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DIFFERENTIALS OF COMPLEX INTERPOLATION PROCESSES
FOR KOTHE FUNCTION SPACES

N. J. KALTON

ABSTRACT. We continue the study of centralizers on Kothe function spaces and
the commutator estimates they generate (see [29]). Our main result is that if
X 1is a super-reflexive Kothe function space then for every real centralizer Q
on X there is a complex interpolation scale of Kothe function spaces through
X inducing Q as a derivative, up to equivalence and a scalar multiple. Thus,
in a loose sense, all real centralizers can be identified with derivatives of com-
plex interpolation processes. We apply our ideas in an appendix to show, for
example, that there is a twisted sum of two Hilbert spaces which fails to be a
(UMD)-space.

1. INTRODUCTION

In this paper we develop ideas first suggested by work of Rochberg and Weiss
[45] and continued in [29]. Our basic program is to study “twisted sums” of Ba-
nach spaces (see [24, 25, 26, 32, 35]) as differentials of interpolation processes,
and the corresponding commutator estimates obtained for linear operators. In
[29] we gave several applications of these ideas, in particular applying them to
obtain results of Davis [17] and Ceretelli [10] on the distributions of functions
in the Hardy class H!. (See also [27, 30].) Our results in this paper com-
plement and improve the results we obtained in [29]. In this paper we study
general Kothe function spaces in place of rearrangement-invariant spaces and
use a different approach. The main idea here is to characterize those twisted
sums of Kothe function spaces which can be obtained by differentiating a com-
plex interpolation scale of Kothe function spaces.

Let us now give some definitions and an informal discussion of our main
results.

If 0-Y —Z — X — 0 is an exact sequence of (quasi-)Banach spaces (over
the field K = R or C) we refer to Z as a twisted sum of X and Y (or an
extension of X by Y). If dimY = 1, we say that Z is a minimal extension
of X.

Suppose X is a quasi-Banach space with a dense linear subspace X, and
that Y is a quasi-Banach space contained in a linear space Y (which does not

necessarily carry any topology). Consider a map Q: Xy, — Y satisfying, for
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suitable p = p(Q),
(1.1) Q(ax) = all(x), aekK, xeX,

(1.2) lAa(x1, x2)lly < p(llxillx + lIx2llx), X1, X2 € Xp,
where we introduce the notation

Aa(X1, ..., Xa) =D Qx) — Q (Zxk) )
k=1 k=1

Then we can create a~twisted sum X @©q Y as the completion of the space Z
of all (x,y) € Xo@®Y such that

(s Pz = lxllx + 1y = QUx)lly < oo.

Conversely every twisted sum of X and Y can be described in this way taking
X=Xy and Y =Y (see [24, 33, 44]).

We refer to [2, 3] for a general discussion of interpolation theory. In [23,
45], Jawerth, Rochberg, and Weiss have shown that twisted sums arise very
naturally in interpolation theory, as the ‘differential’ of an interpolation process.
The complex method is treated in [45] (see also some similar ideas in [47]) and
real methods are considered in [23]. The results are surveyed in [15]. See also
related work in [40]. We would also like to mention the work of Coifman and
Semmes [14, 48] which seems somewhat related to our ideas; also see the work
of Slodkowski [49].

In the discussion that follows we will try to give the flavor of the ideas of the
paper, without perhaps being too precise about technical definitions.

Suppose Xy, X; is a pair of Banach spaces and X = Xy = [Xy, Xi]g is
an intermediate space obtained by the complex method of interpolation. Then
Rochberg and Weiss associate to the scale [Xp, X;] and X amap Q: X —
Xo + X satisfying (1.1) and (1.2) in such a way that if T is a linear operator
bounded on both Xy and X; then T @ T is also bounded on X &g X (which
we will call doX later in the paper). This implies a commutator relationship

(1.3) 7", Q1)llx < Clix|lx 5

where [T, Q] =TQ - QT .

Now consider a Kothe function space X ; for the sake of definiteness let us
consider spaces over [0,1]. In [29], the author defined a map Q: X — Ly to
be a (homogeneous) centralizer if it satisfies (1.1) and (1.3) uniformly for all
multiplication operators, i.e.,

(1.4) 1Q(ux) — uQ(x)lx < pllullcolixllx
for fe X, ue L, where p(Q) is a constant independent of u, f. It turns
out that (1.2) then also holds. Q is called symmetric if for some p’

[Q(x 0 0) = Q(x) o allx < p'llx]lx
for all measure-preserving rearrangements o of [0,1]. The work of Jawerth,
Rochberg, and Weiss then shows that if py < p < p; and T is an operator
of strong types (po, po) and (p;, p1) then (1.3) holds for certain symmetric
centralizers on L, such as

Q(x)=xlog ﬂ‘}{l:— and Q(x)=xlogr,,
14
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where r.(¢) = u{x: |f(s)| > |f(?)| or |f(s)] =|f(¢)| and s < ¢}. The aim in
[29] was to show that the same hypotheses in fact ensure that (1.3) holds for
every symmetric centralizer.

In this paper our objective is to show at least for super-reflexive Kothe func-
tion spaces X that every centralizer with the additional property that Q(x) isa
real function whenever x is real (Q is real) can be obtained by differentiating
a suitable complex interpolation scale of K6the function spaces. Precisely, we
show that if X is a super-reflexive Kothe function space and Q: X — Ly isa
real centralizer on X then there are constants a > 0 and B < co and Kothe
function spaces Xp, X; so that X = [Xp, X;];/2 (isomorphically) and if Qg
is the induced centralizer on X obtained by differentiation then

1€2(x) — a0 (x)lx < Bllx[lx

for all x € X. The spaces Xy, X; are determined up to isomorphism by Q
and a;if X isrearrangement-invariant and  is symmetric then both X, and
X, are rearrangement-invariant. Thus the main interpolation theorem of [29]
can be recaptured as a consequence of the Boyd interpolation theorem [5].

The key idea here is to exploit the intimate relationship between centralizers
on X and minimal extensions of L;. To every Kothe function space we may
associate a map ®x: I — C defined on a dense order ideal in L; and satisfying
(1.1) and (1.2). For nonnegative functions f

Ox()= sup [ floglx|du.
[lxllx <1
We then show that to every centralizer Q defined on X corresponds a simi-
lar densely defined functional ®9; if Q is obtained by differentiating a scale
[Xo, X;] then ®¢ = x, — Px, . The main result is then obtained by showing
that if ® is real for real functions and satisfies (1.1) and (1.2) with p < log2
then it is ‘equivalent’ to @y — ®x. for some suitable Kothe function space X .
To illustrate this let us state precisely a finite-dimensional version.

Theorem 1.1. Given ¢ > 0 there exists a constant B = B(g) so thatif ne N, P
is the nonnegative cone in If! and ®: P — R is a functional satisfying ®(ax) =
a(®(x)) and

|Ap(x1, x2)| < (1 —¢&)log2(|lx1 || + [Ix2l),

whenever x, X1, Xy € P and a > 0, then there exists a lattice norm || ||x on
R”" so that

|P(x) — (Px(x) — Px-(x))| < Bllx||
for x e P.

One could also state this in terms of approximating nearly affine functions
on the unit simplex.

We now briefly outline the contents of the paper. In §2 we set up a formal
framework for complex interpolation, including the case of families of spaces
studied in [11, 12]. Our framework is a slight variation on the usual approach as
outlined in [3], for example, but seems appropriate to our setting. We introduce
the notion of a derivation obtained by differentiating an interpolation scale. In
§3 we study how these ideas adapt to Kothe function spaces. We study in §4
and §5 the functional ®y which we associate to any Kothe function space. Our
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main approximation theorem (specialized to Theorem 1.1) above is proved in
§6 as Theorem 6.6. Our main result on centralizers is Theorem 7.6. In §8 we
generalize our ideas to Schatten ideals.

Finally in §9, we apply the methods of the paper to the study of the Riesz
projection and its vector-valued analogue. For f € L,(T) we define Rf by
Rf ~3% .50 f(n)ei"’ . We then show that if X;, X; are Kothe function spaces
on T so that R is bounded on X = Xg, = [Xo, X1]p, for some 0 < 6y < 1
where X is super-reflexive then the boundedness of the associated commutator
[R, Q] on X is equivalent to the boundedness of R on X, in a neighborhood
of 6y. We show how this relates to and extends several well-known results
on A,-weights (cf. [13, 41, 50]). In the vector-valued case we can apply the
methods to the study of the class of (UMD)-spaces introduced by Burkholder [7,
8]. As an application we show that there is a twisted sum of two Hilbert spaces
which fails to be (UMD) thus resolving, negatively, the question of whether the
(UMD)-property is a three-space property.

2. ADMISSIBLE SPACES AND DERIVATIONS

Let S be a Polish space and let 4 be a o-finite Borel measure on S. Let
Ly = Lo(u) be the space of all measurable complex-valued functions on S
endowed with the topology of convergence in measure relative to each Borel
set of finite measure. We define an admissible norm to be a map f — | f|lx
(Lo — [0, oo]) such that if X = {x € Ly: ||x||x < oo} then:

(2.1) X is a vector subspace of Ly and || ||x is @ norm on X .

(2.2) Bx ={x:||x|lx <1} isclosed in Ly.

(2.3) There exist strictly positive %, k € Ly so that

lxhlls < flxllx < lIxklloo

for every x € Lg.

The corresponding space X is then easily proved to be a Banach space which
is continuously embedded in Ly. We refer to X as an admissible space. If X
is an admissible space then a map Q: X — Ly will be called a derivation if
(2.4)-(2.6) hold, where

(2.4) Q is homogeneous, i.e., Q(ax)=aQd(x), a€C, x€ X.

(2.5) Q is quasi-additive, i.e., ||Aq(x1, X2)|lx < p(Ix1llx + |*2llx), X1, X2 €
X, where p is a constant independent of x;, x,. We refer to the least
such constant as p(Q).

(2.6) The set Q(By) is bounded in Lg.

For any derivation we may introduce the derived space doX as the subset of
Ly x Ly of all pairs (x, y) such that
1Ces Wllx, e = lIxllx + 1y — Qx)llx < oo.

Lemma 2.1. || ||x,q Is a quasinorm on doX and doX is a quasi-Banach space
which is continuously embedded in Lo x Ly. If X is a B-convex Banach space,
or X* is isomorphic to a subspace of an Li-space then doX is a Banach space,
and there is a constant C depending only on X so that forany x;,...,x, € X,

n
IAQ(xr, -, Xn)llx < CY llxellx -
k=1
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Proof. Tt is easy to check that if a, b € doX then

lla+2blx,0 <1+ p)llallx,a+16llx,0)

Clearly, if a, = (x4, yn) and ||a,]|x o — O then ||x,|[x — O and so, by using
(2.4) and (2.6), Q(x,) — 0 in L. From this it follows easily that y, — 0 in
Ly . Clearly the subspace {(0, y): y € X} is a closed subspace F of doX such
that F is isometric to X and doX/F is also isometric to X . This is easily
seen to imply completeness of doX (cf. [24]).

For the second half of the lemma, we quote the results of [24] and [34] that
any Banach space X satisfying either criterion is a .7 -space, i.e., every twisted
sum with a Banach is locally convex. Then if we consider any sequence €2,
of derivations with p(Q,) < 1 we can construct a derivation on either 5(X)
or /,(X) according to a case given by Q((x,)) = (Qn(x,)). (We regard both
spaces as admissible spaces for a suitable measure space.) Then p(Q) < 1.
Thus the derived space is locally convex from which it easily follows that there
is a constant C independent of m, so that

n
180, (X1, .., X)llx S C D [Ixkll
k=1
forall x;, ..., x,. The lemma then follows. O

We remark that two derivations Q; and Q, give rise to equivalent derived
spaces if for some constant B we have ||Q;(x) — Qy(x)||x < Bllx|x. In this
case we term Q;, Q,, equivalent.

We denote by D the open unit disk in the complex plane; its boundary, the
unit circle, is denoted by T and A will denote the Haar measure (27)~!d# on
T. Now consider a family 2 = {X,,} of admissible spaces indexed by w € T;
we write ||x||y = ||x|lx, . We say that 2 is an admissible family if:

(2.7) The map (w, x) — |[x|lw (T x Ly — [0, oc]) is a Borel map.
(2.8) There exist strictly positive 4, k € Ly so that for all x € Ly we have
i-a.e.on T,

lxhlly < llxlhw < [lxk]loo -

We may extend this definition to the case when X, is defined only on a
Borel subset of A-measure one by simply setting ||x|l, = || x%[; otherwise.

Let .#* be the collection of functions F: D — Ly which can be written
in the form F(z)(s) = F(z, s) where u-almost everywhere we have F; € N*
where F(z) = F(z,s) and N* denotes the Smirnov class (cf. [18]). If F €
A7t it may easily be shown by an application of Fubini’s theorem that relative
to the Lg-topology F has radial limits almost everywhere on T. Thus we can
define F(e'%) = lim,_,; F(re?) almost everywhere.

If & is an admissible family then we define for F € #'F

|F||#Z = ess sup||F(e")]|,ms -
Then for z € D we define
lx||; = inf{|| F||l&: F(z) = x}

and let X, = {x: ||x]|; < oo}.
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Lemma 2.2. Let & be an admissible family and let Y be a separable admissible

space so that ||x||y < ||x|lw for all w € T. Then, if |F|e < oo, we have

\F(2)|lly < |Flle forall z € D. Furthermore F(re'?) — F(e'%) ae. in Y.
Forany ze D, x € Ly we have ||x|y < |x|lz-

Proof. We may assume the existence of a strictly positive 4 satisfying (2.3) for
Y and ( . Then

do 4 ; do
//\F nsydu) 57 < [ [ 1FE?, )IhGs) 5] duts)
- SJ—n
I do
= [ 1P enan 3y
< Fler-
Hence

do
/ VECe) Lo 5o < 1 Flle
-

for 0 <r <1 sothat F € H{(L,(hdu)). Since L; has the analytic Radon-
Nikodym Property [6], this implies that F(re®) — F(e'?) a.e. in L;(hdu) and,
further, that
" 4 dt
F(re'y= [ P(r,0—t)F(e'")—
— 27
as a Bochner integral in L;(hdu), where P is the Poisson kernel. Since Y is
separable, F(e'?) is also measurable in Y, and, since it is also bounded in Y,
the same equation holds as a Bochner integral in Y . Hence for z € D we have
|IF(2)|ly < ||F|lg . It is also easy to verify that F(re?) — F(e'?) in Y almost
everywhere.
It now follows that ||x||; > ||x||y forany x € Ly. O

Lemma 2.3. Suppose F, € /'t and ||F,|lo» < 1. Then there is a sequence G,
of convex combinations of {Fy: k >n} anda G € #/* so that |G| <1 and

(2.9) lim GPz)=G6¥(z), zeD, k=0,1,2,...,
(2.10) lim Gu(e?) = G(e®) A-a.e.,

where both limits are computed in L.

Proof. Since
| [IRe 9l du) 57 < 1,
-nJS

we can apply Komlos’s theorem [36] to extract a sequence G, of convex com-
binations as specified so that we have both that G,(e?, s) converges u x A-a.e.
and f |Gn(e', 5)|d6/2n is bounded u-a.e. (The sequence of convex combi-

nations Zk:n a} Fy is chosen so that u-a.e.

[ S apiri(e?, 5 22

T k=n

converges.)
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If we write Gn(z, 5) = 3272 8n, j(5)z/ then we have G, s € N* p-a.e. Let So
be the set of s € S such that we have, simultaneously, G, ; € N*, Gn(e?, s)
converges A-a.e. and [” |G,(e”, s)|d6/2n is bounded. Then u(S\So)=0.

For s € Sy the sequence G, ; is uniformly bounded in L;(T)N N* =
H;(T)(T) and converges a.e. Hence it converges in L,(T) for every p < 1 to
a function Gy € H,(T). Further if z € D, k >0, lim,_o G¥4(z) = G (z2)
while on T, lim,—o Gy, s(€’?) = Gs(e’?) a.e. Thus for each j, g, ; converges
in Ly (in fact a.e.) to some g; € Ly and, if G(z) = }_g;z/, then for a.e.
s€S G(z,s)=0Gs(z). Hence Ge At and |G|l < 1. O

Proposition 2.4. Each space X, is admissible and if x € X, there is an extremal
F eV such that F(z)=x and ||F|2 = |x||: .

Proof. Conditions (2.1) and (2.3) are elementary. We prove only (2.2), and
simultaneously prove the existence of an extremal. To do this we need only
consider a sequence x, with |x,||; < 1 so that x, — x a.e. and prove that
this implies the existence of F € #+ with F(z) = x and |F|e < 1. However,
there exist F, € #/* with |F,||»» <1 and F,(z) = x, and so the conclusion
follows easily from Lemma 2.3. 0O

These considerations can now be lifted to any open subset U of C con-
formally equivalent to D. We define an admissible family of spaces 2 =
(Xw: w € OU) to be a family of admissible spaces so that

(2.11) The map (w, x) — ||x|jw is Borel on U x L.
(2.12) There exist strictly positive 4, k € Ly so that for x € Ly we have for
every w € 9U, [xh[i < [[X[lw < |Ixk|loo -

Let ¢: D — U be any conformal equivalence. Then ¢ € H, for any p < %
[18] and so has radial limits g(e?®) € U a.e. The family ¢(2) = (X))
is then admissible for D. Define .#*(U) to be the space of all functions
F:U— Ly for which Fog e /™" and set ||F|g = ||F o 9|, . It is easy to
show that these definitions are independent of ¢ . For z € U we define

x|z = inf{||F|le: F(z) = x}
and set X, = {x: ||x||; < oo} . We then automatically obtain

Proposition 2.5. Each X, is admissible and if x € X, then there is an extremal
F e /+(U) with F(z) =x and |F|l = ||x|: .

In particular if Xy, X; is a pair of admissible spaces we let U =.% be the
strip {z: 0 < Rz < 1} and define X, ; = Xy for k=0,1 and ¢t € R. Then
for 0 < 8 <1 we obtain the complex interpolation space Xy = [Xo, Xi]g -

Now let U be any open subset of C which is conformally equivalent to D
and let 2 be an admissible family. For z € U and x, y € Ly we define

e, »)llax, = inf{||F|lz: F(z) = x, F(z) = y}.

Foreach x € X, we may pick an extremal Fy by Proposition 2.5 with ||Fy|» =
lx]l; and Fy(z) = x. We may further suppose that F,, = aF, for a € C.
Then we define Q = Qg , by Q(x) = F/(z).
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Theorem 2.6. Q is a derivation on X, and | ||4x, is equivalent to | ||x, q-

Remark. Theorem 2.6 is essentially due to Rochberg and Weiss [45]. If each X,
is strictly convex, then, as they observe, the extremal F, is unique and hence
Q is uniquely determined. See also Corollary 4.9 below for more discussion of’
the uniqueness question.

Proof. Property (2.4) of derivations is built into our construction. Let ¢: U —
D be a conformal equivalence, with ¢(z) =0, and let |¢p’(z)| =J . Then

10N Ly rawy = 1Fx (2 Ly k)
< dess sup||Fx(€)|L, (han)
<d|xllx,

so that property (2.6) holds. The remaining statements are essentially contained
in [45]. It is readily verified that ||(0, x)|zx, = ||x|x, . It then follows from
the triangle law for the norm on dX, that |Aq(x, y)|lx, < 2d(lx|lx, + |I¥]x.)
so that (2.5) hold with p = 26 . It can also be checked that

min(1, 67 )[|(x, »)llax, <X, Yx.,@ < (1+28)I(x, ¥)llax, -

Finally, let us observe, in our setting, the standard commutator interpolation
theorem for linear operators.

Theorem 2.7. Suppose Z is admissible family for U, where U is conformally
equivalent to D. Let Y be a separable admissible space such that || ||y < || ||w
for w e dU. Let T: Y — Ly be a continuous linear map such that for some
M < oo andevery we U, x € Xy | TX||w < M||X||w .

Then for z € U we have T(X,) C X, and ||T||x,—~x, < M . Further there is
a constant C = C(z) so that for every x € X,

T, Qlx|lx, < CM|x|-,
where Q =Qg , and [T, Q] =TQ - QT .
Proof. From Nikishin’s theorem [39, 42] for any fixed 0 < p < 1 there exists a
strictly positive Ay € Ly so that for any y € Y we have ||hyTy|, < |y]ly. Let
¢: D — U be a conformal equivalence with ¢(0) = z.

Suppose ||x|x, = 1. Then F = Fy o ¢ is a bounded analytic function with
values in Y and has radial limits a.e. in Y by Lemma 2.2. Let F, o ¢({) =
S0 Uitk . Thenlet G({) = Ygeo Tuglk . Then ||hoG({)|, < 1 forall { € D.
It follows easily that G({, s) € H, for almost every s € S so that G € #/*.
On T we have, almost everywhere that G(e'?) = lim,_,; TF(re’®) in Ly so
that, again by Lemma 2.2 G(e'?) = TF(e'?). Hence ||Go ¢~ !||s < M. Thus
1Tx|l; < M|x||; .

If welet Go=Gog~! weobtain ||(Tx, Gy(z))|lax, <M or

I(Tx, TEU2)llax, < M .
This implies that ||[T, Q]x|x, < C(z)M as required. O

3. FUNCTION SPACES

We define a Kothe function space X on S to be an admissible space for
which || ||x is a lattice norm i.e., ||x|lx < |y|lx whenever |x| < |y|. Since, by
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assumption By is closed in Ly it is not difficult to see that we restrict atten-
tion to those function spaces which are maximal in the sense of Lindenstrauss-
Tzafriri [37, p. 118]. We define the dual X* to be the function space defined
by

Wlx- = sup / xy| .
X€EBx JS

Our assumptions force X* to be a norming subspace of the full dual and X*
is a function space.

If X is a function space, then a (homogeneous) centralizer is a map Q: X —
Ly satisfying (2.4), (2.6), and

(3.1) 1Q(ux) — uQ(x)|lx < plixlx

whenever |u||l.c < 1 and x € X. Here p is a constant independent of x
and we define p(Q) to be the least such constant. It is proved in [29] Lemma
4.2, that a centralizer is automatically a derivation. Conversely we have from
Theorem 2.7:

Propeosition 3.1. Suppose U is conformally equivalent to D and Z is an ad-
missible family of Kéthe function spaces on S. Then for z € U, X, is a Kothe
function space and the corresponding derivation Q is a centralizer on X, .

If we interpolate between two Kothe function spaces Xy, and X; then it is
well known (due to Calderon [9]) that Xy is given by Xy = Xg_HX 19 ie.,

Il xllx, = inf{max(||ullx, , llv|lx,): |x| = u'~0?, u, v >0}.
Furthermore the extremal F; is given by
Fi(z) = (sgnx)u'~7v?,

where uv is the optimal factorization; the fact that an optimal factorization
exists follows easily from the existence of an extremal. Thus the corresponding
derivation is given by

(3.2) Q(x) = F[(8) = x(logv — log u).

Let us note at this point, that there is some ambiguity in this definition since
there may not be a unique optimal factorization. At such x we must make a
selection, and thus Q is only fixed up to equivalence. Fortunately, this does
not present a significant complication and many situations (such as when Xj
and X; have strictly convex norms) uniqueness is guaranteed.

We remark that the identity X/2X*!/2 = [, is an important result of Loza-
novskii [38], (see also [20]) which asserts in our setting that if f € L; then f
has a unique factorization f = xy where ||x|x =1, |[¥llx- = | flli, x =0,
and suppx = suppy = supp f . We refer to this factorization as the Lozanovskii
Jactorization of f for X . Note here the connection with the idea of the duality
map on X, whose relationship to differential estimates was observed in [15].

Let us now extend these ideas to the case of interpolation of families. We
consider only the case U = D. To avoid certain measurability difficulties, we
say that an admissible family 2 is strongly admissible if it is admissible and
there is a countable dimensional subspace V' of L, so that V' N By, is Lo-
dense in By, for almost every w € T. It is easy to see that this holds in most
reasonable situations.
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We introduce a Kothe function space & on S x T by setting

I¢llz = esssuplo(-, e”)llx,, -

Lemma 3.2. Suppose & is a strongly admissible family of Kéthe function spaces.
Then Z* = {X;,, w € T} is an admissible family and

4 ; dt

— . plt . —

e = [ 1wt el 37

We omit the proof of this lemma which is routine. The following theorem is
essentially due to Hernandez [22].

Theorem 3.3. Let 2 be a strongly admissible family of Kéthe function spaces
for D. For z € D, z =re?, we have || x|, = inf| ¢|lz where the infimum is
taken over all ¢ € & such that ¢ >0 and

|x(s)| = exp ( P(r, 0 —t)logg(s, e) g—;) )

Furthermore there is an extremal choice of ¢ for which the corresponding cen-
tralizer Q = Qg , is given by

Q(x)(s) = x(s) (/ > logg(s, e') %) )

_p (€t =2)
Proof. We first remark that if ¢ € &, , then

/S 5 o(s, e h(s) g—; du(s) < oo

n

-

n it

so that for a.e. slog, ¢(s, e'*) is integrable. Thus the integrals in the statement
of the theorem are unambiguously defined, but may be —oo.
For ¢ € &, define

_ Telltz i dt
F(Z,S)—CXI)(/ne,,-—,;—ZlOg(b(S,e )E >

where F(z,s) =0 atall s such that log¢ is not integrable. Then F € /*,
|F(e", s)| < ¢(s, e*) a.e. and

|F(rei®-%)| = exp (/" P(r, 0 —1)logg(s, ") %) .

-7

We conclude that ||x||; < inf||@||z in the statement of the theorem. However

conversely there exists an extremal F, € ./t and

n
|x(s)| = |F(z, s)| < exp (/ P(r, 0 —t)log|F (e, s) g-;) )

-n
Now there exists u with 0 < u < 1 so that if @(s, e*) = u(s)|F(e', s)| then
l¢lle = lixll: and

1%(s)] = exp (

This choice of ¢ then is optimal and further gives rise to an extremal F € /.
The last part of the theorem now follows by evaluating its derivative. O

n

P(r, 0 — 1) log|d(s, &") 2%5) .

-7
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We conclude this section by introducing some further definitions which will
be useful in the next section. We will need to consider certain quasi-Banach
function spaces. Let us say that a g-convex quasinorm on L, is a functional
x — ||x|lx (Lo — [0, o<]) such that if X = {x: ||x|/x < o}, then (2.2) holds,
By contains some strictly positive element (this is equivalent to half of (2.3))
and

(3.4) |lax|x =|e|llx|lx, a€C, x € X.

(3.5) Forevery x,u,v € Ly and 0 < 0 < 1 we have that if |x| < |u|?|v|'~?
then ||x||x < [[ull% o]k .

(3.6) Suppose for 0 < 7 < co we define 5x(7) to be the least n such that
if x,y € X have disjoint supports and ||x|x < 1, ||y]lx < 7 then
Ix+yllx < 1+nx(7). Then 5(7) < oo forall T and lim, ,o7nx(7) =0.

Here condition (3.6) forces || ||x to be a quasinorm on X and hence X
becomes a quasi-Banach lattice using (3.5). In addition (3.6) imposes a mild
continuity property on the quasinorm, while (3.5) (geometrical convexity) im-
plies that X is A-convex in the sense of [28] (see Theorem 4.4 of [28]). In
fact if X is A-convex it is automatically renormable to be p-convex for some
p > 0. We recall that X is p-convex if for every x;, ..., X, € X we have

n 1/q n 1/q
(z |x,.|q) > (z nxin«,a) .
i=1

i=1 X

We remark that if X is p-convex then X7 is a Kothe function space where
X? is defined by |x|x» = |||x|'/7|% -

4. INDICATORS OF KOTHE FUNCTION SPACES

We shall say that a subset .# of the positive cone LT of L;(u) is a semi-
ideal if .# isaconeandif 0< f < g €. implies f € 7. [ iscalled a
strict semi-ideal if it contains a strictly positive member. Let X be a g-convex
function space on S. We define % to be the semi-ideal of all f € L} such
that

(4.1) sup / flog, x| di < oo
XEBxy JS
and
(4.2) dx € By, /f| log | x|l du < 0.
s
For f € %y we define the indicator of X, ®x, by
(43) Ox(f)= sup [ flog|x|du
XEBx JS

and then —oo < ®x(f) < o0o. It is appropriate to note that this idea is suggested
by Gillespie’s proof of the Lozanovskii theorem [20].

Let us start by identifying ®x for some simple spaces. We shall hence-
forward write | f]| without subscript for | f||;. We say that f € LlogL if
S(1+|(og D) € Ly -
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Lemma 4.1. Suppose X = Ly. Then % = (LlogL), and

- S
1= | 1o gy
Proof. If fe (LlogL); and | f]|=1 then for ||x|| <1,

[ 108, 1x1du = /| o lxld

= Sflog fdu+ flogmdu

x|>1 x[>1 f

l
<[ fioglfidu+s [ ixldu
|xj>1

|x|>1
< [ fogfldu+et.

Since flogf € L;, (4.1) and (4.2) hold so that (LlogL), C .#x. Conversely
if f € % then for some x € By flog|x| is integrable and by the Geometric
Mean Inequality,

fflog%duﬁ log/ledu <0,
so that
[ r1ogixidu < [ r1oesd.

Since flog, f is integrable we obtain both that %y = (LlogL); and that
®x(f) = [flogfdu and this in turn implies the lemma for general f by
homogeneity of ®y. O

We now define A = ®;, on (LlogL),. It is trivial to show that for 1 <
p < oo we have f, = (LlogL), and ®;, = LA. For p = 0, J7,, = L{,
and &, _=0.

In order to describe the properties of indicators we introduce some further
definitions. Let .¥ be any semi-ideal in L and let ®:.# — C be a map. We
say that @ is semilinear if

(4.4) P(af) =ad(f) for feF, a>0.

(4.5) There exists a constant § < oo so that for f, ge€.7,

Ae(f, &) <SS+ lIglD-

The least such constant ¢ is denoted by 4(®).
(4.6) If f€.# and 0 < f, < f with lim,_, || f»|| = O then lim,_, ., ®(f,) =
0.

We call ® real if it takes only real values. We further say that ® is continuous
if

(4.7) lim sup sup |Ae(f, g)l=0
=0 7)<t |lgli<e

and convex if

(4.8) Ao(f, 820, f,ges.
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Proposition 4.2. Let X be a g-convex function space. Then Py is a strict semi-
ideal and Dy is a continuous, convex real semilinear map. If X is a Kéthe
Sfunction space then 6 (®x) <log2.

Proof. First of all, we observe that for some o > 0, X¢ is isomorphic to a
Kéthe function space. Thus any f € (X®)* N L, satisfies

sup /flogJr Ix|du < oo.
XEBy
If we then pick some fixed strictly positive xo € By, then there is a strictly
positive f € (X*)*NL; for which f|log|xg| is integrable. Thus % is a strict
semi-ideal.

Now conditions (4.4) and (4.8) are obvious. Let us prove (4.5) and (4.7).
Recall the definition of nx(t) from §3. Then if f, g € F with ||f|| <1,
llgll < T, we have for any ¢ > 0, x, y € By with

e €
[rloemiduz@x(n -3, [gloslviduz@x(e)- 5.
Let v = nx(t)~!(max(|x|, z|y|)). Then v € By and

[+ )10gvdu > @x(1) + @x(g) — ¢ ~ log nx(@)1 11~ log LD g

so that )
Ag,(f, &) < (1+1)lognx(t) + rlog;-

As lim;_;nx(7) = 1 this implies (4.5) and (4.7). If X is a Kothe function
space then 7x(7) < 1 + 7 so that Ag,(f, g) < (1 + 7)log(l + 1) — tlogt <
log 2(1 + 1) provided 0 < 7 <1 which establishes that J(®x) <log2.

It remains to establish (4.6). Assume f€.% and 0< f, < f with ||f,]| —
0. If x € By is chosen so that flog|x| is integrable, then clearly by an appli-
cation of the Dominated Convergence Theorem we have lim [ f, log|x|du =0
and hence liminf®x(f,) > 0.

To complete the proof we introduce a Kothe function space F defined by

lelle = sup [ lglog, Ix|du-+ gl
XEBy .

We claim that the norm on F is order continuous. To prove this it suffices to
take g € F; and a disjoint sequence 4, € £ and show that ||gl, |lr — 0. In
fact, if not, passing to a subsequence if necessary, we can find x, € By with

/ glog, |xnldu>¢>0,
An

for suitable ¢. Let y, = max(|xi|, ..., |xx|). For suitable p > 0 and f < o
we have ||yu|lx < Bn'/? and hence B~'n~'/Py, € By . However,

1
/glog+ Yndu > ne — <logﬂ + I—,logn) gl

which leads to a contradiction.
Returning to the proof we obtain || f,;]|r — 0 and so limsup,_, . Px(fz) <
0. O
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Lemma 4.3. Let ¥ be a semi-ideal and let ® be a semilinear functional on
. Then
(i) Forevery fe.#,® is bounded on [0, f].

(ii) If fu €10, f1 and lim|| f, — g|| = O then limsup,_., |®(fx) — P(8)| <

26(D)|If1l-

(iii) If @ is continuous then ® is continuous on [0, f] for the L-norm.
Proof. (i) For fe .7 ,let I'(f) = sup{|®(g)|:0< g < f}. Then I'(f+ g) <
I'(f)+T'(g)+4|f+gl|l where & = 6(®P). Suppose I'(f) = co. Then there exists
g €10, f] with |®(g)| > 3|®(f)|+|f]|+ 1. Thus |P(f —g)| > 2|D(f)|+1.
Arguing by induction, there exists a descending sequence f, with f = f,
I'(fy) = 00, and |®(f,)] = 0. Let g =1im f,,. Then

|D(fa)] < |D(&)] + |P(fn — &) + 3111

As lim®(f, — g) = 0 this yields a contradiction.
(ii) Let A, = max(f,, g). Then

|, n) —P(fn) = DP(hn— f) <SS, |P(hn) —D(g) —P(hn— &) <]
Thus
|P(fn) — P(&)| < [D(hn — fu)| + |P(hn — &) + 26| f]|
and since lim®(k, — f,) = limP(h, — g) = 0 (ii) follows.
(iii) In this case, arguing as in case (ii)
lim [Ao(fy, hn = fi)] = lim |Ao(g , hn — £)] =0
and so lim |®(f,) —P(g)|=0. O

Theorem 4.4. Let X be a g-convex function space and suppose ¥ be a strict
semi-ideal contained in #x . Then x € By if and only if flog, |x| is integrable
for every f e ¥ and

/flog|x|du <Oy(f), fes.

Proof. One direction is trivial. For the other, we first prove that we may suppose
S = F. Indeed suppose f € Fx and that f, € F with 0< f, 1 f a.e.
Let A = {s:|x(s)] > 1}. Then [ fyl,log|x|du < ®x(ful4). Now by the
Monotone Convergence Theorem, Proposition 4.2, and Lemma 4.3 we have
J fllog|x|du < ®x(f14) sothat flog, |x| € L;. Now if flog|x| fails to be
integrable then [ flog|x|du = —co < ®x(f). Otherwise, we have

[ F1oeixldu = lim [ fylogjxldu < lim @x(f) = @x(f)

again by Lemma 4.3. Thus we will assume . = % .
To continue the proof assume x ¢ By . Let u be a strictly positive member
of By and let w be a strictly positive function such that

/'w(l + |log | x|| + | logu|)? du < co.

Let L,(w du) be the corresponding weighted Hilbert space of all ¢ € Ly such
that [|4]12 , = [|¢*wdu < co. Let V be the subset of Ly(wdu) of all
functions of the form log|y| where y € By. We observe that V' is convex
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(since X is g-convex) and closed in the relative Ly-topology on L,(w du) and
hence closed in Ly(wdu). V is nonempty since logu € V. Furtherif v € V
and v; <wv a.e. with v; € Ly(wdu) then v, € V.

By assumption, log|x| ¢ V. Thus by the Hahn-Banach theorem there exists
fe€Lyw'du) and o € R sothat [ flog|x|du>a but [ fodu<a for ¢ €
V. From the properties of ¥, we must have f >0 a.e. Since [|f|>w~!du <
oo and w is integrable we have f € L; by Holder’s inequality.

We show f € Fx. Assume y € By, andlet y,, . = max(min(|y|, m|x|), Tu)
for m € N, © > 0. Then nx(t)"'ym,. € By and logym,. — lognx(t) €
Ly(w du) . Hence

(4.9) / F108Ym cdi < a + |1 log 7x (7).
If we set A= {s:|y(s)| > 1} then

1
/flogym,ldu5a+||f||lognx(1)+/ flog — du,
4 S\4 |
and letting m — oo

[ 1o, vldu= [ fioglyidu<a+ifltogne(t)+ [ flloguldu.
Again

1/2
[ loguldu < 17+, ( [ 1nogupu dﬂ)

so that we may conclude that sup,cp [ flog, |[y|du < co. We also observe that
(4.9) implies that for arbitrary y € By

/ flog(max(ly|, Tu)du < o + | f]| log nx(7)

for any 7 > 0. Hence

/ flog|y|du < a + || f]|log nx(z).

Letting 7 — 0 we have ®x(f) < a. Since [ flog|x|du > a, this contradiction
proves the theorem. 0O

Our next proposition summarizes a few simple properties of the indicator.

Proposition 4.5. (i) Let X, Y be g-convex function spaces and % be a strict
semi-ideal contained in Fx N % . Then ||x||x < M||x||y for all x € Ly if and
only if ®x(f) > Py(f) — (logM)| f|| for all f € 7. Further, X and Y have
equivalent quasinorms if and only if

d(®x, Py) = sup |[Px(f)— Py(f)| < oo.

IAII<1
(ii) If Z = X°Y# (ie, |Ixlz = inf{lull§ vl x| < |ul[v]#}), then 75 >
Hx NSy and
@z (f) = a®x(f) + BPy(f)
for fe AN SFA.

We omit the proofs. Part (i) is almost immediate from the definitions and
Theorem 4.4, while (ii) is left as an easy exercise. We shall call two semilinear
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functionals @, ¥ defined on some strict semi-ideal .# equivalent if d(®, ¥) <
oo where d(®, ¥) is defined above.

Example. If we take X = L(p, oo) then it is relatively easy to compute

@x(f) = sup [ floglxidu =~ | " f0lograt

XEByx

for f € LlogL where f* is the decreasing rearrangement of f. However X
is not g-convex, even though ®x is continuous and convex. In fact &y = <I>3(v

where X is the “ g-convexification” of X i.e., x € By if and only if

’ 1 [ 1
/ log x*(t)dt < —/ log —dt.
0 pJo t

Clearly || ||z is an equivalent quasinorm on L(p, co) since L(p, 00) is iso-
morphic to a g-convex space.

Proposition 4.6. Let X be a Kéthe function space. Then N Fx- C (LlogL),
and for f € Fx N S+, we have @x(f) + Ox-(f) = A(S).

Furthermore if f € Fx N S, and || f|| = 1, then ®x(f) = [ flogxdu
where f = xy is the Lozanovskii factorization for (X, X*) ie, x,y >0,
lIxllx = |l¥llx- =1, and supp x = suppy = supp f .

Proof. The first part is essentially Lozanovskii’s theorem that By.Bx. = By, .
For the second suppose & € By . Then

/flogléld#=/flogléyldu—/floglyldﬂ
< /flogfdu—/floglyldu
=/flogxd/4. O

We conclude this section by generalizing the fact which we have already
noticed that ®yey1-s(f) = 0Ox(f) + (1 — O)Dy(f) forall f e A N A.

Theorem 4.7. Let & = (Xy: w € T) be a strongly admissible family of Kéthe
function spaces. Then there is a strict semi-ideal & so that if f € %, ®x ,(f)
is a bounded measurable function of t and for z = re'® € D we have f € F,
with
r dt
Ox(N)= | Pr,0-0®x, (N5
—n e n
Proof. There exist strictly positive 4, k so that for a.e. w € T, |xh|; <
Ixllx, < lIxklloo. Let & = A, (ha) N1, (k-14) - Then S C S, for ae.
w € T. We also observe that it suffices to establish the formula for the case
z =0 by a conformal mapping argument.
Consider, as in §3, the K6the function space & on (S x T, u x 1) given
by ll¢llz = esssupi¢(-, e®)llx,, . Now if f € # with |f] = 1, then by
Lozanovskii’s theorem there is a factorization f(s) = ¢,(s, e')pa(s, €') with

é1, $2 >0, suppp; =suppp, =supp f x T, and ||¢i]lg = ||p2]le- = 1.
Define x € Xy by

x(s) = exp ( " log ¢1(s, e') Z—:t) .

—n
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As discussed in §3, this is well defined since log, ¢;(s, e*) is integrable for a.e.

s € . Similarly
dt

/_n/qﬁzs e)k(s)™" du(s) 5 < 1

so that log, @2 (s, e*) is integrable for a.e. s € S and we may define
i dt
y(s) —exp( log $a(s, e )27[) :
Now suppose & € By, and & > 0. Then there exists ¥ € Bz with

&(s) = exp (

n

—T

log (s, e) 5 )

—n

T dt
[yedu=[exp ( log(¢2¥) 2—) du
s s — T
T dt
S/S . ¢2V/Edﬂ

< llpalle-llwlle < 1.

Thus |y|lx; < 1. However xy = f, so this is the Lozanovskii factorization of
f and

Thus

Ox,(f) = [ flopxdu = L] " Flogdi(s, €) 2 du(s).

As in §3, we have

I#alls- = [ N2, elx;

and as ¢4y = f ® It we must have [$a(-, ”)[x» > 1 ae. So we have
l#2(-, e")llx* =1 a.e. Thus A-a.e. f(s) = i(s, ei)ps(s, e'*) is the Lozanov-
skii factorlzatlon of f for the pair X,., X, . Hence

@y, (f) = /flogd>1(s, e du(s).
and the theorem follows. 0O

Corollary 4.8. We have the duality theorem that the space X} obtained by in-
terpolating Z* = {X;,: W € T} is isometric to (X;)*.

This is immediate from 4.6 and 4.7.

Corollary 4.9. If f € (Ly)+ with ||f|| = 1 has a Lozanovskii factorization
f = xx* for X3 where |z| < 1, and if |u| = 1 a.e, then there is a unique
F e /%, with F(z) = ux, F vanishes identically off the support of x and
|Fllez = 1. Hence the induced centralizer Q is uniquely defined at ux .

Proof. Let G be an extremal for u~!x* in 2*, i.., suppose G € A+,
G(z) = u~'x*, and |G|l = 1. If F is an extremal for ux in £, then
it follows from the maximum modulus principle that since [ F(z)G(z)du =1
then [F({)G({)du =1 forall |{| < 1. Hence F({)G({) is real and nonneg-
ative a.e. Thus for a.e. s F({, s)G({, s) is real on a dense subset of the disk
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and hence everywhere. Thus F({)G({) = f for all { and it follows easily that
F is uniquely determined on the support of x. This implies that Q(ux) is
also uniquely determined. O

5. CHARACTERIZING INDICATORS

Theorem 5.1. Let .# be a strict semi-ideal, and let ® be a continuous convex
real semilinear map defined on ¥ . Then there is a (unique) g-convex function
space X for which F C Fx and ®(f) = ®x(f) for fe 7.
Proof. Let By be the subset of Ly of all x such that flog, |x| € L; for any
f€ S and [ flog|x|du < ®(f) for f €7 . We define |x|x = inf{a > 0:
a~l|x| € By} and ||x|lx = oo if x ¢ aBy for every a > 0. Clearly By =
{x:lIxllx < 1}.

We now show that || ||x defines a g-convex quasinorm. Suppose x, y € By
with disjoint supports contained in Ay, 4, where A,UA4, =S and 4,N4, =
@.For fe 7,

/ Flog(max(lx|, Tly])) diu < ®(f14,) + ®(f14) +log ] f14 |

SOf) +Ao(fly,, fla,)+1ogT| fLy]l.
Let
o(e) = sup sup |Agp(f, g)|.

I/t llgll<e
Then

/ flog(max(|x], 7ly])) du < ®(f) + I1fl[(0(a) + alogT),
where a = || f14||/|lf]l. If we let

o*(t) = Ozugl(a(a) +alogT),

then lim,_o0*(t) =0 and
/ flog(max(|x], 7|y])) d < ®(f) + [ flo*(7).

Thus || max(|x|, 7|y|)|lx < e ® or nx(r) < e’ @,

To complete the proof that X is a g-convex function space we need only
show that By contains a strictly positive function and that By is closed in
Ly, since condition (3.5) is trivial. Let us postpone the former statement and
simply show that By is Lo-closed. Suppose x, € B} and x, — x a.e. We
may suppose, without loss of generality that suppx, C suppx = A for every
n. Let A; be an increasing sequence of measurable subsets of A4 so that
u(A\UA4r) =0 and x,x~! — 1 uniformly on each A4; . Then, given ¢ > 0,
k € N, there exists N € N so thatif n > N, x,14 > (1 -¢&)x1,, . Hence if
fes, flog,xl, €L, and

/flogxlAkd,ug—log(l——s)||f||+/flogx,,1,4kdu
< —log(1 —&)[|fI| + D(f).
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If we let ¢ — 0 we obtain that x1,, € By for every k € N. Now let G =
{s:x(s)>1}.If fe .7,

/flog+xdu=fflogxdu= lim flogxdu
G

k—o0 GNAy

< lilzninf D(flona,) = P(flg),

using Lemma 4.3 and the fact that ® is continuous. Hence flog, x € L;. If
flogx € L; then the same argument yields that [ flogxdu < ®(f) and this
also holds in the case when flogx fails to be integrable. Thus x € By and
By isclosed in Lg.

To conclude we will check that By contains a strictly positive element and
that ® = &y on ¥ . Notice first that if f €., x € By, then

/ flog, |x|di < D(f1ixp1) < sup D(g) < oo
g€[0, f]

by Lemma 4.3. Hence
sup /flogJr |x|du < .

XEBy

Now suppose f € .# and ®(f) > «. Then we show the existence of x € By
so that [ flog|x|du < a. This will imply, using some strictly positive f that
By contains a strictly positive function and hence X is a g-convex function
space. Further, from the above remarks we will have that ¥ C %y and we will
be able to conclude that ®y =P on 7.

Let Y be the AM-space |Jn[—f, f] normed by | g|ly = esssup|g(s)|f(s)~!.
Let K C Y* be the convex set of all g >0 such that ®(g) < a. For me N,
K nm[0, f] is closed for convergence in L;-norm by Lemma 4.3 and the
continuity of ®. Let Y, be the predual of Y, i.e. the space of all measurable
functions 2 with supphs C supp f such that |A|y, = [|h|fdu < co. Then
Knm[-f, f] is closed for the weak* topology a(Y, Y,) which is weaker on
m[—f, f] than the L;-norm. Now by the Banach-Dieudonné theorem, K is
a(Y, Y.)-closed in Y . Thus there exists 2 € Y, , so that [h¢ < a for ¢ € K
but [Afdu>a. Clearlyif geY, g>0, [hgdu < D(g).

Let x(s) = e"®) for s € supp f and x(s) =0 otherwise. Then if g€ .

/glog+xd,u=/ghd,u=n1im/ min(g, nf)hdu
—®Jh>0
< li;n inf ®(min(g1 sy, nf))

= (g1l (450)

by Lemma 4.3. If supp g is not a subset of supp f then [glogxdu = —oc.
Otherwise, if glogx is integrable

/glogxdu = /ghdu = limf/maX(g, nf)hdu < O(g)

by the same reasoning. Hence we can conclude that x € By and the proof is
complete. O

Theorem 5.2. Let ¥ be a strict semi-ideal and let ® be a real semilinear func-
tional on % . Then, in order that there exist a Kéthe function space X with
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F ., and O(f) = ®x(f) for f € F, it is necessary and sufficient that for
any f, g€,

(5.1) 0<As(f, &) <AAS, &)

Proof. Necessity is clear since ®y. = A— Dy . Conversely, assume (5.1). Since
A is continuous, both ® and A — P are convex and continuous. Thus there
exist g-convex function spaces X, Y with ¥ C % N_% and so that ® = Oy
and A — ®y = dy. It suffices to show that X is a Kothe function space.
Clearly By.By C Br,. Let By be the Lo-closed convex hull of Bxy. Then
B}.By C By, , and so on tfz N we have Oy < CD} < A—-®y =Dy. Hence

by Theorem 4.4 X = X and the proof is completed. O

Theorem 5.3. Let X be a g-convex function space and let ¥ C Fyn(LlogL),
be a strict semi-ideal. Then
(i) X is p-convex (0 < p < o) if and only if for every f, ge .7,

Aoy ([, 8) < %Auf, g).

(ii) If X is p-convex for some p > 0 then X is also g-concave where 0 <
q < oo if and only if for every f, g€ .7,

A(Dx(f, g) S éAA(f’ g)

Proof. Part (i) is obvious. For (ii), suppose Y = X? . Then Y is a Kothe func-

tion space and @y = A — p®@yx . Thus Ag,.(f, &) = Ax(f, &) — PAo,(f, &)
Hence Y* is r-convex if and only if

1N 1
doi(f, 02 (1-7) S0 0)
for f, g€ . Now X is g-concave if and only if Y is g/p-concave if and
only if Y* is (1 —p/q)~!-concave. This yields the theorem. O
Theorem 5.3 has a simple illustration in a theorem of Pisier [43].

Corollary 5.4 (Pisier). Suppose X is a Kothe function space and 0 < 6 < 1. In
order that there is a Kéthe function space Y with X = LYY'=9 it is necessary
and sufficient that X is p-convex and q-concave where é =1- 117 =4.

Proof. This is a simple calculation based on the fact that Y can be determined
from the equation @y = %A + (1 — 6)®y on a suitable semi-ideal together with
the preceding two theorems. 0O

We remark that some recent results of Cwikel and Nilsson [16] on complex
interpolation between Banach lattices can also be proved by this method.

Lemma 5.5. For any Kéthe function space X, if fi,..., fn € FH N (LlogL),
and Y fill =1 then

Aoy(fis oo i) sznﬁulog“Tl,“.
i=1 !

In particular dp, < dp =log2.
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Proof. This follows immediately from the observation:

A<D)((fl’---,f;l)SAA(fl"">fn)
S [ f1oed 1l og —L
—;/ﬁlongu+§llﬁlllog”ﬁ”,

where F=fi+---+ f,. O
In the above proof that if fi, ..., f, have disjoint supports then

AN(fis s ) = =D Ifilllog L fill -

Lemma 5.6. Suppose X is a Kdothe function space and that £ is the ideal
generated by Fx N (LlogL), (thus £ consists of all complex f € Ly so that
|fl € Fn(LlogL),). Then extend ®x to # by ®x(f) = flogx where
f = xy is the Lozanovskii factorization of |f|. Then for f, g€ 2,

Aoy (f, &) < 2UIAI + gl -

Proof. First suppose 0 < g < f e FH N (LlogL),. Then if we let f = xy;
and g = x,y, be the corresponding Lozanovskii factorizations, we have

Dx(g) = A(g) —/glogly—ﬂdu

I
SA(g)—/gloglll—y]%du
= [ g10gx du+||g||1og%

1
< /glogxl du+ ;IIfII-
If we then set 4 = {s: x1(s) > x2(s)} we have
1
/Aglogxldu <Dx(gly) < /Aglogxzdu + gllgll,
and i
/ glogxadu < Px(glsa) < / glogxidu+ —||f|.

S\4 S\4 4

We conclude that 5
[ sliogx: ~togxaldu < 211

whenever 0< g < f.
Now suppose f, g are in £ and let » = |f]| + |g|. Let A have the
Lozanovskii factorization 4 = £xn. Then by the above argument

ox(f) - [ fiogedu| < 2yl

with a similar inequality for g. Thus A¢,(f, g) < §||h|| and the lemma
follows. O

We will refer to @y extended in this way as the (extended) indicator of X .
We conclude this section with a result on the construction of Kothe function
spaces which we will need later in §9.
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Theorem 5.7. Suppose u is a nonatomic probability measure on S and that
X is a Kéthe function space such that Lo, C X C L, for some p > 0. Let
T: Ly — L; be a doubly stochastic operator, i.e, T >0, Tlg =T*1g = lg.
Then there is a unique Kéthe function space Y such that ®y(f) = ©x(Tf)
whenever f € (LlogL), .

Proof. We remark that % D LlogL and that if f € LlogL then Tf €
Llog L. We need the following lemma.

Lemma 5.8. Let (a;j)i<i, j<n be a doubly stochastic matrix. For any nonnegative
(x,-)}’=1 ) (y,-)l’.’zl , let f,' = Z?:l a;jx;, M= Z;‘l=1 aijyj. We then have

+
+y,log zy J’z) '

i

n

Z(&logé z L+ ilo gé’+"’) _i(xilogx
n i=1

i=1 !
Proof of Lemma 5.8. We define for (s, f) € R?> with 5,¢>0,
S+t

u(s,t) =slogsT-H + tlog

Then by differentiation it can be seen that u is a concave function on its cone
of definition, since the second derivative is negative semidefinite in the interior.
Now consider the function v defined on the convex set of doubly stochastic
matrices, given by

n n n
’U(A) = Zu (Zd,‘jxj', Za,-jyj) .
i=1 j=1 Jj=1

Then v is also concave and assumes its maximum at an extreme point, i.e., a
permutation matrix S; = (J; 4(j)) Where ¢ is a permutation of [1, 2, ..., n].
Then the lemma follows immediately. O

Proof of Theorem 5.7. Let ®(f) = Ox(Tf) for f € LlogL. Let D(n, k);
1 <k <2" 1< n, be a family of measurable sets so that D(0, 1) =
S, D(n,kynD(n, k'Y = & for k # k', Dn,k) = Dn+ 1,2k - 1)U
D(n + 1, 2k), u(D(n, k)) = 27" and the sets (D(n, k)) generate X. Let
E, be the conditional expectation operator of L; onto L;(X,) where Z, is
generated by D(n, k) for 1 < k < 2", Clearly the lemma implies that for
any nonnegative f, g € L, if f, = E,f, g. = E,g, and ¢, = E,TE, [,
Yn=E,TEyg,

/¢nlog Y du+fwnlog ¢”; Y du

/fnlogf" "

+ &n Jn+ &n
7 du+/gnlog 3 du.
Since || full = l|¢nll = If]| and ||gall = lwnll = lg|| this translates to Ax(¢n, ¥n)
S AA(.f;l ) gn) .

If we now assume f, g € LlogL the continuity properties of A on the
Kothe function space LlogL imply that Ay(Tf, Tg) < AA(f, &).

Now it follows that

0<Ap(f, 8) =0, (TSf, T <ANTS,Tg) <A/, 8).
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Hence @ satisfies the conditions of (4.4)~(4.6) and the theorem follows by
Theorem 5.2. O

It now follows easily from Theorem 5.7 that

Corollary 5.9. Under the hypotheses of Theorem 5.7 we have for any f € LlogL,

@r() - @x(TN] < 211,

Proof. Simply split each f into real and imaginary and then positive and neg-
ative parts and use Theorem 5.7. O

6. APPROXIMATION THEOREMS FOR SEMILINEAR FUNCTIONALS

Proposition 6.1. Let .# be a strict semi-ideal contained in (LlogL). and let
® be a semilinear functional on % . Suppose that for some M and every
Jiseens Jn €S,

(6.1) —M Y G S Ao(fisnns J) SAASis ees SY+M Y|
j=1

i=1
Then, there exists a Kéthe function space X so that .5 ¢ Fx and
d(®, Ox) = ”sl\ﬁgl |D(f) - Px(f)| < M +4d,

where 6 = (D).

Proof. We first prove this in the special case when S is a finite set and ¥ =
L{(S) is thus a closed cone in a finite dimensional space. Define ®g(f) =
inf Z;;I ®(f;) where the infimum is takenoverall f;, ..., f, > 0 with Z?:; fi
= f. Then ®(f) - M| f]| £ Po(f) < D(f) and Py is a convex semilinear func-
tional.

Let P be the positive cone {x: x(s) > 0 Vs € S}. We argue first that
®; is necessarily continuous on P. First notice that for some K we have
|[Do(f)| < K whenever ||f]loc < 1. Now suppose f € P and f, — f. Then,
given ¢ > 0 there exists N sothatif n >N, (1-&)f < f, <(1+¢)f. Then
[ Do((1+&)f — f)l, 1 Po(fn — (1 =) )] < 26| flleoK provided »n > N. Thus

(1 +&)Po(x) < Po(fn) + 2| [l K,
Po(fn) < (1= &)Do(Sf) + 2| [l K.

We conclude that for n> N, [®g(f) —DPo(fn)| < &|Po(/)] + 2¢| [l K , 5O that
@, is continuous on P.

Now let By be the set of x so that [ flog|x|du < ®o(f) whenever f € P.
Now a standard Hahn-Banach separation argument shows that for f € P,

®y(f) = sup / flog|x|du.
X€By

Arguing similarly, let @;(f) = inf3°7_, (A(fj) — ®(f})) where the infimum is
taken over all fi,..., f, > 0 so that }_ f; = f. Then by the same reasoning

A = @(f) - M||f]| < ®1(f) S AS) - ®(f),
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and if By = {x: [ flog|x|du < ®,(f) Vf € P} then for feP,

®1(/) = sup [ logxldu.
X€EB

Since @y + ®; < A we conclude that By.B; C By, . Let By be the closed
convex hull of By. Then Byx.B; C B, so that ®x(f) + ®(f) < A(f) for
f € P. Thus &(f) - M|f|| < ®x(/) < ®(f) + M]|f]| forevery f € P. In
general if f > O then there is a sequence f, | f with f, € P. By Lemma 4.3
limsup |®(f,) — P(f)| < 26| f|| and it follows that

|D(f) — Px(fa)l < (M +20)|| 1l

whenever [ > 0.

We now turn to the general case. Let & = (4;,..., 4,) be any finite
collection of disjoint measurable sets so that each 14, € ¥ . Let Ey be the
linear span of 1,, for 1 <k < n. By the above there exists a semilinear map
Y, on E, so that

OSA‘I’_,{(f’g)SAA(f,g)’ fagef’
and
|D(f) — Yor (N < (M +25)|111l

for f € .. By a simple compactness argument we can then determine a
functional ¥ on the cone 7 of simple functions in .¥ so that

0<Ay(f, 8) <A, 8), @) - < (M+20)|f]l

for feZ .

Suppose f €.#. Then 7" N[0, f] is dense in [0, f] for the L;-norm. We
now use the reasoning of Lemma 4.3 to argue that ¥ is uniformly continuous
on Z'N[0, f]. First notice that since ® is semilinear, it follows that |¥(g)| <
no()lgll) for g € Z"N[0, f] where lim,_on0(¢) = 0. Suppose g, h € [0, f]
and let kK = max(g, #). Then if ||g — h| <e,

¥(g) —¥(h)| < Aw(g, k — &) +Aw(h, k —h)| + [¥(k - g)] + [¥(k - ).

Now
|Ap(g, k — g)| < |Ax(g, k —g)l < || flld(e),

where lim,_o¢(e) = 0 since A is a continuous semilinear functional. Simi-
larly estimating the other terms we obtain that |¥(g) — W(h)| < mi(e), where
lim, o7 (e) =0.

Thus ¥ extends continuously and uniquely to each [0, f], and hence to .*
in such a way that it is continuous on each order-interval. In particular, we
must have 0 < Ay(f, g) < A\(f, g) forevery f, g € # . Further, if fe€.7,
we may pick f, € 77 so that f, 1 f. Then as limsup |®(f,) — ()| < 24]|f]|
by Lemma 4.3 we obtain d(®,¥) < M + 44. This in turn implies that ¥
is semilinear and we can apply Theorem 5.2 to show that ¥ = ®x for some
Kothe function space X. O

We remark that if & is continuous then we can improve the estimate to give
d®,0x)< M.
We now prove a result on set functions which is the key to our main results.
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Theorem 6.2. Let S be a finite set and let u be a positive measure on S. Let
¢: 25 — R be a set function, continuous with respect to u in the sense that
u(A) =0 implies $(A) =0, and such that whenever A, B are disjoint sets then

¢(A) + ¢(B) — u(AU B) < ¢(AU B) < ¢(4) + ¢(B).
Then there is a signed measure v on S such that v(A) < ¢(A) for AC S and
v(S) = ¢(S) — 4u(S).
Proof. For each A C S let T4 be the set of signed measures p defined on A4
so that p < ¢. Let

h(4) = p(A)™! <¢(A) — sup p(A)> .
PET,
Here we define h(A) =0 if u(A4) = 0. Then A(S) < maxycgh(A4). We shall
show that max -gs/4(A4) < 4. Once this is done it will follow that there is a
sequence vy, € I's with v,(S) > ¢(S) —4u(S)—1/n; it is then easy to show that
(vn(A4)) is bounded for every 4 and so a compactness argument will complete
the proof. Thus, by restricting to the set where A4 attains its maximum, it
suffices to consider the case when h(A4) < h(S) =y, say for every 4.

We may clearly suppose u(S) > 0. For 0 < ¢ < 1, pick a measure 4 € I'g
so that A(S) > ¢(S) — e — yu(S). Let E be a maximal subset of S so that
ME) > ¢(E)—2u(E). Let F =S\E. If F is empty we are done. Otherwise,
if ACF then A(AUE) < ¢(AUE)—-2u(AUE), so that A(4) < (AUE) —
¢(E) — 2u(A) < ¢(A) — 2u(A). Now consider the signed measure iy where
A(B) =A(B)+ u(BNF)—u(BNE). Then

AMBABNE)—u(BNE)+ABNF)+u(BNF)
<PBNE)—u(BNE)+d(BNF)—u(BNF)
< ¢(B)
so that Ag € I's . Thus 4¢(S) < ¢(S) —yu(S) or A(S)+u(F)—u(E) <A(S)+e.
Thus 4(E) > 1(1—£)u(s).

Now we utilize the fact that #(F) < y. There exists a signed measure v on

F with v € T'r and v(F) > ¢(f) — yu(F) — . Define vy on S by
vo(B)=ABNE)+v(BNF)— u(B).

Then

vo(B) < $(BNE) + $(BN F) — u(B) < §(B).
Thus vy € I'g, and

vo(S) = ME) + v(F) — u(S) < ¢(S) — Au(S).
Hence

H(E) + ¢(F) — 2u(E) — yu(F) — & — u(S) < ¢(S) — yu(S).
Since @(E) + ¢(F) > ¢(S) this simplifies to (y — 2)u(E) < u(S) +¢. Thus
2 2¢ 1
A T S
Letting ¢ — 0 we obtain y<4. 0O
In order to apply Theorem 6.2 we will need some preliminary estimates for

semilinear functionals. Essentially, the next theorem is a translation of a result
in [25] but we give a more precise proof.
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Theorem 6.3. Suppose o > 1. Then there are constants C(o) and C'(g) so
that whenever ¥ C (LlogL), is a strict semi-ideal and ®: .¥ — R is a map
which satisfies

Ao(f, &) < alog2(|lfll + lI&ll)

Jor [, g € F (respectively, for disjoint f, g € F) thenforany fi,..., fn € F
(respectively, any disjoint fi, ..., fu € F) we have, if f=3j_, fk

Aol o fi) <o (az | filllog |'|'Jf'|'l t Cllfll) ,

Ap(frs.o fa) S (0 > (log k)|l fill + C'Ilfll) :

k=1
Proof. By a simple continuity argument there exists 0 < 8y <1 and 7 >0 so
that if § <a <1(1+6p) then

1
1—-a
Let ¢, be the least constant so that if fi, ..., f, € 7 satisfy Y ;_, ||/l =1
(and are disjoint) then

u 1
Ao(f15 ,..,A)Sa(agllﬁclllogw—k”wn) )

It is clear that for every »n, c, is finite.
For any such fi, ..., f, welet § = max,<x<, || fx||. Let us first assume that

a(alog%+(1—a)log )zlog2+r.

6 < 6. Then we may choose signs & = +1 so that 0 < Y>7_ &llfill < 0.
Let A ={k:e, =1} and B = {k: g = —1}. Let a = >, ., |l fell so that
;<a<i(1+6). Let fu=3,c,/c andlet fz=3,.p fi . Then
Ap(f4, fp) < alog2,
Ao(fi: k € A) <a(21|fklllogllf”+c,,a) ,
keA
keB

A¢(f1,---,fn)=A¢(fk1kGA)+A¢(ﬁc2k€B)+A¢(fA,fB)-

Combining these equations gives us

Ao(fis e o aGZkaHIOg“f“

< a(ch +a(aloga+ (1 —a)log(l —a)) +log2).
By the hypothesis on € we conclude that

Ao(fis e o aaZufkulog alcn = 1)

IIf 1=
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On the other hand, if § > 6y we may assume || f,|| = 8. Then

Ao(fis s Ju) = Do (ka,fn) +Ap(f15 -5 Sam)

k=1

n—1
<a (log2+aZ|lﬁ(||10g WA +cn(1 —0)>

<a <log2+ az Il ficll log —— Ilf ” +cn(1 — e)>
so that

Ap(fis .oy Ju) — GalefklllOg < a(log2 + ¢, (1 — o))

Ilf |

Combining the two cases we must have that ¢, <log2 +c,(1 — 6g) or ¢, <
log2/8y independent of n. This leads to the first equation. The second is
obtained by using Lemma 3.5 of [25], observing that it first suffices to consider

the case ||fill > |lall = - =/l O
Lemma 6.4. Given ¢ > 0 there exists a constant = (&) < oo so that whenever
F is a semi-ideal and ® is a real semilinear functionalon % and fi, ..., fn €
j n n
Ao(fis ..., fu) < O(®) (eanfkn + 8|S f ) .
k=1 k=1
Proof. We have

n n
Ao (fis .. s fu)l <26 (logk) | ficll + C Y I fil
k=1 k=1
for a suitable constant C, by applying Theorem 6.3 with o = 2log2 > 1. Since
for arbitrary ¢ there exists y = y(¢) so that logk < ek+y for all k the lemma
follows easily. O

Lemma 6.5. Given ¢ > 0 there is a constant C(¢) so that if & is a strict semi-
ideal and ® is a real semilinear functional on % such that for any disjoint
f, g wehave Ap(f, g) >0, then for any fi,..., fn €7,

n
A(I)(.fl 3 vy ﬁl)+6£AA(ﬁ: ey f;l) Z _CJZ“ﬁC“’
k=1

where 6 = 6(®).
Proof. We first note that we need only establish the lemma for simple functions.
Indeed, if we establish the lemma for simple functions then it follows for arbi-
trary functions by using Lemma 4.3 with C replaced by C + 4. Assume then
that f, ..., f, are simple. We may further assume that if /= fi +---+ f,
then ||f]| = 1. Let Xy be the finite algebra generated by f;, ..., fu.

If we set ¢(A) = P(f1,) then ¢ is a set function on X, which satisfies for
disjoint sets 4, B

P(4) +¢(B) -9 AUdeﬂ < ¢(4U B) < ¢(4) + ¢(B) .
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Thus Theorem 6.3 can be applied to produce a signed measure v on X; with
v(4) < ¢(A) for all 4 €%y and v(S) > ¢(S) —

Now suppose g is any Xg-measurable function whose support is contained
in that of f. Suppose ||g|| =1 andlet A= g/f (A =0 when f=0). Let
Ay = {h < 1} and then for k > 0 set A, = {2¥~! < h < 2¥}. There exists N
so that 4, = @ for k > N. We first notice that

N
Ao(glay, 8lays ..., 8lay) <0 (8 log2 ) (k + 1)]gla ] + Co)
k=0

by Lemma 6.4, where Cy depends only on &. Now

N
log22(k + 1)/ gdu< /g(log+h +2log2)du.
k=0 A
Further

/glog+hdu§/gloghdu+/ gloggdu
Ao
s/glogha’/Hl fdu
e Ja,

g/gloghd,u+%.

Combining these equations gives us

Ao(glay, ... > 8lay) <O (e/gloghd;H—Cl) ,

where C; depends only on ¢. Now we can write each 41, in the form

[e0)
hly, =2K3"2771p,

where By; € Zo. Now for arbitrary m we have

Akm =Ao(27 f1p,, ..., 27" f1p,)

m m
<s (2 SIS U+ G S 2-f||f13k,||) ,
j=1

j=1

where C, is a constant. Thus Ay, < C36(|f1,4,] for some constant C3. Now
this means that

\ (Z 2k"jf13kj) > Z KT $(Brj) — C362%|| f 14,1l

j=1
Thus for k> 1,

@ (Ezk*jlek,) Z 2y (Byj) — 2C36|g L4l -

j=1
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Letting m — oo and invoking Lemma 4.3 we have

D(gly)> | hdv—-Cid | gdu,
Ay Ax
where C, is a constant. In the case £k = 0 the same reasoning leads to
®(gls) z/ hdv —Ced [ fdu.
Ay

Ao

Combining we obtain EkN=0 D(gly) > [hdv —2C4d . Thus

8) Z/hdv—f:(?/gloghd,u—csé,

where Cs = Cs(¢). Now we apply this to g, = fi/llf¢ll - The result is that

o) > /f;—du—sa/fklogﬁf;k—”du—csa||fk||.

Summing over k

S O(fir) = v(S) — e8AN(fis - s Su) = Cs6.

k=1
Recalling the choice of v this implies

Ao(fis ooy Jn) +EIMN(f15 ..o f) 2 —(Cs+4)d. O
We finally come to the main theorem of the section.

Theorem 6.6. Given ¢ > 0 there is a constant C = C(g) so that whenever
S Is a strict semi-ideal contained in (LlogL), and ® is a real semilinear
Sunctional with 6(®) < (1—¢)log2 then there is a Kothe function space X with
d®, oy —Ox.) < C.

Proof. By Theorem 6.3 we have that if f;,..., f, are disjoint and f = f] +
-+ + f, then

A L o W1, ¢

Ao (fis-vrs fu)l 8 Z“fk“ Og“f“+ oll £l

where Cy depends only on ¢&. But this can be reworded as

Bofis s I < (1= 30) Al oo £+ ol

Let us define ¥y =P+ (1- %a)A . We clearly then have for disjoint fi, ..., f,

A‘l’o(fl y vy f;l) > —C()Z”f}(”,

k=1

and §(Wp) < 2log2. Let W(f) =inf) ;_, Wo(fx) where the infimum is taken
over all disjoint fi, ..., f, with f =Y fi. Clearly ¥o(f) — Collf]| < ¥(f) <
Yo(f) and hence for any f;,..., fu

IA‘P(.fl, RS ’.f;l)_A'l’o(ﬁ) )f;l)l SCOZ”f}(“

k=1



508 N. J. KALTON

Also d(¥) < 2log2 + Cyp. Now Ag(f, g) > 0 for disjoint f, g so that there
is a constant C; = C;(¢) from Lemma 6.5 with

Ax(fis oy i) 2 =580, s o) = Y I

k=1
for arbitrary fi,..., f,. But this means that

Ay(fis-oes ) 2 585 s ) = Y I
k=1
Hence

n
Ao(fis ooy fu) = =BAUfis s Jo) = C2 D NIl
k=1
Clearly this reasoning may also be applied to —® and so we conclude that

n
Ao(fis s SIS AN, ooes i)+ C2 Y I
k=1

Now we can apply Proposition 6.1 to %(CD + A) to deduce that there is a
Kothe function space X with d (%(d)+ A), ®y) < C3 where C3 depends only
on ¢. Hence d(®, Py — Ox+) <2C; 0O.

We now state an extension to maps defined on ideals rather than semi-ideals.
Let _# be an ideal contained in LlogL . Then a homogeneous map ®: ¢ — C
will be called semilinear if ®@| ¢ is semilinear and (4.5) holds forall f, g€ 7.
® is called real if its restriction to %, is real.

Corollary 6.7. Suppose ¢ > 0; then there exists a constant C = C(g) so that if
£ be a strict ideal contained in L, and if ®: _# — C be a real semilinear map
with 6(®) < (1 —¢&)log2 then there exists a Kothe function space X so that

[D(f) = (Px () — Px- (NI < CISA

forall fe Z.If ® is not necessarily real, then we can conclude that there exist
Koéthe function spaces X, Y so that

|D(f) = (Px(f) + i@y (f) — Px-(f) — i@y (/) < ClISfIl.
Proof. We apply Theorem 6.6, when @ is real, to approximate ®|z and then
notice that for arbitrary f we can write f = (Rf)+—(Rf)-+i(3f)+—i(3f)- =
fi—f+ifs—ifs,say. Thus

[R(f) = ®(fi) + P(f2) — iP(f) + i®(fa)| < Coll A

for some constant C . A similar inequality holds for ®y and ®x. by Lemma
5.6 and so the result follows. If ® is complex, one uses the same argument on
its real and imaginary parts when restricted to £, . O

Let us give an application to minimal extensions (see §1). Compare the
original constructions of minimal extensions of /; in [23, 44].

Theorem 6.8. Let Z be a minimal extension of the real space Ly g(S, X, ).
Then there exists a Kothe function space X so that Z is linearly homeomorphic
to the completion of L(u) ® R under the quasinorm

15 )l = 11+ | = Dx(f) + Px- ()]
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Proof. In fact there is a quasilinear map F: L; — R sothat Z can be identified
with the space L; &r R of all pairs (f, a) quasinormed by ||(f, a)|| = ||| +
|a — F(f)|. Now consider F restricted to E, where E is a suitable weighted
Ly-space so that ||x||g > ||x|| for every x € Ly,. Since L, is a % -space
[23], there exists a linear map (not necessarily continuous!) ¢: L, — R with
|[F(f)—&(f)] < C|fllg for some constant C. Now F — ¢ will be semilinear
according to our definition on the ideal E . Thus there exists a K6the function
space X and a > 0 so that

|F(f) — ¢(f) — o Px (f) — Px- (/) < CillSl

for f € E by the real version of Corollary 6.7. Now this implies [23, Theorem
2.5] the isomorphism of the space Z with the minimal extension generated by
@X - (DX‘: . D

7. APPLICATIONS TO CENTRALIZERS

Suppose X is a Kothe function space and Q: X — Ly is a centralizer on
X . We say Q is real if Q(f) is a real function whenever f is a real function.

Lemma 7.1. Let Q be a centralizer on X with p(Q) = p. Then there exist real
centralizers Q,, Q, so that p(Q;) <2p for j=1,2 and

1R2(F) = Q1(f) = iQ(N)llx < 2plfllx forevery feX. O
Proof. Set Q(f) = RQ(RS) + iRQITSf) and Q(f) = FQRS) — iI(Q7TS)).
The lemma then follows quickly. 0O

We now use [29, Theorem 5.1]. If Q: X — Ly is a centralizer then there is
a centralizer QI on L, with p(Q) < 36p(Q) and so that for x € X and
y € X* we have

1M (xy) — QUx)yll < 18p(Q)l|x] x|yl x- -
Furthermore QI is unique up to equivalence, i.e., if Q' is any other centralizer
on L, satisfying
19 (xy) = Qx)yll < Clix|Ixlyllx-
then for some constant C; we have ||QUI(f) — Q' (f)|| < Ci||f]|l for all f €
L,. Q1 is defined by QU(f) = Q(x)y, where f = xy is the Lozanovskii
factorization of f for X . Clearly if Q is real the so is Q.

Theorem 7.2. (i) Let Xy, X, be Kothe function spaces and let X =[Xy, X1lg -
Let Q be the induced centralizer on X . Then for f € L,

QU(f) = f(log x; — logxo),
where |f| = xoyo = x1y1 are the Lozanovskii factorizations for |f| with respect
to Xo, Xi.
(ii) Let & = {Xy: w € T} be a strongly admissible family of Kothe function
spaces, and X = Xy and Q is the centralizer induced on X . Then for f € L,

Q) = £s) [

-7

n

e 'logg(s, 1) %) ,

where f(s) = g(s, t)h(s, t) is the Lozanovskii factorization for the space & on
S x T defined by

l¢lle = esssup [|o(-, w)|x, -



510 N. J. KALTON

Proof. (i) Assume f has norm one and is factored as stated. On ¥ = {z: 0 <
Rz < 1} consider the functions G(z) = x&‘zxf and H(z) = |yo|'~?|»1)?.
Then both G, H € /(). Also |G(O)|x <1 and ||H(8)|lx- < 1 since
X* =[X;, X{lg. However G(z)H(z) = |f| from which it follows that |f| =
G(0)H(0) is the Lozanovskii factorization for X. Now consider any opti-
mal factorization x = u)~uf with wup, u; > 0 and |uollx, = lluullx, = 1.
Let K(z) = u(l)'zuf; then |K(z)H(z)|| <1 but [K(0)H(0)du = 1. Hence
JK(z)H(z)dy = 1 for all z and so K(z, s)H(z,s) is real and positive for
all z for almost every s € S. (An argument with a dense countable set in
& 1is required here.) Thus K(z, s)H(z, s) = f(s) a.e. and so uy(s) = xo(s),
ui(s) = x1(s) for s € supp f = suppx. Now by (3.2) this implies that Q(x)
can only take the value x(logx; —logxp).
Now
Q(f) = Q(x)H(9)sgn £,

where sgn f = f/|f| as long as f # 0 and is zero otherwise. Hence

QUI(f) = f(logx; —logxp). O

(i1) The proof is very similar. Suppose as above that f € L; and that
|f(s)| = g(s, t)h(s, t) is the Lozanovskii factorization of |f| for & . Define
G,HeNt by

T it
6(z) = exp ( | St roests, ;’—;) ,

et —z

Tel+ dt
H(z) =exp (/ iit_ilogh(s,t)ﬂ-).

-7

It follows from the duality theorem Corollary 4.9 that |f| = G(0)H(0) is the
Lozanovskii factorization for X . Further, arguing as in the case (i) it can be
shown that if x = G(0) and if K € #"* satisfies K(0) = x and | K(w)|x, <1
for w € T then K(z, s) = G(z,s) on supp f. Thus applying Theorem 3.3 we
obtain the theorem. O

Notice in the above theorem that in case (i) the centralizer Q! is indepen-
dent of 6. We now connect our results with those of the preceding sections. If
Q is a centralizer on X we defined a strict ideal ¥ = % C L; by f € _#Z if
and only if QUI(f) € L,. We omit the simple proof that # is a strict ideal.
On # we define the functional ®® by ®9(f) = [QUI(f)du.

Lemma 7.3. &9 is a semilinear functional on F with 6(®%) < 108p(Q). P2
is real whenever Q is real.

Proof. Condition (4.3) is obvious and (4.4) follows from Lemma 4.2 of [29].
(4.5) follows from Lemma 4.3 of [29].

Proposition 7.4. (i) Let Xy, Xi be a pair of Kothe function spaces and let X =
[Xo, X1l and suppose Q is the corresponding centralizer on X . Then Fx, N
S, C S and

) = O, (f) - Px,(f),  f€INFx,.

(i) If & = {Xw: w € T} is a strongly admissible family of Kothe function
spaces, and X = Xo with Q the corresponding centralizer, then there is strict
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semi-ideal ¥ C % so that

T dt
N = [ eton N5, fes
. ¢ T
The proofs of these statements are immediate.
We now prove our main theorem. We recall that two centralizers
Q; and Q, on X are called equivalent if there exists a constant B so that

19:1() = LNllx < Bllfllx forall feX.

Theorem 7.6. There is a constant y > 0 and a constant C < oo so that whenever
1 <p <2 and X is a p-convex and q-concave Kithe function space with
;}-+ % =1 and Q is a real centralizer on X with p(Q) < y/q then there is a
pair of Kothe function spaces Xo, Xy so that X =[Xo, X1]1j2 and if Qq is the
induced centralizer then ||Q(f) — Qo(f)llx < C|fllx for f € X. In particular
Q is equivalent to Q.

Furthermore Xy and X, are unique up to equivalent norming. If Yy, Y| are
Kothe function spaces such that [Yy, Y1112 = X with an equivalent norm and
the induced centralizer Q, is equivalent to Q then Yy = Xo with an equivalent
norm and Y, = X, with an equivalent norm.

Proof. Let us dispose of the uniqueness question. If €; is equivalent to Q
then Q[II] and Q! are equivalent. Hence on a suitable strict semi-ideal, ®©
is equivalent to @y, — Py, , while @y, + Py, is equivalent to 2®x . Thus, up
to equivalence @y, and Py, are uniquely determined. Proposition 4.5 shows
then that the spaces Y, Y, if they exist, are unique up to equivalence of norm.

The above argument quickly modifies to establish existence of Xj, X;. In-
deed we will take y = 555 . Then p(Ql!l) < 0.18¢~! and hence by Lemma 4.3
of [29], §(®?) < 0.54¢~!. Thus we can find a Kéthe function space W so
that if fe€_# = LlogLnN _% then

9@ (f) — (@w(f) — @w-())] < Coll £,

where Cp is a universal constant (Corollary 6.7). Now on _#, we consider
Dy =Dy — $(¢W—¢W.) and ®; = Oy + %(QW—CDW.). If f, g€ # then

A(Do(fa g) ZA(D){(fs g) - éA(PW(fa g)

> Aoy (f> 8) — éAAm g) >0

since X is g-concave (Theorem 5.3). Similarly,

Aoy(f» 8) < Doy (f, 8) + éAq,W. f. )

<o (f. )+ (1-3) (7 8)

SAA(f’ g)

since X is p-convex, again utilizing Theorem 5.3. Thus by Theorem 5.2 there
is a Kothe function space X, so that on %, we have @y = ®y,. A similar
calculation shows that ®; = ®y, for some K&the function space X;. Since
Oy, + @y, = 20y on # we have [Xp, X1l = X, by Proposition 4.5. Let
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Qo be the corresponding induced centralizer. Then @< =

S - Thus for f € 7, |@%(f) - @%(f)| < Cog™'|If]]-

Now J(®%?) < 0.54¢~! and §(d) < g~ 'log2. Hence, by breaking up an
arbitrary f € £ into its real and imaginary and then positive and negative parts
as in Theorem 6.7, it follows that for all f € # we have |®%(f) — ®W(f)| <
Ciq7 Y| f|| for some universal constant C; .

Now suppose x € X and let y € X* be such that xy € # . Then QUl(xy),
le](xy) € L; and hence both Q(x)y and Qy(x)y are integrable. Further, it
follows from Theorem 2.6 that p(€) is bounded by a universal constant C, .
Thus,

((DW - d)W.) on

1
q

[ - Qutxnydu] < | [ @xy) - 0l eny) d

+ 18(p(Q) + p(Q0)) x| x 17 ]l.x-
< D% (xy) = D% (xy)| + Callx | xllyllx-

where C;, C,4 are universal constants. By considering all such y we obtain

1€2(x) — Qo(x)|lx < Callxl|x
and the proof is complete. O

Remark. In order that X can be renormed to be p-convex and g-concave where
g < o0, it is necessary and sufficient that X is super-reflexive. Thus Theorem
7.6 holds for super-reflexive X but not necessarily isometrically.

We recall that if X is a rearrangement-invariant Banach function space on
S then a centralizer Q is called symmetric if for some constant C we have
1Q(x) — Q(x o 0)||x < C|lx||x for all x € X and all measure-preserving auto-
morphisms ¢ of S.

Corollary 7.7. If u is nonatomic or S = N with u counting measure, and
the space X in Theorem 7.6 is rearrangement invariant and S is a symmetric
centralizer then the spaces Xo, X\ can be chosen to be rearrangement invariant.

Proof. In the proof of Theorem 7.6 observe that if follows from the equivalence
of ¢~'®? and 2®y ~P, on # that for some constant C; one has |®y (f)—
DOy (foa) < Cif| for every measure-preserving automorphism. From this it
is easy to deduce that if x € By then e~ € < ||x og|lw < e so that W can
be renormed to be rearrangement invariant. Continuing with the proof then
yields that Xy, X; are also rearrangement invariant. 0O

We now use Corollary 7.7 to prove [29, Theorem 6.10] under the additional
hypothesis of super-reflexivity.

Corollary 7.8. Suppose either u is nonatomic or S = N with counting measure.
Suppose 1 < py < p1 < 0o, and that T is an operator of strong types (po, Do)
and (p1,p1). Let X be any super-reflexive rearrangement-invariant Banach
function space whose Boyd indices satisfy py < px < qx < p1. Then for any
symmetric centralizer Q on X there is a constant C so that ||[T, Q)(x)||x <
Clix|lx -

Proof. We may suppose X is p-convex and g-concave where !—', + % =1.
We may further simplify by noting that it is only necessary by Lemma 7.1 to
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consider the case when € is real and p(Q) is sufficiently small. But then there
are r.i. spaces Xo, X; so that X =[Xo, X];;> and the induced centralizer is
equivalent to Q. Now by interpolation there exists ¢ > 0 so that if 6 = % +e,
then pg < px, < qx, < p1. Hence T is bounded on Xj/,;, and Theorem 2.6
will yield the result.

The above theorem works for real centralizers. For the general case it is
possible to realize an arbitrary centralizer as a derivation induced by a family
of three spaces. We have:

Theorem 7.9. There is a constant y > 0 so that if X is a Kéthe function space
which is p-convex and q-concave where 1—1)+% =1and 1 <p <2 and Q
is a centralizer on X with p(Q) < yq~! then there are three Kéthe function
spaces X(j): j=1,2,3 so that if we consider the family & = {Xy,: w € T}
where X,o = X(j) when 2(j — 1)n/3 < 2jn/3 then Xy = X and the induced
centralizer Qq is equivalent to Q.

We shall not prove this in detail; the ideas are similar to those of Theorem
7.6. The key observation is that

i(1 - )
n

O — ((1)2(13,\’(1) + wfbx(z) + q)X(3))
on some strict suitable semi-ideal, where w = e2%/3 . By splitting ®< into its
real and imaginary parts and utilizing the equation

Oy = 3(Px1) + Px2) + Px(3))

one obtains equations to determine X(j) for j=1,2, 3.

8. APPLICATIONS TO SCHATTEN CLASSES

We now extend our ideas to Schatten ideals (see [1] for a discussion of inter-
polation in this setting). Suppose /#Z is a separable Hilbert space and & (#) is
the algebra of all bounded operators on # . Let E be a K6the sequence space
(i.e., a Kothe function space on N) which is symmetric (or rearrangement in-
variant) then we define the corresponding Schatten ideal %% to be the algebra
of all operators 4 € % (#) whose singular values s,(A) satisfy (s,) € E. We
define ||A||g = ||(sn(A4))||r and then %% is a Banach space which is an ideal in
PB(# ). Further if we regard each 4 € & (#) as an infinite matrix then the
spaces %z are all admissible spaces regarded as spaces of functions on N x N
with the usual counting measure. Thus our approach to complex interpolation
derived in §2 applies to this setting.

Following [31] we define a map Q: &z — % (#) to be a bicentralizer pro-
vided for some constant p = p(£2) we have

(8.1) QW AW) - VAW ||e < pllVI 1Al W]

for A€ & and V, W € Z(#). By [31, Proposition 4.1] (where it is proved
only for %,) every bicentralizer is a derivation on %z with p(Q) < 8p. Let us
say that a bicentralizer is hermitian if Q(H) is hermitian for every hermitian
H . The argument of Lemma 7.1 yields
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Lemma 8.1. Let Q be a bicentralizer on %r . Then there exist hermitian bicen-
tralizers Q;, Q, and a constant C so that if A € & then ||Q(A) — Q;(A4) —
iQ(A)|| < CllA|E.

Let us regard %% as a space of infinite matrices by distinguishing a particular
orthonormal basis of # . For any 4 = (aj) € B (#) we define Z(4) =
diag(a;;) and Z,(A4) = diag(ai1, ..., ann,0,...).

Lemma 8.2. If &z is B-convex, then there is a constant C = C(E) so that if
Q is a bicentralizer on €r then for any A € g we have |[Z, QA <
Cp(Q)| Al -

Proof. By Lemma 2.1, there is a constant Cy = Co(E) so thatif A4, ..., 4, €
%% then
n
lAa(41, ..., An)lle < Cop Y 1 4lle -
k=1
Hence if Uy, ..., U, € B(Z) with |[U|| <1 and if I (4) =137 | U AU,
then

Il7, Qlle = sup [[Z, QU4 < Cip,
l4fie<1

where C, = C|(E).

For fixed m € N let U, . . = diag(éi,..., &, 0,...) where g = £1.
By averaging over all choices of signs we obtain ||[[Z,, Q]| < Cip. Let P, be
the orthogonal projection onto the first #n basis vectors. Then

1(ZnA) = Zn U A)l|E < CipllAllE -

Thus
1Q(PrD AP,) — 2, QA)|E < CrpllAllE -

Hence
| Po(UZ A) — DQA))Palle < (Cr+ 1)p||A|lE

for every n and the result follows. 0O

Theorem 8.3. Let B be a super-reflexive Schatten ideal. Then for every sym-
metric centralizer Qf on E we can define a bicentralizer Q on % by

(8.2) Q(A) = U~ diag(Qe(sn))V",

where (s,) are the singular values of A and U,V are norm operators chosen
so that U*U =VV* =1 and UAV = diag(s,).

Conversely, if Q' is a bicentralizer on €% then there is a symmetric centralizer
Qr on E so that if Q is given by (8.2) then Q is equivalent to ' . Further
there is a constant y = y(E) > 0 so that if Q' is hermitian, and p(') < y, then

there are symmetric Kothe sequence spaces Eq, E\ so that [E,, €&,112 = %E

where E is equivalent to E (i.e., has an equivalent norm), and the induced
derivation is equivalent to €' .

Proof. We break the proof up into several steps. First consider the situation
when Ey, E; are symmetric Kéthe sequence spaces and [Ey, E1]y2 = E, with
the induced centralizer Qp. We claim that [%%,, 8g,1i,2 = %z and that the
induced derivation the bicentralizer Q given by (8.2). To see this suppose
|Alle = 1 so that ||s||g = 1. If F(z) is an extremal for A4 by considering
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Z(UF(z)V) we must have |41 > 1. Conversely if u € Bg, and v € Bg,
satisfying s2 = uv then F(z) = U*diag(ul—?vZ)V* is an extremal for A4.
Thus by differentiating, we may suppose that the induced derivation is given by
Q(A) = U* diag(Qg(s))V*, and this must be a bicentralizer by interpolation.

Now if &% is super reflexive so that E is super reflexive (and hence can be
renormed to be p-convex and g-concave where 1 < p < oo and 1 +1 =1)
then Theorem 7.6 and Lemma 7.1 can be used to prove the first statement of
the theorem.

Now suppose ' is an arbitrary bicentralizer on %z . Define Qg on E by
Qr(x) =y where diag(y,) = & (diag(x,)). It is fairly easy to check that Qg is
a symmetric centralizer on E by considering the effect of multiplying diag(x,)
by diag(u,) or replacing it by S, diag(x,)S,-: where 7 is a permutation of N
and S is the corresponding operator obtained by permuting the basis elements.
If |Ale =1 and A has singular values (s,) then we must have

1Q'(4) — UQ'(diag(sn))V"l£ < pllAlle
where p = p(Q'). Now
1 (diag(sn)) — €Y (diag(sn))|| < Cp,
where C depends only on E. Thus
1Y (4) — U* diag(Qg(sn)V*llz < (C + 1)p

and the second part follows.
For the last statement, observe that if p(Q’) is small enough then so is p(Qg)
and we can apply Theorem 7.6 and the first part of the proof. O

We remark that the proof of Theorem 8.3 essentially classifies bicentralizers
on %x as being, up to equivalence, in bijective correspondence with symmetric
centralizers on E. The correspondence is given by the relationship Qy(A4) =
U* diag(Qg, g(s,))V* established in the proof.

Theorem 8.4. Suppose 1 < py < p < p) < 0o. Suppose J is a bounded operator
on both &,, and %, . Then for every bicentralizer Q on &, there is a constant
C so that for A € &, we have |7, Q)(A)|, < C|lA4]lp-

The proof of Theorem 8.4 is the same as that of Corollary 7.8, using Arazy’s
generalization of the Boyd interpolation theorem [1] and the above Theorem
8.3. Of course, we could state Theorem 8.4 in somewhat more generality.

We conclude by studying the operator versions of indicators maps Py . Let
us first notice that if E is a symmetric Kothe sequence space then [} C E C [
so that % D /logl/. We also recall that the sequence space 4™ [19, 31] is
defined to be the space of all sequences s € /; such that

> oo|.§:1-i-"'-i-.§k|
sl = 3 el + 30 BLE RS oo,
k=1 k=1

where § is any rearrangement of s so that |§;| is monotone decreasing. (Strictly,
we require only that § is a rearrangement of s in the sense that if o € C\{0}
then the sets {k: sy = a} and {k: § = o} have the same cardinalities; also
the quasinorm || ||, is well defined only up to equivalence since it depends on
the choice of the rearrangement.)
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Lemma 8.5. There is a constant C so that if E is a symmetric Kéthe sequence
space, then for any s € h’™ nllogl we have |Dg(s)| < C||s|l4.

Proof. For any sequence B = (f,)32, of complex numbers let D(f) denote
the sequence (Bg, B1, B1,...) where each f, is repeated 2" times. Thus
ID(B)|| = 3°2"|Bn|. Nextlet B = 3Bn,—1 for n>1 and B = 0. Then it is
clear that if D(B) € llog! then |®g(D(B))—Pr(D(B"))| < 2|D(B)|l, by Lemma
5.6. Thus if ag = fo and a, = By — §Bs—1 for n > 1 then || ®g(D(e))| <
172||D( Bl . Now if a = (a,)$2, is any finitely nonzero sequence which satisfies
3> 2"a, = 0 then we can set fy = ap and subsequently B, = Y 7_, 2% "oy .
Thus g is finitely nonzero and we conclude that

En: 2%y,

k=1

@s(D(@)| < =Y

n=0

Now suppose s = (5¢)72, is any finitely nonzero real sequence arranged in

decreasing order of absolute value. Let o, = 27" Zi'zzl,,_ ! S - Also let 8, = |son|

for n > 0. Then we obviously have that Y o2 2716, < ||s||. If 2" < r <

27+l _ 1 note that
2n+l_l

D sk

k=1

< + 26,

r
S
k=1

and hence for n > 1,
2n+l__1

1
<> s

r=2n

r

n
Z 2kak Z Sk
k=0 k=1
Summing, including the obvious term when n = 0, we obtain
|P£(D())]| < 6]l -

+2"0,.

Now consider ¢t = s — D(a). We have || < 26, and 2,2(:;,,_1 t, =0 for
n>1 and 2" < k <2"t1 —1;also t; = 0. We may thus permute the elements
of ¢ in the blocks (2”7,2" +1,...,2"! —1) to construct a sequence { with
| Sicifl <26, for n > 1 and 2" < r < 2" — 1. Thus if u, = Y, _, &
then |lul| < 302,210, < 4|s||. Since # = ux — U, and up = 0 we have
®p(1) < 32||s||. Combining we have that

D (s) < 22|l + 2(lell + 1D(@)) < Collslln

for a suitable absolute constant Cj.

Next if s is real but not necessarily finitely nonzero, consider for each N the
sequence sV) defined by S,(CN ) =5, for k < N and s, = 0 otherwise. Then,
denoting the basis vectors by ¢,

N
O (S(N) - ZskeNH)
k=1

by the above reasoning. If s € AY™ then Y& s, — 0 as N — oo and
so we conclude limsupy_,q, [@e(s™)| < Ci||s||, for some absolute constant
C;. Let s = s, — s_ be the splitting of s into positive and negative parts.

< Gollslla
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Then ®g(s;) = limy_o ®(s) and ®g(s_) = limy_.e Pr(s™) . It quickly
follows that |®g(s)| < Cs|s||, for some absolute constant Cj.

Finally, if s is a complex sequence the proof is completed by taking real and
imaginary parts. O

Let %105, denote the ideal of operatorsin % whose singular value s = (s,) €
llog!. It is easy to show that if T € %)y then the eigenvalues of T repeated
according to multiplicity belong to /log/. (Here we adjoin zeroes if the set of
eigenvalues is finite.) To see this observe that if (4,) are the eigenvalues of
T, arranged in decreasing order of absolute value then |A;---4,| < s;---s, for
every n [21]. Hence since the function xe* is concave for x < -2, if we
suppose, without loss of generality that s; < e~2 then for every N,

N N
> " 1Anl10g|An| =) splogsy, .

n=1 n=1

Now if E is a symmetric Kéthe sequence space for T € %,y we define
Dp(T) = Pe((A)2)) -

Theorem 8.6. There is a universal constant C so that, whenever E is a sym-
metric Kothe sequence space, then ®g satisfies

|Ap, (T, T2)| < C(IIT1ll + 1 T21h)
whenever Ty, T; € Bioq; -

Proof. Let A1) and A®) denote the eigenvalues of T;, T, respectively both ar-
ranged in decreasing order of absolute value. Let v denote the similar sequence
for Ty + T . Then, arguing as in [19, Lemma 5.2] it may be shown that the op-
erator V =T & T,o—(T1+17) on Z®# &# can be written as a commutator
V =[A, B] where ||4|| <2 and ||B|; < ||T1|l: + [|T2|l: . Hence its eigenvalues
a =AY @i @ (-v) are in A™. Further for some universal constant Cp
we have |lall, < Go(||Tilli + |T2]l1) . Thus |®g(e)| < Ci((IT1]l + [|T2]l1) for
some universal C;. It then follows quickly that |®g(v)—®g(AD) —Dg(A?)| <
Cy(||IT1ll1 +IT2]l1) from which the theorem is immediate. O

9. APPENDIX: AN APPLICATION TO HARMONIC ANALYSIS

In this section we consider some applications to harmonic analysis. We shall
suppose that S is a compact metric space and that u is a probability measure
on S. We consider Kothe function spaces modelled on § x T with the product
measure fi = 4 x A where dA = (2n)~'d@ is normalized Haar measure on the
circle.

We will be specifically interested in the (vector-valued) Riesz transform R.
If x € Ly(S x T) satisfies x; € L;(T) p-a.e. where x;(e’) = x(s, e’) then we
define ,

; . T x(s,e’) dt
iy _ 1 > - S
Rx(s, %) —_1 o 1—relt=92gx
where the limit exists ji-a.e.

Suppose X is a Kothe function space containing L., . We shall say that R

is bounded on X if there exists a constant C so that ||Rx||xy < C||x|{x for all
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x € Ly, . If R is bounded on X then so are R and Ry where R(f) = R(f)
and Ry(x) =e"R(e"f).

If h € L(S) satisfies # > 0 a.e. and [hdu = 1 then we say that X is
h-acceptable if X contains L., and for some constant C we have

h(s)|x(s, e")|dit < Cllx|lx
SxT
forall x € X. If X is lg-acceptable we simply say that X is acceptable. If
X is h-acceptable then R: X — L is well defined.
In this section we adopt the convention that C is a constant independent of
X, y, &, etc. but possibly depending on X, Xy, ... which may vary from line
to line.

Lemma 9.1. Suppose X is a Kéthe function space for which R is bounded. Then
there exists h so that X is h-acceptable and ||Rx|x < C||x|lx forall xe€ X .

Proof. Let Jx =Rx — Rox. For x € L,

) 2n . do

ity _ [/ ANl

Jx(s, e )—/0 x(s, e )27r'

Thus ||Jx|lx < Cllx|x for x € Lo, . Let Xs be the restriction of X to S, so
that if x € Lo(S) then x € Xg if and only if X € X where X(s, ) = x(s)
and then |x||x, = || X||x. Pick any A € X{ with A >0 a.e. and [hdu=1.
Then

/ h(s)|x(s. e")|dit < Cix]lx

for x € L,, . This clearly extends to X and so X is A-acceptable. It follows
quickly that ||Rx||x < C||x||x for all x € X, since now R is well defined on
X. O

If X is acceptable (i.e., Lo, C X C L;) then X* is also acceptable. We
shall say that X is weakly acceptable if L, ¢ X C L, for some p > 0;
thus X is weakly acceptable if X? is acceptable for some p > 0. In this
case we at least have X* C L; so it follows that LlogL C % N %« . It will
be convenient to restrict attention largely to weakly acceptable spaces X so
that the indicators ®x have common domain LlogL . We shall also need the
corresponding centralizer on L, Q[\l,]( f) = flog|x| where |f| = xx* is the
Lozanovskii factorization of |f| for X .

Lemma 9.2. Suppose X is a weakly acceptable Kéthe function space on S x T.
Then there is a constant C so that if f € LlogL, QM) < C|lfllL1ogr-

Proof. The assumptions imply the existence of C so that

—Clfll < @x(f) < CIfN + A(S)
for f € (LlogL),. Thus |®x(f)| < C||fllLiogz for all f € LlogL by the
quasiadditivity of @y . Hence if ||7]lc <1 and A4 is any Borel set over which
Q[\l,]( f) is integrable, we have
1Q1(N)nLs = QY (fnL0ll < CIIS
and so

| /A QW(Nndi—Dx(fr10)| < CIISIl.
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Hence ||QMN(f)1,4]| < C||fllLigz and the lemma follows easily. O

We denote by H! the subspace of Li(S x T) of all f such that

2n
f(s,eMe™dt=0, u-a.e.
0

for n> 0. Hj is the subspace of all f € H! such that

2r
f(s,edt=0, u-a.e.

We shall need the concept of a generalized outer function. If x € L; is
such that for p-a.e. s either x; = 0 A-a.e. or log|xs| € L;(T) we define the
corresponding generalized outer function ¢ € H! by

. 2r it it .
E(s, e'") =limexp (/ ﬂlog |x(s, e'")]| ‘21—;)
0

r— eit — reit

when log|xs| € L; and &(s, ) = 0 otherwise. Then ¢ is defined a.e. and
€] = |x| a.e.

Proposition 9.3. Suppose Xo, X| are acceptable Kéthe function spaces and that
X =[Xy, X1]o where 0 < 6 < 1. Suppose that R is bounded on X and that
X CcLlogL. Let Q: X — Ly be the induced centralizer. Then Q(X) C L, .

If, further, R is bounded on X, and X is separable, then

IR, Qllx = sup [|RQ(x) - QR(x)|lx < oo
[Ixlx<1

if and only if there is a constant C so that

DN < CIA
for fe HinLlogL, where ® = &% = @y, — Oy, .
Proof. We first observe that if f € X then Q(f) — QUI(f) € L;, where QI
is the corresponding centralizer on L;, by Theorem 5.1 of [29] since 1 € X*.
However QI = QlJ — QU and so Lemma 9.2 gives the first part of our con-
clusion.

We shall need the following observation. If £ € L, then by considering the
constant function F(z) = & for 0 < Rz < 1 we see that (¢, 0) € doX and
hence Q(&) € X .

Now assume |[|[R, Q]||x < co. Suppose f € HlnLlogL and that | f||=1.
Let |f| = x;y; be the Lozanovskii factorization of |f| for X; for j =0, 1. Let
x=x7%x? and y = y;7%?; then |x||x = |[y|lx- = 1. Since X is acceptable,
log, x, log, x* € L. Let Sy be the set of s € S such that f(s, ) is nonzero
on a set of positive A-measure. For p-a.e. s €Sy we have f; € H(T) so that

2n . dt
ity 8¢
| el 37 < o0

and hence for almost every such s, logx; is integrable. For s ¢ Sy, x; =0,
a.e.
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Now let ¢ be the generalized outer function corresponding to x. Clearly
&€ BynH! and f¢-!' € By.NH] (here we define f¢~! tobezeroif s ¢ Sp.)
It follows from the uniqueness principle of Corollary 4.9 that

Q(&) = &(log x; —log xo).

As f € LlogL, we have QU(f) € L; and hence by Theorem 5.1 of [29] we
have fE-1Q() € Ly . Since RE = ¢ we have an estimate

IRQ(E) = Q(S)lx < C.

Thus also f¢~'RQ(£) € Ly . But f¢-!1 € H} and (RQ(&)), is u-a.e. in Hyp;.
Thus f¢~'RQ(¢) € H}, and in particular [ f¢~'RQ(E)dfi =0 from which it
follows that |[ fE~1Q(&)dj| < C, ie.

=Nl <C.

/ F(logx — log xo) dji

Conversely, suppose we have the estimate |®(f)| < C|f|| for f € LlogL N
H; . Suppose &, n € L, . Then both #nQ(RE) and nRQ(E) arein Ly, and

[ nure)ai - @R < Cllslnly-

) [ Rn@@dn - @R | < il

by Theorem 5.1 of [29]. Now observe that nRE — ER*n = Ron.RE — Ry.Roé .
Since Ron.RE € Llog L we have
|D(Ron.RE)| < C||Ron-RE|| < Ci&llxllmllx~ -
Since @ is real, we also have |®(Rn.Ro&)| < C|iE|lxnllx- -
Now using the quasi-addivity of @ this implies
|P(nRE — ER* )| < ClIS | xnllx- -
Hence

| e - Rence) di| < Clélalnle

and thus ||[R, Q)| x < C||€||x for bounded &.

This inequality can now be extended to the whole of X , when X is separable
using the argument of [29, p. 82]. Notice first that if £ € X then RQ(&) is
well defined. If x € X we may write x = ;2 &, where &, € L, and

230:1 Enllx < 2||x||X- Let v =} |¢,] and w = E|Rén| I ox, = 25;1 éja
then

12(xn) = %20~ 'Q(W)]Ix < Cllx|lx,
[RQ(xn) = R(x,v~'Q(v))llx < Clix|lx,
1Q(Rxn) = (Rxn)w ™' Q(w)|lx < Cllx|1x -
Combining these statements we have

IR(xn0~'Q(v)) — (Rxa)w ™' Qw)llx < Clix[lx -
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As n — oo we have x, — x and Rx, — Rx in both X and Ly. By Lemma
4.3 of [29],
[R(xv~'Q(v)) = (RX)w ™' Q(w)]|x < Cllx|x
which implies
IRQ(x) — Q(Rx)|lx < Cllx|lx. O
We now come to the crucial calculation in our argument which essentially
allows us to integrate a differential estimate for the Riesz transform.

Proposition 9.4. Given 0 < 6y <1 and 1 < M < oo there is a constant 6 =
0(6g, M) > 0 so that whenever Xy, X; are weakly acceptable Kothe function
spaces on S x T so that R is bounded on both Xy and X, and such that if
Xo =[Xo, X1]g then ||R"X00 <M, and |O(f)| < M| f]l, for f € HC% NLlogL,
(where @ = @y, — Dy,) then for |0 — 0| < J we have ||R||x, < 2M .

Remark. 1t is important to observe that here ¢ is independent of the original
spaces Xy, X;. In the argument that follows we shall use the letter K to denote
a constant depending only on 6y, and M but not on the spaces Xy, X;.

Proof. Denote by Qg: Xy — Lo the centralizer induced on X,, 0 < 6 < 1,
by the scale [Xy, X;]. Similarly let Q be the centralizer on Xj induced by
[X5, X7]. We first observe that it is possible to choose dy = do(6o, M) > 0
and y = y(6y, M) < oo (both independent of Xy, X;) so that if |8 — 6y| < Jo
then p(€2), p(Q;) <7y and we have the inequalities

Ixllx, + Iy — Qallx, < 7l1Cx, ¥)llax, »
lx*(lx; + 1y = Qpx*llx; < vIx™, y*)llax; -

Let N(8), 0 < 6 <1, denote the norm of R on Xy. By our assumptions
N(6) is a bounded function and further log N(6) is a convex function of log 6 .
It follows that N(6) is absolutely continuous on closed subintervals of (0, 1).
Since N(0) > 1 for all 6 the function J(f) = N(6)~! is similarly absolutely
continuous on closed subintervals of (0, 1).

Now suppose that &y, &, 19, 1 are bounded nonnegative functions with
ISollxy, = I€1llx, = llnollx; = llmll X7 = 1. Suppose also u,v € Lo with
lulloo = [|vlloo < 1. Consider the function F(z) = u&} *¢; defined in the strip
& ={z:0< Rz < 1}. Then F is analytic into L., (this can be checked by
computing local Taylor series). Furtherif 0 < 6 < 1 then ||(F(0), F'(0))|lax, <
1 and so if |6 — 6| < o ||F'(0) — Qo(F(0))|lx, < 7.

Similarly if we set G(z) = vn(l)_znf , then for |6 — 6| < Jy,

1G7(6) — Q3(G(O))llx; < 7.

Now the map z — RF(z) is analytic into L, and so we may define a scalar-
valued analytic function 4 on & by h(z) = [ RF(z)G(z)dji. Then

h'(0)=/R*G(B)F’(O)dﬂ+/RF(O)G’(G)dﬂ.

Estimating the first term we have

/ R*G()F'(6)dji — / R*G(e)Qo(F(a))dﬁ}
< PIIR"G(0)llx; < yN(OIG(O)llx; < yN(6).
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We also have, using Theorem 5.1 of [29],

IR*G(6)Qq(F (8)) — Q(R*G(6).F(6))l|
< 367|R"G(0)I, | F(0)llx, < KN(O).

Here Q! is the induced centralizer on L; which is independent of 6, and
Qlll = Q“] Q“] For f € LlogL we haveby Lemma8.2 [QU(f)di=®(f).
Thus

| / R*G(8)Q(F(8)) djt — D(R*G(B).F (8 ))‘ < KN(6).
Combining the estimates we have
f R*G(6).F'(6)dji — D(R*G(6).F(6))

If we let @* = @y — % then a precisely similar calculation shows that

< KN(0).

‘ / RF(6).G'(0)dji — d)*(RF(B).G(e))‘ < KN(6).

However ®&* = —® and so by the quasi-additivity of ®
|A'(6) — P(R*G(0).F(0) — RF(0).G(6))| < KN(6).
Now,
R*G(6).F(0) — RF(60).G(0) = RG(6).RoF(6) — RF(6).RyG(6)
and so the estimate on @ and the fact that @ is real together give, as in the
preceding proposition,
|®(R*G(0).F(6) — RF(0).G(8))| < KN(6)?

and so |A'(0)| < KN(6)? for |6 — 6| < J. Thus if 6y—dy < 6 < 6 < 6+ do
we have

0,
|h(62) — h(61)| <K [ N(t)*dt
6,
Now |A(68) < N(6). Thus, it follows by taking suprema over all possible
choices of &, &, no, M, 4, v that

0>
IN(62) — N(6y)| <K /0 Nt dt

and at points of differentiability we obtain |[N'(0)| < KN(8)%. Thus |J'(6)| <
K at such points from which we have the estimate J(6) > M~ —K|6 — 6| for
|6 — 6o| < dp . The result follows. O

Lemma 9.5. Suppose p > 1 and 1 < M < oco. Then there is a constant 6 =
o(M,p) with0<d<1-— }J so that whenever X and Y are weakly acceptable
Kéthe function spaces, X is p-convex and q-concave (where 1‘—,+% =1), |R|lx <
M, and |®y(f)| < M| f| for f € H} N LlogL, then |R|xy- < 2M for
0<a<d

Proof. We start by remarking that XY* is a K6the function space for 0 < a <
1

E .
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Let Ty be an increasing sequence of finite subalgebras of the Borel sets of S
whose union is u-dense. If Ly is generated by atoms A;, ..., 4,, we define
Ey be the conditional expectation operator of L;(S x T) onto L;(Z}) where
X, 1s generated by 4; x T, ..., 4, x T. Let Ty be the doubly stochastic
operator on L;(S x T) defined by

) 2n o dr
Tnf(s, e") = kn(t —1)Enf(s, ") —,
0 2n

where ky is the Fejer kernel

sin?(N + 1)t/2

karlt) = (N + )sin’2/2

Now, by Theorem 5.7, there is a Kdthe function space Yy so that @y, (f) =
Oy (Tnf) for f € (LlogL),. We also have that if f € LlogLNnH} then, using
Corollary 5.9,

(@, ()] < (@ (TN + 211

< (G +2)unm-xun.

where K is a constant depending only on M and p, and independent of N .
Furthermore Ty has finite-dimensional range in L., so that for each N there
is a constant By so that |®y, (f)| < Bwy|f|| forall fe LlogL.

From the convexity and concavity conditions on X it follows that we may
define Kothe function spaces Z{, ZN by the equations Dyv = Dy + %d)yN
and @7y = @y - %Q)YN . Then each Z}Y, ZV is simply a renorming of X so

that R is bounded on both spaces. Furthermore if f € LlogL N H{,

D2y(1) ~ @53l = 2ir (] < KIS,

where K again depends only on M and p. We are thus in a position to apply
Lemma 8.4. There exists 0 < §y < % depending only on M and p, so that if
|6 — 1| < & then ||R||z, <2M , where Zy =[Zy, Zils .

Now suppose ¢ = %(50 and that 0 < a < J. To prove the lemma, it suffices
to consider & € XY* N Ly, of the form & = u|x||y|® where u,x,y € Ly,
l#lloo s lIXllxs lI¥llx €1, and we additionally suppose that log|y| € Lo .

Let yy =exp(Tylog|y|). For any f € (LlogL), we have

/ flogyydii = / T flogly| dii < Dy(Twf) = Oy, (f)

so that yy € By, . If we let &y = ulx|yy then [|yllzy < 1, where 6 — 3=
40 < &9 . Hence ||RCN|]Z;/ <2M.

Now, as N — oo we have ||[REy — RE||; — 0. Let A be the measurable
subset of § x T where log|RE| > —oo. For any # > 0 we may find a subset
A, of A with ji(A\A4,) < n and a subsequence such that log|R&y,| converges
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uniformly on A4, to log|R#y|. Now suppose f € (Leo)+ .

flog|Rn|dji = lim /A flog|Ry,|dii
n
< limsup(log(2M) + @~ (f14,))
l—00 (‘]

< log(2M) + lim sup(®x(f14,) +a®@y (T (f14,)
=10g(2M) + Qx(f14,) + a®y(f14,),

where the last step uses the continuity of ®y on order intervals. Using this
same continuity we obtain

/A f1og|RE| i < log2M) + @y (f14) + a®y (f14).

Ay

Now it follows that we have
/ flog|RE|dji < 1og2M) + D (f) + ay (),

since if f — f14 # 0 then the integral is —co. Hence |RE|xy. < 2M as
required. O

Lemma 9.6. Suppose X is an acceptable Kothe function space and that R is
bounded on X . Then there is a constant M so that |Dx(f)| < M| f] for
feH!nLlogL.

Proof. Clearly R is bounded on both X and X*. By interpolation we obtain
that [R, Q] is bounded on L, = [X, X*];;, where Q is the induced central-
izer. By Proposition 8.3 there exists B so that

|Px (f) — Px- (N = [2@x(f) - AN < Bl Sl

for f € H NnLlogL. Applying the same reasoning to X = L, where 1 <p <2
shows that |A(f)| < B'||f|| for f € H} N LlogL. The lemma follows. O

We now state our main theorem of the section.

Theorem 9.7. Let Xo, X| be acceptable Kéthe function spaces on SxT . Suppose
0< 6o <1 andthat X =[Xo, X1lg, is super reflexive and satisfies L, C X C L
for some 1 < s <r < oco. Suppose also that R is bounded on X . Let Q be the
induced centralizer on X . Then the following conditions are equivalent.

(1) IR, Q]l|lx <oo.

(2) There exists § > 0 so that R is bounded on Xg for |60 — 6p| < 9.

(3) For some constant M we have |®x (f)| < M||f|| for j =0, 1 whenever

feH!nLlogL.

Proof. (1) = (3). This follows by combining Proposition 9.3 which yields an
estimate for ®y, — @y, and Lemma 9.6 which yields an estimate for 6y®y, +
(1= 60), .

(3) = (2). Let Y be a renorming of X which is p-convex and g-concave
where p > 1 and },+é = 1. Assume ||R||y = M. Then (by Lemma 9.5) there
exists do = do(r, p, M) > 0 so that if 0 < a < Jp then Y X is acceptable,
IR|lyxs <2M ,and YX{ isboth 2g-concave and p’-convex where J;+5- = 1.
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Using Lemma 9.5 on (YX)* there exists &, = &,(r, p, M) > 0 so that if
0 < B <6 then |R|z < 4M where Z = (YX{)*(Xo)#. In particular if
a < J =min(dy, d;) then R is bounded on Z, = (Y X*)*(Xp)*. Now

q)za = (I)FYX;') + aCI)XO =A- ((Dy + aCI)X,) + a(I)XO
= A — (Py + a(Px, — Px,))

and hence Z; is a renorming of Xy ., whence R is bounded on this space
for 0 < a <J. A similar argument gives the case —d < a <0.
(2) = (1). This is simply Theorem 2.7. O

Let us now specialize to the case when S reduces to one point so that S x T
is simply T. In this case R cannot be bounded unless X is acceptable. Then
it follows from Lemma 9.5 that XL¢ is also acceptable for some a > 0 so that
X c L; for some s > 1. By duality X* D L, for some finite . It then follows
that in the hypotheses of Theorem 9.7 we need only assume Xy, X; weakly
acceptable, since then for some o < 6y < f we will have X,, Xp acceptable.
Thus we restate our result, adding one more equivalence.

Theorem 9.8. Let Xy, X be weakly acceptable Kithe function spaces on T.
Suppose 0 < 0y < 1 and that X = [Xo, Xilg, is super reflexive and R is
bounded on X . Then the following are equivalent.

(1) l[R, Qllx < oo.

(2) There exists 6 > 0 so that R is bounded on Xg for |6 —6y] < 9.

(3) For some constant C we have |®yx,(f)| < C|f|| for f € H} nLlogL

and j=0,1.
(4) The set {0: ||R||x, < oo} is open.

Let us now illustrate this result. Suppose w is an A,-weight where 1 <
p < 0o, ie. R is bounded on L,(w). Then R is bounded on L,(w’) for
0< 6 < 1. An application of (3) of Theorem 9.8 gives

/flogwa’l
T

for f € H} nLlogL. The point is that if X = L,(w) then ®x(f) = I‘;A(f) -
J flogwdA. Thus logw € BMO.

Conversely if logw € BMO then taking Xo = Ly(w~!) and X, = L,(w) we
see that R is bounded on L,(w®) for some a > 0, i.e. w® is an A4,-weight.
Thus we have the following result of Coifman-Rochberg [13] as a special case.

< CIIfIl

Corollary 9.9. Suppose 1 < p < oco. Then u € BMO(T) if and only if e** is an
Ap-weight for some o> 0.

Further well-known facts can also be recovered this way. If 1 < p < 2 and
w is an A,-weight, let Xo = L,, and X; = L;(w®) where a~! =2 —p. Then
L,(w) = Xy where 6 =a~!. Since R isbounded at both Xy and X, itis clear
that (3) and hence (4) of Theorem 9.8 hold. Thus R is bounded on L,_.(w?)
for some ¢ > 0 and B > 1. By further interpolation w is an A4,_,-weight.
(See Muckenhoupt [41].)

Let us now turn to the vector valued case. Suppose X is a super reflexive
Kothe function space on S. Then X is a (UMD)-space (Burkholder [7]) if
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and only if R is bounded on the space L,(X) ([4, 8]) where L,(X) may be
identified with the K6the function space on S x T of all x such that

2n ) dt
el = [ gz ) < oo,

where x;(s) = x(s, e*). We now state our main theorem.

Theorem 9.10. Let Xy, X; be Kiéthe function spaces on S and that X =
[Xo, X1lo, is a (UMD)-space. Let Q be the induced centralizer at X . Then
doX is a (UMD)-space if and only if there exists 6 > 0 so that Xy is a (UMD)-
space for |6 — 0y < 9.

Proof. Let us first prove the assertion under the additional hypotheses that
Xo, X, are acceptable and L, ¢ X € Ly where 1 < s < r < oo. Under
these hypotheses, Theorem 9.7 applies to the interpolation scale

Ly(Xg) = [L2(Xo) , La(X1)]p -

The proof will be complete when we show that doX is (UMD) if and only
if the induced centralizer Q at L,(X) satisfies [R, Q]z,x) < oo. It will be
convenient to suppose X, X; are renormed to be strictly convex Kothe func-
tion spaces; this involves no loss of generality, and results in uniqueness of the
choice of extremal (see Theorem 2.6 and remarks).

If x € Ly(X) and [x|[,x) = 1 then we write x = u|x| where |u| = 1
a.e. Let |x| = |xo|'=%|x|% where |xollL,0x,) = IIX1llzyx,) = 1. By Holder’s
inequality ||x/|x = X0, ¢llx, = ||X1,¢]lx, = 1 a.e. Thus, utilizing the uniqueness
of both Q and Q

Q(x) = x(log|x| — log |xol),
((x))r = x(log |x1 4| — log |x0,¢|) = ((x)); a.e.
Now if ¢, y € Lo(S x T), then ||(¢, ¥)||L,qx) is equivalent to

(J1omear)” + ([ 1 -owrar)”

Here to avoid cumbersome measurability problems we may interpret the inte-
grals as upper integrals; however, it can be verified that all functions are suitably
measurable. Thus ||(¢, ¥)||z,x is equivalentto ||¢||,x)+ ¥ — QW) L,x) and
Ly(dgaX) can be identified with d5(L2(X)) . Thus the vector-valued Riesz trans-
form R is bounded on L;(dqX) if and only if the map (¢, ¥) — (R¢$, Ry)
is bounded on d(Lz(X)) i.e., if and only if |[R, Q]||r,x) < co. The result
will then reduce to Theorem 9.7.

It remains to justify our hypotheses. Since X is super reflexive it is equivalent
to a space which is p-convex and g-concave where }, +1=1and p>1.
By Pisier’s theorem [43], X is equivalent to [L,, Y], where Y is a Kothe
function space and 7 > 0. Now, from Lozanovksii’s theorem, there is a weight
function w, > 0 a.e. such that L., C w,Y C L. Here [|X|wy = [[xw™|y.
Similarly there exist wp, w; sothat Lo, C woXp, w;X; C Ly. Now Ly;_q C
wiX C Lyj41), s0 that for some # > 0 we can find weights, w3, ws with
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L, C w3X00_” , W4Xgy4ny C Lp With 1 < f < a < co. Thus the problem may
be reduced by a change of weight to the type discussed above. O

Theorem 9.11. There exists a centralizer Q on L,(0, 1) so that the twisted sum
dqL; is not (UMD). Thus the (UMD)-property is not a three-space property.
Proof. Bourgain [4] shows that for any p < 2 there is a Kothe function space
X, on (0, 1) which is p-convex and g-concave but not (UMD). By Pisier’s
theorem [43]if 0 < 6 < 1 there exists a Kothe space X1 so that [L,, X1],
fails to be (UMD). It follows by combining isomorphic copies of the spaces
X1{/n1 as bands in a single space X that there is a Kothe function space X so
that [X*, X]p is (UMD) if and only if § = 1 when Xy = L,. If Q is the
induced centralizer, doL, cannot be (UMD). O

Theorem 9.12. If Xy, X; be Kéthe function spaces on S. Then the set {6: 0 <
0 <1, and X, is (UMD)} is either open or a single point.

We omit the proof of Theorem 9.12 which is similar to Theorem 9.8; this
theorem extends a result of Rubio de Francia [46].

Added in proof. See also [51] where the similar results to Theorem 9.8 and 9.12
are conjectured.
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