every closed ball of radius δ can be covered by
at most n closed balls of radius δ/2. A theorem of Assouad [1] asserts that whenever a metric space (X, d)
satisfies the doubling condition, every Hölder metric space (X, dα) Lipschitz embeds in the euclidean
space Rn. Using this result, Kalton observed that if a compact metric space (X, d) satisfies the doubling
condition, then the space lip0(X, dα) is isomorphic to c0 [8, Theorem 6.5]. Furthermore, he also showed
that the converse is false by means of a counterexample [8, Proposition 6.8].

2. The norm of Cϕ on lip0(X, dα)

The aim of this section is to derive a formula for the norm of the composition operator Cϕ on lip0(X, dα)
in terms of the Lipschitz constant of ϕ. A similar expression was already provided by Weaver for the
composition operator Cϕ on the space Lip0(X, d), obtaining in [12, Proposition 1.8.2] the following identity

‖Cϕ‖ = sup
x 6=y

d(ϕ(x), ϕ(y))

d(x, y)
.
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Theorem 2.1. Let X be a pointed compact metric space, 0 < α < 1 and ϕ : X → X a base point
preserving Lipschitz mapping. Then the norm of the composition operator Cϕ : lip0(X, dα)→ lip0(X, dα)
is given by the expression

‖Cϕ‖ = sup
x 6=y

d(ϕ(x), ϕ(y))α

d(x, y)α
.

Proof. We follow the steps of the proof of Weaver’s formula. One inequality is formally identical, while
the other inequality needs an adjustment of the suitable attaining functions. For any f ∈ lip0(X, dα)
with Lα(f) ≤ 1, we have

Lα(Cϕf) = sup
x 6=y

|f(ϕ(x))− f(ϕ(y))|
d(x, y)α

≤ sup
ϕ(x)6=ϕ(y)

|f(ϕ(x))− f(ϕ(y))|
d(ϕ(x), ϕ(y))α

· sup
x 6=y

d(ϕ(x), ϕ(y))α

d(x, y)α

≤ Lα(f) · sup
x 6=y

d(ϕ(x), ϕ(y))α

d(x, y)α

≤ sup
x 6=y

d(ϕ(x), ϕ(y))α

d(x, y)α
,

and so

‖Cϕ‖ = sup
Lα(f)≤1

Lα(Cϕf) ≤ sup
x 6=y

d(ϕ(x), ϕ(y))α

d(x, y)α
.

For the converse inequality, fix two points x, y ∈ X such that ϕ(x) 6= ϕ(y) and choose β strictly between
α and 1. Define h : X → R by

h(z) =
d(z, ϕ(y))β − d(z, ϕ(x))β

2d(ϕ(x), ϕ(y))β−α
,

and f : X → R by

f(z) = h(z)− h(e).

It is not hard to show that f ∈ lip0(X, dα) with Lα(f) = 1 (see, for instance, [9]), so

‖Cϕ‖ ≥ Lα(Cϕf) ≥ |f(ϕ(x))− f(ϕ(y))|
d(x, y)α

=
d(ϕ(x), ϕ(y))α

d(x, y)α
.

Taking supremum over x and y, we conclude that

‖Cϕ‖ ≥ sup
x 6=y

d(ϕ(x), ϕ(y))α

d(x, y)α
.

�

3. The lower estimate of the essential norm of Cϕ on lip0(X, dα)

Next we bound from below the essential norm of Cϕ on lip0(X, dα) by means of an assymptotic quantity
that measures the local flatness of ϕ.

Theorem 3.1. Let X be a pointed compact metric space, 0 < α < 1 and ϕ : X → X a base point
preserving Lipschitz mapping. Then the essential norm of the operator Cϕ : lip0(X, dα) → lip0(X, dα)
satisfies the lower estimate

lim
t→0

sup
0<d(x,y)<t

d(ϕ(x), ϕ(y))α

d(x, y)α
≤ ‖Cϕ‖e .
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We will need the following description of the weak convergence in lip0(X, dα). This result is part of the
folklore and it is immediate from the Banach-Steinhaus theorem since lip0(X, dα)∗ = span{δx : x ∈ X}
(see Weaver [12, Theorem 3.3.3]).

Lemma 3.2. Let X be a pointed compact metric space, 0 < α < 1 and {fn} a sequence in lip0(X, dα).
Then {fn} converges to 0 weakly in lip0(X, dα) if and only if {fn} is bounded in lip0(X, dα) and converges
to 0 pointwise on X.

Proof of Theorem 3.1. Since the mapping ϕ : X → X is Lipschitz, the function

t 7→ sup
0<d(x,y)<t

d(ϕ(x), ϕ(y))α

d(x, y)α
(t > 0)

is well defined. It is easy to check that

(1) lim
t→0

sup
0<d(x,y)<t

d(ϕ(x), ϕ(y))α

d(x, y)α
= inf
t>0

sup
0<d(x,y)<t

d(ϕ(x), ϕ(y))α

d(x, y)α
.

Now, for every natural number n we can take a real number tn such that 0 < tn < [2/n(1+L(ϕ)α)]1/α

and two points xn, yn ∈ X such that 0 < d(xn, yn) < tn, satisfying

sup
0<d(x,y)<tn

d(ϕ(x), ϕ(y))α

d(x, y)α
< inf
t>0

sup
0<d(x,y)<t

d(ϕ(x), ϕ(y))α

d(x, y)α
+

1

n

and

sup
0<d(x,y)<tn

d(ϕ(x), ϕ(y))α

d(x, y)α
− 1

n
<
d(ϕ(xn), ϕ(yn))α

d(xn, yn)α
.

In this way we obtain two sequences {xn} and {yn} in X such that

(2) 0 < d(xn, yn) <

[
2

n (1 + L(ϕ)α)

] 1
α

and ∣∣∣∣∣d(ϕ(xn), ϕ(yn))α

d(xn, yn)α
− inf
t>0

sup
0<d(x,y)<t

d(ϕ(x), ϕ(y))α

d(x, y)α

∣∣∣∣∣ < 1

n

for all n ∈ N, and this last inequality implies that

(3) inf
t>0

sup
0<d(x,y)<t

d(ϕ(x), ϕ(y))α

d(x, y)α
= lim
n→∞

d(ϕ(xn), ϕ(yn))α

d(xn, yn)α
.

Now take xn, yn ∈ X for which ϕ(xn) 6= ϕ(yn) and choose β ∈]α, 1[. Define hn, fn : X → R by

hn(x) =
d(x, ϕ(yn))β − d(x, ϕ(xn))β

2d(ϕ(xn), ϕ(yn))β−α

and
fn(x) = hn(x)− hn(e).

Using inequality (2), we have ‖hn‖∞ ≤ 1/n. Clearly, fn ∈ lip0(X, dα) with Lα(fn) = Lα(hn) = 1
and ‖fn‖∞ ≤ 2/n for all n ∈ N. Moreover, an easy calculation shows that |fn(ϕ(xn))− fn(ϕ(yn))| =
d(ϕ(xn), ϕ(yn))α. Since

d(ϕ(xn), ϕ(yn))α

d(xn, yn)α
=
|fn(ϕ(xn))− fn(ϕ(yn))|

d(xn, yn)α
≤ Lα(Cϕfn)

for all n ∈ N, we have

(4) lim
n→∞

d(ϕ(xn), ϕ(yn))α

d(xn, yn)α
≤ lim sup

n→∞
Lα(Cϕfn).
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By Lemma 3.2, {fn} → 0 weakly in lip0(X, dα). Thus, if K is any compact operator from lip0(X, dα)
into lip0(X, dα), then limn→∞ Lα(Kfn) = 0 because compact operators map weakly convergent sequences
into norm convergent sequences. It follows that

lim sup
n→∞

Lα(Cϕfn) = lim sup
n→∞

(Lα(Cϕfn)− Lα(Kfn))

≤ lim sup
n→∞

Lα((Cϕ −K)fn)

≤ ‖Cϕ −K‖ .(5)

Combining (1), (3), (4) and (5), we conclude that

lim
t→0

sup
0<d(x,y)<t

d(ϕ(x), ϕ(y))α

d(x, y)α
≤ ‖Cϕ −K‖ .

By taking the infimum on both sides of this inequality over all compact operators K on lip0(X, dα), we
obtain the lower estimate

lim
t→0

sup
0<d(x,y)<t

d(ϕ(x), ϕ(y))α

d(x, y)α
≤ ‖Cϕ‖e . �

4. The upper estimate of the essential norm of Cϕ on lip0(X, dα)

Now we prove that the lower bound of the essential norm of Cϕ on lip0(X, dα) obtained in Section 3
is also an upper bound whenever the dual space lip0(X, dα)∗ has the approximation property.

Theorem 4.1. Let X be a pointed compact metric space and 0 < α < 1. Suppose that the dual space
lip0(X, dα)∗ has the approximation property. Let ϕ : X → X be a base point preserving Lipschitz mapping.
Then the essential norm of the composition operator Cϕ : lip0(X, dα)→ lip0(X, dα) satisfies

‖Cϕ‖e ≤ lim
t→0

sup
0<d(x,y)<t

d(ϕ(x), ϕ(y))α

d(x, y)α
.

The strategy for the proof of Theorem 4.1 is to work with a sequence {Kn} of compact operators on
lip0(X, dα) that satisfies some prescribed conditions that are stated in Lemma 4.3 below. We borrow this
technique from the work of Montes-Rodŕıguez [10].

First we recall some notions and results. A sequence {Kn} is called a compact approximating sequence
for a separable Banach space E if each Kn : E → E is a compact operator and limn→∞ ‖(I −Kn)f‖ = 0
for every f ∈ E, where I denotes the identity operator on E. Also, we say that {Kn} is shrinking if
limn→∞ ‖(I −Kn)∗f∗‖ = 0 for every f∗ ∈ E∗.

Johnson [6, Theorem 2] showed that both the Banach space lip0(X, dα) and its dual space lip0(X, dα)∗

are separable.
On the other hand, the Banach-Mazur distance between isomorphic Banach spaces E,F is defined by

d(E,F ) = inf
{
‖T‖ ·

∥∥T−1
∥∥ : T is an isomorphism of E onto F

}
.

We say that E embeds almost isometrically into F provided that for every ε > 0, there is a subspace
Fε ⊂ F such that d(E,Fε) < 1 + ε.

The next proposition is immediate from a result of Kalton [7].

Proposition 4.2. [7, Corollary 3] Let {Kn} be a sequence of compact operators between Banach spaces
E and F and let us suppose that limn→∞〈K∗nf∗, f∗∗〉 = 0 for all f∗ ∈ F ∗ and f∗∗ ∈ E∗∗. Then there
exists a sequence {Kc

n} of compact operators such that Kc
n ∈ conv {Km : m ≥ n} and limn→∞ ‖Kc

n‖ = 0.

Lemma 4.3. Let X be a pointed compact metric space and 0 < α < 1. Suppose that the dual space
lip0(X, dα)∗ has the approximation property. Then there is a shrinking compact approximating sequence
{Kn} on lip0(X, dα) such that lim supn→∞ ‖I −Kn‖ ≤ 1.
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Proof. Since the dual space lip0(X, dα)∗ is separable and has the approximation property, it has the
metric approximation property and therefore there is a shrinking compact approximating sequence {Sn}
on lip0(X, dα). We claim that for every j ∈ N, there exist a natural nj ≥ j and a compact operator Kj

on lip0(X, dα) in the convex hull of the set {Sm : m ≥ nj} such that ‖I −Kj‖ < (1 + 1/j)2.
Fix j ∈ N. Now, for the proof of our claim, we use a result that ensures that lip0(X, dα) embeds almost

isometrically into c0. We refer to Kalton [8, Theorem 6.6] for a simple proof of this result due to Yoav
Benyamini. Thus, there is a closed subspace Fj ⊂ c0 and an isomorphism Tj : lip0(X, dα)→ Fj such that

‖Tj‖ ·
∥∥T−1

j

∥∥ < 1 + 1/j. Now consider Mn := TjSnT
−1
j , and notice that {Mn} is a shrinking compact

approximating sequence on Fj . Next, let {Pn} be the sequence of projections on c0 defined by

(Pnx)(k) = x(k) (1 ≤ k ≤ n), (Pnx)(k) = 0 (k > n),

for all x ∈ c0, and let J : Fj ↪→ c0 be the inclusion map. Then consider the sequence of compact
operators Dn := PnJ − JMn defined from Fj into c0. Notice that limn→∞〈D∗nf∗, f∗∗〉 = 0 for all
f∗ ∈ c∗0 and f∗∗ ∈ F ∗∗j . It follows from Proposition 4.2 that there is a sequence of operators {Dc

n}
such that Dc

n ∈ conv {Dm : m ≥ n} and limn→∞ ‖Dc
n‖ = 0. This gives rise to a pair of shrinking

compact approximating sequences {P cn} and {M c
n} such that, for each n ∈ N, P cn ∈ conv {Pm : m ≥ n} ,

M c
n ∈ conv {Mm : m ≥ n} , and limn→∞ ‖P cnJ − JM c

n‖ = 0. Now, consider Ln := T−1
j M c

nTj . We have

‖I − Ln‖ =
∥∥I − T−1

j M c
nTj

∥∥ ≤ ∥∥T−1
j

∥∥ · ‖Tj‖ · ‖I −M c
n‖

≤
(

1 +
1

j

)
· ‖I −M c

n‖ =

(
1 +

1

j

)
· ‖J(I −M c

n)‖

≤
(

1 +
1

j

)
· (‖(I − P cn)J‖+ ‖P cnJ − JM c

n‖)

≤
(

1 +
1

j

)
· (1 + ‖P cnJ − JM c

n‖)

for all n ∈ N. Finally, choose nj ≥ j large enough so that
∥∥∥P cnjJ − JM c

nj

∥∥∥ < 1/j and conclude that∥∥I − Lnj∥∥ < (1 + 1/j)2. The claim is proved if we take Kj := Lnj .
The proof of the lemma will be finished if we show that {Kj} is a shrinking compact approximating

sequence on lip0(X, dα). Let f ∈ lip0(X, dα) and ε > 0. Since limn→∞ Lα(f − Snf) = 0, there exists
m0 ∈ N such that Lα(f − Snf) < ε for n ≥ m0. If j ≥ m0, using that Kj ∈ conv {Sm : m ≥ nj} and
nj ≥ j, we conclude that Lα(f −Kjf) < ε. Hence limj→∞ Lα(f −Kjf) = 0. This shows that {Kj} is
approximating on lip0(X, dα) and similarly it is seen that {Kj} is shrinking. �

There is another preliminary result that is needed for the proof of Theorem 4.1 and that can be stated
as follows:

Lemma 4.4. Let X be a pointed compact metric space, 0 < α < 1 and ϕ : X → X a base point preserving
Lipschitz mapping. Let {Kn} be a shrinking compact approximating sequence on lip0(X, dα).

Then, for each t > 0,

lim
n→∞

sup
Lα(f)≤1

sup
d(x,y)≥t

|[(I −Kn)f ](ϕ(x))− [(I −Kn)f ](ϕ(y))|
d(x, y)α

= 0.

Proof. Fix t > 0. Since the inequality ‖f‖∞ ≤ diam(X)α · Lα(f) is satisfied for all f ∈ lip0(X, dα),
there is a continuous injection J : (lip0(X, dα), Lα(·)) ↪→ (lip0(X, dα), ‖·‖∞). Moreover, it follows from
the Arzelà–Ascoli Theorem that J is a compact operator, and by Schauder’s theorem, its adjoint J∗ is a
compact operator, too.

Let B be the unit ball of (lip0(X, dα), ‖·‖∞)
∗
. Since the bounded sequence of operators {(I −Kn)∗}

converges to zero pointwise on lip0(X, dα)∗ and J∗(B) is a relatively compact set in (lip0(X, dα), Lα(·))∗,
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it follows that limn→∞ ‖(I −Kn)∗J∗‖ = 0. Thus, limn→∞ ‖J(I −Kn)‖ = 0. Let ε > 0 be given and
choose m ∈ N such that if n ≥ m, then ‖(I −Kn)f‖∞ < εtα/4 for all f ∈ lip0(X, dα) with Lα(f) ≤ 1.
For n ≥ m, we have

|[(I −Kn)f ](ϕ(x))− [(I −Kn)f ](ϕ(y))|
d(x, y)α

≤
2 ‖(I −Kn)f‖∞

tα
<
ε

2

whenever f ∈ lip0(X, dα) with Lα(f) ≤ 1 and x, y ∈ X such that d(x, y) ≥ t. Finally, we get

sup
Lα(f)≤1

sup
d(x,y)≥t

|[(I −Kn)f ](ϕ(x))− [(I −Kn)f ](ϕ(y))|
d(x, y)α

< ε,

as required. �

We now are ready to prove our main result.

Proof of Theorem 4.1. Let {Kn} be the sequence of operators on lip0(X, dα) provided by Lemma 4.3.
Since each Kn is a compact operator, so is the product CϕKn : lip0(X, dα)→ lip0(X, dα) and therefore

‖Cϕ‖e ≤ ‖Cϕ(I −Kn)‖.

Next, fix t > 0 and notice that

‖Cϕ(I −Kn)‖ = sup
Lα(f)≤1

Lα (Cϕ(I −Kn)f)

= sup
Lα(f)≤1

sup
x 6=y

|[(I −Kn)f ](ϕ(x))− [(I −Kn)f ](ϕ(y))|
d(x, y)α

≤ sup
Lα(f)≤1

sup
0<d(x,y)<t

|[(I −Kn)f ](ϕ(x))− [(I −Kn)f ](ϕ(y))|
d(x, y)α

+ sup
Lα(f)≤1

sup
d(x,y)≥t

|[(I −Kn)f ](ϕ(x))− [(I −Kn)f ](ϕ(y))|
d(x, y)α

.

Then, for every f ∈ lip0(X, dα), we have

sup
0<d(x,y)<t

|[(I −Kn)f ](ϕ(x))− [(I −Kn)f ](ϕ(y))|
d(x, y)α

≤ sup
ϕ(x)6=ϕ(y)

|[(I −Kn)f ](ϕ(x))− [(I −Kn)f ](ϕ(y))|
d(ϕ(x), ϕ(y))α

· sup
0<d(x,y)<t

d(ϕ(x), ϕ(y))α

d(x, y)α

≤ Lα[(I −Kn)f ] · sup
0<d(x,y)<t

d(ϕ(x), ϕ(y))α

d(x, y)α
,

so that

sup
Lα(f)≤1

sup
0<d(x,y)<t

|[(I −Kn)f ](ϕ(x))− [(I −Kn)f ](ϕ(y))|
d(x, y)α

≤ ‖I −Kn‖ sup
0<d(x,y)<t

d(ϕ(x), ϕ(y))α

d(x, y)α
.

Now, combining the above inequalities, we obtain

‖Cϕ‖e ≤ ‖I −Kn‖ sup
0<d(x,y)<t

d(ϕ(x), ϕ(y))α

d(x, y)α

+ sup
Lα(f)≤1

sup
d(x,y)≥t

|[(I −Kn)f ](ϕ(x))− [(I −Kn)f ](ϕ(y))|
d(x, y)α
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Letting n→∞ and using Lemma 4.3 and Lemma 4.4, we conclude that

‖Cϕ‖e ≤ sup
0<d(x,y)<t

d(ϕ(x), ϕ(y))α

d(x, y)α
.

Finally, taking limits as t→ 0 yields the desired inequality.
�

5. The essential norm of Cϕ on Lip0(X, dα)

Now we extend the estimates on the essential norm of a composition operator to the spaces Lip0(X, dα).
Recall that lip0(X, dα)∗∗ is isometrically isomorphic to Lip0(X, dα) whenever (X, d) is a pointed compact
metric space and α ∈ (0, 1) (see [12, Theorem 3.3.3 and Proposition 3.2.2]). As a matter of fact, the
mapping ∆: lip0(X, dα)∗∗ → Lip0(X, dα) defined by

∆(F )(x) = F (δx) (F ∈ lip0(X, dα)∗∗, x ∈ X) ,

is an isometric isomorphism.
If T is a bounded linear operator on a Banach space, then ‖T ∗‖ = ‖T‖ . However, this identity is no

longer true for the essential norm. Since the adjoint of a compact operator is again a compact operator,
we always have ‖T ∗‖e ≤ ‖T‖e and therefore ‖T ∗∗‖e ≤ ‖T ∗‖e ≤ ‖T‖e . Axler, Jewell and Shields [2]
showed that in fact ‖T ∗∗‖e = ‖T ∗‖e, but they gave a counterexample where ‖T ∗‖e < ‖T‖e .

Theorem 5.1. Let X be a pointed compact metric space, 0 < α < 1 and ϕ : X → X a point preserving
Lipschitz mapping. Then the essential norm of the operator Cϕ : Lip0(X, dα)→ Lip0(X, dα) satisfies the
lower estimate

‖Cϕ‖e ≥ lim
t→0

sup
0<d(x,y)<t

d(ϕ(x), ϕ(y))α

d(x, y)α
.

If, in addition, the space lip0(X, dα)∗ has the approximation property, then we have the upper estimate

‖Cϕ‖e ≤ lim
t→0

sup
0<d(x,y)<t

d(ϕ(x), ϕ(y))α

d(x, y)α
.

Proof. Let us start with the lower estimate. Let {fn} be the weakly null sequence in lip0(X, dα) that we
constructed for the proof of Theorem 3.1. Then the sequence {fn} is weakly null in Lip0(X, dα). Thus, if
K is any compact operator on Lip0(X, dα), we have limn→∞ Lα(Kfn) = 0. Hence, the same computation
we performed in Theorem 3.1 yields the lower estimate

lim
t→0

sup
0<d(x,y)<t

d(ϕ(x), ϕ(y))α

d(x, y)α
≤ ‖Cϕ‖e.

Now, for the upper estimate, given F ∈ lip0(X, dα)∗∗ and x ∈ X, notice that

(∆−1Cϕ∆)(F )(δx) = ((Cϕ∆)(F ))(x) = Cϕ(∆(F ))(x) = ∆(F )(ϕ(x))

= F
(
δϕ(x)

)
= F

(
δx ◦ Cϕ|lip0(X,dα)

)
=

(
F ◦

(
Cϕ|lip0(X,dα)

)∗)
(δx) =

(
Cϕ|lip0(X,dα)

)∗∗
(F )(δx).

Since lip0(X, dα)∗ = span{δx : x ∈ X}, we conclude that ∆−1Cϕ∆ =
(
Cϕ|lip0(X,dα)

)∗∗
. Finally, using

the relationship between the essential norm of an operator and that of its second adjoint, and applying
Theorem 4.1, we get

‖Cϕ‖e =
∥∥∆−1Cϕ∆

∥∥
e

=
∥∥∥(Cϕ|lip0(X,dα)

)∗∗∥∥∥
e
≤

∥∥∥Cϕ|lip0(X,dα)

∥∥∥
e
≤ lim
t→0

sup
0<d(x,y)<t

d(ϕ(x), ϕ(y))α

d(x, y)α
,

as we wanted. �
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[8] N. J. Kalton, Spaces of Lipschitz and Hölder functions and their applications, Collect. Math. 55 (2004), 171–217.
[9] E. Mayer-Wolf, Isometries between Banach spaces of Lipschitz functions, Israel J. Math. 38 (1981), 58–74.
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