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UNIFORM HOMEOMORPHISMS OF BANACH SPACES

AND ASYMPTOTIC STRUCTURE

N. J. KALTON

Abstract. We give a general result on the behavior of spreading models in
Banach spaces which coarse Lipschitz-embed into asymptotically uniformly
convex spaces. We use this result to study the uniqueness of the uniform
structure in �p-sums of finite-dimensional spaces for 1 < p < ∞; in particular

we give some new examples of spaces with unique uniform structure.

1. Introduction

It is known that asymptotic smoothness is preserved under uniform homeomor-
phisms of Banach spaces [11]. In quantitative terms this is measured by the behavior
of the convex Szlenk index (Theorem 5.5 of [11]); unfortunately it is not true that
one has a precise result on the preservation of the modulus of asymptotic smooth-
ness, even after renorming. Thus, for example, if X and Y are separable uniformly
homeomorphic Banach spaces and

ρY (t) ≤ ctp, 0 < t < 1,

we can only conclude that for any q < p and some equivalent norm on X, one has
an estimate

ρX(t) ≤ c′tq, 0 < t < 1.

A recent example in [29] shows that we cannot improve this to the case q = p. There
is a simple application of the ideas of [11] to spreading models in Y . If (en)

∞
n=1

is the basis of a spreading model S of a normalized weakly null sequence in X we
have an estimate

(1.1) ‖e1 + · · ·+ en‖S ≤ C‖e1 + · · ·+ en‖�ρY ,

where the right-hand side represents the norm in the Orlicz sequence space gener-
ated by the Orlicz function ρY . This can be obtained by combining Theorem 4.4
and Theorem 5.5 of [11]. In [30], using simpler arguments, this result is shown to
hold more generally (Theorem 6.1) when X coarse Lipschitz-embeds into Y , under
the additional hypothesis that Y is reflexive.

Although these results have applications in the nonlinear theory of Banach
spaces, it has been a significant drawback that there has been no corresponding
result giving a lower bound in terms of asymptotic convexity to the upper bound
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1052 N. J. KALTON

in (1.1). In a recent article [2], results are obtained that suggest one might hope
for similar results for asymptotic convexity. Here we justify that hope in Theorem
7.4, where we show that if Y is reflexive and X coarse Lipschitz-embeds in Y , then
for some constant c > 0 and any spreading model S of a normalized weakly null
sequence in X we have an estimate

(1.2) c‖e1 + · · ·+ en‖�δY ≤ ‖e1 + · · ·+ en‖S .

We then use these ideas to study �p-sums of finite-dimensional spaces. Suppose
1 < p < ∞. It is a result of Johnson, Lindenstrauss, Preiss and Schechtman [19] that
a separable reflexive Banach space X which has two renormings X1 and X2 with
δX1

(t) ∼ ρX2
(t) ∼ ctp is linearly isomorphic to a subspace of a space (

∑∞
n=1 En)�p

with each En being finite-dimensional. Unfortunately it is shown in [29] that if we
take (Gn)

∞
n=1 to be a sequence dense in all finite-dimensional normed spaces for

Banach-Mazur distance, then (
∑∞

n=1 Gn)�p (see e.g. [22]) is uniformly homeomor-

phic to (
∑∞

n=1 Gn)Tp
, where Tp is p-convexified Tsirelson space (see e.g. [8]). This

means that being embeddable in an �p-sum of finite-dimensional spaces is not, in
general, invariant under uniform homeomorphisms.

However, under some additional hypotheses, (1.2) and (1.1) can be combined
to get such a conclusion. For example it is shown in [11] that if X is uniformly
homeomorphic to a subspace (respectively, quotient) of �p, then X is itself linearly
isomorphic to a subspace (respectively, quotient) of �p when 2 ≤ p < ∞. We show
here in Theorem 8.4 that the same conclusion can be obtained when 1 < p < 2. Let
us remark that in [29] we give examples of subspaces X and Y of �p (1 < p < ∞,
p �= 2) which are uniformly homeomorphic but not linearly isomorphic.

In [20] it was shown that �p has unique uniform structure. We extend this result
here by showing that (

∑∞
n=1 �

n
r )�p has unique uniform structure if r > max(p, 2)

or 1 < r < min(p, 2). A crucial point in these proofs is the role of the uniform
approximation property. This mirrors the examples of two uniformly homeomorphic
but nonisomorphic subspaces of �p mentioned above from [29], where one space has
the approximation property (but not the uniform approximation property) and the
other fails the approximation property.

On the way to obtaining these nonlinear results we require some new results
in the linear theory of Banach spaces. If X is a reflexive Banach space, then the
condition

‖e1 + · · ·+ en‖S ≤ Cn1/p

for every spreading model of a normalized weakly null sequence is simply the re-
quirement that X has the so-called p-Banach-Saks property. The dual notion that

‖e1 + · · ·+ en‖S ≥ cn1/p

for every spreading model of a normalized weakly null sequence, we call the p-
co-Banach-Saks property. If X is a subspace or quotient of Lp when p > 2 and
has the p-Banach-Saks property, then Johnson [17] showed that X is then also a
subspace of a quotient of �p. If X is a subspace of a quotient of Lp (p > 2) and
has the p-Banach-Saks property, then Johnson obtained that X is a subspace of a
quotient of �p only under the additional hypothesis that X has the approximation
property. We remove this restriction, answering a question of Johnson, and provide
dual results for 1 < p < 2. In fact we give a more general framework for results of
this type.
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UNIFORM HOMEOMORPHISMS OF BANACH SPACES 1053

Foreword: Nigel Kalton, author of this work, suddenly passed away on August
31, 2010. The present article was essentially ready at the time of his death, but
some editing work had to be done before it could actually be submitted. Nigel’s
friends and colleagues are grateful to Gilles Lancien who took care of this editing
task with kindness and efficiency.

2. Preliminaries from linear Banach space theory

Our notation for Banach spaces is fairly standard (see e.g. [1, 18, 35]). If X is a
Banach space, BX denotes its closed unit ball and ∂BX the unit sphere {x : ‖x‖ =
1}.

We recall that if U is a nonprincipal ultrafilter on N and X is a Banach space,
then the ultrapower XU is defined to be the quotient of �∞(X) by the subspace of
all sequences (xn)

∞
n=1 such that limn∈U ‖xn‖ = 0. A Banach space is super-reflexive

if every ultraproduct is reflexive.
We recall that a separable Banach space X has the approximation property (AP)

if given any compact subset K of X and ε > 0 there is a finite-rank operator
T : X → X with ‖Tx−x‖ < ε for x ∈ K. X has the metric approximation property
(MAP) if we can also require ‖T‖ ≤ 1. Any reflexive Banach space with (AP)
has (MAP)(see [35] p. 39). X is said to have the uniform approximation property
(UAP) if there is a constant K such that for every m there exists n so that if F
is a subspace of X of dimension m we can find an operator T : X → X with rank
at most n, ‖T‖ ≤ K and Tx = x for x ∈ F. The uniform approximation property
was first introduced by Pe�lczyński and Rosenthal [39]; rather few spaces have this
property, but they include the Lp-spaces and reflexive Orlicz spaces [34].

X has a finite-dimensional decomposition (FDD) if there is a sequence of finite-
rank operators Pn : X → X such that PmPn = 0 when m �= n and x =

∑∞
n=1 Pnx

for every x ∈ X. If each Pn has rank one, then X has a basis. The (FDD) is
called shrinking if we also have x∗ =

∑∞
n=1 P

∗
nx

∗ for every x∗ ∈ X∗. If, in addition,
x =

∑∞
n=1 Pnx unconditionally for every x ∈ X, then X has an unconditional

finite-dimensional decomposition (UFDD). Finally if ‖
∑n

k=1 ηkPk‖ ≤ 1 for every
n ∈ N and ηk = ±1 for 1 ≤ k ≤ n, then we say that X has a 1-(UFDD).

We shall say that a Banach space X is p-uniformly smooth for 1 < p ≤ 2 (or X
has a modulus of smoothness of power type p) if for some constant C we have the
estimate

1

2
(‖x1 + x2‖p + ‖x1 − x2‖p) ≤ ‖x1‖p + Cp‖x2‖p, x1, x2 ∈ X.

We say that X is p-uniformly convex for 2 ≤ p < ∞ (or X has a modulus of
convexity of power type p) if for some constant c > 0 we have

‖x1‖p + cp‖x2‖p ≤ 1

2
(‖x1 + x2‖p + ‖x1 − x2‖p), x1, x2 ∈ X.

We shall frequently deal with �p−sums of Banach spaces (Xn)
∞
n=1. We denote

by (
∑∞

n=1 Xn)�p the space of sequences (xn)
∞
n=1 with xn ∈ Xn and

‖(xn)
∞
n=1‖ = (

∞∑
n=1

‖xn‖p)1/p < ∞.

If Xn = X is a fixed Banach space, we use the notation �p(X).
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1054 N. J. KALTON

3. Asymptotic moduli in Banach space theory

We now discuss asymptotic uniform smoothness and asymptotic uniform con-
vexity. Let X be a separable Banach space. We define the modulus of asymptotic
uniform smoothness (due to Milman [36]) ρ(t) = ρX(t) by

ρ(t) = sup
x∈∂BX

inf
E

sup
y∈∂BE

{‖x+ ty‖ − 1},

where E runs through all closed subspaces of X of finite codimension.
The modulus of asymptotic uniform convexity is defined by

δ(t) = inf
x∈∂BX

sup
E

inf
y∈∂BE

{‖x+ ty‖ − 1},

where E runs through all closed subspaces of X of finite codimension. Similarly in
X∗ there is a weak∗-modulus of asymptotic uniform convexity defined by

δ
∗
(t) = inf

x∗∈∂BX∗
sup
E

inf
y∈∂BE

{‖x∗ + ty∗‖ − 1},

where E runs through all weak∗-closed subspaces of X∗ of finite codimension.
As shown in [19], if ρ(t) < t for some 0 < t ≤ 1, then X∗ is separable. On the

other hand if ρ(t) = 0 for some t > 0, then X is isomorphic to a subspace of c0 (see
[10] and [19]). We say that X is asymptotically uniformly smooth if limt→0 ρ(t)/t =
0. If X is asymptotically uniformly smooth this implies that ρ(t)/t ≤ Ctθ for some
0 < θ < 1 (see [32] and [11]). The function ρ is clearly convex, while the function
δ satisfies the condition that δ(t)/t is increasing so that if we define the convex
function

δ̃(t) =

∫ t

0

δ(s)

s
ds,

then

δ(t/2) ≤ δ̃(t) ≤ δ(t), 0 < t < ∞
so that δ is equivalent to a convex function.

It is clear that we have that if U is a nonprincipal ultrafilter on N, x �= 0 and
(xn)

∞
n=1 is a weakly null sequence, then we have

‖x‖ lim
n∈U

δ(‖xn‖/‖x‖) ≤ lim
n∈U

‖x+ xn‖ − ‖x‖ ≤ ‖x‖ lim
n∈U

ρ(‖xn‖/‖x‖).

This can alternatively be viewed as the statement that

‖x‖ lim
n→∞

δ(‖xn‖/‖x‖) ≤ lim
n→∞

‖x+ xn‖ − ‖x‖ ≤ ‖x‖ lim
n→∞

ρ(‖xn‖/‖x‖)

whenever all the limits exist. It is clear that if X∗ is separable this is an equivalent
formulation of the definition.

We remark that it is trivial that if 1 < p < ∞, δ�p(t) = ρ�p(t) = (1 + tp)1/p − 1.
We will need the fact that for the corresponding function spaces we have:

Proposition 3.1 ([36]). Suppose 1 < p < ∞. If 1 < p < 2, then there is a constant
c = cp > 0 such that

ρLp
(t) ≤ (1 + cptp)1/p − 1.

If 2 < p < ∞, then there is a constant c = cp > 0 such that

δLp
(t) ≥ (1 + cptp)1/p − 1.
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UNIFORM HOMEOMORPHISMS OF BANACH SPACES 1055

Remark. See [36], p. 117. This proposition may be expressed in the following
terms. If 1 < p < 2, then

lim
n∈U

‖f + gn‖p ≤ lim
n∈U

(‖f‖p + cpp‖gn‖p)1/p

whenever (gn)
∞
n=1 is a weakly null sequence in Lp and U is a nonprincipal ultrafilter

on N. Similarly if 2 < p < ∞,

lim
n∈U

‖f + gn‖p ≥ lim
n∈U

(‖f‖p + cpp‖gn‖p)1/p

whenever (gn)
∞
n=1 is a weakly null sequence in Lp.

We will also need the following proposition.

Proposition 3.2 ([19]). Let X be a Banach space and suppose Y = X/E is a
quotient of X. Then δY ≥ δX and ρY ≤ ρX .

There is a natural variant of δ which will be very useful in this paper. We define

δ̂X(t) = inf
x∈∂BX

sup
E

inf
y∈∂BE

{1
2
(‖x+ ty‖+ ‖x− ty‖)− 1},

where again E runs through all closed subspaces of X of finite codimension. As

with δX the function δ̂X(t)/t is increasing and so δ̂X is equivalent to a convex

function. Clearly δ̂X ≤ δX .
If (xn)

∞
n=1 is a bounded sequence we define sep {xn}∞n=1 = infm �=n ‖xm − xn‖.

Proposition 3.3. Suppose u, v ∈ X with ‖u − v‖ = 1. Let {xn}∞n=1 be a bounded
sequence in X and let t = sep {xn}∞n=1. Then

lim inf
n→∞

(‖u− xn‖+ ‖v − xn‖) ≥ 1 + δ̂X(t).

Proof. It is clearly enough to show that for all ν > 0 there exists an m with

‖u− xm‖+ ‖v − xm‖ > 1 + δ̂X(t)− ν.

Choose a finite-codimensional subspace E so that if z ∈ ∂BE , then

1

2
(‖u− v + tz‖+ ‖u− v − tz‖) ≥ 1 + δ̂(t)− 1

2
ν.

Since X/E is finite-dimensional we can find m �= n so that d(xm − xn, E) < ν/2.
Hence there exists z ∈ ∂BE and τ > t so that ‖xm − xn − τz‖ < ν. Then

1

2
(‖u− v + (xm − xn)‖+ ‖u− v − (xm − xn)‖) ≥ 1 + δ̂(t)− ν.

Now

‖u− v + (xm − xn)‖ ≤ ‖u− xn‖+ ‖v − xm‖
and

‖u− v − (xm − xn)‖ ≤ ‖u− xm‖+ ‖v − xn‖
so that combining we have either

‖u− xm‖+ ‖v − xm‖ > 1 + δ̂X(t)− ν

or

‖u− xn‖+ ‖v − xn‖ > 1 + δ̂X(t)− ν.

�
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1056 N. J. KALTON

4. The Banach-Saks property and iterated norms

We recall that every bounded sequence (yn)
∞
n=1 in a Banach space has a spreading

subsequence (xn)
∞
n=1 so that

lim
(n1,...,nm)→∞

‖
m∑
j=1

ajxnj
‖ = ‖

m∑
j=1

ajej‖S

exists for all finite scalar sequences (a1, . . . , am) and defines a seminorm on the
space c00 of all finitely supported scalar sequences. By this notation we mean that
for any ε > 0 and (a1, . . . , am) there exists q so that if q < n1 < n2 < · · · < nm,
then ∣∣∣∣∣∣‖

m∑
j=1

ajxnj
‖ − ‖

m∑
j=1

ajej‖

∣∣∣∣∣∣ < ε.

As long as (xn)
∞
n=1 is not convergent in norm the seminorm ‖ · ‖S is a norm. Then

(ej)
∞
j=1 is the spreading model associated to (xn)

∞
n=1 and is a sequence in the Banach

space S obtained by completing c00. If (xn)
∞
n=1 is weakly null we say that (ej)

∞
j=1

is a weakly null spreading model; this may not imply that (en)
∞
n=1 is itself a weakly

null sequence in S.
We will be particularly interested in the possible growth rate of ‖

∑n
j=1 ej‖S , for

a given normalized spreading sequence (xn)
∞
n=1. Note that if limn→∞ ‖

∑n
j=1 ej‖ =

∞, then given any ν > 0 and k ∈ N, using Ramsey arguments, we can pass to a
subsequence and assume that

(1− ν)‖
k∑

j=1

ej‖ ≤ ‖
k∑

j=1

xnj
‖ ≤ (1 + ν)‖

k∑
j=1

ej‖, n1 < n2 < · · · < nk.

Lemma 4.1. Let X be a Banach space and suppose (ej)
∞
j=1 is a spreading model

of a normalized sequence (xn)
∞
n=1. Then:

sup
εj=±1

‖
k∑

j=1

εjej‖ ≤ 3‖
k∑

j=1

ej‖

and if X is super-reflexive and (xn)
∞
n=1 is weakly null,

‖
k∑

j=1

ej‖ ≤ 2E‖
k∑

j=1

εjej‖,

where (εj)j denotes a sequence of independent Rademacher variables.

Proof. Let αk = ‖
∑k

j=1 ej‖. Then αk+l ≤ αk+αl.Hence limk αk/k = infk αk/k = θ
exists. Now for any integer m we have

‖
k∑

j=1

ej +
1

m

k+ml∑
j=k+1

ej‖ ≤ αk+l

so that

αk ≤ αk+l +
1

m
αml.
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UNIFORM HOMEOMORPHISMS OF BANACH SPACES 1057

Thus letting m → ∞,

αk ≤ αk+l + lθ ≤ k + 2l

k + l
αk+l.

For any k it is clear that

sup
εj=±1

‖
k∑

j=1

εjej‖ ≤ max
j≤k

(αj + αk−j) ≤ 3αk

by the preceding equation.
For the second part we observe that (en)n=1 is also weakly null and hence 2-

unconditional [6]. �

ForM an infinite subset of N, let Gk(M) denote the space of k-subsets {n1, . . . , nk}
(where n1 < n2 < · · · < nk) of M regarded as a graph in which {m1,m2, . . . ,mk}
and {n1, n2, . . . , nk} are adjacent if they interlace, i.e. m1 ≤ n1 ≤ m2 ≤ · · · ≤
mk ≤ nk or n1 ≤ m1 ≤ · · · ≤ nk ≤ mk. Let d be the associated least path metric.
Let us recall [28] that a Banach space X has property Q if there is a constant C so
that whenever f : Gk(N) → X has Lipschitz constant one, then there is an infinite
subset M of N so that

‖f(m1, . . . ,mk)− f(n1, . . . , nk)‖ ≤ C, (n1, . . . , nk), (m1, . . . ,mk) ∈ Gk(M).

It is shown in [28] that if either X coarsely embeds in a reflexive space or BX

uniformly embeds in a reflexive space, then X must have property Q.

Proposition 4.2. Let X be a Banach space with property Q. Then for each spread-
ing model (en)

∞
n=1 of X there is a constant C so that

‖
n∑

j=1

ej‖ ≤ CE‖
n∑

j=1

εjej‖.

Proof. We consider two cases. If (en)
∞
n=1 is not weakly Cauchy, then (en)

∞
n=1 is

equivalent to the unit vector basis of �1 by Rosenthal’s theorem [42], and the result
is clear. If not, then the sequence (e2j−1 − e2j)

∞
j=1 is 2-unconditional. Hence

‖
k∑

j=1

(e2j−1 − e2j)‖ ≤ 2E‖
k∑

j=1

εj(e2j−1 − e2j)‖ ≤ 4E‖
k∑

j=1

εjej‖.

Now passing to a suitable subsequence of (xn)
∞
n=1 we can assume that

1

2
‖

2k∑
j=1

ajej‖ ≤ ‖
2k∑
j=1

ajxnj
‖ ≤ 2‖

2k∑
j=1

ajej‖

whenever n1 < n2 < · · · < n2k and |aj | = 1.
Define f : Gk → X by f(n1, n2, . . . , nk) = xn1

+ · · · + xnk
. Then f , using the

preceding calculation, has Lipschitz constant at most 8E‖
∑k

j=1 εjej‖. Hence by
property Q for a suitable constant C independent of k, we can find n1 < n2 <
· · · < nk < m1 < · · · < mk with

‖
k∑

j=1

xnj
−

k∑
j=1

xmj
‖ ≤ CE‖

k∑
j=1

εjej‖.
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1058 N. J. KALTON

Hence

‖
k∑

j=1

ej −
2k∑

j=k+1

ej‖ ≤ 2CE‖
k∑

j=1

εjej‖.

In this case (en)
∞
n=1 has basis constant one and so

‖
k∑

j=1

ej‖ ≤ 2CE‖
k∑

j=1

εjej‖.

�

We say that a norm N on R
2 is absolute if

N(a, b) = N(|a|, |b|), a, b ∈ R.

For any Lipschitz convex Orlicz function F , the limit limt→∞ F (t)/t = θ exists and
there is a corresponding absolute norm defined by

NF (a, b) =

{
|a|(1 + F (|b|/|a|)), a �= 0,

θ|b|, a = 0.

Now suppose N is an absolute norm on R
2 with N(1, 0) = 1. We define the

sequence space ΛN as the completion of c00 under the norm defined iteratively by
‖e1‖ΛN

= 1 and then

‖
n∑

j=1

ajej‖ΛN
= N(‖

n−1∑
j=1

ajej‖ΛN
, |an|), n ≥ 2.

Spaces of this type were first considered in [26]. The space ΛN coincides with the
space hF , where F (t) = N(1, t)−1; here hF denotes the closure of c00 in the Orlicz
sequence space �F . In fact we have

Lemma 4.3. If a ∈ c00, then

1
2‖a‖�F ≤ ‖a‖ΛN

≤ e‖a‖�F .

Proof. Assume ‖a‖�F ≤ 1. Then

‖e1 +
n∑

j=1

ajej+1‖ΛN
≤

n∏
j=1

(1 + F (|aj |)) ≤ e.

Conversely if ‖a‖ΛN
≤ 1 we have

‖e1 +
n∑

j=1

ajej+1‖ΛN
≥

n∏
j=1

(1 + F (|aj |/2)) ≥ 1 +

n∑
j=1

F (|aj |/2)

so that ‖a‖�F ≤ 2. �

We will need the following proposition:

Proposition 4.4. Let X be a Banach space with separable dual. Then there exist
constants 0 < c < C < ∞ so that for any spreading model (ej)

∞
j=1 of a normalized

weakly null sequence we have

(4.3) c‖
n∑

j=1

ajej‖�δ ≤ ‖
n∑

j=1

ajej‖S ≤ C‖
n∑

j=1

ajej‖�ρ .
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UNIFORM HOMEOMORPHISMS OF BANACH SPACES 1059

Remark. Of course, the function δ is not necessarily convex but is equivalent to the
convex function δ̃.

Proof. It is easy to check that

‖a1e1 + · · ·+ anen‖S ≥ ‖a1e1 + · · ·+ anen‖ΛN
,

where N(1, t) = 1 + δ̃(t). Similarly

‖a1e1 + · · ·+ anen‖S ≤ ‖a1e1 + · · ·+ anen‖ΛN′ .

where N ′(1, t) = 1 + ρ(t). Then apply Lemma 4.3. �

The left-hand side of (4.3) can be improved:

Proposition 4.5. Let X be any Banach space. Then there exists a constant 0 <
c < ∞ so that for any spreading model (ej)

∞
j=1 of a normalized sequence we have

(4.4) c‖
n∑

j=1

ajej‖�δ̂ ≤ E‖
n∑

j=1

εjajej‖S .

Proof. Let N be the absolute norm such that

N(1, t) = 1 +

∫ t

0

δ̂(s)
ds

s
, t ≥ 0.

Then we prove that

‖
n∑

j=1

ajej‖ΛN
≤ E‖

n∑
j=1

εjajej‖S

by induction on n. Assume n ≥ 2 and the result is known for n− 1. It is clear that

E‖
n∑

j=1

εjajej‖S ≥ EN(‖
n−1∑
j=1

εjajej‖, |an|)

≥ N(E‖
n−1∑
j=1

εjaj‖, |an|)

≥ N(‖
n−1∑
j=1

ajej‖ΛN
, |an|)

= ‖
n∑

j=1

ajej‖ΛN
.

This concludes the proof. �

We say that a Banach space X not containing �1 has the p-Banach-Saks property
(1 < p < ∞) if there is a constant C so that for every spreading model (ej)

∞
j=1 of

a normalized weakly null sequence we have

‖
k∑

j=1

ej‖S ≤ Ck1/p, k = 1, 2, . . . .
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1060 N. J. KALTON

This is equivalent to the requirement that there is a constant C ′ so that every
normalized weakly null sequence (xn)n has a subsequence (xnj

)∞j=1 such that

‖
k∑

j=1

xnj
‖ ≤ C ′k1/p, k ∈ N, n1 < · · · < nk.

We say that X has the p-co-Banach-Saks property (1 < p < ∞) if there is a
constant c > 0 so that for every spreading model (ej)

∞
j=1 of a normalized weakly

null sequence we have

‖
k∑

j=1

ej‖S ≥ ck1/p, k = 1, 2, . . . .

The following proposition follows from Proposition 4.4:

Proposition 4.6. If ρ(t) ≤ Ctp for 0 ≤ t ≤ 1, then X has the p-Banach-Saks
property. If δ(t) ≥ ctp for 0 ≤ t ≤ 1, then X has the p-co-Banach-Saks property.

There is a simple duality relationship between these concepts, which we will
need:

Proposition 4.7. Let X be a reflexive space with the p-Banach-Saks property,
where 1 < p < ∞. Then X∗ has the q-co-Banach-Saks property, where q = p/(p−1).

Proof. Let C be the constant of the p-Banach-Saks property for X. Let (x∗
n)

∞
n=1

be a normalized weakly null sequence in X∗. We may pick a normalized sequence
(xn)

∞
n=1 in X with x∗

n(xn) = 1. Passing to a subsequence we can assume that
limn→∞ xn = x weakly. Then ‖xn−x‖ ≤ 2 and so passing to a further subsequence
we can assume that for any k,

lim
(n1,n2,...,nk)→∞

‖xn1
+ · · ·+ xnk

− kx‖ ≤ 2Ck1/p

for any k. However

lim
n1→∞

. . . lim
nk→∞

〈xn1
+ · · ·+ xnk

− kx, x∗
n1

+ · · ·+ x∗
nk
〉 = k,

which implies that in any spreading model (ej)
n
j=1 of (x∗

j )
∞
j=1 we must have

‖
k∑

j=1

ej‖S ≥ (1/(2C))k1/q.

�

Finally let us also introduce a version of the p-co-Banach-Saks property for p = 1.
We will say that X has the anti-Banach-Saks property if there is a constant c > 0
so that for every spreading model (ej)

∞
j=1 of a normalized sequence, we have

‖
k∑

j=1

ej‖S ≥ ck, k = 1, 2, . . . .

We make some simple observations about this property.
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UNIFORM HOMEOMORPHISMS OF BANACH SPACES 1061

Proposition 4.8. Let X be any Banach space. The following conditions on X are
equivalent:

(i) X has the anti-Banach-Saks property.
(ii) There is a constant c′ so that for any spreading model of a normalized se-

quence (xn)
∞
n=1 we have

E‖
k∑

j=1

εjej‖S ≥ c′θk,

where θ = sep {xn}∞n=1.

Proof. (i) =⇒ (ii). Let us first note that if X has the anti-Banach-Saks property
(with constant c) and (ej)

∞
j=1 is a spreading model of a normalized sequence, then

any weak∗-cluster point x∗∗ of (ej)
∞
j=1 in S∗∗ has norm at least c. Indeed, given

ν > 0, by Goldstine’s theorem we can find a1, . . . , am ≥ 0 with
∑m

j=1 aj = 1 and

‖
∑m

j=1 ajej‖S < ‖x∗∗‖+ ν. Hence for any k > m,

‖
k∑

i=1

m∑
j=1

ajei+j‖S ≤ k(‖x∗∗‖+ ν).

Rewriting this we obtain

c(k −m) ≤ ‖
k∑

i=m+1

ei‖S ≤ k(‖x∗∗‖+ ν) + 2m.

Letting k → ∞ gives c ≤ ‖x∗∗‖+ ν, where ν > 0 is arbitrary.
Hence under the conditions of (ii), applying the above reasoning to (e2j−1−e2j),

we find a weak∗-cluster point z∗∗ of this sequence with ‖z∗∗‖ ≥ cθ. It follows that
there exists ϕ ∈ S∗ with ‖ϕ‖ = 1 and limj→∞ ϕ(e2j) = α and limj→∞ ϕ(e2j−1) = β,
where β − α ≥ cθ. By considering translates we deduce the existence of ψ ∈ S∗

with ‖ψ‖ ≤ 1 and ψ(ej) =
1
2 (β−α)(−1)j . From this it is clear using the properties

of the spreading model that for any choice of sign εj we have:

‖
k∑

j=1

εjej‖S ≥ 1

2
cθk.

(ii) =⇒ (i). Let (ej)
∞
j=1 be a spreading model of an arbitrary normalized

sequence. If ‖e1 − e2‖S ≤ 1/2, then

‖e1 + · · ·+ ek‖S ≥ k/2, k = 1, 2, . . . .

Otherwise

E‖
k∑

j=1

εjej‖S ≥ 1
2c

′k

and so, using Lemma 4.1,

‖
k∑

j=1

ej‖S ≥ 1
6c

′k.

�
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5. �p-sums of finite-dimensional spaces

The special properties of �p-sums of finite-dimensional spaces have been studied
in detail by many authors. Many of the ideas in this section originated in the early
work of Johnson and Zippin on the spaces Cp ([16], [22] and [23]). See also [35].

For 1 ≤ p < ∞, we shall say that a separable Banach space X has property (m̃p)
if it is isomorphic to a closed subspace of a space (

∑∞
n=1 En)�p , where (En)

∞
n=1

is a sequence of finite-dimensional spaces. This terminology is motivated by the
definition of property (mp) for 1 < p < ∞. We recall that a Banach space X has
property (mp) [31] if for every x ∈ X and every weakly null sequence (xn)

∞
n=1 such

that the limits exist we have

lim
n→∞

‖x+ xn‖p = ‖x‖p + lim
n→∞

‖xn‖p.

Condition (mp) is exactly equivalent to the conditions ρX(t) = δX(t) = (1+tp)1/p−
1. It is clear that if X has (m̃p) for 1 < p < ∞ it has an equivalent norm with
property (mp).

There are several characterizations of property (m̃p) for 1 < p < ∞. The follow-
ing result is due to Johnson, Lindenstrauss, Preiss and Schechtman [19], Proposition
2.11 (see also [37] for another isomorphic version).

Theorem 5.1. Suppose 1 < p < ∞ and let X be a separable reflexive Banach
space. In order that X has (m̃p) it is necessary and sufficient that it is isomorphic

to a space Y with ρY (t) ≤ Ctp for 0 ≤ t ≤ 1 and to a space Z with δZ(t) ≥ ctp for
0 ≤ t ≤ 1, where 0 < c,C < ∞.

On the other hand we have the following theorem. Part (i) is proved in [31],
Theorem 3.2 and its proof; part (ii) follows from (i) by duality.

Theorem 5.2. Suppose 1 < p < ∞. If X is a separable Banach space with property
(mp), then:

(i) X is linearly isomorphic to a quotient of a space (
∑∞

n=1 En)�p , where (En)
∞
n=1

is a sequence of finite-dimensional subspaces of X.
(ii) X is linearly isomorphic to a subspace of a space (

∑∞
n=1 En)�p , where (En)

∞
n=1

is a sequence of finite-dimensional quotients of X.

Note that it is actually shown in [31], Theorem 3.2 that if X has property (mp),
then for every ε > 0, X is (1+ ε)−isomorphic to a subspace of a space (

∑∞
n=1 En)�p

with each dimEn < ∞.
The fact that in Theorem 5.2 (ii) one requires that the (En)

∞
n=1 be quotients

rather than subspaces is an inconvenience which can be rectified if X has the
approximation property. Results of this nature go back to the early work of Johnson
and Zippin [23], who proved such a result for the special case of Cp = (

∑∞
n=1 Gn)�p ,

where (Gn)
∞
n=1 is a sequence dense in all finite-dimensional spaces in the sense of

Banach-Mazur distance.

Proposition 5.3. Suppose 1 < p < ∞ and X is a separable Banach space with
property (m̃p) and the approximation property. Then there is a sequence of finite-
rank operators An : X → X such that AjAk = 0 for |k − j| > 1,

x =

∞∑
n=1

Anx, x ∈ X
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UNIFORM HOMEOMORPHISMS OF BANACH SPACES 1063

and for some constant C we have

C−1‖x‖ ≤ (
∞∑
k=1

‖Akx‖p)1/p ≤ C‖x‖, x ∈ X.

Proof. We may assume that X is a subspace of a space Z = (
∑∞

n=1 Gn)�p . Let
Sn : Z → Z be the partial sum operators associated to the canonical (FDD) of Z.
Let S0 = 0. It follows from [16] that X has the commuting metric approximation
property and so (see [7]), we may find a sequence of finite-rank operators Rn :
X → X that are finite-rank operators such that x = limn→∞ Rnx for x ∈ X and
x∗ = lim∞

n=1 R
∗
nx

∗ for x∗ ∈ X∗ and RmRn = RnRm = Rn if m > n. Consider
the operators Sn, Rn in K(X,Z). Then we have limn→∞ x∗∗(S∗

n − R∗
n)z

∗ = 0 for
x∗∗ ∈ X and z∗ ∈ Z∗. This implies by Corollary 3 of [25] that (Sn −Rn) converges
weakly to 0.

Now fix (εk)
∞
k=1 with εk > 0 and such that

∑∞
k=1 εk < 1/8. It follows from

Mazur’s Theorem that we can find an increasing sequence of integers (mk)
∞
k=0 with

m0 = 0 and nonnegative (aj)
∞
j=1 with

mk∑
j=mk−1+1

aj = 1, k = 1, 2, . . .

and

‖
mk∑

j=mk−1+1

aj(Sj −Rj)‖X→Z < εk, k = 1, 2, . . . .

We define Vk =
∑mk

j=mk−1+1 ajRj and Tk =
∑mk

j=mk−1+1 ajSj with V0 = T0 = 0.

Let Ak = Vk − Vk−1 and Bk = Tk − Tk−1. Then AjAk = 0 if |j − k| ≥ 1,

‖Ak −Bk‖ ≤ εk + εk−1.

Hence for x ∈ X, ∣∣∣∣∣(
∞∑
k=1

‖Akx‖p)1/p − (
∞∑
k=1

‖Bkx‖p)1/p
∣∣∣∣∣ ≤ 1

4
‖x‖.

On the other hand,

1

2
‖x‖ ≤ (

∞∑
k=1

‖Bkx‖p) ≤ 2‖x‖, x ∈ X.

�

Theorem 5.4. Suppose 1 < p < ∞. Suppose X is a separable Banach space with
property (m̃p) and the approximation property. If X is a complemented subspace in
a Banach space Y and (Ei)i∈I is a directed family of finite-dimensional subspaces
of Y with

⋃
i∈I Ei dense in Y , then X is isomorphic to a complemented subspace

of a space (
∑

Ein)�p for some sequence (in)
∞
n=1 in I.

In particular there is a sequence of finite-dimensional subspaces, (Fn)
∞
n=1 of X

such that X is linearly isomorphic to a complemented subspace of (
∑∞

n=1 Fn)�p .

Proof. Let (An) be the finite rank operators given by the previous proposition.
We may embed An(X) in a finite-dimensional subspace of Y , Hn, say, such that

Licensed to University of Missouri-Columbia. Prepared on Mon Nov 19 20:10:57 EST 2012 for download from IP 128.206.48.6.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



1064 N. J. KALTON

d(Hn, Ein) ≤ 2 for a suitable choice of in. Let P : Y → X be a bounded projection
and define Q : (

∑∞
n=1 Hn)�p → X by

Q(hk)
∞
k=1 =

∞∑
j=1

∑
|j−k|≤1

AjPhk.

Notice that if (xk)k is a finitely nonzero sequence with xk ∈ Ak(X) we have an
estimate for j = 0, 1, 2:

‖
∞∑
k=1

x3k−j‖ = ‖
∞∑
k=1

(A3k−j+1 +A3k−j +A3k−j−1)x3k−j‖

≤ C(

∞∑
k=1

‖A3k−j+1x3k−j‖p + ‖A3k−jx3k−j‖p + ‖A3k+j+1x3k−j‖p)1/p

≤ 3C2(

∞∑
k=1

‖x3k−j‖p)1/p.

Hence if h = (hk)
∞
k=1 is finitely nonzero,

‖Qh‖ ≤ 9C(
∞∑
j=1

‖Aj(
∑

|k−j|≤1

Phk)‖p)1/p ≤ 33C2‖P‖‖h‖

so that Q extends to a bounded operator.
Define J : X → (

∑∞
n=1 Hn)�p by Jx = (Anx)

∞
n=1. Then J is bounded and

QJ = IdX . �

Our final result will be useful when studying uniform homeomorphisms.

Theorem 5.5. Suppose 1 < p < ∞ and that X is a separable Banach space with
property (m̃p). Let (En)

∞
n=1 be a sequence of finite-dimensional subspaces of X such

that for some constant λ ≥ 1 and every m,n there is a subspace Fm,n of X such
that Fm,n is λ−complemented in X and d(Fm,n, �

m
p (En)) ≤ λ. Then (

∑∞
n=1 En)�p

is isomorphic to a complemented subspace of X.

Proof. We can assume X has (mp) (and so X∗ has (mq)). We first show that
given any finite-dimensional subspaces G ⊂ X, H ⊂ X∗ and n ∈ N there exist
operators A : En → X and B : X → En with BA = IEn

, ‖A‖, ‖B‖ ≤ 2λ, and
A(En) ⊂ H⊥, B∗(E∗

n) ⊂ G⊥.
Let de = dimEn, dg = dimG and dh = dimH. Fix m > 28λ4dh(dg + dh)de. By

hypothesis there exist operators S : �mp (En) → X and T : X → �mp (En) with TS =

I�mp (En) and ‖S‖, ‖T‖ ≤ λ. If we write S(uj)
m
j=1 =

∑m
j=1 Sjuj and Tx = (Tjx)

m
j=1,

then TjSj = IEn
.

We clearly have ‖
∑m

j=1 θjTj‖X→En
≤ λ for all θj = ±1. Since L(G,En) is√

dgde-isomorphic to a Hilbert space we have

m∑
j=1

‖Tj‖2G→En
≤ dgdeλ

2.

Similarly
m∑
j=1

‖S∗
j ‖2H→E∗

n
≤ dhdeλ

2.
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UNIFORM HOMEOMORPHISMS OF BANACH SPACES 1065

Thus there exists j so that

‖Tj‖2G→En
+ ‖Sj‖2H→E∗

n
≤ m−1(dg + dh)deλ

2.

Now we can find two projections, P and Q on X with ‖P‖ ≤
√
dg and ‖Q‖ ≤

2
√
dh so that P (X) = G and Q∗(X∗) = H. Now consider the operator

Tj(I − P )(I −Q)Sj . We have

‖QSj‖ = ‖S∗
jQ

∗‖ ≤ 2
√
dh‖S∗

j ‖H→E∗
n
≤ 2λd1/2e d

1/2
h m−1/2(dg + dh)

1/2 ≤ 1/(8λ)

and
‖TjP‖ ≤ λd1/2g d1/2e m−1/2(dg + dh) ≤ 1/(8λ).

Hence
‖IEn

− Tj(I − P )(I −Q)Sj)‖ ≤ 1/4 + 1/(64λ2) < 1/3.

Hence there is an operator D : En → En with ‖D‖ ≤ 3/2 so that

Tj(I − P )(I −Q)SjD = IEn
.

Let B = Tj(I − P ) and A = (I −Q)SjD; then ‖A‖, ‖B‖ ≤ 2λ. This completes the
proof of our claim.

Since X has (mp) and X∗ has (mq), it now follows that we can use an inductive
construction to find two sequences of operators An : En → X and Bn : X → En so
that

‖
∞∑

n=1

Anun‖ ≤ 4λ(

∞∑
n=1

‖un‖p)1/p, un ∈ En, n = 1, 2, . . .

and

‖
∞∑

n=1

B∗
nu

∗
n‖ ≤ 4λ(

∞∑
n=1

‖u∗
n‖q)1/q, u∗

n ∈ E∗
n, n = 1, 2, . . .

and BnAn = IEn
.

Hence we may define A : (
∑∞

n=1 En)�p → X and B : X → (
∑∞

n=1 En)�p by

A((un)
∞
n=1) =

∑∞
n=1 Anun and Bx =

∑∞
n=1 Bnx and we have BA = I(

∑∞
n=1 En)�p

and ‖A‖, ‖B‖ ≤ 4λ. �

6. Subspaces and quotients of Lp

We now introduce a definition which will be useful to us later. This idea was
first used in the work of Haydon, Raynaud and Levy on ultraproducts ([33] and
[13]).

Let us say that a Banach space Y has a random Lp-norm if there is a (nonlinear)
map V : Y → Z, where Z is an abstract Lp-space such that:

V y ≥ 0, y ∈ Y,

V (αy) = |α|V y, y ∈ Y, α ∈ R,

V (y1 + y2) ≤ V y1 + V y2, y ∈ Y,

and
‖V y‖p = ‖y‖, y ∈ Y.

V is then called the random Lp−norm on Y. V is easily verified to be continuous
and hence if Y is separable we can replace Z by Lp[0, 1]. If r > p we say that V is
of type r if there is a constant C such that for any y1, y2 ∈ Y we have

1

2
(V (y1 + y2) + V (y1 − y2)) ≤ ((V y1)

r + Cr(V y2)
r)1/r.
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1066 N. J. KALTON

Theorem 6.1. Suppose 1 < p < r ≤ 2. Let Y be a separable Banach space with
a random Lp-norm of type r, and let X be any quotient of Y. Then if X has the
p-co-Banach-Saks property, then X has property (m̃p).

Proof. Let V : Y → Lp[0, 1] be the random Lp-norm. Let us use |E| to denote the
Lebesgue measure of a measurable set E. First we define for any 0 < θ < 1,

‖f‖p,θ = sup
|E|≤θ

‖χEf‖p, f ∈ Lp.

We also let Q : Y → X be the quotient map.
Next observe that Y (and hence X) is super-reflexive. Indeed if C is the constant

in the definition of a random Lp-norm of type r,

1

2
(‖y1+y2‖p+‖y1−y2‖p) ≤

∫ 1

0

((V y1(s))
r+Cr(V y2(s))

r)p/r ds ≤ ‖y1‖p+Cp‖y2‖p.

This implies that Y is p-uniformly smooth. Further if ‖y‖ = 1 and ‖z‖ = t is such
that y∗(z) = 0, where ‖y∗‖ = y∗(y) = 1, then

‖y + tz‖ − 1 ≤ ‖y + tz‖+ ‖y − tz‖ − 2 ≤ ‖y + tz‖p + ‖y − tz‖p − 2 ≤ 2Cptp.

Hence ρY (t) ≤ 2Cptp for 0 ≤ t ≤ 1. This implies that also by Proposition 3.2,
ρX(t) ≤ 4Cptp. To prove the theorem it therefore suffices by Theorem 5.1 to show
that δX(t) ≥ atp for 0 ≤ t ≤ 1 for some a > 0.

Let us suppose that X has the p-co-Banach-Saks property with constant c > 0.
Suppose ‖x‖ = 1 and (xn)

∞
n=1 is a weakly null sequence with ‖xn‖ = t ≤ 1. We will

show that

(6.5) lim inf
n→∞

‖x+ xn‖p ≥ 1 + 2−pC−pcptp.

If this false we can pass to a subsequence and suppose that

lim
n→∞

‖x+ xn‖p = 1 + bp,

where b < c
2C t. If 0 < λ < 1 is chosen so that b < λc

2C , we can pass to a further
subsequence and suppose that

‖xn1
+ · · ·+ xnk

‖ ≥ λck1/pt, n1 < n2 < · · · < nk

and that (using Lemma 4.1)

E‖
k∑

j=1

εjxnj
‖ ≥ λc

2
k1/pt, n1 < n2 < · · · < nk.

Pick zn ∈ Y so that Qzn = x + xn and ‖zn‖ = ‖x + xn‖. Passing to a yet further
subsequence we can suppose that (zn)

∞
n=1 converges weakly to some y ∈ Y ; then

let yn = zn − y. Thus Qy = x and Qyn = xn. In particular

(E‖
k∑

j=1

εjynj
‖p)1/p ≥ λc

2
k1/pt, n1 < n2 < · · · < nk.

Now suppose 0 < θ < 1. Note that we have a crude estimate ‖y‖, ‖zn‖ ≤ 2 and
hence ‖yn‖ ≤ 4. For each n, let En be a measurable subset of [0, 1] with measure

|En| = θ and ‖V yn‖p,θ = ‖χEn
V yn‖p. Let us denote Ẽn = [0, 1] \ En. Then

‖V ynχẼn
‖∞ ≤ 4θ−1/p and so ‖V ynχẼn

‖r ≤ 4θ−1/p(1− θ)1/r.
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Now

(E‖
k∑

j=1

εjynj
‖p)1/p = (E‖V (

k∑
j=1

εjynj
‖pp)1/p

≤ C‖(
k∑

j=1

(V ynj
)r)1/r‖p.

We first estimate:

‖(
k∑

j=1

(V ynj
)rχẼnj

)1/r‖p ≤ ‖(
k∑

j=1

(V ynj
)rχẼnj

)1/r‖r

≤ 4θ−1/p(1− θ)1/rk1/r.

On the other hand

‖(
k∑

j=1

(V ynj
)rχEnj

)1/r‖p ≤ ‖(
k∑

j=1

(V ynj
)pχEnj

)1/p‖p

≤ (

k∑
j=1

‖V yn,j‖pp,θ)1/p.

Combining we have that

1

2
λck1/pt ≤ C(

k∑
j=1

‖V ynj
‖pp,θ)1/p + 4Cθ−1/p(1− θ)1/rk1/r.

Since this holds for any n1 < · · · < nk we conclude that (for any 0 < θ < 1),

(6.6) lim inf
n→∞

‖V yn‖p,θ ≥ λct

2C
.

Choose b1 so that b < b1 < λct
2C . Then we pick for each n a set Gn of minimal

measure so that ‖χGn
V yn‖p = b1. Then from (6.6) we have limn→∞ |Gn| = 0.

On Y consider the seminorm z →
∫
(V y(s))p−1V z(s) ds. Then by the Hahn-

Banach theorem there is a linear functional y∗ ∈ Y ∗ with y∗(y) = ‖V y‖p = ‖y‖p
and

y∗(z) ≤
∫
(V y(s))p−1V z(s) ds, z ∈ Y.

In particular

‖y‖p = lim
n→∞

y∗(y + yn) ≤ lim inf
n→∞

∫
(V y(s))p−1V (y + yn)(s) ds.

Now ∫
Gn

(V y(s))p−1V (y + yn)(s) ds ≤
(∫

Gn

(V y(s))pds

)1−1/p

‖y + yn‖

so that

lim
n→∞

∫
Gn

(V y(s))p−1V (y + yn)(s) ds = 0.

Hence

lim inf
n→∞

∫
G̃n

(V y(s))p−1V (y + yn)(s) ds ≥ ‖y‖p.
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This implies by Hölder’s inequality that

lim inf
n→∞

‖χG̃n
V (y + yn)‖p ≥ ‖y‖ ≥ 1.

On the other hand

‖χGn
V y‖p + ‖χGn

V (y + yn)‖p ≥ ‖χGn
V yn‖p = b1

so that
lim inf
n→∞

‖χGn
V (y + yn)‖p ≥ b1.

Hence
lim inf
n→∞

‖V (y + yn)‖pp ≥ 1 + bp1.

However
lim
n→∞

‖V (y + yn)‖pp = lim
n→∞

‖x+ xn‖p = 1 + bp.

This contradiction shows that δX(t) ≥ (1 + 2−pC−pcptp) − 1 for 0 ≤ t ≤ 1 and
concludes the proof. �
Corollary 6.2. (i) Suppose 1 < p < 2 and that X is a subspace (respectively
quotient space) of Lp with the p-co-Banach-Saks property. Then X is a subspace
(respectively quotient space) of �p.

(ii) Suppose 2 < p < ∞ and that X is a subspace (respectively quotient space) of
Lp with the p-Banach-Saks property. Then X is a subspace (respectively quotient
space) of �p.

Proof. (ii) is due to Johnson [17]. For (i) we observe that X has (m̃p) by Theorem
6.1 and so X∗ has (m̃q), where 1/p + 1/q = 1. Hence we can apply (ii) to deduce
that X∗ is a quotient (respectively a subspace) of �q and then use duality. �

The second part of the next theorem was proved by Johnson [17] with an addi-
tional hypothesis that X is the quotient of a subspace of Lp with the approximation
property. The theorem answers a question raised by Johnson (Problem IV.2) in that
paper.

Theorem 6.3. Suppose 1 < p < ∞ and that X is a subspace of a quotient of Lp.
(i) If 1 < p < 2 and X has the p-co-Banach-Saks property, then X is isomorphic

to a subspace of a quotient of �p.
(ii) If 2 < p < ∞ and X has the p-Banach-Saks property, then X is isomorphic

to a subspace of a quotient of �p.

Proof. (i) By Theorem 6.1, X has property (m̃p) and hence by Theorem 5.2, X
embeds into (

∑∞
n=1 En)�p , where the En’s are finite-dimensional subspaces of quo-

tients of Lp and hence also of �p. Thus X is a subspace of a quotient of �p.
(ii) By Theorem 4.7, X∗ has the q-co-Banach-Saks property, where 1/p+ 1/q =

1; hence by (i), X∗ is a subspace of a quotient of �q and the result follows by
duality. �

Let us now consider the analogue of these results when p = 1. Let us recall that
a Banach space X has the strong Schur property if there is a constant c > 0 so that
if (xn)

∞
n=1 is a sequence in X with sep {xn}∞n=1 = δ > 0, then there is a subsequence

with

‖
k∑

j=1

ajxnj
‖ ≥ c

k∑
j=1

|αj |.
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UNIFORM HOMEOMORPHISMS OF BANACH SPACES 1069

This concept was considered first (implicitly) by Johnson and Odell [21] and then
by Bourgain and Rosenthal [5], who gave examples of subspaces of L1 with the
strong Schur property but failing to have the Radon-Nikodým Property.

An alternative formulation of the strong Schur property is given in [27]. X has
the strong Schur property if there is a constant c so that for every bounded sequence
(xn)

∞
n=1 there exists x∗ ∈ X∗ with ‖x∗‖ = 1 and

lim sup
n→∞

x∗(xn) ≥ c lim sup
n→∞

‖xn‖.

Theorem 6.4. Let X be a closed subspace of L1. The following conditions on X
are equivalent:

(i) X has the anti-Banach-Saks property.
(ii) X has the strong Schur property.

(iii) For some c > 0 we have δ̂X(t) ≥ ct.

Proof. That (iii) implies (ii) follows from Proposition 4.5. It is clear that (ii) implies
(i). It remains to show that (i) implies (iii). The argument is a variation on Theorem
6.1. By Proposition 4.8 there is a constant c > 0 so that for every normalized
sequence (gn)

∞
n=1 with sep {gn}∞n=1 = α in X we can pass to a subsequence (fn)

∞
n=1

with

E‖
k∑

j=1

εjfnj
‖ ≥ cαk.

Let us fix such a sequence (fn)
∞
n=1. Suppose 0 < θ < 1 and pick En ⊂ [0, 1] so that

|En| = θ and ‖χEn
fn‖1 = ‖fn‖1,θ. Then for any n1 < n2 < · · · < nk,

‖(
k∑

j=1

χẼnj
|fnj

|2)1/2‖1 ≤ k1/2θ−1

so that

E‖
k∑

j=1

εjχẼnj
fnj

‖1 ≤ k1/2θ−1.

Hence

E‖
k∑

j=1

εjχEnj
fnj

‖1 ≥ cαk − θ−1k1/2

so that
k∑

j=1

‖fnj
‖1,θ ≥ cαk − θ−1k1/2.

In particular lim infn→∞ ‖fn‖1,θ ≥ cα.
Now if f ∈ L1 with ‖f‖1 = 1 and t > 0, we have

1

2
(‖f + tfn‖1 + ‖f − tfn‖1) ≥ t

∫
En

|fn(s)| ds+
∫
Ẽn

|f(s)| ds

= 1 + t‖fn‖1,θ −
∫
En

|f(s)| ds.
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Hence

lim inf
n→∞

1

2
(‖f + tfn‖1 + ‖f − tfn‖1) ≥ 1 + cαt− sup

|E|≤θ

∫
E

|f | ds.

As θ > 0 is arbitrary we have δ̂X(t) ≥ ct. �

7. Mappings on Orlicz spaces and applications

We refer to [3] for background on nonlinear theory. However, we need to recall
some definitions and notation. Let (M,d) and (N, δ) be two unbounded metric
spaces. We define for f : M → N :

∀t > 0 ωf (t) = sup{δ(f(x), f(y)), x, y ∈ M, d(x, y) ≤ t}.

We say that f is uniformly continuous if limt→0 ωf (t) = 0. The map f is said to
be coarsely continuous if ωf (t) < ∞ for some t > 0.

Let us now introduce

Lips(f) = sup
t≥s

ωf (t)

t
, for s > 0

and

L(f) = sup
s>0

Lips(f), Lip∞(f) = inf
s>0

Lips(f).

A map is Lipschitz if and only if L(f) < ∞. We will say that it is coarse Lipschitz
if Lip∞(f) < ∞. Clearly, a coarse Lipschitz map is coarsely continuous. If f
is bijective, we will say that f is a uniform homeomorphism (respectively, coarse
homeomorphism, Lipschitz homeomorphism, coarse Lipschitz homeomorphism) if
f and f−1 are uniformly continuous (respectively, coarsely continuous, Lipschitz,
coarse Lipschitz). Finally we say that f is a coarse Lipschitz embedding if it is a
coarse Lipschitz homeomorphism from M onto f(M).

It is well known that if X and Y are Banach spaces, then for any map f : X → Y ,
ωf is a subadditive function. It follows that any uniform homeomorphism f : X →
Y is a coarse Lipschitz homeomorphism.

Given a metric space X, two points x, y ∈ X, and ν > 0, the approximate metric
midpoint set between x and y with error ν is the set:

Mid(x, y, ν) =

{
z ∈ X : max{d(x, z), d(y, z)} ≤ (1 + ν)

d(x, y)

2

}
.

The use of metric midpoints in the study of nonlinear geometry is due to Enflo
in an unpublished paper and has since been used elsewhere, e.g. [4], [12] and [20].

The following version of the Midpoint Lemma was formulated in [30] (see also
[3], Lemma 10.11). Note that completeness of X is not needed.

Lemma 7.1. Let X be a normed space and suppose M is a metric space. Let
f : X → M be a coarse Lipschitz map. If Lip∞(f) > 0, then for any t, ε > 0 and
any 0 < ν < 1, there exist x, y ∈ X with ‖x− y‖ > t and

f(Mid(x, y, ν)) ⊂ Mid(f(x), f(y), (1 + ε)ν).
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Lemma 7.2. Let X be a normed space and suppose (xn)
∞
n=1 is a normalized se-

quence in X. Define T : c00 → X by Tξ =
∑∞

k=1 ξkxk. Let

σk = sup

⎧⎨
⎩‖

k∑
j=1

θjxnj
‖, n1 < n2 < · · · < nk, θj = ±1

⎫⎬
⎭ .

For each k ∈ N define

(7.7) Fk(t) =

{
σkt/k, 0 ≤ t ≤ 1/σk,

t+ 1/k − 1/σk, 1/σk ≤ t < ∞.

Then for any ξ ∈ c00 we have

‖Tξ‖ ≤ 2‖ξ‖�Fk
.

Proof. Note first that for any set A ⊂ N with |A| = m we have

‖
∑
j∈A

ξjxj‖ ≤ max
j∈A

|ξj |σm.

Let a ∈ �1 with
∑∞

j=1 Fk(|ξj |) ≤ 1 and let (ξ∗j )
∞
j=1 be the decreasing rearrangement

of (|ξj |)∞j=1. Now Fk(ξ
∗
k) ≤ 1/k and hence ξ∗k ≤ 1/σk. Then

‖Tξ‖ ≤
∞∑
j=1

(ξ∗j − ξ∗j+1)σj

≤
k∑

j=1

(ξ∗j − ξ∗j+1)σj +
σk

k

∞∑
j=k+1

j(ξ∗j − ξ∗j+1)

=

k∑
j=1

ξ∗j (σj − σj−1) +
σk

k

∞∑
j=k+1

ξ∗j

≤
k∑

j=1

(Fk(ξ
∗
j ) + σ−1

k )(σj − σj−1) +
∞∑

j=k+1

Fk(ξ
∗
j )

≤ 1 +

∞∑
j=1

Fk(ξ
∗
j )

≤ 2.

Hence ‖T‖�Fk
→X ≤ 2. �

Theorem 7.3. Let X and Y be two Banach spaces such that X coarse Lipschitz-
embeds into Y . Then there is a constant c > 0 so that given any normalized sequence
(xn)

∞
n=1 with sep{xn}∞n=1 = θ > 0 in X and any integer k there exist n1 < · · · < nk

so that

cθ‖e1 + · · ·+ ek‖�δ̂Y ≤ E‖ε1xn1
+ · · ·+ εkxnk

‖.

Proof. We may assume that for some constant K we have a map f : X → Y such
that f(0) = 0 and

‖x− z‖ − 1 ≤ ‖f(x)− f(z)‖ ≤ K‖x− z‖+ 1, x, z ∈ X.
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1072 N. J. KALTON

Let

σk = sup

⎧⎨
⎩E‖

k∑
j=1

εjxnj
‖, n1 < n2 < · · · < nk

⎫⎬
⎭ .

Let σ0 = 0. Then (σk)
∞
k=0 is a monotone increasing sequence.

For each k, define the Orlicz function Fk by (7.7). We let Nk be the absolute
norm on R

2 such that

Nk(1, t) = 1 + Fk(t), t ≥ 0.

We also define an absolute norm on R
2 by

NY (1, t) = 1 +

∫ t

0

δ̂Y (s)
ds

s
, t ≥ 0.

Let us note, for future use, the following property of NY . If y, z ∈ Y and (yn)
∞
n=1

is any bounded sequence in Y , then

(7.8) lim inf
n→∞

(‖y − yn‖+ ‖z − yn‖) ≥ NY (‖y − z‖, sep{yn}∞n=1).

This is an immediate consequence of Proposition 3.3.
We define an operator T : c00 → L1(Δ;X) by

T (ξ) =
∞∑
j=1

ξjεj ⊗ xj .

Combining Lemmas 4.3 and 7.2 we have

‖Tξ‖ ≤ 4‖ξ‖ΛNk
.

We then consider the map g : c00 → L1(Δ;Y ) defined by ξ → f ◦ Tξ. This is
well-defined because f(0) = 0 and Tξ is a simple function so that there are no
measurability problems. We have an estimate

‖g(ξ)− g(η)‖ ≤ 4K‖ξ − η‖ΛNk
+ 1, ξ, η ∈ c00.

We also have ‖g(te1)‖ = 1
2 (‖f(tx1)‖+ ‖f(−tx1)‖) ≥ t− 1 so that Lip∞(g) ≥ 1.

We apply the Midpoint Lemma (Lemma 7.1) to g : (c00, ‖ · ‖ΛNk
) → L1(Δ, Y )

with ν = 1/k. For any τ0 > 0 we can find τ > τ0 and points η, ζ ∈ c00 with
‖η − ζ‖ΛNk

= 2τ such that

g(Mid(η, ζ, 1/k)) ⊂ Mid(g(η), g(ζ), 2/k).

Let ξ = 1
2 (η + ζ).

There exists m ∈ N so that η, ζ ∈ [e1, . . . , em−1]. Thus if j ≥ m we have, from
the iterative nature of the norm on ΛNk

, ξ + τσ−1
k ej ∈ Mid(η, ζ, 1/k).

Thus the functions

hj = f(
m−1∑
i=1

ξiεi ⊗ xi + τσ−1
k εj ⊗ xj)

all belong to Mid(g(η), g(ζ), 2/k) for j ≥ m. Since both g(η) and g(ζ) depend only
on the first m − 1 coordinates of Δ, this implies that the same is true for the
functions

h′
j = f(

m−1∑
i=1

ξiεi ⊗ xi + τσ−1
k εm ⊗ xj).
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The functions h′
j now depend on the first m coordinates of Δ. In particular

(7.9) ‖g(η)− h′
j‖+ ‖g(ζ)− h′

j‖ − ‖g(η)− g(ζ)‖ ≤ 2k−1‖g(η)− g(ζ)‖.
Note that for any s ∈ Δ we have

‖h′
i(s)− h′

j(s)‖ ≥ θτσ−1
k − 1, i > j ≥ m.

Hence, using (7.8), we have

lim inf
j→∞

‖g(η)(s)−h′
j(s)‖+‖g(ζ)(s))−h′

j(s)‖ ≥ NY (‖g(η)(s)−g(ζ)(s))‖, θτσ−1
k −1)

as long as τ > σk/θ.
Integrating (note the integral is simply a finite sum in this case),

lim inf
j→∞

(‖g(η)− h′
j‖+ ‖g(ζ)− h′

j‖) ≥
∫
Δ

NY (‖g(η)(s))− g(ζ)(s))‖, θτσ−1
k − 1)ds

≥ NY (‖g(η)− g(ζ)‖, θτσ−1
k − 1).

Now ‖g(η)− g(ζ)‖ ≤ 8Kτ + 1 and since NY (t, 1)− t is a decreasing function we
conclude that

lim inf
j→∞

(‖g(η)−h′
j‖+‖g(ζ)−h′

j‖−‖g(η)−g(ζ)‖) ≥ NY (8Kτ+1, θτσ−1
k −1)−(8Kτ+1).

Hence, by (7.9),

NY (8Kτ + 1, θτσ−1
k − 1)− (8Kτ + 1) ≤ 2

k
‖g(η)− g(ζ)‖ ≤ 2(8Kτ + 1)k−1.

We simplify this as

NY

(
1,

θ − σkτ
−1

σk(8K + τ−1)

)
≤ 1 +

2

k
.

Now we can let τ → ∞ and deduce that

NY (1,
θ

8Kσk
) ≤ 1 +

2

k
.

This implies that

δ̂(
θ

16Kσk
) ≤ 2

k

and hence

δ̂(
θ

32Kσk
) ≤ 1

k
or

‖e1 + · · ·+ ek‖�δ̂Y ≤ 32Kθ−1σk.

�

Our next theorem combines Theorem 7.3 with Theorem 6.1 from [30]. Note
of course that reflexivity of Y is not used for the left-hand inequality, and the
right-hand inequality could be improved to

‖a1e1 + · · ·+ akek‖S ≤ C‖a1e1 + · · ·+ akek‖�δY
for any a1, . . . , ak. However the theorem as stated shows that we have both an
upper and lower estimate for the behavior of weakly null spreading sequences in X.
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Theorem 7.4. Suppose X and Y are Banach spaces. Suppose there is a coarse
Lipschitz embedding of X into Y and Y is reflexive. Then, there is a constant C
so that for any spreading model of a weakly null sequence in X we have:

(7.10)
1

C
‖e1 + · · ·+ ek‖�δY ≤ ‖e1 + · · ·+ ek‖S ≤ C‖e1 + · · ·+ ek‖�ρY , k ∈ N.

In particular if δY (t) > 0 for any t > 0, then there is a constant C so that every
normalized weakly null sequence (xn)

∞
n=1 has a subsequence (xn)n∈M so that

(7.11)
1

C
‖e1 + · · ·+ ek‖�δY ≤ ‖xn1

+ · · ·+xnk
‖ ≤ C‖e1 + · · ·+ ek‖�ρY , k ∈ N.

Proof. The left-hand side follows from Theorem 7.3 and Proposition 4.2. For the
right-hand side, suppose f : X → Y is a coarse Lipschitz embedding. We may
assume that

‖x− y‖ − 1 ≤ ‖f(x)− f(y)‖ ≤ K‖x− y‖+ 1.

Consider the space Pk of k-subsets of N with the metric

d({m1, . . . ,mk}, {n1, . . . , nk}) = |{k : mk �= nk}|.
Let (xn)

∞
=1 be a normalized spreading sequence generating the spreading model

{en}∞n=1. Then, for any λ > 0, the map

Fλ({n1, . . . , nk}) = f(λ(xn1
+ · · ·+ xnk

))

is Lipschitz with constant at most 2(λ+ 1). Hence, if ν > 0 we can find an infinite
subset M of N so that if {m1, . . . ,mk, n1, . . . , nk} ⊂ M we have

‖Fλ(m1, . . . ,mk)− Fλ(n1, . . . , nk)‖ ≤ 2e(λ+ 1)‖e1 + · · ·+ ek‖�ρY + ν.

Hence

‖xm1
+ · · ·+ xmk

− xn1
− · · · − xnk

‖ ≤ 2e(1 + 1/λ)‖e1 + · · ·+ ek‖�ρY + (2 + ν)/λ

and thus, letting n1, . . . , nk → ∞, λ → ∞ and ν → 0, we have

‖xm1
+ · · ·+ xmk

‖ ≤ 2e‖e1 + · · ·+ ek‖�ρY
so that the right-hand side follows.

The second part (7.11) is an equivalent statement. �

Remark. IfX and Y are uniformly homeomorphic one can relax the assumption that
Y is reflexive. This follows from results in [11]. If we assume limt→0 ρY (t)/t = 0,
then the Szlenk Index of Y is ω0 and hence by Theorem 5.5 so is the Szlenk index
of X; furthermore the convex Szlenk indices of these spaces are equivalent and the
argument is similar to that of Theorem 5.8 of [11], which treats the special case
ρY (t) ≤ ctp.

8. Applications to uniform and coarse homeomorphisms

The first proposition is well known and goes back to work of Ribe [40] and [41]
(who considered only the uniform case).

Proposition 8.1. Let X and Y be separable Banach spaces and suppose there is
a coarse Lipschitz embedding of X into Y . Then X is finitely representable in Y
and hence isomorphic to a subspace of any ultraproduct YU .

Proof. There is a Lipschitz embedding of X into YU and hence a linear embedding
into Y ∗∗

U ([3], p.176). �
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In order to apply our results we need to use the ultraproduct technique which
goes back to the classic paper of Heinrich and Mankiewicz [15]. The next result
summarizes these ideas.

Theorem 8.2. Let X and Y be separable Banach spaces which are coarsely (or
uniformly) homeomorphic. Assume Y is super-reflexive. Then given any non-
principal ultrafilter U on N we can find separable closed subspaces X1 of XU and
Y1 of YU , such that:

(i) X ⊂ X1, Y ⊂ Y1.
(ii) X1 is complemented in XU and Y1 is complemented in YU .
(iii) X1 and Y1 are linearly isomorphic.

Proof. The argument is standard. Since Y is super-reflexive, so is X ([40], [3]).
First one notes that XU and YU are Lipschitz isomorphic (and both are reflexive).
Then it is possible (using the separable complementation property) to find separable
1-complemented subspaces, X ⊂ X1 ⊂ XU and Y ⊂ Y0 ⊂ YU so that X1 and Y0 are
Lipschitz isomorphic. But this implies that X1 is isomorphic to a complemented
subspace Y1 of Y0 (see [15], [3]). �

Theorem 8.3. Suppose 1 < p < ∞ and that X = (
∑∞

n=1 En)�p , where (En)
∞
n=1 is

a sequence of finite-dimensional spaces. Suppose either that:
(i) 1 < p < r ≤ 2 and the spaces (En)

∞
n=1 are uniformly r-uniformly smooth, or

(ii) 2 ≤ r < p < ∞ and the spaces (En)
∞
n=1 are uniformly r-uniformly convex.

Suppose Y coarse Lipschitz-embeds into a quotient of X. Then Y has property
m̃p.

Proof. In either case X (and hence Y ) is super-reflexive.
(i) We start with the observation that if V : X → �p is defined by V ((xn)

∞
n=1) =

(‖xn‖)∞n=1, then V is a random Lp-norm. By our assumptions this is a random
Lp-norm of type r. It follows that we can induce a random Lp-norm of type r,

Ṽ : XU → (�p)U . Now Y embeds into a quotient of XU , and hence is a quotient of a
subspace of XU . However, by Theorem 7.4, Y has the p-co-Banach-Saks property.
By Theorem 6.1 this implies that Y has property m̃p.

(ii) In this case we argue similarly that (X∗)U = (XU )
∗ has a random Lq-norm of

type s where 1/p+1/q = 1/r+1/s = 1. In this case Y ∗ is a quotient of (a separable
subspace) of (X∗)U . We again use Theorem 7.4 to deduce that Y has the p-Banach-
Saks property. By Proposition 4.7 this means that Y ∗ has the q-co-Banach-Saks
property. By Theorem 6.1, Y ∗ has property m̃q, and so Y has property (m̃p). �

Theorem 8.4. Suppose 1 < p < ∞. Then
(i) If X is a Banach space which can be coarse Lipschitz-embedded in �p, then

X is linearly isomorphic to a closed subspace of �p.
(ii) If X is a Banach space which is coarsely homeomorphic to a quotient of �p,

then X is linearly isomorphic to a quotient of �p.
(iii) If X can be coarse Lipschitz-embedded into a quotient of �p, then X is

linearly isomorphic to a subspace of a quotient of �p.

Proof. Suppose first that X can be coarse Lipschitz-embedded into a quotient of
�p. Then it is a special case of Theorem 8.3 that X has property (m̃p).

(i) In this case for 2 ≤ p < ∞ the result is proved in [11]. If 1 < p < 2, then
X∗ is isomorphic to a quotient of Lq where 1/p+ 1/q = 1 and has property (m̃q);
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in particular it has the q-Banach-Saks property and by [17], X∗ is isomorphic to a
quotient of �q; i.e. X is isomorphic to a subspace of �p.

(ii) Again this is proved for 2 ≤ p < ∞ in [11]. If 1 < p < 2, then X∗ is
isomorphic to a subspace of Lq which has property (m̃q) and hence contains no
subspace isomorphic to �2. By the classical result of Kadets and Pe�lczyńksi [24]
this implies that X∗ is isomorphic to a subspace of �q. Hence X is isomorphic to a
quotient of �p.

(iii) In this case, X is isomorphic to a subspace of a quotient of Lp. Since X has
property (mp) we can use Theorem 5.2 to embed X in an �p-sum, (

∑∞
n=1 En)�p ,

where the spaces En are finite-dimensional and uniformly quotients of X and hence
into a subspace of a quotient of �p. Thus X is isomorphic to a subspace of a quotient
of �p. �

Remark. Of course if X is uniformly homeomorphic to �p, then X is linearly isomor-
phic to �p [20]. In [29] we show that for every 1 < p < ∞ there are two uniformly
homeomorphic subspaces (respectively, quotients) of �p which are not isomorphic.
We do not know if Theorem 8.4 holds for subspaces or quotients of c0. In the
Lipschitz category there are corresponding results proved in [10] and [9] (except
note in [9] for the case of quotients one needs an extra hypothesis that X∗ has the
approximation property).

Theorem 8.5. (i) Suppose 1 < p < r ≤ 2 and that Z is an r-uniformly smooth
Banach space with the (UAP). Suppose (En)

∞
n=1 is an increasing sequence of uni-

formly complemented finite-dimensional subspaces of Z. Then X = (
∑∞

n=1 En)�p
has unique coarse (or uniform) structure.

(ii) Suppose 2 ≤ r < p < ∞ and that Z is an r-uniformly convex Banach space
with the (UAP). Suppose (En)

∞
n=1 is an increasing sequence of uniformly comple-

mented finite-dimensional subspaces of Z. Then X = (
∑∞

n=1 En)�p has unique
coarse (or uniform) structure.

Proof. Let us start by observing that, in both cases (i) and (ii), X is linearly
isomorphic to �p(X). Indeed if (nk)

∞
k=1 is any sequence of natural numbers such

that {nk = j} is infinite for each j and nk ≤ k, then (
∑∞

k=1 Enk
)�p is complemented

in X; hence �p(X) is isomorphic to a complemented subspace of X. Hence for some
Banach space W , we have X ≈ �p(X)⊕W ≈ �p(X) ⊕ �p(X) ⊕W ≈ �p(X). Next
we observe that X is isomorphic to a complemented subspace of �p(Z) and so has
the (UAP) by Theorem 9.4 of [14].

Now suppose Y is coarsely homeomorphic to X. Since X is super-reflexive we
can apply Theorem 8.2 to deduce that Y is super-reflexive and has the approxi-
mation property. By Theorem 8.3, Y has property (m̃p). We can therefore apply
Theorem 5.4. It follows that Y is isomorphic to a complemented subspace of a

space (
∑∞

n=1 Fn)�p , where each Fn can be assumed to be of the form (
∑k

j=1Ej)�p
for some k. This implies that Y is isomorphic to a complemented subspace of X.

To complete the proof we use Theorem 5.5. Since X is isomorphic to a comple-
mented subspace of an ultraproduct YU of Y it follows that there is a constant λ
so that for each m,n the finite-dimensional subspace �mp (En) is λ-isomorphic to a

λ-complemented subspace of Y . Hence X = (
∑∞

n=1 En)�p is isomorphic to a com-
plemented subspace of Y . Now by the standard Pe�lczyński decomposition trick,
this means (since X ≈ �p(X)) that X is isomorphic to Y. �
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The following corollary extends the result of Johnson, Lindenstrauss and Schecht-
man [20] of the uniqueness of the uniform structure of �p for 1 < p < ∞.

Corollary 8.6. Suppose 1 < p, r < ∞. The spaces (
∑∞

n=1 �
n
r )�p have unique uni-

form structure if either 1 < p < min(r, 2) or p > max(r, 2).

Note that for the case r = 2, Corollary 8.6 reduces to the result of Johnson,
Lindenstrauss and Schechtman [20] since (

∑∞
n=1 �

n
2 )�p ≈ �p (see [38]). As pointed

out in the Introduction for every 1 < p < ∞ we can find two nonisomorphic
subspaces (respectively, quotients) of �p which are uniformly homeomorphic (see
[29]).

Theorem 8.7. Let X be a subspace of L1 with the strong Schur property. Suppose
Y coarse Lipschitz-embeds into X; then Y also has the strong Schur property.

Proof. By Theorem 7.3 and Proposition 4.8 it is clear that Y has the anti-Banach-
Saks property. We also have that Y Lipschitz-embeds into an ultraproduct of X
and hence into L1. Thus Y linearly embeds into L∗∗

1 and hence into L1. Finally we
apply Theorem 6.4. �

If X is uniformly homeomorphic to a subspace of �1, then X is linearly isomor-
phic to a subspace of L1; the above theorem implies that X has the strong Schur
property, but we do not know if X linearly embeds into �1. If X is Lipschitz iso-
morphic to a subspace of �1, then one can deduce that X linearly embeds into �1 by
exploiting the Radon-Nikodým property and differentiability arguments (see [3]).
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