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DIFFERENTIALS OF COMPLEX INTERPOLATION PROCESSES 
FOR KOTHE FUNCTION SPACES 

N. J. KALTON 

ABSTRACT. We continue the study of centralizers on Kothe function spaces and 
the commutator estimates they generate (see [29]). Our main result is that if 
X is a super-reflexive Kothe function space then for every real centralizer Q 
on X there is a complex interpolation scale of Kothe function spaces through 
X inducing Q as a derivative, up to equivalence and a scalar multiple. Thus, 
in a loose sense, all real centralizers can be identified with derivatives of com- 
plex interpolation processes. We apply our ideas in an appendix to show, for 
example, that there is a twisted sum of two Hilbert spaces which fails to be a 
(UMD)-space. 

1. INTRODUCTION 

In this paper we develop ideas first suggested by work of Rochberg and Weiss 
[45] and continued in [29]. Our basic program is to study "twisted sums" of Ba- 
nach spaces (see [24, 25, 26, 32, 35]) as differentials of interpolation processes, 
and the corresponding commutator estimates obtained for linear operators. In 
[29] we gave several applications of these ideas, in particular applying them to 
obtain results of Davis [17] and Ceretelli [10] on the distributions of functions 
in the Hardy class H1. (See also [27, 30].) Our results in this paper com- 
plement and improve the results we obtained in [29]. In this paper we study 
general Kothe function spaces in place of rearrangement-invariant spaces and 
use a different approach. The main idea here is to characterize those twisted 
sums of Kothe function spaces which can be obtained by differentiating a com- 
plex interpolation scale of Kothe function spaces. 

Let us now give some definitions and an informal discussion of our main 
results. 

If 0 -* Y - Z -- X -* 0 is an exact sequence of (quasi-)Banach spaces (over 
the field K = R or C) we refer to Z as a twisted sum of X and Y (or an 
extension of X by Y ). If dim Y = 1, we say that Z is a minimal extension 
of X. 

Suppose X is a quasi-Banach space with a dense linear subspace Xo and 
that Y is a quasi-Banach space contained in a linear space Y (which does not 
necessarily carry any topology). Consider a map Q: Xo Y satisfying, for 
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suitable p = p(Q), 

(1.1) Q(ax) = aQ(x), a E K, x E X, 

(1.2) IIAQ(Xi, X2)IIY < P(IIxIIX + IX2IIX), XI, X2 E Xo, 
where we introduce the notation 

n n 

AQ (X1, . ., Xn )= En(Xk )-Q E Xk) 
k=1 k=1 

Then we can create a twisted sum X E Y as the completion of the space Zo 
of all (x, y) E Xo E Y such that 

Il(X, Y)IIZ = IIXIIx + IIy - Q(x)Y < 00. 
Conversely every twisted sum of X and Y can be described in this way taking 
X = Xo and Y = Y (see [24, 33, 44]). 

We refer to [2, 3] for a general discussion of interpolation theory. In [23, 
45], Jawerth, Rochberg, and Weiss have shown that twisted sums arise very 
naturally in interpolation theory, as the 'differential' of an interpolation process. 
The complex method is treated in [45] (see also some similar ideas in [47]) and 
real methods are considered in [23]. The results are surveyed in [15]. See also 
related work in [40]. We would also like to mention the work of Coifman and 
Semmes [14, 48] which seems somewhat related to our ideas; also see the work 
of Slodkowski [49]. 

In the discussion that follows we will try to give the flavor of the ideas of the 
paper, without perhaps being too precise about technical definitions. 

Suppose Xo, XI is a pair of Banach spaces and X = Xo = [Xo, X1 ]o is 
an intermediate space obtained by the complex method of interpolation. Then 
Rochberg and Weiss associate to the scale [Xo, XI] and X a map Q: X - 

XO + X1 satisfying (1.1) and (1.2) in such a way that if T is a linear operator 
bounded on both XO and X1 then T e T is also bounded on X (Do X (which 
we will call doX later in the paper). This implies a commutator relationship 

(1.3) II[T, Vf](x)IIx < Cllxllx, 
where [T, Q] = TQ- QT. 

Now consider a Kothe function space X; for the sake of definiteness let us 
consider spaces over [0,1]. In [29], the author defined a map Q: X -+ Lo to 
be a (homogeneous) centralizer if it satisfies (1.1) and (1.3) uniformly for all 
multiplication operators, i.e., 
(1.4) II(ux) - uQ(x)IIx < pIlUllooIXIIx 
for f E XA, u E Loo where p(Q) is a constant independent of u, f. It turns 
out that (1.2) then also holds. Q is called symmetric if for some p' 

IIQ(X o a) - Q(x) o alix < P'iXlIx 
for all measure-preserving rearrangements a of [0,1]. The work of Jawerth, 
Rochberg, and Weiss then shows that if po < P < P1 and T is an operator 
of strong types (po, po) and (Pi , PI) then (1.3) holds for certain symmetric 
centralizers on Lp such as 

Q(x)=xlogI xl and Q(x)=xlogrx, 
llxllp 
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where rx(t) = ,u{x: If(s)l > If(t)l or If(s)l = If(t)l and s < t}. The aim in 
[29] was to show that the same hypotheses in fact ensure that (1.3) holds for 
every symmetric centralizer. 

In this paper our objective is to show at least for super-reflexive Kothe func- 
tion spaces X that every centralizer with the additional property that Q(x) is a 
real function whenever x is real ( Q is real) can be obtained by differentiating 
a suitable complex interpolation scale of Kothe function spaces. Precisely, we 
show that if X is a super-reflexive Kothe function space and Q: X -* Lo is a 
real centralizer on X then there are constants a > 0 and B < oo and Kothe 
function spaces X0, X1 so that X = [XO, X111/2 (isomorphically) and if nO 
is the induced centralizer on X obtained by differentiation then 

IIQ(x) - aQo(x)I|x < Bllxllx 
for all x E X. The spaces X0, X1 are determined up to isomorphism by Q 
and a; if X is rearrangement-invariant and Q is symmetric then both X0 and 
X1 are rearrangement-invariant. Thus the main interpolation theorem of [29] 
can be recaptured as a consequence of the Boyd interpolation theorem [5]. 

The key idea here is to exploit the intimate relationship between centralizers 
on X and minimal extensions of L1 . To every Kothe function space we may 
associate a map Ox: I - * C defined on a dense order ideal in L1 and satisfying 
(1.1) and (1.2). For nonnegative functions f 

ODx(f)= sup JfloglxIdyi. 

We then show that to every centralizer Q defined on X corresponds a simi- 
lar densely defined functional (DO; if Q is obtained by differentiating a scale 
[Xo, X1] then (DO = (DX1 - (DX . The main result is then obtained by showing 
that if D is real for real functions and satisfies (1.1) and (1.2) with p < log 2 
then it is 'equivalent' to <>x - <>x* for some suitable Kothe function space X. 

To illustrate this let us state precisely a finite-dimensional version. 

Theorem 1.1. Given e > 0 there exists a constant B = B(e) so that if n E N, P 
is the nonnegative cone in ln and FD: P -* R is a functional satisfying CD(ax) = 

a(4D(x)) and 
IAD(xI , X2)1 < (1 - e) log2(jjx 11 + lx211), 

whenever x, X1, X2 E P and a > 0, then there exists a lattice norm 11 llx on 
Rn so that 

D(x) - (<Dx(x) - (x*x(x))l < Bllxll 

for x E P. 

One could also state this in terms of approximating nearly affine functions 
on the unit simplex. 

We now briefly outline the contents of the paper. In ?2 we set up a formal 
framework for complex interpolation, including the case of families of spaces 
studied in [1 1, 12]. Our framework is a slight variation on the usual approach as 
outlined in [3], for example, but seems appropriate to our setting. We introduce 
the notion of a derivation obtained by differentiating an interpolation scale. In 
?3 we study how these ideas adapt to Kothe function spaces. We study in ?4 
and ?5 the functional Ox which we associate to any Kothe function space. Our 
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main approximation theorem (specialized to Theorem 1.1) above is proved in 
?6 as Theorem 6.6. Our main result on centralizers is Theorem 7.6. In ?8 we 
generalize our ideas to Schatten ideals. 

Finally in ?9, we apply the methods of the paper to the study of the Riesz 
projection and its vector-valued analogue. For f E L1(T) we define Rf by 
Rf nE>O f(n)eint. We then show that if X0, X1 are Kothe function spaces 
on T so that R is bounded on X = X60 = [Xo, XIl]0 for some 0 < 00 < 1 
where X is super-reflexive then the boundedness of the associated commutator 
[R, Q] on X is equivalent to the boundedness of R on X6 in a neighborhood 
of 00. We show how this relates to and extends several well-known results 
on Ap-weights (cf. [13, 41, 50]). In the vector-valued case we can apply the 
methods to the study of the class of (UMD)-spaces introduced by Burkholder [7, 
8]. As an application we show that there is a twisted sum of two Hilbert spaces 
which fails to be (UMD) thus resolving, negatively, the question of whether the 
(UMD)-property is a three-space property. 

2. ADMISSIBLE SPACES AND DERIVATIONS 

Let S be a Polish space and let ,u be a a-finite Borel measure on S. Let 
Lo = Lo(#u) be the space of all measurable complex-valued functions on S 
endowed with the topology of convergence in measure relative to each Borel 
set of finite measure. We define an admissible norm to be a map f -II f lIx 
(Lo -+ [0, oo]) such that if X = {x E Lo: llxllx < oo} then: 

(2.1) X is a vector subspace of Lo and II lIx is a norm on X. 
(2.2) Bx = {x: IIxIIx < 1} is closed in Lo. 
(2.3) There exist strictly positive h, k E Lo so that 

llxhlll < llxllx < llxkllo 

for every x E Lo. 
The corresponding space X is then easily proved to be a Banach space which 

is continuously embedded in Lo. We refer to X as an admissible space. If X 
is an admissible space then a map Q: X -* Lo will be called a derivation if 
(2.4)-(2.6) hold, where 

(2.4) Q is homogeneous, i.e., Q(ax) = aK?(x), a E C, x E X. 
(2.5) Q is quasi-additive, i.e., lA/2(x1, X2)IIX < P(llX1IIX + 11X2IIX), X1, X2 E 

X, where p is a constant independent of xl, x2. We refer to the least 
such constant as p(Q). 

(2.6) The set Q(Bx) is bounded in Lo. 
For any derivation we may introduce the derived space doX as the subset of 

Lo x Lo of all pairs (x, y) such that 

Ii(X, Y)IIx, = IixIIx + IlY - Q(X)iix < 00. 
Lemma 2.1. 11 lx, a is a quasinorm on doX and doX is a quasi-Banach space 
which is continuously embedded in Lo x Lo. If X is a B-convex Banach space, 
or X* is isomorphic to a subspace of an LI-space then doX is a Banach space, 
and there is a constant C depending only on X so that for any xI, Xn E X, 

n 

|\Q(X1, . . ., Xn) lx < C E |IXkkIIX 1 

k=1 
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Proof. It is easy to check that if a, b E dcX then 

Ila + bllx,n ? (1 + p)(lIallx,n + lIbllx,Q). 

Clearly, if a, = (xn, y,n) and lla,llx,a -- 0 then llx IlIx -O 0 and so, by using 
(2.4) and (2.6), Q(x,) -* 0 in Lo. From this it follows easily that yn -) 0 in 
Lo. Clearly the subspace {(0, y): y E X} is a closed subspace F of dnX such 
that F is isometric to X and dgX/F is also isometric to X. This is easily 
seen to imply completeness of dQX (cf. [24]). 

For the second half of the lemma, we quote the results of [24] and [34] that 
any Banach space X satisfying either criterion is a X-space, i.e., every twisted 
sum with a Banach is locally convex. Then if we consider any sequence Qn 
of derivations with p(,Q,) < 1 we can construct a derivation on either 12(X) 
or loo(X) according to a case given by Q((x,)) = (Q,(xn)). (We regard both 
spaces as admissible spaces for a suitable measure space.) Then p(Q) < 1. 
Thus the derived space is locally convex from which it easily follows that there 
is a constant C independent of m, so that 

n 

IIQ,n (X1,**I X0 IIlx < c E: |lXk || 
k=l 

for all xl, ..., x . The lemma then follows. O 

We remark that two derivations Qi and Q2 give rise to equivalent derived 
spaces if for some constant B we have II j1(x) - Q2(X)IIx ? Bllxljx. In this 
case we term Q1 Q2, equivalent. 

We denote by D the open unit disk in the complex plane; its boundary, the 
unit circle, is denoted by T and A will denote the Haar measure (2X)-i do on 
T. Now consider a family z = {X, } of admissible spaces indexed by w E T; 
we write llxllw = llxjlxw. We say that z is an admissible family if: 

(2.7) The map (w, x) -* lIxlw (T x Lo - [0, oo]) is a Borel map. 
(2.8) There exist strictly positive h, k E Lo so that for all x E Lo we have 

A-a.e. on T, 
llxhlll < llxllw < llxklloo. 

We may extend this definition to the case when Xw is defined only on a 
Borel subset of A-measure one by simply setting jlxlw = lxh l otherwise. 

Let X+ be the collection of functions F: D -* Lo which can be written 
in the form F(z)(s) = F(z, s) where u-almost everywhere we have F, E N+ 
where F,(z) = F(z, s) and N+ denotes the Smirnov class (cf. [18]). If F E 
X4+ it may easily be shown by an application of Fubini's theorem that relative 
to the Lo-topology F has radial limits almost everywhere on T. Thus we can 
define F(ei') = lim 1 F(reiG) almost everywhere. 

If t is an admissible family then we define for F E X+ 

11F11? = ess sup JIF(e'6)1leio 

Then for z E D we define 

llxllz = inf{f IFII: F(z) = x} 

and let Xz = {x: llxlIz < oo}. 



484 N. J. KALTON 

Lemma 2.2. Let ?t' be an admissible family and let Y be a separable admissible 
space so that lIxily < IIxII, for all w E T. Then, if IIFIIo < oo, we have 

IIF(z)IIy < IIFI o for all z E D. Furthermore F(rei') -* F(ei') a.e. in Y. 
For any z E D, x E Lo we have llxlly < llx?lz. 

Proof. We may assume the existence of a strictly positive h satisfying (2.3) for 
Y and (2.8). Then 

j j I F(e'9, s)lh(s) d1u(s) 2 jf IF(e'9, s)lh(s) - d1(s) 

ft dO 
= j I IIF(e'9) II L1 (hdu) - 

< lIFIlr. 

Hence 
7t ~~dO 

JI|F(re0) IIL, (hd) 2 < ||F||r 

for 0 < r < 1 so that F E H1(Li(hdju)). Since L1 has the analytic Radon- 
Nikodym Property [6], this implies that F (rei'9) -F (ei'9) a.e. in L1 (hd,u) and, 
further, that 

F(re'6) = J P(r, 0 - t)F(e") dt 

as a Bochner integral in LI (hd,u), where P is the Poisson kernel. Since Y is 
separable, F(eit) is also measurable in Y, and, since it is also bounded in Y, 
the same equation holds as a Bochner integral in Y. Hence for z E D we have 
IIF(z)Ijy < IIF lLo. It is also easy to verify that F(rei9) -* F(ei') in Y almost 
everywhere. 

It now follows that jjxj z > Ixjjy for any x E Lo. O 

Lemma 2.3. Suppose F, E X+ and llF1ll < 1. Then there is a sequence G, 
of convex combinations of {Fk: k > n} and a G E IV+ so that II Gllo < 1 and 

(2.9) lim Gnk(Z G()Z Z E D,5 k = O, 1, 2,.. 
n-+oo 

(2.10) lim Gn(e'9) = G(e'9) A-a.e., 
n-+oo 

where both limits are computed in Lo. 
Proof. Since 

X sIFn (eio , s) I h(s) d,u (s) d t< 1 

we can apply Komlos's theorem [36] to extract a sequence Gn of convex com- 
binations as specified so that we have both that Gn (eio, s) converges ,u x A-a.e. 
and ffz IGn(ei6, s)I d6/27 is bounded ,u-a.e. (The sequence of convex combi- 
nations :N %n) anFk is chosen so that ,u-a.e. 

I7, N(n) 

Eak Fk(e'6 s)I 2 

converges.) 
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If we write G, (z, s) = E7 0 gn, j (s) zi then we have G,, s E N+ ,u-a.e. Let So 
be the set of s E S such that we have, simultaneously, G,,s E N+, G,(eio, s) 
converges A-a.e. and fI G (eio, s) I dI/27t is bounded. Then u(S\So) = 0. 

For s E SO the sequence Gn,s is uniformly bounded in LI (T) n N+ - 

HI (T)(T) and converges a.e. Hence it converges in Lp(T) for every p < 1 to 
a function Gs E Hp(T). Further if z E D, k > 0, limn,,+ Gs(z) = G(k)(z) 
while on T, limn1n, Gn, s(eiO) = Gs(eiO) a.e. Thus for each j, gn,j converges 
in Lo (in fact a.e.) to some gj E Lo and, if G(z) = Egjzz, then for a.e. 
s E S G(z, s) = Gs(z). Hence G E X+ and JIGIl? < 1. o 

Proposition 2.4. Each space Xz is admissible and if x E Xz there is an extremal 
F E X+ such that F(z) = x and JIFIl) = llxllz. 

Proof. Conditions (2.1) and (2.3) are elementary. We prove only (2.2), and 
simultaneously prove the existence of an extremal. To do this we need only 
consider a sequence xn with l Xnllz < 1 so that xn -* x a.e. and prove that 
this implies the existence of F E X+ with F(z) = x and IIF I < 1 . However, 
there exist Fn E X+ with ?IFnI,, < 1 and Fn(z) = xn and so the conclusion 
follows easily from Lemma 2.3. o 

These considerations can now be lifted to any open subset U of C con- 
formally equivalent to D. We define an admissible family of spaces ' 

- 

(X : w E 0 U) to be a family of admissible spaces so that 
(2.11) The map (w, x) -* IIxI is Borel on AU x Lo. 
(2.12) There exist strictly positive h, k E Lo so that for x E Lo we have for 

every w E OU, llxhlll < IIxIIw < llxkll? , . 

Let p: D -* U be any conformal equivalence. Then q' E Hp for any p < 
[18] and so has radial limits (o(ei6) E OU a.e. The family (o?) = (XV(elo)) 
is then admissible for D. Define X+(U) to be the space of all functions 
F: U -* Lo for which F o ? E X+ and set JIFIJY = JIF o (IIy). It is easy to 
show that these definitions are independent of q'. For z E U we define 

llxllz = inf{ HIF 11t): F(z) = x} 

and set Xz = {x: IIxIIz < oo}. We then automatically obtain 

Proposition 2.5. Each Xz is admissible and if x E Xz then there is an extremal 
F E X+(U) with F(z) = x and JIFI)= llxllz. 

In particular if XO, XI is a pair of admissible spaces we let U = '5 be the 
strip {z: 0 < 9iz < 1} and define Xk+it = Xk for k = 0, 1 and t E R. Then 
for 0 < 0 < 1 we obtain the complex interpolation space X6 = [Xo, XI ]O. 

Now let U be any open subset of C which is conformally equivalent to D 
and let l%t be an admissible family. For z E U and x, y E Lo we define 

II(x, Y)IIdxz = inf{HlFLl): F(z) = x, F'(z) = y}. 

For each x E Xz we may pick an extremal Fx by Proposition 2.5 with IIFx11 = 

llxllz and Fx(z) = x. We may further suppose that Fax = aFx for a E C. 
Then we define Q = Qz, by Q(x) = Fx(z) . 
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Theorem 2.6. Q is a derivation on X, and IIXI is equivalent to d1 IIX, Q. 
Remark. Theorem 2.6 is essentially due to Rochberg and Weiss [45]. If each Xw 
is strictly convex, then, as they observe, the extremal F, is unique and hence 
Q is uniquely determined. See also Corollary 4.9 below for more discussion of- 
the uniqueness question. 

Proof. Property (2.4) of derivations is built into our construction. Let (0: U 
D be a conformal equivalence, with (9(z) = 0, and let l0'(z)I = 6. Then 

IIK2(X)IIL1(hd#) = IIFx(z) IIL (hdM) 
< 6 ess sup IIFx(e0) IIL (hdp) 

? 6llXXIIx 

so that property (2.6) holds. The remaining statements are essentially contained 
in [45]. It is readily verified that 11(0, x)Iddx! = 6lIXIlXz . It then follows from 
the triangle law for the norm on dXz that IlAn(x, Y)||xz < 26(lilxlxz + IIYIIxZ) 
so that (2.5) hold with p = 26. It can also be checked that 

min(l , 6-')jI(x, Y)Ildx, < ||(x, Y)IIxZ?Q < (I + 26)11(x, Y)IIdxz 

Finally, let us observe, in our setting, the standard commutator interpolation 
theorem for linear operators. 

Theorem 2.7. Suppose z is admissible family for U, where U is conformally 
equivalent to D. Let Y be a separable admissible space such that 11 IIY < 11 IIw 
for w E l U. Let T: Y -- Lo be a continuous linear map such that for some 
M < oo and every w E U, x e Xw IITxlw < MlIxllw. 

Then for z E U we have T(Xz) c Xz and IITIlxzxz < M. Further there is 
a constant C = C(z) so that for every x e Xz 

II[T, Q]xllxz < CMAlxllz, 

where Q = 2, z and [T, Q] = TQ - T T. 
Proof. From Nikishin's theorem [39, 42] for any fixed 0 < p < I there exists a 
strictly positive ho E Lo so that for any y E Y we have IlhoTyllp < Ilylly Let 
(0: D -* U be a conformal equivalence with (0(0) = z. 

Suppose lixIlx_ = 1. Then F = F, o (0 is a bounded analytic function with 
values in Y and has radial limits a.e. in Y by Lemma 2.2. Let F, o q(4') = 

EZ%o0 UkCk . Then let G(C) = Z' 0 TUk k . Then 1lhoG(O) lp < 1 for all ' E D. 
It follows easily that G(C, s) E Hp for almost every s E S so that G E X+. 
On T we have, almost everywhere that G(e'0) = limr,1 TF(rel0) in Lo so 
that, again by Lemma 2.2 G(ei') = TF(ei0). Hence IlGo (ll <M. Thus 
ITxIIZ < Mlixilz 

If we let Go = G o r-I we obtain jf(Tx, Gg(z))IIdxz < M or 

II(Tx, TFX(z))Ildxz < M. 

This implies that jj[T, Q]xIIx, < C(z)M as required. Ol 

3. FUNCTION SPACES 

We define a K6the function space X on S to be an admissible space for 
which 11 lix is a lattice norm i.e., IIxlix < lIYlix whenever Ixi < ?y. Since, by 
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assumption Bx is closed in Lo it is not difficult to see that we restrict atten- 
tion to those function spaces which are maximal in the sense of Lindenstrauss- 
Tzafriri [37, p. 118]. We define the dual X* to be the function space defined 
by 

IYHxIIX = sup Ixyl du. 
XEBxS 

Our assumptions force X* to be a norming subspace of the full dual and X* 
is a function space. 

If X is a function space, then a (homogeneous) centralizer is a map Q: X 
Lo satisfying (2.4), (2.6), and 

(3.1) 42(ux) - U2(x)llx < PlHXHIX 

whenever jjujj,, < 1 and x E X. Here p is a constant independent of x 
and we define p(Q) to be the least such constant. It is proved in [29] Lemma 
4.2, that a centralizer is automatically a derivation. Conversely we have from 
Theorem 2.7: 

Proposition 3.1. Suppose U is conformally equivalent to D and 2? is an ad- 
missible family of Kothe function spaces on S . Then for z E U, Xz is a Kothe 
function space and the corresponding derivation Q2 is a centralizer on Xz. 

If we interpolate between two Kbthe function spaces Xo and X, then it is 
well known (due to Calderon [9]) that X6 is given by X6 = X-0XOX i.e., 

llxllx0 = inf{max(Hjujjx, jjvjjx,): lxl = ul-OvO6 u, v > O}. 

Furthermore the extremal Fx is given by 

Fx(z) = (sgnx)ul-ZVZ, 

where uv is the optimal factorization; the fact that an optimal factorization 
exists follows easily from the existence of an extremal. Thus the corresponding 
derivation is given by 

(3.2) Q(x) = Fx(0) = x(log v - log u). 

Let us note at this point, that there is some ambiguity in this definition since 
there may not be a unique optimal factorization. At such x we must make a 
selection, and thus Q is only fixed up to equivalence. Fortunately, this does 
not present a significant complication and many situations (such as when Xo 
and X, have strictly convex norms) uniqueness is guaranteed. 

We remark that the identity X1/2X*1/2 = L2 is an important result of Loza- 
novskii [38], (see also [20]) which asserts in our setting that if f E L1 then f 
has a unique factorization f = xy where llxllx = 1, llYllx* = lifHi , X > 0 
and supp x = supp y = supp f. We refer to this factorization as the Lozanovskii 
factorization of f for X. Note here the connection with the idea of the duality 
map on X, whose relationship to differential estimates was observed in [15]. 

Let us now extend these ideas to the case of interpolation of families. We 
consider only the case U = D. To avoid certain measurability difficulties, we 
say that an admissible family J is strongly admissible if it is admissible and 
there is a countable dimensional subspace V of Lo so that V n Bx" is Lo- 
dense in Bx, for almost every w E T. It is easy to see that this holds in most 
reasonable situations. 
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We introduce a Kothe function space ' on S x T by setting 

llqllg = ess sup 11q(., ee'0) jjxe, . 

Lemma 3.2. Suppose 2' is a strongly admissible family of Kothe function spaces. 
Then X* = {Xw, w E T} is an admissible family and 

Pl = X ( eit)IIxF dt 
I' =7e 

We omit the proof of this lemma which is routine. The following theorem is 
essentially due to Hernandez [22]. 

Theorem 3.3. Let X be a strongly admissible family of Kothe function spaces 
for D. For z E D, z = reio we have lIxIlz = infllXIIg where the infimum is 
taken over all b E ' such that +b> 0 and 

Ix(s)I = exp (JP(r, f9-t lg( 27t)d) 

Furthermore there is an extremal choice of q for which the corresponding cen- 
tralizer Q? = Q,, z is given by 

(J e"td 
Q(x)(s) = x(s) 

__ (eit -Z)2 log b(s, eit)t 

Proof. We first remark that if 0 E &+, then 

jj f b (s, e't)h(s) 2d d,u(s) < oo 

so that for a.e. s log+ 0(s, eit) is integrable. Thus the integrals in the statement 
of the theorem are unambiguously defined, but may be -oo. 

For b E F+ define 

F(z, s) = exp ( Xel _ z logo(s, et )dtf 

where F(z, s) = 0 at all s such that log b is not integrable. Then F E X+, 
IF(eit, s)I < b(s, eit) a.e. and 

IF(reiO s)I = exp (f P(r, 0- t) logq$(s, eit) ?di) 

We conclude that lixlz < inf ljlql in the statement of the theorem. However 
conversely there exists an extremal Fx E X+ and 

lx(s)l = IF(z, s)l < exp P(r, 0 - t)logIF(eit, s)I27) 

Now there exists u with 0 < u < 1 so that if q(s, eit) = u(s)IF(eit, s)j then 
liolle = lixllz and 

Ix(s) l = exp (J0P(r, 0 - )lo 7(,et)ld) 

This choice of q then is optimal and further gives rise to an extremal F E X+ 
The last part of the theorem now follows by evaluating its derivative. Ol 
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We conclude this section by introducing some further definitions which will 
be useful in the next section. We will need to consider certain quasi-Banach 
function spaces. Let us say that a g-convex quasinorm on Lo is a functional 
X , llxllx (Lo -- [0, oo]) such that if X = {x: llxllx < oo}, then (2.2) holds, 
Bx contains some strictly positive element (this is equivalent to half of (2.3)) 
and 

(3.4) Ilaxllx = lallIXHlx, a E C, x E X. 
(3.5) For every x, u, v E Lo and 0 < 0 < 1 we have that if lxl < julvI1 -0 

then llxHlx < ?lullx llvllx-- 
(3.6) Suppose for 0 < T < oo we define ?ixQ() to be the least ?I such that 

if x, y E X have disjoint supports and llxllx < 1, llYllx < T then 
Ix +yIIx < 1 + ?x(Q). Then Ij(Q) < oo for all T and lim,,0o ?xQ() = 0. 

Here condition (3.6) forces II Hx to be a quasinorm on X and hence X 
becomes a quasi-Banach lattice using (3.5). In addition (3.6) imposes a mild 
continuity property on the quasinorm, while (3.5) (geometrical convexity) im- 
plies that X is A-convex in the sense of [28] (see Theorem 4.4 of [28]). In 
fact if X is A-convex it is automatically renormable to be p-convex for some 
p > 0. We recall that X is p-convex if for every xi, ... , x, E X we have 

(EIX,Iq 
> (EI|Xillq) 

We remark that if X is p-convex then XP is a Kothe function space where 
XP is defined by llxllxP = 11 lxl I/P IIP 

4. INDICATORS OF KOTHE FUNCTION SPACES 

We shall say that a subset J of the positive cone L+ of L (,u) is a semi- 
ideal if J is a cone and if 0 < f < g E J implies f E J. I is called a 
strict semi-ideal if it contains a strictly positive member. Let X be a g-convex 
function space on S. We define Jx to be the semi-ideal of all f E Lt such 
that 

(4.1) sup j log+ IxI du < oo 
xEBxS 

and 

(4.2) ]x E Bx, j f log IxiI du < oo. 

For f E Jx we define the indicator of X, Ox, by 

(4.3) Dx(f) = sup j flog Ix I du 
xEBxS 

and then -oo < Dx(f) < o0. It is appropriate to note that this idea is suggested 
by Gillespie's proof of the Lozanovskii theorem [20]. 

Let us start by identifying Ox for some simple spaces. We shall hence- 
forward write If II without subscript for IIf II. We say that f E L log L if 
f(1 + I(log f I)) E LI . 



490 N. J. KALTON 

Lemma 4.1. Suppose X = Ll. Then 5Yx = (LlogL)+ and 

(Dx(f) = Jflog5 f d/l. 

Proof. If f E (LlogL)+ and lifil I then for llxil < 1, 

J f log+ ixldu= fy f log jxl dlu 

flogf di +j flog l| d,u 

<? flog ifi dy + x ixid,s 
I Xj>1 e xj>1 

< fllogfld,s+e1-. 

Since f log f E LI, (4.1) and (4.2) hold so that (L log L)+ c Ax . Conversely 
if f E gfx then for some x E Bx f log IxI is integrable and by the Geometric 
Mean Inequality, 

J flogXi d< log ixldu <O, 

so that 

Jflog lxi du < Jflogfdy. 

Since flog+ f is integrable we obtain both that Jfx = (L log L)+ and that 
ODx (f) = f flog f dc and this in turn implies the lemma for general f by 
homogeneity of Ox. FD 

We now define A = IDLI on (LlogL)+ . It is trivial to show that for 1 < 

p < oo we have JL = (LlogL)+ and DL, = 1A. For p = oo, ?Loo. =L p 1 
and (DLoo = 0- 

In order to describe the properties of indicators we introduce some further 
definitions. Let J be any semi-ideal in L+ and let D: J -+ C be a map. We 
say that D is semilinear if 

(4.4) (af) = a(D(f) for f EJ , a > 0. 
(4.5) There exists a constant a < oo so that for f, g E J, 

14(f , g)I < (iif ii + gi)ii) 

The least such constant 6 is denoted by 6 (D) . 
(4.6) If f E J and 0 < fn < f with limn,o ilf || = 0 then limn D F(fn) = 

0. 

We call 1D real if it takes only real values. We further say that ID is continuous 
if 

(4.7) lim sup sup 14(f ,g)I = 0, 

and convex if 

(4.8) 9(f,g)? f, g EJ. 
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Proposition 4.2. Let X be a g-convex function space. Then JIx is a strict semi- 
ideal and FDx is a continuous, convex real semilinear map. If X is a Kothe 
function space then t5(Dx) < log2. 
Proof. First of all, we observe that for some a > 0, Xo is isomorphic to a 
Kothe function space. Thus any f E (Xa)* n LI satisfies 

sup f log+lxljdy<o. 
XEBx 

If we then pick some fixed strictly positive xo E Bx, then there is a strictly 
positive f E (X)* n LI for which f Ilog Ixo I is integrable. Thus JYx is a strict 
semi-ideal. 

Now conditions (4.4) and (4.8) are obvious. Let us prove (4.5) and (4.7). 
Recall the definition of ?tx(T) from ?3. Then if f, g E Jx with Ilfil < 1, 

lgil ' T,we have for any e > 0, x, y E Bx with 

f log Ix I dl > 4Dx(f)- J g log lyd d,u > Dx(g) -. 

Let v = ix(T)-1(max(IxJ, TIYJ)). Then v E Bx and 

(f + g) log v dl > x( f) + Ox(g)-6 - log ixQ(T)jljf - log T g 

so that 

ox (f 3, g) < (I + T) 1ogIX (T) + T log - 

As lim,I X x(T) = 1 this implies (4.5) and (4.7). If X is a Kothe function 
space then ?tx(T) < 1 + T so that Ax(f, g) < (1 + T')log(l + T) - TlOg T < 

log 2(1 + T) provided O < T < 1 which establishes that c5((Dx) < log 2. 
It remains to establish (4.6). Assume f E JYx and 0 < f, < f with Itfn II 

0 . If X E Bx is chosen so that f log IxI is integrable, then clearly by an appli- 
cation of the Dominated Convergence Theorem we have lim f f, log IxI dy = 0 
and hence lim inf Dx(f ) > 0 . 

To complete the proof we introduce a Kothe function space F defined by 

iIgiIF = sup g gllog+ I:x d,s + Ilgtl. 
XEBx 

We claim that the norm on F is order continuous. To prove this it suffices to 
take g E F+ and a disjoint sequence A, E E and show that j1g IA [IF ` 0. In 
fact, if not, passing to a subsequence if necessary, we can find x, E Bx with 

j glog+ xn| dy > E > 0, 
A,, 

for suitable e. Let y, = max(lxl,..., I x,j). For suitable p > 0 and 8 < 0 

we have jIy,n Ix < f,n I/P and hence fl-1'n-'/PYn E Bx. However, 

f glog+ y, d > ne - (logfl + Ilogn) g 1, 

which leads to a contradiction. 
Returning to the proof we obtain IIf[IhF -O 0 and so lim sup,,, x(f,) < 

0. 0 
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Lemma 4.3. Let >J be a semi-ideal and let .1 be a semilinear functional on 
.Y. Then 

(i) For every f E J', D is bounded on [0, f]. 
(ii) If f, E [0, f] and lim Ilf, - gll = 0 then limsup,, -,, I(f,) - (D(g)I < 

2(5(1)IIfII. 
(iii) If (D is continuous then 'D is continuous on [0, f] for the L1 -norm. 

Proof. (i) For f EJ , let F(f) = sup{lD(g)j: 0 < g < f}. Then F(f + g) < 
r(f) + F(g) + ( llf + g II where ( = 5(1) . Suppose F(f) = oc . Then there exists 
g E [0, f1 with jD(g) I > 310(f) I + 6 I|f II + 1 . Thus jD(f- g) > 21j(f) I + 1 . 
Arguing by induction, there exists a descending sequence f, with fo = f, 
F(fn) = oo, and I D(fn) I - xoo . Let g = lim fn . Then 

I(D(fn)I < lI(g)I + I(D(fn - g)I + liIf jI - 
As lim D(fn - g) = 0 this yields a contradiction. 

(ii) Let hn = max(fn, g). Then 

j(D(h, n) -D(fn) -'(hn -fn) I < 6 If II JID(hn) - (g) -D(hn -g) < lif II - 
Thus 

VLD(fn) )- (g)[ < LD(hn - fn)I + I4)(hn - g)I + 211 f11 
and since lim((hn - fn) = limI((hn - g) = 0 (ii) follows. 

(iii) In this case, arguing as in case (ii) 

nlim IA(D(fn , hn -fn)lI = lim JA(D(g, hn - )1 = ? 
n - oo n--+co 

and so lim I (D(fn ) - (D(g) I = ? * 1: 

Theorem 4.4. Let X be a g-convex function space and suppose Jf be a strict 
semi-ideal contained in gJx. Then x E Bx if and only if f log+ lxl is integrable 
for every f E JY and 

I floglxld4u?<4x(f), fE.J. 

Proof. One direction is trivial. For the other, we first prove that we may suppose 
>J = Jx. Indeed suppose f E Jx and that fn E Jx with 0 < fn T f a.e. 
Let A = {s: Ix(s)I > l}. Then ffnflAloglxlIdy < Dx(fnIA). Now by the 
Monotone Convergence Theorem, Proposition 4.2, and Lemma 4.3 we have 
f f IA log lxl du < ?Dx(f IA) so that f log+ Ixi E L1 . Now if f log lxl fails to be 
integrable then f f log lxI d,i = -oo < Dx(f) . Otherwise, we have 

f log Ix I dy = lim [fn log Ix I dy < lim Dx (fn) = Dx (f) 
n--+oo Jn--+oo 

again by Lemma 4.3. Thus we will assume J = Jfx. 
To continue the proof assume x V Bx . Let u be a strictly positive member 

of Bx and let w be a strictly positive function such that 

Jw(l + Iloglxll + Ilogul)2cd < 0. 

Let L2(w dj) be the corresponding weighted Hilbert space of all q E Lo such 
that 11I11I2 = fI2I2w dc < 00. Let V be the subset of L2(wcd4) of all 
functions of the form log ly I where y E Bx. We observe that V is convex 
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(since X is g-convex) and closed in the relative Lo-topology on L2(w d,u) and 
hence closed in L2(w d,u) . V is nonempty since log u E V. Further if v E V 
and v1 < v a.e. with v1 E L2(w dc) then vI E V. 

By assumption, log Ixi I V. Thus by the Hahn-Banach theorem there exists 
feL2(w-1cd) and aER sothat fflogixidyi>a but ffq$dy<ua for 0be 
V. From the properties of V, we must have f > 0 a.e. Since f f12W-1 dci < 
oo and w is integrable we have f E L1 by H6lder's inequality. 

We show f EJ-Ax. Assume y E Bx, and let Yvm,z = max(min(lyl , mlxi), TU) 
for m E N, T > 0. Then ilX(T)-Ym,T E Bx and logym,T - logg?x(T) E 
L2 (w ) . Hence 

(4.9) Jflogym, Ttd < a+ lifijlog x(T). 

If we set A = {s: lY(s)I > I} then 

|f logym, I dyl c a + llfll log ?1x( l) + | f log IIdt 
\Au iui 

and letting m -+0 oQ 

f log+ iyi = flog IYvId4 < a + jjfjilogqx(l) + Jfiloguldu. 

Again 

Jfllogul dj < lifilw- ,2 (J1logU12W dy) 

so that we may conclude that SUpYEBX f flog+ iiy dy < oo. We also observe that 
(4.9) implies that for arbitrary y E Bx 

f log(max(lyi, Tu) dy < a + iifii log ?X(T) 

for any T > 0. Hence 

Iflogiyiedy < a?+ ljfllog x(T). 

Letting T -- 0 we have Dx(f) < a . Since f f log lxI du > a , this contradiction 
proves the theorem. [I 

Our next proposition summarizes a few simple properties of the indicator. 

Proposition 4.5. (i) Let X, Y be g-convex function spaces and >J be a strict 
semi-ideal contained in Jx n.nfy. Then iixiix < Miixiiy for all x E Lo if and 
only if Dx (f) > 1(y (f) - (log M) jjflj for all f E 7. Further, X and Y have 
equivalent quasinorms if and only if 

d((Dx, IDy)= sup VIDx(f) -)y(f)li<oo. 

(ii) If Z = XaYfi (i.e., lixilz = inf{liulia ll?jvl: Ixi < iulalv1lf}), then J2 D 

JYxfnl.y and 
(Dz(f) = aDx(f) + /N(D(f) 

for fEJx fnlYr. 

We omit the proofs. Part (i) is almost immediate from the definitions and 
Theorem 4.4, while (ii) is left as an easy exercise. We shall call two semilinear 
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functionals 1, P defined on some strict semi-ideal JY equivalent if d(ID, TI) < 
oc where d(1), T) is defined above. 

Example. If we take X = L(p, oc) then it is relatively easy to compute 

(x(f) = sup Jf log IxI d = - J f*(t) log t dt 
XEBx Po 

for f E L log L where f* is the decreasing rearrangement of f . However X 
is not g-convex, ,even though Ox is continuous and convex. In fact Ox = (D 
where X is the " g-convexification" of X i.e., x E Bx if and only if 

Jlog x*(t)dt < - log -dt. 

Clearly II IIx is an equivalent quasinorm on L(p, oo) since L(p, oo) is iso- 
morphic to a g-convex space. 

Proposition 4.6. Let X be a Kothe function space. Then gJx nflx c (L log L)+ 
and for f EJjX n JX*, we have (Dx(f) + x* (f) = A(f). 

Furthermore if f E ,9Jx n ,9Jx*, and IlflI = 1, then (Dx(f) = fflogxd,u 
where f = xy is the Lozanovskii factorization for (X, X*) i.e., x, y > 0, 
IIxIIx = IIyIIx* = 1, and suppx = suppy = suppf. 
Proof. The first part is essentially Lozanovskii's theorem that Bx.Bx* = BL1. 
For the second suppose 4 E Bx . Then 

Jf log Il d,u = Jf log IYI du - Jf log IYI du 

< Jflogfd,u - JflogIYId,u 

= Jflogxd u. O 

We conclude this section by generalizing the fact which we have already 
noticed that x,yei-e(f) = O6x(f) + (1 - 0)Dy(f) for all f E 'Jx nf-y. 

Theorem 4.7. Let & = (Xw: w E T) be a strongly admissible family of Kothe 
function spaces. Then there is a strict semi-ideal JY so that if f E J, FX,eit (f) 
is a bounded measurable function of t and for z = re'0 E D we have f E Jxz 
with 

(Dxz (f) = J P(r, 0 - t)dXett (f) 2 

Proof. There exist strictly positive h, k so that for a.e. w E T, llxhlll < 
llxllx, < llxkllo. Let n = 9'L1(h) n>Li(k-14u). Then J C Yx, for a.e. 
w E T. We also observe that it suffices to establish the formula for the case 
z = 0 by a conformal mapping argument. 

Consider, as in ?3, the Kothe function space 9' on (S x T, , x A) given 
by I I0 1b = esssup II$(., ei0)I1x16 . Now if f E JY with IlflI = 1, then by 
Lozanovskii's theorem there is a factorization f(s) = 0q1 (s, eit)02(s, eit) with 
01, 02 > 0, SUppP1 = SUpp$2= supp f x T, and I1IIl=IIq$2II<*= 

Define x E Xo by 

x(s) = exp log 01 (s, e't) 2 ) 
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As discussed in ?3, this is well defined since log+ q5 (s, eit) is integrable for a.e. 
s E S. Similarly 

| A02(S , eil)k(s)-l dy(s) d < I 

so that log1 02(S, eit) is integrable for a.e. s E S and we may define 

y(s) = exp | log2 (S, elt) 

Now suppose E E Bx0 and > 0. Then there exists V E Bg with 

4(s) = exp log (5 e it dt 

Thus 

jyc di= jexp (J log(q2$) 2X) d 

< J/ 027 
V/ 

cdy 

< 110211?*1)IIVIS <_ 1. 

Thus IIy lXi < 1. However xy = f, so this is the Lozanovskii factorization of 
f and 

Dxo (f) = [flogxd= f log 1(s, eit 2 d(s). 

As in ?3, we have 

1102l11s* 1102( , ei lt 2II r 

and as 0102 = f X 1T we must have 1102(-, eit)llx* > 1 a.e. So we have 

11j2(-, eit)Ix*x = I a.e. Thus A-a.e. f(s) = b1(s, eit)02(S, eit) is the Lozanov- 
skii factorization of f for the pair Xeit, Xe*t . Hence 

DXeit (f) = Jflog X 1(s, eit) d/u(s) . 

and the theorem follows. ol 

Corollary 4.8. We have the duality theorem that the space X,* obtained by in- 
terpolating 2* = {X,: W E T} is isometric to (X:)*. 

This is immediate from 4.6 and 4.7. 

Corollary 4.9. If f E (L1)+ with lf II = I has a Lozanovskii factorization 
f = xx* for X* where lzl < 1, and if Jul = 1 a.e., then there is a unique 
F E X+ , with F(z) = ux, F vanishes identically off the support of x and 
IIFIjj = 1. Hence the induced centralizer Q is uniquely defined at ux. 

Proof. Let G be an extremal for u-lx* in 2* i.e., suppose G E 4+, 

G(z) = u-lx*, and jIGIjr = 1. If F is an extremal for ux in X, then 
it follows from the maximum modulus principle that since f F(z)G(z) d,u = 1 
then fF(FC)G(C)dy = 1 for all I 1 < 1 . Hence F(4')G(4) is real and nonneg- 
ative a.e. Thus for a.e. s F(C, s)G(C, s) is real on a dense subset of the disk 
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and hence everywhere. Thus F(4)G(C) = f for all 4 and it follows easily that 
F is uniquely determined on the support of x. This implies that Q(ux) is 
also uniquely determined. a: 

5. CHARACTERIZING INDICATORS 

Theorem 5.1. Let J- be a strict semi-ideal, and let 1 be a continuous convex 
real semilinear map defined on . . Then there is a (unique) g-convex function 
space X for which J c .x and fD(f) = Dx(f) for f E J 

Proof. Let Bx be the subset of Lo of all x such that f log+ Ixj e L1 for any 
f E J and fflogIxIdy? < ?(f) for f E J . We define tIxIIx = inf{oa > 0: 
a-1xX E Bx} and lIxllx = oc if x T aBx for every a > 0. Clearly Bx = 
{x: lIxllx < 1} . 

We now show that 11 lIx defines a g-convex quasinorm. Suppose x, y E Bx 
with disjoint supports contained in Ax, Ay where Ax U Ay = S and Ax n Ay = 
0. For f E .Y, 

f log(max(|x|, TJyJ)) du < 'D(flAx) + D(flAy) + lOg Tilf lAy 1j 

< ?(D(f) + A,(f 'AX, f IAY ) + log Tjlf lAy 1- 

Let 
(e) = sup sup IAcD (f ,g)j 

Then 

If log(max(lxl, TzyI)) dy < ?D(f) + lIfIl(o(a) + alOgT) , 

where a = lif lAYI/lIfi . If we let 

a* (T) = sup (a(a)+ alog T) 
O<a<1 

then lim,-o o*(T)= 0 and 

f log(max(lxl, TyIl)) dy < (f(f) + IIfIIN(rT). 

Thus 11 max(lxl, TZYL)IIx < ea (T) or Ix(T) < ea* (T). 

To complete the proof that X is a g-convex function space we need only 
show that Bx contains a strictly positive function and that Bx is closed in 
Lo, since condition (3.5) is trivial. Let us postpone the former statement and 
simply show that Bx is Lo-closed. Suppose X, E Bx and x, --+ x a.e. We 
may suppose, without loss of generality that supp xn c supp x = A for every 
n. Let Ak be an increasing sequence of measurable subsets of A so that 
u(A\UAk) = 0 and xnx-I 1 uniformly on each Ak . Then, given e > 0, 
k E N, there exists N E N so that if n > N, Xn lAk > (1 - 8)XlAk . Hence if 
feEJ, flog+xlAk eLl and 

f logxlAk dy < -log(l - e)jjfjj + f 10ogXnlAk dl 
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If we let e -O 0 we obtain that XlAk E Bx for every k E N. Now let G = 

{s: x(s) > l}. If f EJ, 

f log+x d,J f logx d = lim J f logxd 
G ~~~k-o 8 nAk 

< lim inf D(fl GnAk) = (flG), 

using Lemma 4.3 and the fact that D is continuous. Hence flog+ x e L1. If 
f log x e. L1 then the same argument yields that f f log x di < ( D(f) and this 
also holds in the case when flogx fails to be integrable. Thus x E Bx and 
Bx is closed in Lo. 

To conclude we will check that Bx contains a strictly positive element and 
that D = Ox on J . Notice first that if f E ., x E Bx, then 

fflog+jlxid<(D(fljxj>i)< sup (I(g)<00 
gE[O,f] 

by Lemma 4.3. Hence 

supJ flog+ xIdy< oo. 
XEBx 

Now suppose f E .J and ?(f) > a. Then we show the existence of x E Bx 
so that f f log IxI djz < a. This will imply, using some strictly positive f that 
Bx contains a strictly positive function and hence X is a g-convex function 
space. Further, from the above remarks we will have that J1 c Jjx and we will 
be able to conclude that ODx = (D on J. 

Let Y betheAM-space Un[-f, f] normedby llglly = esssup Ig(s) f(s)1. 
Let K c Y+ be the convex set of all g > O such that ?D(g) < a. For m E N, 
K n m[O, f] is closed for convergence in LI-norm by Lemma 4.3 and the 
continuity of 1. Let Y, be the predual of Y, i.e. the space of all measurable 
functions h with supph c suppf such that lIIhlIy = flhlfd,u < o0. Then 
K n m[-f, f] is closed for the weak * topology a(Y, Y*) which is weaker on 
m[-f, f] than the Ll-norm. Now by the Banach-Dieudonne theorem, K is 
o(Y, Y*)-closed in Y. Thus there exists h E Y., so that f hq < a for 0 E K 
but f hfdy> a. Clearlyif ge Y, g>O, fhgdy <?(g). 

Let x(s) = eh(s) for s E supp f and x(s) = 0 otherwise. Then if g E .J 

g log+ x d = gh du = lim min(g, nf)h d 8 

< liminf D(min(gl(h>0), nf)) 
n--+oo 

= (D(gl(h>0)) 

by Lemma 4.3. If supp g is not a subset of supp f then f g logxc = -00 . 
Otherwise, if g log x is integrable 

Jg logx dy =Jghdji = lim max(g, nf)hd1u <(g) 

by the same reasoning. Hence we can conclude that x E Bx and the proof is 
complete. LO 

Theorem 5.2. Let JY be a strict semi-ideal and let ( be a real semilinearfunc- 
tional on J. Then, in order that there exist a Kothe function space X with 
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J C Jx, and (I(f) = (Dx( f) for f E JY, it is necessary and sufficient that for 
any f, g eJY, 

(5.1) 0 < AO(f, g) < AA(f g). 

Proof. Necessity is clear since Ox. = A - ?x . Conversely, assume (5.1). Since 
A is continuous, both 1 and A - . are convex and continuous. Thus there 
exist g-convex function spaces X, Y with J c Jx n Jy and so that (D = ODx 
and A - 4)x = ODy. It suffices to show that X is a Kothe function space. 
Clearly Bx.By C BLj . Let Bi be the LO-closed convex hull of Bx. Then 
BX.By C BL1 , and so on J nJ1 we have 1DOx < A - Dy = Ox. Hence 
by Theorem 4.4 X = X and the proof is completed. o 

Theorem 5.3. Let X be a g-convex function space and let .J c Jx n (L log L)+ 
be a strict semi-ideal. Then 

(i) X is p-convex (O < p < oo) if and only iffor every f, g E .J, 

AOx(f, g) < -AA(f, g). 
p 

(ii) If X is p-convex for some p > 0 then X is also q-concave where 0 < 
q < oo if and only iffor every f , g r. , 

AOX(V, g) < I5AAV A g) 
q 

Proof. Part (i) is obvious. For (ii), suppose Y = XP . Then Y is a Kothe func- 
tion space and 1y. = A - P(Dx . Thus A(D* (f, g) = AA(f, g) - p4x(f, g). 

Hence Y* is r-convex if and only if 

At (f, g ) > (1- 1A?,(f, g) 

for f, g E JY. Now X is q-concave if and only if Y is q/p-concave if and 
only if Y* is (1 - p/q)--concave. This yields the theorem. ol 

Theorem 5.3 has a simple illustration in a theorem of Pisier [43]. 

Corollary 5.4 (Pisier). Suppose X is a K8thefunctian space and 0 < 0 < 1. In 
order that there is a Kothe function space Y with X = LOY1-0 it is necessary 
and sufficient that X is p-convex and q-concave where 1 = 1 - 1 - 0 p ~~~~q p-2' 

Proof. This is a simple calculation based on the fact that Y can be determined 
from the equation ODx = OA + (1 - 0)'Dy on a suitable semi-ideal together with 
the preceding two theorems. o 

We remark that some recent results of Cwikel and Nilsson [16] on complex 
interpolation between Banach lattices can also be proved by this method. 

Lemma 5.5. For any K6the function space X, if fi, ... , fn E x n (L logL)+ 
and ZI=1 1 = 1 then 

n 
Aox(fl * fn) < 11fil log 4 . 

In particular D ?< 5A = log 2. 
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Proof. This follows immediately from the observation: 

AO, (f, i, fn) < AA(fl,*, fn) 
nn 

= ,| log fF d,u 
+ 

I lfi II log lIf 

where F = fi + + fn. 5 
In the above proof that if fi, ..., fn have disjoint supports then 

tAA(fl, *...*, fn ) = -E Ilifi II109 lo fi II i 
Lemma 5.6. Suppose X is a K6the function space and that f is the ideal 
generated by gJx n (LlogL)+ (thus f consists of all complex f E Lo so that 
If I E J n (LlogL)+). Then extend 'Dx to f by D?x(f) = flogx where 
f = xy is the Lozanovskii factorization of If I. Then for f, g E f, 

Aaox(f , g) < 4(IIfII + lghl). 

Proof. First suppose 0 < g < f E YJx n (LlogL)+. Then if we let f = xlyl 
and g = X2y2 be the corresponding Lozanovskii factorizations, we have 

(Dx(g) = A(g) - g log IY2I dyu 

< A(g) - g log I.i I dyu 

= J glogxl dy + llg 11log ifhl 
hIghI 

< glogxl d,y+ -lfIl. 

If we then set A = {s: xl(s) s)} we have 

glogxldu < ?Dx(glA) < | 109?X2dy + 1 lIgl 

and 
| 10 loX2 d, < ?(DX (1Is\A) < g logxldlt+ - lifi 

S\A ?\A e 
We conclude that 

f g0logxI - logx2l dyl < 2f11 
e 

whenever 0 < g < f . 
Now suppose f, g are in 0f and let h = If I + IgI. Let h have the 

Lozanovskii factorization h = Xr. Then by the above argument 
1' ~~2 

|Dx(f)- ]flogd4 ?<- IIhII 

with a similar inequality for g. Thus AeD (f, g) < 4 IIh II and the lemma 
follows. 0 

We will refer to (x extended in this way as the (extended) indicator of X. 
We conclude this section with a result on the construction of Kothe function 

spaces which we will need later in ?9. 
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Theorem 5.7. Suppose ,u is a nonatomic probability measure on S and that 
X is a K6the function space such that Loo c X c Lp for some p > 0. Let 
T: L1 -+ L1 be a doubly stochastic operator, i.e., T > 0, Tls T*ls = 15 . 
Then there is a unique Kothe function space Y such that 4Dy(f) = 4Dx(Tf) 
whenever f E (LlogL)+. 
Proof. We remark that Jx D L log L and that if f E L log L then Tf e 
L log L. We need the following lemma. 

Lemma 5.8. Let (ai ) z <s, j< be a doubly stochastic matrix. For any nonnegative 
(xi)71, (yi)71, let En = I> aijxjx, 1i = E=n aijyj. We then have 

i 4 log ,:+ 21j log ) < E (x log i i+ Yi log i+Y 
i=1 ~ 1i j1 iY 

Proof of Lemma 5.8. We define for (s, t) e R2 with s, t > 0, 

s +t s +t u(s, t) = slog + t log + 
5 t 

Then by differentiation it can be seen that u is a concave function on its cone 
of definition, since the second derivative is negative semidefinite in the interior. 
Now consider the function v defined on the convex set of doubly stochastic 
matrices, given by 

n n n \ 
v(A) = Eu E(aijxj,E aiij 

i=l ij=l j-l 

Then v is also concave and assumes its maximum at an extreme point, i.e., a 
permutation matrix S, = (6j,a(j)) where a is a permutation of [1, 2, ..., n]. 
Then the lemma follows immediately. El 

Proof of Theorem 5.7. Let D(f) = Dx(Tf) for f E LlogL. Let D(n, k); 
1 < k < 2n 1 < n, be a family of measurable sets so that D(O, 1) = 
S, D(n, k) n D(n, k') = z for k $ k', D(n, k) = D(n + 1, 2k - 1) U 
D(n + 1, 2k), u(D(n, k)) = 2-n and the sets (D(n, k)) generate ;. Let 
En be the conditional expectation operator of L1 onto Lj(Xn) where 2n is 
generated by D(n, k) for 1 < k < 2n. Clearly the lemma implies that for 
any nonnegative f, g E L1, if fn = Enf , gn = Eng, and On = EnTEn f 
yln = En TEng, 

J 10 log ? + Vn dyu + ln 109 On + l d,u 

< |fn 109fn +gn dy l+ gn log fn + gn dy. ?Jfn fn g 

Since ljjnfl = jjq$n j = Ilfil and lignlj = jyiYnlj = lIgIl this translates to AA(qnf, YVn) 
<AA(fn, gn)- 

If we now assume f, g E L log L the continuity properties of A on the 
Kothe function space L log L imply that AA(Tf, Tg) < AAA(f, g) . 

Now it follows that 

0 <A a(f , g) = ADx(Tf , Tg) < AA (Tf, Tg) ? AA(f, g). 
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Hence 4) satisfies the conditions of (4.4)-(4.6) and the theorem follows by 
Theorem 5.2. 0 

It now follows easily from Theorem 5.7 that 

Corollary 5.9. Under the hypotheses of Theorem 5.7 we have for any f e L log L, 

J4)>(f) -X(Tf)l 
24 

Proof. Simply split each f into real and imaginary and then positive and neg- 
ative parts and use Theorem 5.7. 0 

6. APPROXIMATION THEOREMS FOR SEMILINEAR EUNCTIONALS 

Proposition 6.1. Let 5' be a strict semi-ideal contained in (L log L)+ and let 
4) be a semilinear functional on J5. Suppose that for some M and every 

1? n 

(6.1) -ME lfil ? 4(fi, ... fn) ? AA(f,i . , fn) + ME, lfflj 
j=I .1=1 

Then, there exists a Kdthe function space X so that c Jx and 

d(D, 47x) = sup ID(f) -x(f) < M+45, 
llf 1< 

where 3 =(4)). 
Proof. We first prove this in the special case when S is a finite set and - = 
Lt(S) is thus a closed cone in a finite dimensional space. Define )o(f) = 
infZE (fj) where the infimum is taken over all fi ... fn > O with EZn .1) 
= f . Then ()(f) - Mlf() and o is a convex semilinear func- 
tional. 

Let P be the positive cone {x: x(s) > 0 Vs C S}. We argue first that 
(Do is necessarily continuous on P. First notice that for some K we have 
I4)(f)I ? K whenever lifK ? 1 . Now suppose f E P and f, -* f. Then, 
given e > 0 there exists N so that if n > N, (1 - e)f ? < (1 + e)f Then 
I4o((l + e)f-fn)1 14'(fn - (I - )f)1 < 2jIifI1xK provided n > N. Thus 

(1 + -e)0o(x) < 40o(fn) + 2eIIfl I XK 

4Oo(f) K (1 - e)4)o(f) + 2fIIfIKwK. 

We conclude that for n > N, 10)(f) - 4)o(f)I ? 14)o(f)I + 2eJIfjI,K, so that 
(Do is continuous on P. 

Now let Bo be the set of x so that f f log ixj dg < (o(f) whenever f e P. 
Now a standard Hahn-Banach separation argument shows that for f e Pe 

4)o(f) = sup f log lxld. 

Arguing similarly, let (D (f) = infZn1 (A(fj) - 0(fj)) where the infimum is 
taken over all Afj, ... , fn ? 0 SO that Ef = f . Then by the same reasoning 

A(f) - 4D(f) - MIlflI < (DI (f) ? A(f) - (f), 
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and if Bi = {x: f f log [xlI di < (Di (f) Vf E P} then for f E P, 

(I(f) = sup f log [xi dyt. 
XEB, 

Since (o + (I < A we conclude that Bo.BI C BL, . Let BX be the closed 
convex hull of BO. Then Bx.BI c BL, so that (Dx(f) + DI(f) < A(f) for 
f E P. Thus ??(f) - Mllfil ?< x(f) < (D(f) + Mllfjj for every f e P. In 
general if f > 0 then there is a sequence fn I f with fn E P. By Lemma 4.3 
lim sup I (D(fn) - cD(f) I < 23 IIf II and it follows that 

l4ID(f) - (Dx(fn)l < (M + 23) 11 fI 
whenever f > 0. 

We now turn to the general case. Let v = (A1, ..., A,) be any finite 
collection of disjoint measurable sets so that each IAk E -F. Let E1 be the 
linear span of 1Ak for 1 < k < n. By the above there exists a semilinear map 
'T, on Ev so that 

O < ATv(f, g) < AA(f, g) f, g EJ 

and 

/(D(f) - Tsl(f)/ < (M + 23)/lf/I 
for f e >J. By a simple compactness argument we can then determine a 
functional ' on the cone % of simple functions in >J so that 

0 <A%F(f g) ? AA(f, g) <(D(f) - TP(f)I < (M + 23) l/f 1/ 
for f E 

Suppose f E .F. Then Y n [0, fI is dense in [0, f] for the LI-norm. We 
now use the reasoning of Lemma 4.3 to argue that ' is uniformly continuous 
on ? n [0, fl . First notice that since (D is semilinear, it follows that /'P(g) I < 
ilo(/lgll) for g e 7 n [0, f] where lim, o0?60(e) = 0. Suppose g, h E [0, f] 
and let k = max(g, h). Then if llg - hll <?, 

/'T(g) - T(h)/ < A%p(g, k - g)l + Aqi(h, k - h)I + /T(k - g)l + /T(k - h)/ . 

Now 
lAqj(g , k - g) I < IAA(g , k - g) I < lfl+e 

where limeo q(e) = 0 since A is a continuous semilinear functional. Simi- 
larly estimating the other terms we obtain that /'P(g) - T(h) I < ?II (e), where 
lim6o i1 (6) = 0. 

Thus ' extends continuously and uniquely to each [0, f], and hence to J 
in such a way that it is continuous on each order-interval. In particular, we 
must have 0 < ATp(f, g) < AA(f, g) for every f, g E J'Y. Further, if f E .Y, 
we may pick fn E % so that fn f . Then as lim sup I 2(fn) - (D(f)I < 2/11f/I 
by Lemma 4.3 we obtain d(CD, T) < M + 43. This in turn implies that ' 
is semilinear and we can apply Theorem 5.2 to show that ' = Ox for some 
Kothe function space X. El 

We remark that if (D is continuous then we can improve the estimate to give 
d((D,(Dx)< M. 

We now prove a result on set functions which is the key to our main results. 
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Theorem 6.2. Let S be a finite set and let j be a positive measure on S . Let 
q: 2s -- R be a set function, continuous with respect to ,u in the sense that 
u(A) = 0 implies +(A) = 0, and such that whenever A, B are disjoint sets then 

+(A) + 0(B) - u(A U B) < O(A U B) < +(A) + 0(B). 

Then there is a signed measure vi on S such that v(A) < 0(A) for A c S and 
v(S) > +(S) - 4/(S). 
Proof. For each A c S let FA be the set of signed measures p defined on A 
so that p < 0. Let 

h(A) = u(A)-1 ((A) - sup p(A) 

Here we define h(A) = 0 if /u(A) = 0. Then h(S) < maxACSh(A). We shall 
show that maxAcs h(A) < 4. Once this is done it will follow that there is a 
sequence v, E Fs with vn (S) > 0q(S) - 48u(S) - I/n; it is then easy to show that 
(v, (A)) is bounded for every A and so a compactness argument will complete 
the proof. Thus, by restricting to the set where h attains its maximum, it 
suffices to consider the case when h(A) < h(S) = y, say for every A . 

We may clearly suppose ,u(S) > 0. For 0 < e < 1, pick a measure A E rS 
so that A(S) > 0(S) - - yyu(S). Let E be a maximal subset of S so that 
A(E) > +(E) - 2/u(E). Let F = S\E. If F is empty we are done. Otherwise, 
if A c F then A(A u E) < O(A u E) - 2y(A u E), so that A(A) < 4(A u E) - 
q(E) - 2/u(A) < 0(A) - 2/u(A). Now consider the signed measure AO where 
)o(B) = A(B) + u(B n F) - (B n E). Then 

)o(B))(B n E) - u(B n E) + A(B n F) + u(B n F) 
<? (BnE) - u(BfnE) +q$(BnF) - u(BfnF) 
< 0(B) 

so that 'o E FS. Thus Ao(S) < 0(S)-y,u(S) or A(S)+ A(F)-,u(E) < A(S)+ e. 
Thus p(E) > '(I -1-)8(S). 

Now we utilize the fact that h(F) < y. There exists a signed measure v on 
F with v E FF and v(F) > (f) - yu(F)-e . Define vo on S by 

vo(B) =)A(B n E) + v(B n F) -,u(B). 

Then 
vo(B) < q(B n E) + q(B n F) - u(B) < +(B). 

Thus Vo e Is, and 

vo(S) = i(E) + v(F) - u(S) < +(S) - A(S). 
Hence 

+(E) + 0(F) - 2u(E) - yy(F) - e - u(S) < +(S) - yu(S). 
Since +(E) + 0(F) > 0(S) this simplifies to (y - 2)/u(E) < ,u(S) + e. Thus 

2 2e 1 
y - 

12 < - + - i 

Letting e -* 0 we obtain y < 4. n 
In order to apply Theorem 6.2 we will need some preliminary estimates for 

semilinear functionals. Essentially, the next theorem is a translation of a result 
in [25] but we give a more precise proof. 
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Theorem 6.3. Suppose a > 1. Then there are constants C(c) and C'(a) so 
that whenever >J c (L log L)+ is a strict semi-ideal and D: JY -> R is a map 
which satisfies 

A(D(f, g) < alog2(11fjj + jjgjl) 

for f, g e J (respectively, for disjoint f, g E Jf) then for any fi, ... , fn E J 
(respectively, any disjoint f, .. , fn e Jf) we have, if f = Z?k=I fk 

( nZIkI logf CIIfI 
A(D(fi,*l * fn) < a (a E llfkll log -lf l+ Cilf l), 

* f) a (~a (logk)llfkll + C'IlfI) . 

Proof. By a simple continuity argument there exists 0 < 00 < 1 and v > 0 so 
that if 2 < a < '(1 + Oo) then 2 - 2 

r(a log-+(l-a)log1 > log2 + T. 

Let cn be the least constant so that if fi, ..., fn E JY satisfy En= fkII =l 1 
(and are disjoint) then 

( k= 1 llf 

It is clear that for every n, cn is finite. 
For any such fi, ..., fn we let 0 = maxl<k<n lIfk II. Let us first assume that 
0 <0o. Then we may choose signs ek = +1 SO that 0 < Zk= ekIIfkII < 0. 

Let A = {k: ck = l} and B = {k: ek = -1}. Let a = kEA llfkII so that 

<a< a 2(I+ 0). Let fA = EkEA fk and let fB = EkEB fk* Then 

AD(fA, fB) < alog2, 

Ap(fk: k E A) <a (Z ofkIlo k ) 

A4D(fk : k E B) < at (E llfk II log alfi1 + CnO -a)) 

AOl M ***,fn) = AD(fk: k E A) + AD(fk: k E B) + AD(fA, fB) 

Combining these equations gives us 

n 

AOM(fi * , fn) - acr Z IIfkII log IIfkII 

< a(cn + c(a log a + (I - a) log(l - a)) + log 2). 

By the hypothesis on 6 we conclude that 

n 

k = I Itf 
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On the other hand, if 0 > 00 we may assume 1IfeII = 6. Then 

(k=l1 ) 

<a (log2+ CS |fkIlg - +Cn(l -0) 

k=1 log 1 /Fkl 
<a O(log2 + oE ||fk|| lo lf1 Cn(l -0)) 

so that 
n1 

A(fi . .., fn)- acTa ||fk|| log l ? <(log2 + cn( -00)). 
k=1 kiJk<a 

Combining the two cases we must have that Cn < log 2 + Cn ( - Go) or Cn < 

log2/00 independent of n. This leads to the first equation. The second is 
obtained by using Lemma 3.5 of [25], observing that it first suffices to consider 
the case Ilfill > IIf211 > > llfnll. ? 

Lemma 6.4. Given e > 0 there exists a constant ,B = fl(e) < oo so that whenever 

Jf is a semi-ideal and cD is a real semilinear functional on JY and fi, ... , fn E 

A4D(fi,*@, fA)I<b((D) (e E kIfkIIl + |E fk|| 

Proof. We have 
n n 

1P(fl, *- , fn) I < 2a (logk)IIfkII + C> EIIfkII 
k=1 k=1 

for a suitable constant C, by applying Theorem 6.3 with a = 2 log 2 > 1 . Since 
for arbitrary e there exists y = y(e) so that log k < ek + y for all k the lemma 
follows easily. o 

Lemma 6.5. Given e > 0 there is a constant C(e) so that if >J is a strict semi- 
ideal and 'D is a real semilinear functional on >J such that for any disjoint 
f, g we have A (f, g) > O, then for any f, fn e>, 

n 

A4D(f,***, fn) + 6eAAMl * .. *, fn) -C5 E llfk1 II 
k=1 

where 3 = 3(D). 

Proof. We first note that we need only establish the lemma for simple functions. 
Indeed, if we establish the lemma for simple functions then it follows for arbi- 
trary functions by using Lemma 4.3 with C replaced by C + 4. Assume then 
that fi, ... , fn are simple. We may further assume that if f = fi + - + fn 
then IIf II = 1. Let ?0 be the finite algebra generated by fi, . . ., fn . 

If we set 0(A) = D(flA) then 0 is a set function on ?o which satisfies for 
disjoint sets A, B 

+(A) + +(B) - IaB f dl < q(A U B) < 0(A) + 0(B). 
XU,.B 
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Thus Theorem 6.3 can be applied to produce a signed measure v on X0 with 
v (A) < 0(A) for all A E ?0 and v (S) > 0(S) - 43 . 

Now suppose g is any X0-measurable function whose support is contained 
in that of f. Suppose lIglI = 1 and let h = g/f (h = 0 when f = 0). Let 
Ao ={h < 11 and then for k > 0 set Ak= 1{2k-1 < h < 2k}. There exists N 
so that Ak = 0 for k > N. We first notice that 

4<(g1A0 , g1A,, g1A,) < 6 J 109o2 r(k +0119IAJkl + Co) 

by Lemma 6.4, where Co depends only on e. Now 

N 
log2 (k + 1) ] gd < ] (log+ h + 2log22) du . 

k=O Ak 

Further 

Jglog+ hdu < gloghdy+ A g log-dy 

<Jgloghd1u+ 1 f d 

< Jglogh dyl+ e. 

Combining these equations gives us 

A,(g91AO *... *g1AN) < ? Q JgloghdIi+Cl), 

where C1 depends only on e . Now we can write each I lAk in the form 

00 

hlAk =2k Z2ilBkj, 
j=1 

where Bk1 e o0. Now for arbitrary m we have 

Akm = AD(2f lBkl, .. , 2 f lkm) 

m m 

< 6 E j2( ||- f lBkJ || + C2ZE 211f IlBkJ II 
ij=l j=l 

where C2 is a constant. Thus Akm < C3311flAk for some constant C3 . Now 
this means that 

m \ m 
D (: 2k-jflBkj) > Z 2 k-j(Bk) - C332k11f lAk . 

iJ=1 = 

Thus for k > 1, 

m m 
(D 2 k-f IBkj > 2 2k-jV(Bkj) -2C36 11 glAk| 

j=l j=l 
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Letting m -x00 and invoking Lemma 4.3 we have 

4D(glAk) >L hdv- C43j g du, 
Ak IAk 

where C4 is a constant. In the case k = 0 the same reasoning leads to 

D(glAO) >I| hdv- C4a5 fd4u. 

Combining we obtain N 4D(glAk) > f hdv - 2C43. Thus 

ID(g) > Jhdv - eJgloghdL C53, 

where C5 = C5(e). Now we apply this to gk = fk/llfkli . The result is that 

FD(fk) > A dv-,eJ fklog fkf dyu-Cs3IIfkll 

Summing over k 
n 

Z ?(Dfk) > V(S) -C3AA( ffl, . fn)- C55 . 
k=1 

Recalling the choice of iv this implies 

A4(fi, * *, fn) + e3AA(fl,.*, fn) >-(Cs+ 4)3. El 

We finally come to the main theorem of the section. 

Theorem 6.6. Given e > 0 there is a constant C = C(e) so that whenever 
JY is a strict semi-ideal contained in (LlogL)+ and D is a real semilinear 
functional with 3(40) < ( 1 - e) log 2 then there is a K6the function space X with 
d( D , Ox - (Dx*) < C. 
Proof. By Theorem 6.3 we have that if fi, ..., fn are disjoint and f = fi + 

+ fn then 

IAD(fi, * * fn)l < (1 -- S Ifk log1 + CoIIfII, 

where Co depends only on e. But this can be reworded as 

1A,0(fl, *J*, n)l< (1-2e) AA(fi, ***, n) + C011f11 

Let us define P0 = D+ (1 - le)A. We clearly then have for disjoint fi, .. ,n 

n 
A 0 (f.i *,fn) >-COE lfkIl, 

k=1 

and c5(To) < 2 log 2. Let P(f) = infEn=1 'o(fk) where the infimum is taken 
over all disjoint fi, ... , fn with f = Z fk . Clearly ToP(f) - CoIIfII < P(f) < 
ToP(f) and hence for any fi, ..-. fn 

n 

T(fl, * f**,gn) -ATo(fl * M*I*,) < Co : llfk ll k 
k=l 
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Also 3(T) < 21og2 + Co. Now ATp(f, g) > 0 for disjoint f, g so that there 
is a constant C1 = C1 (e) from Lemma 6.5 with 

n 

AT(fl, *s,fn) > 
-IAA(fl ** fn)-C E llfkl 

k=1 

for arbitrary fi, ..., fn . But this means that 
n 

A%o (fl,**, fn) > 2AA(fl,**, fn) -C2 E: llfkll - 

k=1 

Hence 
n 

A?(U **I, fn) > -SAAM,1** fn) -C2 E llfkl IIX 
k=1 

Clearly this reasoning may also be applied to -(D and so we conclude that 
n 

|14(fl, * MI* f) < SAAM, * fn) + C2 E llfkll - 
k=1 

Now we can apply Proposition 6.1 to 2(4D + A) to deduce that there is a 
Kothe function space X with d((D + A), 4)x) < C3 where C3 depends only 
on e. Hence d(, OxD-x*) < 2C3 0. 

We now state an extension to maps defined on ideals rather than semi-ideals. 
Let ,f be an ideal contained in L log L. Then a homogeneous map (D: f -+ C 
will be called semilinear if I1Iyr+ is semilinear and (4.5) holds for all f, g E I. 
(D is called real if its restriction to f+ is real. 

Corollary 6.7. Suppose e > 0; then there exists a constant C = C(e) so that if 
f be a strict ideal contained in L1 and if D: f -* C be a real semilinear map 
with d (d1) < (1 - e) log 2 then there exists a K6the function space X so that 

VI0(f) - ((Dx(f) - 4Dx*(f))I < Cllfll 
for all f E f . If D is not necessarily real, then we can conclude that there exist 
Kothe function spaces X, Y so that 

10(f) - ((Dx(f) + i(Dy(f) - (Dx- (f) - i(Dy. (f))l < Clif 11 . 

Proof. We apply Theorem 6.6, when D is real, to approximate (D,,+ and then 
notice that for arbitrary f we can write f = (9f)+ - (9f )_ + i(3f) + - i(3f) = 
f1 - f2 + if3 - if4, say. Thus 

I(D(f) - FD(f1) + FD(f2) - i(f3) + i'(f4)l < COlIfll 

for some constant C. A similar inequality holds for ODx and IOx* by Lemma 
5.6 and so the result follows. If 'D is complex, one uses the same argument on 
its real and imaginary parts when restricted to f+. O 

Let us give an application to minimal extensions (see ? 1). Compare the 
original constructions of minimal extensions of 11 in [23, 44]. 

Theorem 6.8. Let Z be a minimal extension of the real space L1, R(S, X, 4u) 
Then there exists a Kothe function space X so that Z is linearly homeomorphic 
to the completion of L2(Au) eD R under the quasinorm 

II(f, a)11 = Ilfil + la - Dx(f) + ?x*(f)I. 
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Proof. In fact there is a quasilinear map F: LI -* R so that Z can be identified 
with the space LI eF R of all pairs (f, a) quasinormed by ll(f, a)ll = IlflI + 
1a - F(f) I. Now consider F restricted to E, where E is a suitable weighted 
L2-space so that IIXIIE > lxII for every x E Lo. Since L2 is a X-space 
[23], there exists a linear map (not necessarily continuous!) b: L2 -* R with 
IF(f) - 0b(f)l < CIIfIIE for some constant C. Now F - X will be semilinear 
according to our definition on the ideal E. Thus there exists a Kothe function 
space X and a > 0 so that 

IF(f) - +(f) - a((Dx(f) - '?x* (f))I < Ci Ilf II 
for f E E by the real version of Corollary 6.7. Now this implies [23, Theorem 
2.5] the isomorphism of the space Z with the minimal extension generated by 
ODx - Ox*. * 

7. APPLICATIONS TO CENTRALIZERS 

Suppose X is a Kothe function space and Q: X -* Lo is a centralizer on 
X. We say Q is real if Q(f) is a real function whenever f is a real function. 

Lemma 7.1. Let Q be a centralizer on X with p(Q) = p. Then there exist real 
centralizers Ql, Q2 so that p(Qj) < 2p for j = 1, 2 and 

IIQ(f) - Qi (f) - iQ2(f)Ix < 2pIfllx for every f E X. E 
Proof. Set Qi(f) = 9WQ(9if) + i9W2(3f) and Q22(f) = 2JQ(9f) -iJ(K( ) 
The lemma then follows quickly. O 

We now use [29, Theorem 5.1]. If Q: X -* Lo is a centralizer then there is 
a centralizer QV] on LI with p(Q[l]) < 36p(Q) and so that for x E X and 
y e X* we have 

IIQI'](xy) - Q(x)yll < l8p(Q)jxjjxjjyjjx*. 

Furthermore QV] is unique up to equivalence, i.e., if Q' is any other centralizer 
on LI satisfying 

IIQ'(xy) - Q(x)yll < Cllxllxllyllx*, 
then for some constant Cl we have IllK11(f) - Q'(f)ll < Cl IfII for all f E 
L1. QV] is defined by Q[l](f) = Q(x)y, where f = xy is the Lozanovskii 
factorization of f for X. Clearly if Q is real the so is QWY]. 

Theorem 7.2. (i) Let XO, X1 be Kothe function spaces and let X = [Xo, X, Ia. 
Let Q be the induced centralizer on X. Then for f E L1, 

Q[l](f) = f(logxi - log xo), 

where If I = xoyo = xiyI are the Lozanovskii factorizations for If I with respect 
to Xo, X1. 

(ii) Let 2' = {X,: w E T} be a strongly admissible family of Kothe function 
spaces, and X = XO and Q is the centralizer induced on X. Then for f E LI 

QKV](f)(s) = f(s) (j e-tlogg(s, t) dt) 

where f (s) = g(s, t)h(s, t) is the Lozanovskii factorization for the space 9' on 
S x T defined by 

ll'llI = esssup 11(., w)llxu. 
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Proof. (i) Assume f has norm one and is factored as stated. On 5 = {z: 0 < 
9lz < 1} consider the functions G(z) = X-Zxz and H(z) = Iyol-zIylIz. 
Then both G, H E X+(5>). Also IIG(0)IIx < 1 and IIH(0)IIx* < 1 since 
X* = [X0, X1]O. However G(z)H(z) = If I from which it follows that Ifl = 
G(6)H(6) is the Lozanovskii factorization for X. Now consider any opti- 
mal factorization x = u-0uO with uo, ul > 0 and Iluollxo = llulllxi = 1. 
Let K(z) = ul-zuz; then IIK(z)H(z)ll < 1 but fK(6)H(6)dy! = 1. Hence 
f K(z)H(z) dy = 1 for all z and so K(z, s)H(z, s) is real and positive for 
all z for almost every s e S. (An argument with a dense countable set in 
52 is required here.) Thus K(z, s)H(z, s) = f(s) a.e. and so uo(s) = xo(s), 
uI(s) = xi(s) for s E suppf = suppx. Now by (3.2) this implies that Qi(x) 
can only take the value x(logxi - logxo) . 

Now 
QLVI(f) = Q(x)H(6) sgnf, 

where sgn f = f/ Ifl as long as f :$ 0 and is zero otherwise. Hence 

QL21 (-) = f(log x, - log xo). *0 

(ii) The proof is very similar. Suppose as above that f E L1 and that 
If(s) I = g(s, t)h (s, t) is the Lozanovskii factorization of If I for XS. Define 
G,HeX+ by 

G(z) =exp (/e; it 
Z log g(s,5 t) 2dt)X 

H(z) =exp (J eit - z log h(s, t) 2dt) 

It follows from the duality theorem Corollary 4.9 that If l = G(O)H(O) is the 
Lozanovskii factorization for X. Further, arguing as in the case (i) it can be 
shown that if x = G(O) and if K e X+ satisfies K(O) = x and IIK(w)IIx. < 1 
for w E T then K(z, s) = G(z, s) on supp f . Thus applying Theorem 3.3 we 
obtain the theorem. O 

Notice in the above theorem that in case (i) the centralizer Q[11 is indepen- 
dent of 0 . We now connect our results with those of the preceding sections. If 
Q is a centralizer on X we defined a strict ideal f = tAQ c L1 by f E f if 
and only if Ql]l(f) E L1 . We omit the simple proof that f is a strict ideal. 
On f we define the functional (Da by (a(f) f n [1 I(f) cd4. 

Lemma 7.3. 'DQ is a semilinearfunctional on X with 3(0P) < 108p(Q). (I 
is real whenever Q2 is real. 
Proof. Condition (4.3) is obvious and (4.4) follows from Lemma 4.2 of [29]. 
(4.5) follows from Lemma 4.3 of [29]. 

Proposition 7.4. (i) Let X0, X1 be a pair of Kothe function spaces and let X = 
[Xo, X1 ]0 and suppose Q is the corresponding centralizer on X. Then Jxo n 
Jx,c CAQ and 

(D'(f) = (Dx1 (f) - (Dx,,(f), f E --"xo n _fi1x7' 

(ii) If X = {Xw: w E T} is a strongly admissible family of Kothe function 
spaces, and X = X0 with Q2 the corresponding centralizer, then there is strict 
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semi-ideal >J c ,A so that 

Di" (f) = e Ditxeit (f) f E f J 

The proofs of these statements are immediate. 
We now prove our main theorem. We recall that two centralizers 

QI and Q2 on X are called equivalent if there exists a constant B so that 
IIQ1(f) - Q2(f)IIx < Bllfllx for all f E X. 
Theorem 7.6. There is a constant y > 0 and a constant C < ox so that whenever 
1 < p ? 2 and X is a p-convex and q-concave Kothe function space with 

+ 1=1 and Q is a real centralizer on X with p(Q) < y/q then there is a 
pair of Kothefunction spaces XO, X1 so that X = [Xo, XI 11/2 and if QO is the 
induced centralizer then IIQ(f) - Qo(f) IIx < CjIfIIx for f E X . In particular 
Q is equivalent to QO. 

Furthermore XO and X1 are unique up to equivalent norming. If Yo, Y1 are 
Kothe function spaces such that [YO, Y111/2 = X with an equivalent norm and 
the induced centralizer Qi is equivalent to Q then Yo = Xo with an equivalent 
norm and Y1 = X1 with an equivalent norm. 
Proof. Let us dispose of the uniqueness question. If Qi is equivalent to Q 
then Q[11 and Q['] are equivalent. Hence on a suitable strict semi-ideal, 02 
is equivalent to (D1 - Dy0, while (D1 + IDy0 is equivalent to 2Dx . Thus, up 
to equivalence IDy1 and IDy0 are uniquely determined. Proposition 4.5 shows 
then that the spaces Yo, Y1 , if they exist, are unique up to equivalence of norm. 

The above argument quickly modifies to establish existence of Xo, X1 . In- 
deed we will take y = 2. Then p(Q[Y) < 0.18q1 and hence by Lemma 4.3 
of [29], 3(IQ) < 0.54q-1. Thus we can find a Kothe function space W so 
that if f E =L log L n )n then 

Iq0"(f) - (Ow(f) - O.w*(f))I < CoIlf 1, 
where CO is a universal constant (Corollary 6.7). Now on f+ we consider 
(Do = ODx - 1 ((Dw - (Dw*) and (DI = ODx + ((Dw - Dw*) . If f, g E +then 

q \oo ) \xX g)q2?( 
A0(f,, gf5) ? AOx (f, g) - 1A'0W(f,5 g) 

q 

' A0xf 9g) - -AA(f, g) > 0 
q 

since X is q-concave (Theorem 5.3). Similarly, 

A'0(f, g) < Aox(f, g) + 4, (f, g) 
q 

< A'ox(f g) + (1 - AA ) A^f ) 

?AA(f, g) 

since X is p-convex, again utilizing Theorem 5.3. Thus by Theorem 5.2 there 
is a Kothe function space XO so that on f+ we have (o = Dxo A similar 
calculation shows that 1I = Dx1 for some Kothe function space X1. Since 
'Dxo + 'Dx1 = 2?Dx on f+ we have [XO, Xl 112 = X, by Proposition 4.5. Let 
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QO be the corresponding induced centralizer. Then OoQ = (w - Ow*) on 

+. Thus for fEf+, I (f) -(D) o (f) I < Coq- I 
Ilf 1. . 

Now a (Oa) < 0. 5 4q - 1 and a (Ono) < q - I log 2. Hence, by breaking up an 
arbitrary f E / into its real and imaginary and then positive and negative parts 
as in Theorem 6.7, it follows that for all f E f we have I On(f) - dY0o(f)I < 
C q- IIf II for some universal constant C1 . 

Now suppose x E X and let y E X* be such that xy E /'. Then Q['](xy), 
K[l](Xy) E L1 and hence both Q(x)y and QO(x)y are integrable. Further, it 
follows from Theorem 2.6 that P(Ko) is bounded by a universal constant C2 . 
Thus, 

J (Q(x) - Qo(x))ydyU < Q['(xy) - 411(xy)dy 

+ 18(p(Q) + p(Qo))IIxIIxIIyIIx* 
< I On(xy) - Oo (xy)I + C31XIIXIIxIIyx* 

? C411xIIxIYIIx*, 

where C3, C4 are universal constants. By considering all such y we obtain 

IIQ(x) - Qo(x)IIx < C4l1xIIx 
and the proof is complete. OJ 

Remark. In order that X can be renormed to be p-convex and q-concave where 
q < 0, it is necessary and sufficient that X is super-reflexive. Thus Theorem 
7.6 holds for super-reflexive X but not necessarily isometrically. 

We recall that if X is a rearrangement-invariant Banach function space on 
S then a centralizer Q is called symmetric if for some constant C we have 
IIQ(x) - Q(x o a)Ilx < CIIx IIx for all x E X and all measure-preserving auto- 
morphisms a of S. 

Corollary 7.7. If ,u is nonatomic or S = N with ,u counting measure, and 
the space X in Theorem 7.6 is rearrangement invariant and Q is a symmetric 
centralizer then the spaces XO, X1 can be chosen to be rearrangement invariant. 
Proof. In the proof of Theorem 7.6 observe that if follows from the equivalence 
of q-1'I and 2Dw- D on f+ that for some constant Ci one has I (Dw(f) - 
(D w (f o a) I < C1 IIf II for every measure-preserving automorphism. From this it 
is easy to deduce that if x E Bw then e-Cl < llx o illw < ec' so that W can 
be renormed to be rearrangement invariant. Continuing with the proof then 
yields that XO, X1 are also rearrangement invariant. C1 

We now use Corollary 7.7 to prove [29, Theorem 6.10] under the additional 
hypothesis of super-reflexivity. 

Corollary 7.8. Suppose either ,u is nonatomic or S = N with counting measure. 
Suppose 1 < Po < Pi < 0, and that T is an operator of strong types (po, po) 
and (Pi, Pi). Let X be any super-reflexive rearrangement-invariant Banach 
function space whose Boyd indices satisfy po < Px < qx < Pi . Then for any 
symmetric centralizer Q on X there is a constant C so that II[T5 Q](x)iix ? 
Cllxllx. 
Proof. We may suppose X is p-convex and q-concave where l + - = 1. p q 
We may further simplify by noting that it is only necessary by Lemma 7.1 to 
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consider the case when Q is real and p(Q) is sufficiently small. But then there 
are r.i. spaces Xo, X1 so that X = [XO, X11]12 and the induced centralizer is 
equivalent to Q. Now by interpolation there exists e > 0 so that if 0 = I ? e ' 
then po < Pxo < qxo < p I. Hence T is bounded on X1/2?e and Theorem 2.6 
will yield the result. 

The above theorem works for real centralizers. For the general case it is 
possible to realize an arbitrary centralizer as a derivation induced by a family 
of three spaces. We have: 

Theorem 7.9. There is a constant y > 0 so that if X is a Kothe function space 
which is p-convex and q-concave where I + 1 = 1 and 1 < p < 2 and Q 
is a centralizer on X with p(Q) < yq-1 then there are three Kothe function 
spaces X(j): j = 1, 2, 3 so that if we consider the family 2' = {Xw: w E T} 
where Xe,o = X(j) when 2(j - 1)7r/3 < 2Pjr/3 then Xo = X and the induced 
centralizer QO is equivalent to Q. 

We shall not prove this in detail; the ideas are similar to those of Theorem 
7.6. The key observation is that 

-Da? = i(1 - w) (W 2DX(l) + (L4OX(2) + DX(3)) 
7t 

on some strict suitable semi-ideal, where co = e2nil3. By splitting (D into its 
real and imaginary parts and utilizing the equation 

(Dx = I 
(?DX(1) + (DX(2) + (DX(3)) 

one obtains equations to determine X(j) for j = 1, 2, 3. 

8. APPLICATIONS TO SCHATTEN CLASSES 

We now extend our ideas to Schatten ideals (see [1] for a discussion of inter- 
polation in this setting). Suppose X is a separable Hilbert space and W(X) is 
the algebra of all bounded operators on X. Let E be a K6the sequence space 
(i.e., a K6the function space on N) which is symmetric (or rearrangement in- 
variant) then we define the corresponding Schatten ideal WE to be the algebra 
of all operators A E q (X) whose singular values sn (A) satisfy (sn) E E. We 
define IIAIIE = II(sn(A))IIE and then WE is a Banach space which is an ideal in 

(X) . Further if we regard each A E W(X) as an infinite matrix then the 
spaces WE are all admissible spaces regarded as spaces of functions on N x N 
with the usual counting measure. Thus our approach to complex interpolation 
derived in ?2 applies to this setting. 

Following [31] we define a map Q: WE ' (pX) to be a bicentralizer pro- 
vided for some constant p - p(Q) we have 

(8.1) IIQ(VAW) - VQ(A)WIIE < p11 VII IIAIIEIIWII 

for A E WE and V, W E W(*). By [31, Proposition 4.1] (where it is proved 
only for Fp) every bicentralizer is a derivation on WE with p(Q) < 8p. Let us 
say that a bicentralizer is hermitian if Q(H) is hermitian for every hermitian 
H. The argument of Lemma 7.1 yields 
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Lemma 8.1. Let Q be a bicentralizer on FE. Then there exist hermitian bicen- 
tralizers Q1, Q2 and a constant C so that if A e WE then IIQ(A) - QI(A) - 
iK22(A) I1 < CI||AI|E - 

Let us regard WE as a space of infinite matrices by distinguishing a particular 
orthonormal basis of X. For any A = (a1k) E W (X) we define 9 (A) = 
diag(ajj) and ?n(A) = diag(aIi, ... , ann, 0,...). 

Lemma 8.2. If WE is B-convex, then there is a constant C = C(E) so that if 
Q is a bicentralizer on WE then for any A E WE we have I1[0, Q](A)IIE < 
Cp(Q)IIAIIE. 

Proof. By Lemma 2.1, there is a constant Co = Co(E) so that if A1, ..., An E 
WE then 

n 

IIAQ(Ai, ... , An)I[E < CopsE IAklIE 
k=1 

Hence if U1, ...U, Ee5 7() with IlUkIl < 1 and if $f(A)= E 
nj=_ UkAUk 

then 

111[9, L]IIE = sup IIL[, Q](A)IIE < C1P, 
IIAIIE<1 

where C1 = C1 (E) . 
For fixed m E N let Ue1,. ,,n = diag(81, ... , 0,...) where ek = ?1. 

By averaging over all choices of signs we obtain lI[2n , Q]IIE < C1P . Let Pn be 
the orthogonal projection onto the first n basis vectors. Then 

19(OnA) - OnQ(A) IIE < ClpIlAIIE. 
Thus 

llQ(Pn-.APn) - .nQ(A) lIE < C1 plIAllE 

Hence 

IIPn (Q2'A) - (A))Pn ||E < (C1 + 1)PIIAIIE 
for every n and the result follows. D 

Theorem 8.3. Let WE be a super-reflexive Schatten ideal. Then for every sym- 
metric centralizer Q2E on E we can define a bicentralizer Q on WE by 

(8.2) Q(A) = U* diag(QE(Sn))V*, 

where (sn) are the singular values of A and U, V are norm operators chosen 
so that U*U= VV* =I and UA V=diag(sn). 

Conversely, if K' is a bicentralizer on WE then there is a symmetric centralizer 
QE on E so that if Q is given by (8.2) then Q is equivalent to Q'. Further 
there is a constant y = y(E) > 0 so that if Q' is hermitian, and p(QI) < y, then 
there are symmetric Kothe sequence spaces Eo, E1 so that [Eo 1 /2 = g 

where E is equivalent to E (i.e., has an equivalent norm), and the induced 
derivation is equivalent to Q'. 

Proof. We break the proof up into several steps. First consider the situation 
when Eo, E1 are symmetric Kothe sequence spaces and [Eo, El]1/2 = E, with 
the induced centralizer QE. We claim that ['Eo , FE, ]1/2 = WE and that the 
induced derivation the bicentralizer Q2 given by (8.2). To see this suppose 
IJAlIE = 1 so that IISlIE = 1. If F(z) is an extremal for A by considering 
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2(UF(z)V) we must have jAil 1/2 > 1. Conversely if u E BEO and v E BE, 
satisfying s2 = uv then F(z) = U* diag(ul-zvz)V* is an extremal for A. 
Thus by differentiating, we may suppose that the induced derivation is given by 
Qi(A) = U* diag(nE (s)) V*, and this must be a bicentralizer by interpolation. 

Now if WE is super reflexive so that E is super reflexive (and hence can be 
renormed to be p-convex and q-concave where 1 < p < oo and I + I = 1) 
then Theorem 7.6 and Lemma 7.1 can be used to prove the first statement of 
the theorem. 

Now suppose Q' is an arbitrary bicentralizer on FE. Define QE on E by 
QE(X) = y where diag(yn) = 0(diag(xn)) . It is fairly easy to check that QE is 
a symmetric centralizer on E by considering the effect of multiplying diag(xn) 
by diag(un) or replacing it by S,, diag(xn)S-1 where 7t is a permutation of N 
and S,, is the corresponding operator obtained by permuting the basis elements. 
If IIAIIE = 1 and A has singular values (sn) then we must have 

||Y(A) - U*QI(diag(Sn))V*jjE < plvAllE 
where p =p(Q'). Now 

JIL'(diag(sn)) - 092'(diag(s,)) 1 < Cp, 

where C depends only on E. Thus 

IIQ'(A) - U* diag(K2E(Sf))V* IE < (C + l)p 

and the second part follows. 
For the last statement, observe that if p(QY) is small enough then so is P(4E) 

and we can apply Theorem 7.6 and the first part of the proof. o 

We remark that the proof of Theorem 8.3 essentially classifies bicentralizers 
on WE as being, up to equivalence, in bijective correspondence with symmetric 
centralizers on E. The correspondence is given by the relationship Qo(A) = 
U* diag(9o, E(sn)) V* established in the proof. 

Theorem 8.4. Suppose 1 < po < p < PI < oo . Suppose S is a bounded operator 
on both WpO and Wp, . Then for every bicentralizer Q2 on Wp there is a constant 
C so that for A E Fp we have II[U7, Q](A)IIp < CIIAIlp. 

The proof of Theorem 8.4 is the same as that of Corollary 7.8, using Arazy's 
generalization of the Boyd interpolation theorem [1] and the above Theorem 
8.3. Of course, we could state Theorem 8.4 in somewhat more generality. 

We conclude by studying the operator versions of indicators maps ODx. Let 
us first notice that if E is a symmetric Kothe sequence space then 11 c E c loo 
so that JjE D 1 log 1. We also recall that the sequence space hsym [19, 31] is 
defined to be the space of all sequences s E 41 such that 

00 00 
,-+ + -k <, 

0! 
II11h l= E ISkl0 + E kS 

+ 
? 

k=l k=1 

where s is any rearrangement of s so that lSk I is monotone decreasing. (Strictly, 
we require only that s is a rearrangement of s in the sense that if a E C\{O} 
then the sets {k: Sk = a} and {k: Sk = a} have the same cardinalities; also 
the quasinorm 11 llh is well defined only up to equivalence since it depends on 
the choice of the rearrangement.) 
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Lemma 8.5. There is a constant C so that if E is a symmetric K6the sequence 
space, then for any s E h1ym n 1 log I we have I(DE(S)/ < C//S//h. 
Proof. For any sequence fi = (fin) ??% of complex numbers let D(fi) denote 
the sequence (fio, fl , ,Il, ...) where each fin is repeated 2n times. Thus 
//D(fi)// = Z2nIfinI. Next let fin = 2fi,n- for n > 1 and Ito6 = 0. Then it is 
clearthatif D(fi) E ilogi then I4(E(D(fl))-I(E(D(fl'))I < 4IDD(fi)/I ,byLemma 
5.6. Thus if a0 = ,Bo and a,n = fin - 1fin-i for n > 1 then (D?E(D (a))// < 
12 /D(fi) . Now if a = (an) ??%0 is any finitely nonzero sequence which satisfies 
Z 2nan = 0 then we can set fio = ao and subsequently fin = Zk=O 2knak. 
Thus fi is finitely nonzero and we conclude that 

|(E(D(a))/y < ZE 2k ak 
n=O k=1 

Now suppose s = (Sk)"?=I is any finitely nonzero real sequence arranged in 

decreasing order of absolute value. Let an = 2 - n 1 Sk Also let On = /S2n I 
for n > 0. Then we obviously have that Z??l1 2n-16i < //s// If 2n < r < 
2n+1 - 1 note that 

2n+1 - r 

E Sk < E Sk + 2n On 
k=1 k=1 

and hence for n > 1, 
n 2n+1 - i r 

r ZE2koak ? 
E I 3s 

k + 2nfin. 

k=O r=2n k=1 

Summing, including the obvious term when n = 0, we obtain 

|?DE(D(a))| < 611SIlh . 

Now consider t = s - D(a) . We have ItkI < 2On and .2n--l tk = 0 for 
n > 1 and 2n < k < 2n+1 - 1; also t, = 0. We may thus permute the elements 
of t in the blocks (2n, 2n + 1, .. ,n+ - 1) to construct a sequence t with 
I Zk= Ikk < 260n for n > 1 and 2n < r < 2n+1 -1. Thus if Ur = k=ltk 
then /lull < EZ I 2n+1On < 4/1isl. Since 1k = Uk - Uk-l and uo = 0 we have 
(E(t) < '/I SI I. Combining we have that 

(DE(s) < 221/slih + e4(//t/ + //D(a)//) < COilS//h 

for a suitable absolute constant Co. 
Next if s is real but not necessarily finitely nonzero, consider for each N the 

sequence 5(N) defined by S(N) = Sk for k < N and Sk = 0 otherwise. Then, 
denoting the basis vectors by ek, 

/ N 

(?E (S(N) -E SkeN+l < COIISIlh 

by the above reasoning. If s E hsym then EN 
sk - 0 as N -+ oo and 

so we conclude lim SUPN 00 I(E (S(N)) I < Cl //s /h for some absolute constant 
C1 . Let s = s+ - s_ be the splitting of s into positive and negative parts. 
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Then (DE(S+) = limN1-oo (DE(s(N)) and 4(E(S-) = limN, D IE(SS()) . It quickly 
follows that IIE(S) I < C3 1SIlh for some absolute constant C3. 

Finally, if s is a complex sequence the proof is completed by taking real and 
imaginary parts. ol 

Let Wlog denote the ideal of operators in WI whose singular value s = (Sn) E 
I log I . It is easy to show that if T E WlogI then the eigenvalues of T repeated 
according to multiplicity belong to l log 1 . (Here we adjoin zeroes if the set of 
eigenvalues is finite.) To see this observe that if (Aw) are the eigenvalues of 
T, arranged in decreasing order of absolute value then IA I * * A, I < si ... Sn for 
every n [21]. Hence since the function xex is concave for x < -2, if we 
suppose, without loss of generality that s, < e-2 then for every N, 

N N 

E n|logn An| > 
ESn logSn . 

n=I n=I 

Now if E is a symmetric Kothe sequence space for T E W1log we define 
DE(T) = DE((Ak)=_k- 

Theorem 8.6. There is a universal constant C so that, whenever E is a sym- 
metric K8the sequence space, then OE satisfies 

IADE(Tl , T2)I < C(IT1II1 + IIT2111) 

whenever T1 , T2 E Flogl - 

Proof. Let A(1) and i(2) denote the eigenvalues of T1, T2 respectively both ar- 
ranged in decreasing order of absolute value. Let v denote the similar sequence 
for Ti + T2. Then, arguing as in [19, Lemma 5.2] it may be shown that the op- 
erator V = T, E T2 eD-(T1 + T2) on AEDED can be written as a commutator 
V = [A, B] where IlAil < 2 and JIBIlI < IITi iiI + 17T2111 . Hence its eigenvalues 
a = A(1) D A(2) E (-v) are in hsYm. Further for some universal constant Co 
we have llallh < CO(jT1111l + 1I T2111). Thus I(DE(a)l < C1(11T1jil + 1I T2111) for 
some universal C1 . It then follows quickly that I11E(v) -4E(AM1)) -(E(A(2))I < 

C2(jjT1jj1 + 1IT217I,) from which the theorem is immediate. O 

9. APPENDIX: AN APPLICATION TO HARMONIC ANALYSIS 

In this section we consider some applications to harmonic analysis. We shall 
suppose that S is a compact metric space and that u is a probability measure 
on S. We consider Kothe function spaces modelled on S x T with the product 
measure ft = 4u x A where dA = (2X)-1 dO is normalized Haar measure on the 
circle. 

We will be specifically interested in the (vector-valued) Riesz transform R. 
If x E Lo(S x T) satisfies x, E LI (T) ,u-a.e. where xs(eit) = x(s, eit) then we 
define 

Rx(s, eit) = limf; x(s, eiT) d X\S, 
~r--+l 

J 
I - rei(t-T) 7 

where the limit exists ,u-a.e. 
Suppose X is a K6the function space containing L<> . We shall say that R 

is bounded on X if there exists a constant C so that IIRx lIx < ClIx Iix for all 
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x e Loo . If R is bounded on X then so are R and Ro where R(f) = R(f) 
and Ro(x) - eitR(eit f) . 

If h E LI(S) satisfies h > 0 a.e. and f h4dy = 1 then we say that X is 
h-acceptable if X contains L>o and for some constant C we have 

h(s)Tx(s, eit)jdf < Clixllx SxT 

for all X E X. If X is ls-acceptable we simply say that X is acceptable. If 
X is h-acceptable then R: X -- Lo is well defined. 

In this section we adopt the convention that C is a constant independent of 
x, y, X, etc. but possibly depending on X, XO, ... which may vary from line 
to line. 

Lemma 9.1. Suppose X is a Kothe function space for which R is bounded. Then 
there exists h so that X is h-acceptable and ilRxilx < Clixlix for all x E X. 
Proof. Let Jx = Rx - Rox. For x E L,o 

Jx(s, eit) = x(s, eiO) dO 

Thus liJxllx < Clixllx for x E Lo. Let Xs be the restriction of X to S, so 
that if x E Lo(S) then x E Xs if and only if x E X where x(s, eit) = x(s) 
and then IixiIxs = iLxiIx. Pick any h E Xs with h > 0 a.e. and fhdji = 1. 
Then 

Ih(s)jx(s, eit)l d, < Cllxllx 

for x E Lo. This clearly extends to X and so X is h-acceptable. It follows 
quickly that IiRxllx < Clixllx for all x E X, since now R is well defined on 
X. E 

If X is acceptable (i.e., Loo c X c L1) then X* is also acceptable. We 
shall say that X is weakly acceptable if Loo c X c Lp for some p > 0; 
thus X is weakly acceptable if XP is acceptable for some p > 0. In this 
case we at least have X* c L1 so it follows that L log L c J n fxl . It will 
be convenient to restrict attention largely to weakly acceptable spaces X so 
that the indicators O1x have common domain L log L. We shall also need the 
corresponding centralizer on L1, Q11(f) = flog lxi where ifI = xx* is the 
Lozanovskii factorization of If I for X. 

Lemma 9.2. Suppose X is a weakly acceptable Kothe function space on S x T. 
Then there is a constant C so that if f E LlogL, lDill (f)il < CIIfiiLlogL. 

Proof. The assumptions imply the existence of C so that 

-ClifiI <? x(f) < ClifiI + A(f) 

for f E (LlogL)+. Thus VI(x(f)i < ClifliLlogL for all f E LlogL by the 
quasiadditivity of Ox. Hence if i1i?11o < 1 and A is any Borel set over which 
dl](f) is integrable, we have 

l'i['1(f)1A - L7 I(fr,lA)ii < Cllfll 

and so 
l 

11fqP-D qA <C .f 
l 
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Hence IQ1[l](f)1AII ? CIIfIILlogL and the lemma follows easily. El 

We denote by H1 the subspace of L1 (S x T) of all f such that 
27t 

1 f(s, eit)eint dt = 0, ,u-a.e. 

for n > 0. Ho' is the subspace of all f E H1 such that 

27t 

f(s, eit) dt =, ,u-a.e. 

We shall need the concept of a generalized outer function. If x E L1 is 
such that for ,u-a.e. s either x5 = 0 A-a.e. or log9 IxI E L1 (T) we define the 
corresponding generalized outer function 4 E H1 by 

(27reT+ reit d 
4(s, eit) = limexp J + loggIx(s, ei') 2I ) 

when log9 IxI E L1 and (s, eit) = 0 otherwise. Then 4 is defined a.e. and 
J1j = IxI a.e. 

Proposition 9.3. Suppose XO, X1 are acceptable Kothe function spaces and that 
X = [Xo, X1]0 where 0 < 0 < 1. Suppose that R is bounded on X and that 
X c L log L. Let Q2: X -* Lo be the induced centralizer. Then Q(X) c L1. 

If, further, R is bounded on X, and X is separable, then 

II[R, QIIIx = sup IIRQ(x)-KQR(x)IIx < oo 
llxllx?1 

if and only if there is a constant C so that 

JID(f)l < Cllf II 

for f E Ho n L log L, where D = sQ = -x, - Dxo X 

Proof. We first observe that if f e X then Q(f) - Q[1](f) E L1, where QKl] 
is the corresponding centralizer on L1 , by Theorem 5.1 of [29] since 1 E X*. 
However Q[l] = Q[l] - Q[l] and so Lemma 9.2 gives the first part of our con- XI x0 
clusion. 

We shall need the following observation. If 4 E Loo then by considering the 
constant function F(z) = 4 for 0 < 91z < 1 we see that (4, 0) E dnX and 
hence 2(4) E X. 

Now assume I I[R, Q]IIx < oo . Suppose f E Ho n L log L and that Ilf Il = 1. 
Let If I = xjyj be the Lozanovskii factorization of If I for Xj for j = 0, 1 . Let 
x = xIO0xO and y = yiO0y0; then llxllx = IlIYIIx = 1 . Since X is acceptable, 
log+ x, log+ x* E L1 . Let So be the set of s E S such that f(s, eit) is nonzero 
on a set of positive A-measure. For ,u-a.e. s E So we have f, E H1 (T) so that 

d t 
I log Ifs (eit)I11 

- < oc 

and hence for almost every such s, log is integrable. For s ? So, xs = 0, 
a.e. 
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Now let 4 be the generalized outer function corresponding to x. Clearly 
E BxfnlH and f - E Bx* nHo' (here we define f- I to be zero if s ? So.) 

It follows from the uniqueness principle of Corollary 4.9 that 

n(4) = 4(logx1 - log xo). 

As f E LlogL, we have Q[1](f) E L1 and hence by Theorem 5.1 of [29] we 
have f- 'Q(c ) E L1. Since Rc = 4 we have an estimate 

IIRIQ(c) - Q(')JIx < C. 

Thus also fR-RQ2() E L1. But f4-' E Ho' and (RL2Q())s is u-a.e. in H112. 
Thus f'- I R2Q() E Ho' , and in particular f ff- 1 R?Q2() dA = 0 from which it 
follows that 1 ff- 1 K2() dj I < C, i.e. 

I f(logx, -logxo)dft = jD(f)I < C. 

Conversely, suppose we have the estimate I D(f) I < ClIflI for f E L log L n 
Ho. Suppose 4, i E L, . Then both ̂q(R4) and qRQ2() are in LI, and 

J | Q(R4)d - ?(DR) < ClljlIxjll?lIx*, 

I R*qiQ(Q)dft - d(DR*t) < CIIXjIxII?IIx*, 

by Theorem 5.1 of [29]. Now observe that qRX - =R* Roq.R - R.Wo4. 
Since Ro?.RX E L log L we have 

l(D(Roq.Rg)l < CQjRo1.R4jj < Cj|4llxllillx*. 

Since (D is real, we also have l4I(R?l.Roc)l < CIIXIIxII?IIx*. 
Now using the quasi-addivity of 'D this implies 

II(D1RX - XR*?,)1 ? CIkIIx?1IIx* - 

Hence 

J (n7l(R4) - R*?q2(c)) dft < C 11?AIx* 

and thus jj[R, Q]'llx < CjIcjIx for bounded 4. 
This inequality can now be extended to the whole of X, when X is separable 

using the argument of [29, p. 82]. Notice first that if ? E X then RQ2() is 
well defined. If x E X we may write x = E' I lg where g, E Loo, and 
E%i1 IKnIlx < 211xIIx. Let v = EZ nI and w = Z IRn I. If xn = EZn=,i , 
then 

jlQ(xn) - XnV 1Q(V)llx < Cllxllx, 

IIRQ(xn) - R(xnv-1Q(V))IIx < CIlxIlx, 
ILI(Rx,) - (Rxn)W-'?(w)lIx < CllxlIx. 

Combining these statements we have 

jjR(xnv-1KQ(v)) - (Rxn)w-'Q(W)Ilx < CiIxilx . 
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As n -* oo we have xn -- x and Rxn -- Rx in both X and Lo. By Lemma 
4.3 of [29], 

IIR(xv-'L(v)) - (Rx)w-IQ(w)IIx < Clixllx 
which implies 

IIRn(x) - K2(Rx)llx < ClIxllx. O 

We now come to the crucial calculation in our argument which essentially 
allows us to integrate a differential estimate for the Riesz transform. 

Proposition 9.4. Given 0 < 60 < 1 and 1 < M < oo there is a constant 3 = 
3(00, M) > 0 so that whenever XO, X1 are weakly acceptable Kothe function 
spaces on S x T so that R is bounded on both XO and X1, and such that if 
Xo = [Xo, XI]0 then IIRlIx00 < M, and I0(f)I < Mllfll, for f E Ho' n LlogL, 
(where 'D = (DxI - Dx0) then for 10 - 6ol < 3 we have lIRIIx6 < 2M. 

Remark. It is important to observe that here 3 is independent of the original 
spaces Xo, X1 . In the argument that follows we shall use the letter K to denote 
a constant depending only on 00 and M but not on the spaces Xo, X1 . 

Proof. Denote by Qn: X0 -+ Lo the centralizer induced on Xo, 0 < 6 < 1, 
by the scale [Xo, X1I]. Similarly let Q2 be the centralizer on X* induced by 
[XO*, X1*]. We first observe that it is possible to choose JO = 50(6O, M) > 0 
and y = y(6O, M) < oo (both independent of Xo, X1) so that if 10 - So1 < do 
then p(Qo), p(Qn) < y and we have the inequalities 

IIXIIX + IIY - QoIIX6 < Yj(x,X Y)IlIdx, 
IIX*IX; + IIy* - XIIX* < YII(X*, Y*)jldX 

Let N(6), 0 < 0 < 1, denote the norm of R on X0. By our assumptions 
N(6) is a bounded function and further log N(f) is a convex function of log 0 . 
It follows that N(6) is absolutely continuous on closed subintervals of (0, 1). 
Since N(O) > 1 for all 0 the function J(6) = N(0)-I is similarly absolutely 
continuous on closed subintervals of (0, 1). 

Now suppose that Xo, 'r, Xl, ?10 ?II are bounded nonnegative functions with 

1kXoijxo = ji'jjix, = iiiolix; = IIqIIiX* = 1. Suppose also u, v E L,,o with 
Ilulloo = lIv K00 < 1. Consider the function F(z) = uX"jz4 defined in the strip 
5 = {z: 0 < 91z < 1}. Then F is analytic into Loo (this can be checked by 
computing local Taylor series). Further if 0 < 0 < 1 then II(F(0), F'(0))IIdx6 < 
1 and so if 16 - 6o1 < do |IF'(0) - Lo(F(0))IIx0 < Y. 

Similarly if we set G(z) = v 7- z z , then for /0 - 6ol < do, 

IIG'(0) - Q*(G(6))lIx* < * 

Now the map z F-+ RF(z) is analytic into L2 and so we may define a scalar- 
valued analytic function h on 5" by h(z) = f RF(z)G(z) dat. Then 

h'(0) = J R*G(O)F'(6) df + J RF(6)G'(6) d,. 

Estimating the first term we have 

J R*G(6)FI(0) df - R*G(0)Qo(F(0)) d| 

< yllR*G(6)IIx; < yN(0)IIG(0)IIx; < yN(6). 
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We also have, using Theorem 5.1 of [29], 

IIR*G(6)Qo(F(6)) - Q[l](R*G(0).F(0))II 
< 36yllR*G(0)11*x IIF(O) IIx, < KN(O). 

Here Q[l] is the induced centralizer on L1 which is independent of 0, and 
[1 = 92-Q1 -'. For f E L logL we have by Lemma 8.2 f Q?[l](f) dft = 0(f) . 

Thus 

J R*G(6)Qo(F(6)) dft- 4(R*G(6).F(6)) < KN(6). 

Combining the estimates we have 

J R*G(6).F/(6)djp - 1(R*G(f).F(O)) < KN(6). 

If we let V = IV - I:V then a precisely similar calculation shows that 

J RF(6).G'(6)df - (D*(RF(6)G(6)) < KN(6). 

However IV = -(I and so by the quasi-additivity of cI 

Ih'(6) - ((R*G(6).F(f) - RF(6).G(6))l < KN(6). 

Now, 

R*G(6).F(6) - RF(6).G(O) = RG(6).RoF(6) - RF(6).RoG(6) 

and so the estimate on 1 and the fact that 1 is real together give, as in the 

preceding proposition, 

I?(R*G(6).F(6) - RF(6).G(6))I < KN(0)2 

and so Ih'(0)I < KN(0)2 for 10 - oI? < 3o . Thus if 00 - (50 < 01 < 02 < 00 + 0 
we have 

U2 

Ih(02)- h(6I)I < K N(t)2 dt. 
I 

Now ih(6) < N(6). Thus, it follows by taking suprema over all possible 
choices of 0, I, ilo, p1l, u, v that 

02 

jN(02)- N(01)j < K j N(t)2 dt 
I 

and at points of differentiability we obtain IN'(6)I < KN(0)2. Thus I J'(0)I < 
K at such points from which we have the estimate J(0) > M- - KI6 - OoI for 
1I - o01 < ?3. The result follows. O 

Lemma 9.5. Suppose p > 1 and 1 < M < oc. Then there is a constant 3 = 
3(M, p) with 0 < 3 < 1 - I so that whenever X and Y are weakly acceptable 

p 

Kothefunction spaces, X is p-convex and q-concave (where + =1), IIRHIx< 
M, and 14y(f)l < Mllfll for f E Ho n LlogL, then IIRIlxya < 2M for 
0 < a < 3. 

Proof. We start by remarking that XYa is a K6the function space for 0 < a < 
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Let EN be an increasing sequence of finite subalgebras of the Borel sets of S 
whose union is ,-dense. If IN is generated by atoms A1, ... , Am we define 
EN be the conditional expectation operator of L1 (S x T) onto L1 (I' ) where 
'N is generated by A1 x T, ..., Am x T. Let TN be the doubly stochastic 

operator on L1 (S x T) defined by 

TNf(s, eit) j2X kN(t - T)ENf(s, eit) 

where kN is the Fejer kernel 

- sin2(N + I)t/2 
kN(t) 

=(N+ l)sin2t/2 

Now, by Theorem 5.7, there is a K6the function space YN so that 1yN(f) = 

(Dy(TNf) for f E (L logL)+ . We also have that if f E L logLnHo then, using 
Corollary 5.9, 

V|YN(f)I 
< IVy(TNf)I + 24 

q(M 2 + Ilfil = Kilfil, 

where K is a constant depending only on M and p, and independent of N. 
Furthermore TN has finite-dimensional range in Loo so that for each N there 
is a constant BN so that I(YNN(f)l < BNIIfII for all f E L log L. 

From the convexity and concavity conditions on X it follows that we may 
define K6the function spaces ZON, Z{N by the equations cDZN = 4)X + I)YN 

and (DzN = Dx - 1 DYN . Then each ZON, Z1N is simply a renorming of X so 
that R is bounded on both spaces. Furthermore if f E L log L n Ho' 

IJDZN(f) - DzON(f)I = q=I?YN(f)I ? Klifil 

where K again depends only on M and p. We are thus in a position to apply 
Lemma 8.4. There exists 0 < o@o < I depending only on M and p, so that if 
0- II < do then IIRIIz0 < 2M, where Z0 = [Zo, Z1]0. 

Now suppose 3 = 2o6 and that 0 < a < 3. To prove the lemma, it suffices 
to consider E E XYa n Lo<> of the form 4 = ulxllyla where u, x, y E Loo, 
IIUIIoo, IIXIIx, IIYIIx < 1, and we additionally suppose that log IYI E Loo . 

Let YN = exp(TNlogly ) . For any f E (LlogL)+ we have 

Jf logyN dA = JTNflogIyIdz ? Dy(TNf) = DyN(f) 

so that YN E BYN . If we let XN = UIXlya then 1I4NIIZ.N < 1, where 0 - 

a? < do. Hence IlR4NIzN?< 2M. 2 - _ 
Now, as N -- oo we have IIRcN - Rc1I2 ` 0. Let A be the measurable 

subset of S x T where log I RI > -oo. For any q > 0 we may find a subset 

A,, of A with Au(A\AI) < I and a subsequence such that log IR4N, I converges 
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uniformly on A,1 to log IR I . Now suppose f E (Loo)+ . 

f log IRCI dA = tim J f log I R4Nj dA 

< lim sup(log(2M) + DzNi (f lA,)) 
1- 00 6 

< log(2M) + limsup(1Dx(f 1A,) + a(D)y(TN, (f 1 A,)) 
1-400 

= log(2M) + Ox(fl1A,) + a'Dy(f lA,), 

where the last step uses the continuity of ODy on order intervals. Using this 
same continuity we obtain 

f log JRX J dft < log(2M) + OxD(fA) + a(Dy(f IA). 

Now it follows that we have 

J f log JR4j dfi < log(2M) + (Dx(f) + aFy(f), 

since if f - f IA :$ 0 then the integral is -oo. Hence JJR4Jjxya < 2M as 
required. El 

Lemma 9.6. Suppose X is an acceptable Kothe function space and that R is 
bounded on X. Then there is a constant M so that VFx(f)i ? Miifii for 
fe Ho n LLlogL. 
Proof. Clearly R is bounded on both X and X*. By interpolation we obtain 
that [R, Q2] is bounded on L2 = [X, X*11/2 where Q is the induced central- 
izer. By Proposition 8.3 there exists B so that 

10x(f) - Ix* (f)I = 120x(f) - A(f)I < Blsf 11 

for f E Ho nL log L. Applying the same reasoning to X = Lp where 1 < p < 2 
shows that IA(f)I < B'lIflI for f E HO' n L logL . The lemma follows. El 

We now state our main theorem of the section. 

Theorem 9.7. Let XO, X1 be acceptable Kothe function spaces on S x T . Suppose 
0 < 6o < 1 and that X = [Xo, X1 ]00 is super reflexive and satisfies Lr c X c L, 
for some 1 < s < r < oo. Suppose also that R is bounded on X. Let Q be the 
induced centralizer on X. Then the following conditions are equivalent. 

(1) II[R, Q]lIx < oo. 
(2) There exists 3 > 0 so that R is bounded on Xo for 16 - SoI < 3. 
(3) For some constant M we have I (Dx, (f) I < Ml l f Il for j = 0, 1 whenever 

fe Ho lnLlogL. 

Proof. (1) =* (3). This follows by combining Proposition 9.3 which yields an 
estimate for cDx1 - cDxo and Lemma 9.6 which yields an estimate for 6oODx, + 
(1 - )ODxO0. 

(3) =* (2). Let Y be a renorming of X which is p-convex and q-concave 
where p > l and 1 + 1 = 1 . Assume IIRIIy = M. Then (by Lemma 9.5) there 
exists do = 30(r, p, M) > 0 so that if 0 < a < 'so then YXa is acceptable, 
IIRIIyxa < 2M, and YXa is both 2q-concave and p'-convex where p + 1 = 1. 
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Using Lemma 9.5 on (YXa )* there exists 31 = di (r, p, M) > 0 so that if 
0 ? ,B ? 3sd then IIRIIz < 4M where Z = (YXa )*(Xo)fl. In particular if 
a < 3 = min(3O, 31) then R is bounded on Za = (YXa )*(Xo)a. Now 

(DZa = I(YXV ) + acDxo = A-(Dy + a(Dx,) + a(Dxo 
= A -((DY + a ((Dx, - (xo)) 

and hence Za* is a renorming of X0O,+a whence R is bounded on this space 
for 0 < a < 3. A similar argument gives the case -3 < a < 0. 

(2) ?< (1). This is simply Theorem 2.7. o 

Let us now specialize to the case when S reduces to one point so that S x T 
is simply T. In this case R cannot be bounded unless X is acceptable. Then 
it follows from Lemma 9.5 that XLa is also acceptable for some a > 0 so that 
X c L, for some s > 1. By duality X* D Lr for some finite r. It then follows 
that in the hypotheses of Theorem 9.7 we need only assume Xo, XI weakly 
acceptable, since then for some a < 60 < / we will have Xa, X,8 acceptable. 
Thus we restate our result, adding one more equivalence. 

Theorem 9.8. Let XO, X1 be weakly acceptable Kothe function spaces on T. 
Suppose 0 < 00 < 1 and that X = [Xo, XI ]0 is super reflexive and R is 
bounded on X. Then the following are equivalent. 

(1) Il[R, Q]jjx <oo. 
(2) There exists 3 > 0 so that R is bounded on Xo for 10 - OoI < . 
(3) For some constant C we have I Dxj(f)I < CfIil for f E Ho n LlogL 

and j = 0, 1. 
(4) The set {60: IIRIIx < x} is open. 

Let us now illustrate this result. Suppose w is an Ap-weight where 1 < 
p < oo, i.e. R is bounded on Lp(w). Then R is bounded on Lp(w0) for 
0 < 0 < 1 . An application of (3) of Theorem 9.8 gives 

j logw d) < Clifli 

for f E Ho n LlogL. The point is that if X = Lp(w) then ox(f)= pA(f) - 
p 

f f log w dA. Thus log w E BMO. 
Conversely if log w E BMO then taking XO = Lp (w-l) and X, = Lp (w) we 

see that R is bounded on Lp(Wa) for some a > 0, i.e. Wa is an Ap-weight. 
Thus we have the following result of Coifman-Rochberg [13] as a special case. 

Corollary 9.9. Suppose 1 < p < oo. Then u E BMO(T) if and only if eau is an 
Ap-weight for some a> 0. 

Further well-known facts can also be recovered this way. If 1 < p < 2 and 
w is an Ap-weight, let Xo =L2, and X, = LI(wa) where a - I=2-p. Then 
Lp(w) = X0 where 0 = a . Since R is bounded at both XO and X0 it is clear 
that (3) and hence (4) of Theorem 9.8 hold. Thus R is bounded on Lp-,(wfl) 
for some e > 0 and ,B > 1. By further interpolation w is an Ap-,-weight. 
(See Muckenhoupt [41].) 

Let us now turn to the vector valued case. Suppose X is a super reflexive 
Kothe function space on S. Then X is a (UMD)-space (Burkholder [7]) if 
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and only if R is bounded on the space L2(X) ([4, 8]) where L2(X) may be 
identified with the Kothe function space on S x T of all x such that 

IIXIIL2(X) = (j; ilXtiiX2) < ?? 

where xt(s) = x(s, eit). We now state our main theorem. 

Theorem 9.10. Let XO, X1 be Kothe function spaces on S and that X = 
[Xo, X ]100 is a (UMD)-space. Let Q be the induced centralizer at X. Then 
doX is a (UMD)-space if and only if there exists 3 > 0 so that X0 is a (UMD)- 
spacefor JO - ol? < J. 
Proof. Let us first prove the assertion under the additional hypotheses that 
Xo, X1 are acceptable and Lr c X c L, where 1 < s < r < oo. Under 
these hypotheses, Theorem 9.7 applies to the interpolation scale 

L2(XO) = [L2(Xo), L2(X1)]0. 

The proof will be complete when we show that doX is (UMD) if and only 
if the induced centralizer Q at L2(X) satisfies [R, 92IL2(X) < oO. It will be 
convenient to suppose XO, X1 are renormed to be strictly convex Kothe func- 
tion spaces; this involves no loss of generality, and results in uniqueness of the 
choice of extremal (see Theorem 2.6 and remarks). 

If x E L2(X) and IIXIIL2(X) = 1 then we write x = ulxl where lul = 1 
a.e. Let lxl = ixolI-oilxIlo9 where iiXOIiL2(XO) = llXllL2(X1) = 1. By H6lder's 
inequality llxtllx= llxo,tllxo = llxl,tllx, = 1 a.e. Thus, utilizing the uniqueness 
of both Q and Q 

Q(x) = x(log ixi I - log Ixoi), 

(i(x))t = xt(logixl,tj - log Ixo,ti) = (Q(x))t a.e. 

Now if b, V E Lo(S x T), then II('k, VyU)IL2(d X) is equivalent to 

(JlI?>tilx dA + (J _Ikt- (t)id i) 1/ 

Here to avoid cumbersome measurability problems we may interpret the inte- 
grals as upper integrals; however, it can be verified that all functions are suitably 
measurable. Thus 11(s, V)ildnx is equivalentto liiliiL2(X)+ I - Q( Y)iiL2(X) and 
L2(dQX) can be identified with d (L2(X)) . Thus the vector-valued Riesz trans- 
form R is bounded on L2(dnX) if and only if the map (s, V) | (Rb, RV) 
is bounded on dQ(L2(X)) i.e., if and only if ll[R, QIiiL2(X) < o0. The result 
will then reduce to Theorem 9.7. 

It remains to justify our hypotheses. Since X is super reflexive it is equivalent 
to a space which is p-convex and q-concave where 1 + 1 = l and p > 1. 
By Pisier's theorem [43], X is equivalent to [L2, Y], where Y is a Kothe 
function space and T > 0. Now, from Lozanovksii's theorem, there is a weight 
function w2 > 0 a.e. such that Loo C w2Y c L1 . Here lIx Iwl,y = IIxw-II y. 
Similarly there exist wo, wI so that Loo c woXo, wIX, c L1 . Now L2/(Iv-) C 
w'rX c L2/(l+ ), so that for some ? > 0 we can find weights, W3, w4 with 
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L, c W3X00_ , W4XOO+q c Lfl with 1 < i < a < oo. Thus the problem may 
be reduced by a change of weight to the type discussed above. EO 

Theorem 9.11. There exists a centralizer Q on L2(0, 1) so that the twisted sum 
dnL2 is not (UMD). Thus the (UMD)-property is not a three-space property. 
Proof. Bourgain [4] shows that for any p < 2 there is a Kothe function space 
Xp on (0, 1) which is p-convex and q-concave but not (UMD). By Pisier's 
theorem [43] if 0 < 6 < 1 there exists a Kothe space X[01 so that [L2, X[01]0 
fails to be (UMD). It follows by combining isomorphic copies of the spaces 
Xil/n] as bands in a single space X that there is a Kothe function space X so 
that [X*, X]o is (UMD) if and only if 0 = I when- X = L2. If Q is the 
induced centralizer, dQL2 cannot be (UMD). El 

Theorem 9.12. If XO, X1 be Kithe function spaces on S. Then the set {t: 0 < 
0 < 1, and X0 is (UMD) } is either open or a single point. 

We omit the proof of Theorem 9.12 which is similar to Theorem 9.8; this 
theorem extends a result of Rubio de Francia [46]. 

Added in proof. See also [51] where the similar results to Theorem 9.8 and 9.12 
are conjectured. 
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