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DECOMPOSITIONS OF BANACH LATTICES 
INTO DIRECT SUMS 

P. G. CASAZZA, N. J. KALTON AND L. TZAFRIRI 

ABSTRACT. We consider the problem of decomposing a Banach lattice Z as a 
direct sum Z = X @ Y where X and Y are complemented subspaces satisfying 
a condition of incomparability (e.g. every operator from Y to X is strictly 
singular). We treat both the atomic and nonatomic cases. In particular we 
answer a question of Wojtaszczyk by showing that L1 fflL2 has unique structure 
as a nonatomic Banach lattice. 

One of the most important problems in the theory of Banach lattices, which 
is still open, is whether any complemented subspace of a Banach lattice must be 
linearly isomorphic to a Banach lattice. The main difficulty seems to lie in the fact 
that most of the criteria for a Banach space to be isomorphic to a lattice do not 
really distinguish between lattices and their complemented subspaces. 

We do not actually treat this question in the present paper but rather consider 
the situation Z = X d3 Y, where Z is a Banach lattice and X and Y two com- 
plemented subspaces which are assumed to satisfy different conditions that make 
them "distinct" in some or another sense. This line of research was initiated by P. 
Wojtaszczyk 128] (and also by I. S. Edelstein and P. Wojtaszczyk [3]) who proved 
that if Z has a normalized unconditional basis {Zn}n=l (i.e. it is a separable atomic 
lattice) so that every linear operator from Y into X is compact then {zn}n=l splits 
into two disjoint parts which are respectively equivalent to bases of X and Y. In 
particular, both X and Y have unconditional bases. The proof of this result is 
based on a fundamental theorem from [28 and 3], which is mentioned below as 
Theorem A. We give here a different proof which does not make use of Theorem A 
but instead is based on a simple "change of signs" result from [2], which is described 
below as Theorem B. We also consider the case when the compactness assumption 
above is replaced by the total incomparability of X and Y for which we prove a 
similar result provided X and Y have unconditional bases. Unfortunately, the most 
interesting case when every operator from Y into X is assumed to be strictly singu- 
lar (which was raised as an open problem in [28]) remains unsolved. We conclude 
the section devoted to the atomic case with a simple theorem on block bases of a 
space with unconditional basis {zn}°°=1 whose span is complemented. Such a block 
basis splits into two disjoint parts, the first equivalent to a subsequence of {zn}n= 
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and the second equivalent to a sequence in the complement of the span of the block 
basis. 

In the continuous case we show that a nonatomic Banach lattice Z which has 
some nontrivial cotype cannot be split into totally incomparable infinite dimensional 
subspaces; thus if Z X d3 Y with X, Y totally incomparable then either dim X < 
oo or dimY < oo. The same result, under the assumption that every operator 
T: X > Y is strictly singular, is false as the example L1 d3 L2 shows. However, in 
this case we give some partial results which suggest that the general result may be 
true if Z has some nontrivial type. 

We conclude by studying the structure of Banach lattices of the form L1 d3 X, 
where X is reflexive. We show that if Z is a Banach lattice isomorphic to L1 d3 Y, 
where Y has some nontrivial type then Z has a band decomposition Z t ZO d3 ZO, 
where ZO is an AL-space and ZO is isomorphic to Y. As a consequence the Banach 
space L1 d3 L2 has a unique structure as a nonatomic Banach lattice; this answers 
a question raised by P. Wojtaszczyk [28]. 

O. Preliminaries. In order to make the paper as self-contained as possible, we 
quote in this section some results that are used very often. We begin with a result 
which is crucial all throughout the article; instead of presenting the two available 
versions separately we incorporate them as one theorem. 

THEOREM A [3, 28]. Let X and Y be two Banach spaces and suppose that 
they are either totally incomparable (i.e. no infinite dimensional subspace of X is 
isomorphic to a subspace of Y) or that every bounded linear operator T from Y into 
X is strictly singular (i.e. there exists no infinite dimensional subspace of Y so that 
T restricted to Y is an isomorphism). Let V be a complemented subspace of Xd3Y. 
Then there exists an automorphism f of X q3 Y such that f (V) = X1 d3 Y1, where 
xl = (v) nx and Y1 = f(V) n Y are complemented subspaces of X, respectively 
Y. 

The first section of the paper is devoted to spaces with an unconditional basis. 
The standard material on such spaces can be found e.g. in [15]. We quote here a 
decomposition theorem which is used several times. 

THEOREM B [2]. Let X and Y be two Banach spaces and Q a bounded linear 
projection from X d3 Y onto a subspace V with a finite or infinite K-unconditional 
basis {vn }nE.zz SO that 

Q (u) = Vn (U) Vn, 

nE.-r 

where {Vn}n are functionals biorthogonal to {Vn}n . Let Px and Py denote the 
corresponding projections from X d3 Y onto X, respectively Y. Fix O < Ol < 1 and 
split r into two disjoint subsets Tx and ry so that vn(QPxvn) > og, for n E Tx and 
vn(QPyrn) > 1-og, for n E Ty. 

Then there exists a constant M = M(llQll, K, o) so that, for any choice of 1 < 
p < X, {Vn}nx and {vn}neTy are respectively M-equivalent to {rn(t)Pxvn}neTx 
and {rn(t)Pyrn}neTyn considered as elements of Lp(X) and Lp(Y). Moreover, 
[rn(t)Pxvn]neTx and [rn(t)Pyvn]neTy are M-complemented in Lp(X), respectively 
Lp (Y) . 
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Here, as usual, {rn(t)}n=l denotes the sequence of the Rademacher functions 
and Lp(X) stands for Lp([O, 1], X). 

The spaces with an unconditional basis can be viewed as atomic lattices. In the 
second and third sections, we study nonatomic and also general lattices. The stan- 
dard material on this topic is available, for instance, in [16 and 26]. Of particular 
interest are the order continuous Banach lattices, i.e. those in which any decreasing 
net {z} whose g.l.b. is 0 satisfies lima za = 0. Order continuous Banach lattices 
with a weak unit admit a very useful representation theorem (cf. e.g. [16, l.b.14]). 

THEOREM C. Let Z be an order continuous Banach lattice with a weak unit. 
Then there exist a probability space (Q, , ,u), an (not necessarily closed) ideal Z of 
L1(Q,S,,u) and a lattice norm 11 IlZ on Z such that 

(i) Z is order isometric to Z. 
- - 

(ii) Z is dense in L1 (Q, , ,u) and Loo (Q, , ,u) is dense in Z. 
(iii) llfll1 < ||fllz < 2llflloo; o E Loo(Q, , /2)- 
(iv) The dual of the above order isometry maps Z* onto the Banach lattice Z* 

of all g for which 

llgllzF = sup {4 fgd8; llfllz < 1} < oo 

and g(Z) = An fG d,u. 

A lattice of functions as above will be called a Banach function space. 
We point out that a Banach lattice which contains no subspace isomorphic to 

c0 is order continuous. In fact, such a lattice has the stronger property that any 
increasing net {Z}aer with supr llZzlI < oo converges to its l.u.b. 

As we have already mentioned, the third section studies embedding of L1-spaces 
into Banach lattices. One of the most important tools used in this section is a 
representation theorem for operators from L1(0, 1) to a Banach lattice containing 
no copy of c0, which is presented and used extensively in [10 and 11]. Rather than 
discussing these results in detail, we collect here only those facts that are needed 
in the sequel. We also quote a theorem concerning the so-called sign-preserving 
operators. 

An operator T from Ll(0,1) into a Banach space Z is called sign-preserving 
provided there exist a b > 0 and a subset A of [0,1] of positive measure so that 
IIT(X)II > 6, whenever f E L1(0, 1) has mean zero and 1X1 = XA (XA denotes the 
characteristic function of A). 

THEOREM D. Let Z be a Banach lattice containing no isomorphic copy of co. 
(i) [11] If T is an isomorphism from L1(0, 1) into Z then there exists also an 

order isomorphism S from L1 (O, 1) into Z. 
(ii) [11, 25] An operator S from Ll(0,1) into a L1(Q,S,,u)-space is a lattice 

homomorphism if and only if there exist measurable functions O < a: Q R and 

a: Q > [0,1] so that 

S(f)(g) = a(g)V)(ff(t>a), U E Q a. e., 

for all f E L1 (0, 1) . 



774 P. G. CASAZZA, N. J. KALTON AND L. TZAFRIRI 

(iii) [7] If T is a sign-preserving operator from L1(O, 1) into Z then T is an 

isomorphism on some subspace of L1(O, 1) which is isomorphic to L1(O, 1). 

Additional details on operators from L1-spaces into Banach lattices can be found 

in [10, 11, 24, 25, 7, 4 and 5]. 

1. Spaces with an unconditional basis (atomic lattices). We start this 

section by presenting an alternative proof of P. Wojtaszczyk's decomposition the- 

orem from [28]. The original proof relies on Theorem A while ours uses instead 

Theorem B whose proof is considerably simpler than that of Theorem A. 

THEOREM 1.1. Let X and Y be two Banach spaces such that every bounded 

linear operator from Y into X is compactj Then every unconditional basis {zn}°n°=l 

of X @ Y splits intflo two disjoint parts {Zn }n.C1 and {Zn }nEC2 that are respectively 

equivalent to bases of X and Y. In particular, X and Y have unconditional bases. 

PROOF. We can assume without loss of generality that liznil = 1X for all n, and 

that the direct sum X@Y is taken in the sense of 11. In this case, the corrresponding 

projections Px and Py from X @ Y onto X, respectively Y, are of norm one. For 

each subset C of the integers, let Qc denote the projection defined by 

00 \ 

Qc E anzn) = E anzn, 
n= 1 n.C 

for any choice of {an}n°°=1 Put K = sup ggQcll. 
Split now the integers into two disjoint subsets A1 and A2 such that n E A1 > 

xnXn > 2 and n E A2 =t YnYn > 2n where Xn = Pxznn Yn = Pyznn xn = 

Pnznn Yn = PYZn and {Zn}n=1 are the biorthogonal functionals associated to 

{Zn }n= 1 } 
By Theorem B, we conclude the existence of a constant M = M(K) so that 

M-1 , aizi < | , airi(t)xi dt < M E aiZi 

iEAl ° iEAl iEAl 

and 

M-1 , aizi < | , airi(t)yi dt < M E aiy 
iEA2 ° iEA2 iEA2 

for any choice of scalars {ai}°°l. Similar inequalities hold in the dual. 

LEMMA 1.2. There exists a subset B1 of A1 so that {zn}nEs1 is equivalent to 

{Xn}nesl and |A1 B1 1 is finite. 

PROOF. Suppose the assertion of Lemma 1.2 is false. Since 

E aixi < E aiZi, 
iEA 1 iEA 1 

for any choice of {ai}, we can easily construct a sequence {Cj}j°° l of mutually 

disjoint finite subsets of A1 and vectors uj = EiEcj bizi such that llujll = 1 and 
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IIPxujll < 2-(j+1), for all j. The inequalities mentioned above show the existence 
of signs si = +1, i E Cj, j = 1, 2, . . ., such that 

, sibixi > M-1 . 
iecj 

Consider now the automorphism T, of X d3 Y defined by TeZi = £iZi, for all i, 
where si is chosen as above if i E Cj, for some j, or si = +1, otherwise. Since the 
operator PXTIy: Y > X must be compact it follows by passing to a subsequence 
if necessary that PxTEPyuj > x, as j > oo, for some x E X. Since lluj- 

Pyujll < 2-(j+1) we also get that PXT,yuj x, as j oo. On the other hand, 

PXTsuj = EiEcj sibixi and therefore |lxll > M-1. This shows that the sequence 
{uj}j°°=1 does not tend weakly to zero. Hence, there is a functional u* on X d3 Y 
and a subsequence {U;(k)}k=l of {uj}j=1 so that infku*uj(k) > 0. It follows that 
{Uj(k)}k=l iS equivalent to the unit vector basis of 11, and, moreover, that [U;(k)]k=l 
is complemented in X @ Y. A standard perturbation argument shows that there is 
a lo so that [Pyuy(k)]k>lo is complemented in Y and isomorphic to 11. This means 
that there are quotient maps from Y onto X which, of course, is a contradiction. O 

LEMMA 1 .3. There exists a subset B2 of A2 so that {Zn}nEB2 is equivalent to 
{Yn }nEB2 and |A2 B2 1 is finite. 

PROOF. If the assertion of Lemma 1.3 is false then one can construct exactly as 
in the proof of Lemma 1.2 a sequence of mutually disjoint finite subsets {Dj}j°° 1 
of A2 and vectors vj = LisDj diZi such that llvjll = 1 and glPyvjll < 2-(i+l), for 
all j. 

If {vj}j°°=l does not tend weakly to zero then it contains a subsequence which is 
equivalent to the unit vector basis of 11. By Theorem B, the subspace [rn(t)Yn]nEA2 
of L2(Y) also contains a subspace isomorphic to 11. Hence, by G. Pisier [20], we 
conclude that Y contains an isomorphic copy of 11. A standard gliding hump 
argument shows that one can find in Y a sequence of elements which, on one hand, 
is equivalent to the unit vector basis of 11 and, on the other hand, is equivalent to 
a block basis of {zn}°n°=l. Therefore, Y contains a complemented copy of 11 and 
we can easily construct noncompact operators from Y into X. This contradiction 

shows that vj w o, as j oo. 

Now for each j, let Vj* E X* be so that livj* 11 = 1 and Vj* (PXvj) > 1-2-(j+1) . It 
follows that vj*(vj) > 1-2-j, for all j. By passing to a subsequence if needed, we 

can assume without loss of generality that vj* w v*, as j oo, for some v* E X*. Since V*(Vj) 0, as j oo, we can choose an integer jl so that Iv*(vj)ll < 1/8. 

Then we can find an integer il so that Iv l (vjl)I < 1/8. Put wl* = vj*l-v l and 
notice that wl* (vjl ) > 1-1/2j-1/8 > 1/4. Repeating this procedure, we construct 

subsequence {Vjk}k=l °f {vj}j_1 and a sequence {wk}k°°=l, which are differences 
of the Vj*'S and therefore w*-limk tOO wk = 0, such that wk(vjk) > 1/4, for all k. By 
a gliding hump argument, we can assume without loss of generality that 

Wk = E CiZi + Wk, 

iEDk 
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where {Dk}k°°=l are mutually disjoint finite subsets of the integers, {ci} suitable 
scalars and {wk}k°°=l a sequence which tends in norm to zero. Therefore, we will 
assume that llwkll < 1/8, for all k. It follows that 

4 < wk (vjk ) < ( E CiZi ) ( E dizi) + 8 

which implies that 

E CiZ* > 
iE Dk nDJk 

for all k. By Theorem B, applied to the dual of X d3 Y, we find signs £i = +1, i E 

Dk n Djk, k = 1, 2, . . . so that 

* 1 
E £iciyi > 8M 

iE Dk nDJk 

for all k. 
Let now TE be the linear operator on X q3 Y which is defined by TEZi = £iZi, if 

i E Dk n Dik for some k, or by T,szi = 0, otherwise. Since PxTEPy is compact it 
follows that its adjoint PyT*Px is also compact and thus, we can assume without 

loss of generality that PyTs*Pxwk 0, as k oo. Since wk E X*, for all k, we 

get that 

- - E * * * (E *) iE Dk nDJk iE Dk J 

as k > oo, and this, of course, is a contradiction. 

LEMMA 1.4. There exists a subset D of the integers such that 
(i) Y = [Yn]nED. 

(ii) {Zn}nED is equivalent to {Yn}nED- 

PROOF. Suppose that the complement B2 of B2 in hI consists of the integers 
{nl < n2 < < nj < }. Put Eo = B2. If Ynl E [Yn]neeo then omit this 
vector; if Ynl f [Yn]neeo then set E1 = B2 U {nl }. A simple verification shows that 
{Zn}nEEl iS equivalent to {8n}nEEl- Indeed, suppose that there exists a vector 
^nEEl anZn 7& 0 SO that EnEl anYn = 0. By our assumption on Ynl, we conclude 
that the coefficient of Ynl must be zero. Hence, EnEo anYn = O which, by Lemma 
3, implies that En,EEo anZn = 0, a contradiction. 

We continue this procedure with n2, n3, . . . and construct subsets E2, E3, . . . of 
the integers as above. If the argument stops after m steps then we put D = Em 
and the proof is completed since [yn]nEEm must be equal to Y. On the other hand, 
if this procedure can be repeated as many times as we like, then there exists a 
sequence {Ej}j°° l of subsets of the integers so that 

(a) B2 = Eo C El c C Ej c 

(b) [8n]nEE^_l 7& [8n]nEEw 7& Y, for all j. 
(c) [Yn]nEuJoo 1 Ej = Y 
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Hence, there exist vectors y3 fE Y such that IIYAII = 1 and d(y^, [8n]nEEj_l ) > 2n 

for all j > 1. Since, by our assumption, the restriction of the operator PXQB1 to Y 

is compact it follows, by passing to a subsequence if necessary, that PXQB1 y3 X? 

as j - > x, for some x E X. Suppose now that 
00 0O 

y38 = ajnZn = E ainYn j = 1, 2, 

n=l n=l 

Then 
lim E ajnxn=x. 

3 nEBl 

But, by Lemma 2 {Zn}neBl is equivalent to {Xn}nEgl. Hence, 

lim E ainyn=y, 
g nEBl 

for some y E Y. Since 

B1 B2 = (A1 B1) U (A2 B2) 

there exists an integer I so that [8n]nEBl C [8n]neEkn whenever k > 1. It follows 
that, for j > k > 1, we have 

d ( E anYnx [Yn]nEEk) = d(y2, [Yn]neEk) > d(yj, [8n]nEEj_l) > 2 
nEBl 

This implies that d(y, [8n]nEEk) > 1/2 for all k. Hence, d(y,Y) > 1/2 which, of 
course, is contradictory. C1 

We return now to the Proof of Theorem 1.1. Let D be the set constructed in 
Lemma 1.4 and notice that if x e xn |Zn]n.D then x = SenED dnZn = ,nsED dnXn 

for a suitable sequence of scalars {dn }nED . l:Ience, nED anYn = O and, by Lemma 
1.4, also x = Q. Thus, X n [Zn]n.D = {O}. Actually, X + [zn]neD is a closed 
subspace of X ffl Y. Indeed, if there exist sequences {Uk}k=l in X and {Vk}k-l 

in [Zn]nED with ||uk|| = ||vk|| = 1, for all k, and limkOO lluk + vkll = O then 
limkOO lluk + PXvkll-O. Let S be the isomorphism frorn Y onto Ezn]nes given 
by Lemma 1.4. Then PxS is a compact operator which maps S-l Uk into PXVk) for 
all k. Hence, {PxUk}k-l and thus also {Uk}k=l contain convergent subsequences 
and this contradicts the fact that X n [Zn]nED = {°} 

Observe no+r that Y is contained in the internal direct sum X ffl [Zn]nED since 
Y = |Yn]nsD and, for m E D7 Ym = Zm-Xm E X d3 |Zn]nED Therefore7 

lzn]n=l = x d3 Y = X @ |Zn]nED 

which rea(lily implies that X is isomorphic to [Zn]nEDc. This completes the proof 
since we already know that Y is isomorphic to [Zn]neDn by Lemma 1.4. O 

P. Wojtaszczyk raised in [28] the question whether Theorem 1 remains valid 
when the assumption that all the operators from Y into X are compact is replaced 
by the weaker condition that all the operators from Y into X are strictly singular. 
This question seems to be still open. As far as we known it is still unknown if the 
above compactness condition can be replaced by the total incomparability of X and 
Y. We prove such a result under some additional assumptions. 
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THEOREM 1. 5. Let X and Y be two totally incomparable Banach spaces having 
each an unconditional basis. Then every unconditional basis {zn}°n°=l of X@Y splits 
into two disjoint parts which are respectively equivalent to bases of X and f . 

PROOF. We shall maintain the notation used in the proof of Theorem 1.1 as 

well as the basic assumptions made there. We need first a lemma. 

LEMMA 1.6. If there exists an oe > O so that xn(xn) > oe, for all n, then 
(i) {Zn}°n°=m is equivalent to {Xn}°n°=m, for some integer m. 
(;;) Y is finite dimensional. 

PROOF. BY Theorem B, there is a M = M(K, oe) so that 

oo 1 oo 00 

M-1 cnzn < | Cnrn(t)xn dt < M E Cnzn 

n=l ° n=l n=l 

for any choice of {cn}°n°=l. A similar inequality holds in the dual situation for 

{Xn }°n°= 1 and {Zn }t°° 1 . 
Let now {(i}q°°l be a normalized unconditional basis for X and let {(i*}°°-1 be 

the corresponding biorthogonal functionals. For x = °°-1 bifi put 

oO oo 

Ixl = E gbilei and |xi|2 = E gbil2(i. 
i=l i=l 

Then, for any choice of {cn}°n°=l, we have 

°° 1 °° / oo \ 1/2 

M , enzn > | E (:nrn(t)Xn dt > X t lCnZnl ) 

Since 

Pf = E (| Zn(z(8))rn(8)d8) z,((z ) X f E L2(X), 

defines a projection of norm < M from L2(X) onto [rn(t)xn]°n°=1 and since, as 

above, 

oo oo \ 1/2 

MX E dnzn > 5£ Id x* 12) 

n= 1 n= 1 

for any choice of {dn}°n°=l we can apply a standard duality argument and conclude 

that 
oo oo \ 1/2 

cnzn < M4 X E lenxn 12) 

n=l n=l 
for every choice of scalars {cn}°n°=1. 

Suppose now that either (i) or (ii) do not hold. In this case, it is easily verified 

that there are integers pO - 1 < P1 < P2 < *- < pj < and blocks zUj = 
Ei=p_1+l aizi so that lltjjll = 1 and llPxtbjll < 2-(j+l)) for all j. 

Notice that zuj O, as j oo. Indeed, if this is false then we can assume 

without loss of generality that {wjj}^°° l is equivalent to the unit vector basis of 11. 

Moreover, [wjj]j°°=1 is complemented in X q3 Y. In view of the condition satisfied by 
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{PXlly}j°°l, it follows that Y contains a complemented copy of 11 Since {zn}n°°=1 
is equivalent to {rn(t)xn}Cn°=1, considered e.g. as a sequence in L2(X), we conclude 
that also L2(X) contains a complemented subspace isomorphic to 11. By [20], X 
contains a copy of 11, too, and this contradicts the assumption that X and Y are 
totally incomparable. 

Now, for each j, put 
z p A 1/2 

sj = E |anxn|2 | E x. 

n=p,^_l+l J 

Then, for every i, we have 
lim (i*(8j)=° 

Indeed, if for some fixed i there exists a d > 0 so that (i*(8j) > :) for all jX then 

° n=p,^_l+l n=p,^_l+l 
(Jf E anrn(t)(g (Zn) dt) = ( E lan(t (zn)12) > 13 

Hence, there are signs zyn = i1) Pj-l < n < pj, such that 

z p 8 Pj 

(PX(i ) E anEnZn = (i E anEnXn > a, 

in=p9_1+l in=ps_l+l 
for all j. This contradicts the fact that w-limj OO tjj = 0. The condition satisfied 
by {8j}y°°=l shows that there is no loss of generality in assuming that {sj}y°° l is 
actually a block basis of {(i}°°l (note that, by the inequalities established above, 
1/M4 < llsjil < MX, for all j). These inequalities also yield that, for any 
choice of {bj}j°°=1, we have 

oo / oo Pj > 1/2 

MX ,bjuj > | ElbJl2 E lanxnl2 = Egbjls 
j=1 Vj=1 n=p^ _1+1 j= 

and, also 
oo oo 

, bjuj < M4 E gbjls 
j=l j=l 

Itfollowsthat [llj]j°°=l isisomorphictothesubspace [sj]j°°l of X. However, thefact 
that glPxtjjll < 2-(j+1), for all j, implies that [uy]j°° l is isomorphic to a subspace 
of Y. This, of course, contradicts the total incomparability of X and Y. rz 

We return to the Proof of Theorem 1.5. Let A1 and A2 be defined as in the proof 
of Theorem 1.1. By Theorem A, there exists an automorphism f: X d3 Y ) X @ Y 
such that 

([Zn]nEAl ) = X1 d3 Y1, 

where Xl = +([Zn]nEAl )nX and Y1 = ([Zn]nEAl )nY are complemented subspaces 
of X, respectively Y. 
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Put Zn = )(Zn); n = 1,2,..., and let {Zn}°n°=l be the functionals biorthogonal 
to {zn}n°°=l. In general, the set 

A1 = {n E NJ;zn(pXzn) > 2} 

need not coincide with A1. However, A1 and A1 can differ only by a finite number of 
A 

elements. Indeed, if e.g. AlnA2 containsaninfinitesequence{ni}q°°1 and{zn}q°°1 
does not tend weakly to zero then, by Theorem B, both L2(X) and L2(Y) must 
contain an isomorphic copy of 11. By [20], so do X and Y and this is a contradiction. 
If, on the other hand, znt W 0 then we can assume without loss of generality that 
{Ynt }q°° l and {Pxznt }q°° 1 are mutually disjoint blocks on {zn}°n°=l, respectively 
{zn}°n°=l. Hence, again by Theorem B, {Yn}t°°l is equivalent to {zn}q°°1 and 
{PXZnt }q°° 1 to {znt }q°° 1; i.e. X and Y are not totally incomparable. 

It follows from these considerations that f([Zn]nEAlnA1) is a space of finite 
codimension in X1 @ Y1, and 

) ( [Zn] nEA 1 nAl ) = Xl @ Y1 X 
A A 

where X1 and Y1 are spaces of finite codimension in X1, respectively Y1. By Lemma 
1.6, Y1 must be finite dimensional and thus k = dim Y1 < oo. 

Suppose now that X = X1 @ X2 and Y = Y1 @ Y2. Then ([Zn]nEA2 ) is clearly 
isomorphic to X2 @ Y2. In view of the total symmetry of our assumptions, we can 
conclude, as above, that m = dimX2 < oo. If e.g. m > k then we switch m-k 
vectors from A2 to A1 thus obtaining new sets C1 and C2. It is easily checked that 
( [Zn]neCl ) iS isomorphic to X and +( [Zn]nEC2 ) to Y. O 

REMARK. It is not clear if the assumption made in the statement of Theorem 1.5 
that X and Y have unconditional bases is actually needed. As is well known, the 
problem whether every complemented subspace of a space with an unconditional 
basis must have itself an unconditional basis is still unsolved. Theorem 1.5 could 
perhaps provide some means to construct a counterexample since it specifies in a 
precise manner an unconditional basis for X whenever X @ Y has an unconditional 
basis and X and Y are totally incomparable. 

In order to prove results on splitting of bases of a direct sum, one has to make 
some additional assumptions, otherwise, the result clearly fails. This fact is put in 
evidence by a simple example pointed out by P. Wojtaszczyk in [28]. He noticed 
that, for 1 < p 7& 2, Lp(O, 1) is isomorphic to Lp(O, 1) @ 12 but the image under any 
isomorphism of the normalized Haar basis in Lp(O, 1) is an unconditional basis of 
Lp(O, 1) @ 12 which does not split as e.g. in Theorem 1.1. 

In the simpler case when one of the factors of the direct sum is c0 or lp, the 
situation is considerably clearer, as shown by the next result. 

THEOREM 1.7. Let X and Y be two Banach spaces and suppose that X is 
isomorphic to co or lp, for some p > 1. If X @ Y has an uncondational basis then 
so does Y. 

PROOF. The cases when X is isomorphic either to c0 or to 11 can be treated 
separately. For instance, suppose that X is isomorphic to c0 and that X @ Y has 
a normalized unconditional basis {zn}°n°=l. If every operator from X into Y is 
compact then we conclude that Y has an unconditional basis, by using Theorem 1. 
On the other hand, if there exists a noncompact operator T from c0 into Y then 
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we can find a ty > O, a normalized block basis {un}n=l of the unit vector basis of 
co and a block basis {Vn}°n°=l of {zn}°n°=1 so that llvnll > a and [lTun-vnll < 2-n, 
for all n. It follows easily that {Vn}n=l is equivalent to the unit vector basis of co 
and therefore Y contains a complemented copy of co. Hence, X @ Y is isomorphic 
to Y and this completes the proof of this case. 

We pass now to the case when X is isomorphic to Ip, for some p > 1. We 
shall assume that every bounded linear operator from Y into X is strictly singular; 
otherwise, Y contains a complemented subspace isomorphic to Ip and thus Y is 
isomorphic to Y X which has an unconditional basis. We shall keep the notations 
and the conventions introduced throughout the proof of Theorem 1.1. 

We consider first the vectors {Zn}nEAl- By Theorem B, [Zn]nEAl is isomorphic 
to [rn(t)Sn]nEAl, considered e.g. as a complemented subspace of Lp(X) which, in 
turn, is isomorphic to Lp(O, 1). By Theorem A, [Zn]nEAl is isomorphic to a direct 
sum of the form X1 @ Y1, where X1 and Y1 are complemented subspaces of X, 
respectively Y. It follows that Y1 is either isomorphic to 12 or is an Zp-space. In 
the case when Y1 is an infinite dimensional JCp-space it contains a complemented 
copy of Ip (cf. [14]) and thus, there exist nonstrictly singular operators from Y into 
X. Therefore, either Y1 is isomorphic to 12 or it is finite dimensional. In both these 
cases, Y1 has an unconditional basis. 

We proceed now with [Zn]nEA2. Let X2 and Y2 be such that X = X1 @ X2 
and Y = Y1 @ Y2. Then, by Theorem A, [Zn]nEA2 is isomorphic to X2 @ Y2. If 
dimX2 < oo then Y2 is of finite codimension in a space with an unconditional 
basis and therefore it has itself, an unconditional basis. Suppose now that X2 is 
isomorphic to Ip. In this case, we can find a block basis Uy = En=qj_1+l anzn) j = 
1, 2, . . ., of {Zn }nEA2 SO that 

(a) ||uj|| = 1, for all j. 
(b) {uj}^°° l is equivalent to the unit vector basis of Ip. 

(c) {Uj}j°°=l is equivalent to a sequence in X. 
(d) [uj]j°°=l is a complemented subspace in [Zn]neA2 

Let R be aprojection from [Zn]nEA2 onto [uj]^°°l. We can assume without loss of 
generality that 

oo 

R(z) = Euj(z)uj, Z E [zn]ne 
y=l 

where uj = En=q_1+l bnzn) for all j, and {bn}°n°A2 are suitable scalars so that 
bnan > OX for all n. Notice that {uj*}^°t l is equivalent to the unit vector basis of Iq, 
where q = p/(p-1). Since 

n=q,^_l+l n=q,^_l+l 
( ) ( ) 

qj 
= E anbnYn(Yn) > 2uj(uj) 

n=q,_l+l 
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for all j, we conclude the existence of signs En = i1) qj_l < n < qy, j = 1, 2, . . .: 

so that 

( E bnenyn) ( E anEnYn) > 2' 

n=qj_l+l 
n=qj_l+l 

for all j. We write now 
qj 

qj 

Vj = , anEnYn and vj* = bnEnynx j = 1) 2, 

n=qj _ 1 + 1 
n=qj _ 1 + 1 

By switching to a subsequence, we may assume with no loss of generality that 

{vj}y°° l and {vj*}^°° 1 are block bases of {zn}°n°=l, respectively {Zn}°n°=l Hence, 

(al) vj*(vy) > 2^ and v1 (Vh) = O, for all j and all h 7& j. 

(bl) {vj}j°° 1 is dominated by the unit vector basis of Ip and {vj*}j°° l by that of 

Iq. 
It follows easily, by a simple duality argument, that {vj}j°° l is equivalent to the 

unit vector basis of Ip and {vj*}y°°=l to that of Iq. Moreover, 

R1(8)=, v2(Y)vi yEY 

defines a bounded projection from Y onto [vy]j°° l. This means that Y contains a 

complemented copy of Ip and thus there are nonstrictly singular operators from Y 

into X. 
Since both Y1 and Y2 have unconditional bases it follows that so does Y. O 

We conclude this section with a result on block bases of an unconditional basis 

which span a complemented subspace. 

THEOREM 1.8. Let Z be a Banach space with a normalized unconditional basis 

{zn}°n°=l and let {xj}y°° l be a normalized block basis of {zn}°n°=l. Suppose that 

Z = [xy]j°° 1 @ Y, for some subspace Y of Z. Then there is a partition of the 

integers into two subsets A and B so that 

(i) {Xj}jeA is equivalent to a subsequence of {zn}n=1. 

(ii) [Xj]jeB is isomorphic to a complemented subspace of Y. 

PROOF. Denote by K the unconditionality constant of {zn}°n°=l and suppose 

that Pj 

xj = E anznx 
n=pj _ 1 + 1 

for a suitable sequence of scalars {an}Pnj=pj-l+lX j = 1,2,..., and for integers 

pO = 1 < P1 < P2 < . Let P be a bounded projection from Z onto [xy]^°° l. As 

in the proof of Theorem 1.7, we an assume without loss of generality that 

oo 

P(z) = E xj(z)xj, z E z, 

j= 

wherexj =n=pj_l+lbnznx j= 1) 2, , arefunctionalsbiorthogonalto 
{xj}j°°=l 

and {bn}nj. pj l+lx j = 1,2,. ., are suitable scalars so that anbn > O, for all 
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n ({Zn}°n°=l denotes, as usual, the sequence of the biorthogonal functions associated 
with {Zn}°n°=l) 

Put 

A= {jEN; sup anbn > 1/2} 
PX - 1 <n<PJ 

and B = 19 A. We prove first that {xj}yEA is equivalent to {Zntj)}jEA, where, for 
each j E A, n(j) is selected to be one of the indices satisfying Pj-l < n(j) < p(j) 
and an(jbnty) > 1/2. Notice that lan(j)l < K and Ibn(jl < IIPIlX for all j. Hence, 
for any choice of scalars {Cj}jeA, we have 

IIPII ECjzn(j) > ECjP(zn(j)) = (:jbn(j)Xj > 4K2 Ef CjX 

jEA jEA jEA jEA 

-4K3 Ecjan(j)Zn(j) > 16K5 Ecjzn(j), 
jEA jEA 

and this completes the proof of (i). 
We consider now the set B. For j E B and Pj-l < n < pj we llave O < anbn < 

1/2. Thus, we can choose signs En = i1 SO that 

Pj 

Wj = X, Enanbn 

n=pJ _ 1 + 

satisfies lxjl < 1/2, for all j. Put 

P.9 

Yj = 2, Enan(I-P)zn E y 

n=pj_ 1 +1 

and observe that 
Pv Pj 

Yi EnanZn-SjXj = (6;n-Sj)anzn, 

n=pj - 1 + 1 n=pj - 1 + 1 

for all j. Hence, for every choice of scalars {dj}jEB, we get 

Pj 

K , djZj > Edj E Enanzn > III-Pll E dJ8i 
j6B jEB n=p^-1+1 j6B 

P.9 

ll 1l aEB n=p_l +1 

-4KIII-Pll E j j 

since lEn-AJil > 1/2, for all Pj-1 < n < pj j = 1, 2, .... 
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Finally, in order to prove that [yj]j°° l is complemented in Y, we notice that the 
operator Q, defined by, 

oo z p] A 

Q(Z) = # # InbnCn | Yj, z = Ecizi E Z, 
j=1 in=p^_l +l J i=1 

where In = l/(6n-°j), Py-1 < n < pj, j = 1, 2, . . ., is a bounded linear projection 
from Z onto [Yj]g=1- ° 

REMARK. The assumption made in Theorem 1.8 that [xy]j°° l is a block basis 
of {Zn}°°=l iS not redundant. Indeed, take as Z the direct sum Ip d3 11,1 < p 7& 2, 
and as {zn}°°=1 the union of the unit vector bases of Ip and 11. Let {vj}^=l denote 
the unit vector basis of the space (E°°=1 @ 12 )P and Tp an isomorphism from this 
space onto Ip. Then clearly the sequence Xj = Tp(vj), j = 1, 2, . . ., cannot be split 
as in the statement of Theorem 1.8. 

2. Nonatomic lattices. In this section we shall consider some continuous 
versions of the results of section one. We show that if Z is a nonatomic Banach 
lattice with some nontrivial cotype and Z = X @ Y where X and Y are totally 
incomparable then either dimX < oo or dimY < oo. Some similar but rather 

less complete results are obtained for the situation when every operator T: X Y 

is strictly singular. We give an example to show that the cotype assumption is 
necessary and prove a lattice analogue of Theorem 1.7. 

Let us state first our main result on totally incomparable subspaces. 

THEOREM 2.1. Let Z be a nonatomic Banach lattice with nontrivial cotype and 
suppose Z = X @ Y where X and Y are totally incomparable subspaces of Z. Then 
either dim X < oo or dim Y < oo. 

Theorem 2.1 is an immediate consequence of Theorem 2.2(a). 

THEOREM 2.2. Let Z be a nonatomic Banach lattice with nontrivial cotype, and 
suppose Z = X @ Y where every bounded operator T: X ) Y is strictly singular. 
Then each of the following conditions implies dimX < oo: 

(a) X contains no subspace isomorphic to 12. 

(b) Z has nontrivial type and X contains no complemented subspace isomorphic 
to 12. 

(c) Z has nontrivial type and Y contains a complemented infinite dimensional 
subspace with an unconditional basis. 

The proof of Theorem 2.2 involves a series of lemmas. The consequence of 
Lemma 2.3 is that we need only consider the case when Z is a Banach function 
space as described in §0. 

LEMMA 2.3. Let Z be an order-continuous Banach lattice and suppose Z = 
X @ Y where X and Y are infinite dimensional subspaces of Z such that every 

bounded operator T:X Y is strictly singular. Then there is a band ZO in Z 

with a weak order-unit such that ZO = Xo G3 Yo, where XO and Yo are, respectively, 
infinite-dimensional complemented subspaces of X and Y. 

If, in addition, Y contains a complemented subspace with an unconditional basis, 
then we can further assume that YO has a complemented subspace with unconditional 
basis. 
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PROOF. Let X' and Y' be separable infinite dimensional subspaces of X and Y, 
respectively. Then there is a band Zo with a weak order-unit containing X' and 
Y'. As ZO is complemented by a band projection, PO say, we can use Theorem A 
to deduce that ZO = Xo G3 Yo, where XO and Yo are complemented subspaces of X 
and Y, respectively. If Py is the projection of Z onto Y then PylzO is not strictly 
singular so that dim Yo = x (since PylzO is identity on Y'). Similarly PXIZO is not 
strictly singular so that diirlXO = oo. 

For the last part we may assume Y' is complemented and has an unconditional 
basis. Then Y' is complemented in ZO and so Y' = X1 d3 Y1, where X1 is comple- 
mented in Xo and Y1 is complemented in YO. Clearly we must have dimX1 < x 
and so Y1 has an unconditional basis. O 

LEMMA 2.4. Let Z be an order-continuous Banach function space on a non- 
atomic probability measure space (Q, , ,u). Suppose S E z with f 7& O. 

(a) There is a sequence {fn} E z with Ifnl = Ifln for all n and fn w o, as 
n ) oo. 

(b) If Z has nontrivial cotype then {fn}°n°=l may be chosen in (a) to be a basic 
sequence equivalent to the standard 12-basis. 

(c) If Z has nontrivial type then {fn}°n°=l may be chosen in (b) so that [fn]°n°= 
is, in addition, complemented in Z. 

PROOF. We first prove (b). If Z has nontrivial cotype then the map 

A: Loo (Q, , ,u) Z 

given by A(g) = If lg is q-absolutely summing for some 2 < q < x (cf. [18]). By the 
Pietsch Factorization Theorem (cf. [15, 2.b.2]) there is a positive linear functional 
F on Loo with F(XQ) = 1 and a constant C so that 

11 If 1911 < C(F(lGlq))l/q 

Clearly we can assume F is ,u-continuous so that for some h E Ll(,u),h > O and 
AQ hd,u=1, wehave 

/ r l/q 

11 If 1911 < C ty |glqhd8 
Q 

Now, by Liapunoff's theorem [16, 2.e.8], we can find Qn,j E S for n = 0,1, 2, .... 
j = 1, 2, . . ., 2n with Qo,1 = Q so that 

(i) Qn,2j-1 u Qn,2j = Qn-l,j. 
(ii) AQ If l dH = 2-n JSQ If l dp. 

(iii) AQ j h dll = 2-n. 
Let cl)n = j2_1(_l)jxQnJ and let fn = If l(/)n Then, by Khintchine's inequality, 
{fn}°n°=1 is equivalent in Ll(,u) to the 12-basis, and so 

oO 00 00 

anfn > | anfn d,u =| Ean¢>n Ifl dl 
n=1 Q n=l Q n=l 

> \/§ (E lanl2) 



786 P. G. CASAZZA, N. J. KALTON AND L. TZAFRIRI 

On the other hand, 

oo 00 q \ 1/q 

,anfn < C | ,anXn hdU 
n=l Q n=l 1 

/ oo \ 1/2 
< c tE lAnl2) X 

n=l 

by Khintchine's inequality in Lq(hdwu)) when C' is a suitable constant. Thus (b) is 

established. 
Note that (a) follows by constructing Qn,j to verify only (i) and (ii). Then 

fn > O weakly in L1(,u) as n > oo and since {fn}°n°=1 is relatively weakly compact 

in Z we have also fn O weakly in Z, as n oo. 

For (c) note that Z is a pconvex lattice for some p > 1, and the inclusion 

Z Ll(,u) is thus a pconvex operator. Thus, by [12] (cf. [16, l.d.12]), the 

inclusion can be factored through an Lp-space. Then there exist operators A1: Z 

Lp(M), A2: Lp(M) L1 (,u) so that A2A1 (f) = f. In particular, {A1 (fn) }°n°=l is 

a basic sequence equivalent to the 12-basis in Lp(M) and so has a subsequence 

{Al(fnk)}k=lX whose span is complemented. Then [fnk]k=l is also complemented 

in Z. o 

Before proceeding with the main part of the proof we introduce a concept which 

will be useful and make some preliminary observations. Let {un}ono=l and {vn}°n°=1 

be any two basic sequences in Z. We say {lin}°n°=l and {vn}°n°=l are strongly equiv- 

alent if there exist operators S: Z Z and T: Z Z with Stbn = Vnx TVn = Un 

Note that strong equivalence implies equivalence. Note also that if X and Y are 

complemented subspaces of Z and {lin}°n°=l C X, {vn}°n°=l c Y are strongly equiv- 

alent then there exist nonstrictly singular operators from X into Y and from Y into 

X. 

We shall use an easy perturbation argument repeatedly. Let us suppose {wbn}°n°=l 

is a basic sequence so that O < infn llqlnil < supn llunil < 00. Suppose {vn}°n°=l is a 

sequence in Z and A: Z Z, B: Z Z are operators such that lllin-B(vn) 11 O and llvn-A(wbn)ll O, as n oo. Then there are subsequences {Ibnk}k°°=l and 

{vnk}k°''=l which are strongly equivalent basic sequences. In particular this holds 

when A = B = I. 

LEMMA 2.5. Let Z be a Banach function space on (Q,S,,u) with nontrivi-al 

type. Let {fn}°n°=l C Z be a normalized unconditional basic sequence such that 

[fn]°n°=l is complemented in Z. Then either {fn}°n°=l is equivalent to the standard 

12-basis or {fn}°n°=l has a subsequence {fnk}k°°=l which is strongly equivalent to a 

disjoint sequence {hk}k°°=l in Z. 

REMARK. Indeed [hk]k°°=l is complemented. 
PROOF. Let {fn}°n°=l be the dual basis in Z*, so that the projection P:Z 

[fn] °n°= 1 is given by 

n-l (IQ ) 
Note that Z is reflexive so that Z* is also order-continuous. We distinguish three 

cases. 
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(1) Suppose 

infl Ifnld8=° n X 
Then, by passing to a subsequence, we may suppose 

lim |lfnldwll=° n oo X 
and, for each m, 

lim || |fml A Ifnl 11 = ° n oo 
Now, by a standard disjointification argument, we may pass to a further subse- 
quence so that, for some disjoint sequence {hn}°n°=1, 

lim llfn-hnil = 0 n oo 
The conclusion follows on passing to yet another subsequence. 

(2) Suppose 
inf|lfnldU = O. n 

Arguing as in (1) we may pass to a subsequence and assume that {fn}°n°=1 is strongly 
equivalent to a disjoint sequence {hn}°n°=l Further [hn]°n°=l is complemented in Z*. 

If An = supp hn and Q: Z* [hn] is a projection then set 

oo 

Q1(9 ) = E XAnQ(9 XAn) n=l 
Then ggQ1ll < ggQIg and Q1 is also a projection (cf. [15, l.c.8] for the discrete 
version). Now 

Ql(g ) = E (| g hndell) hn 

for a disjoint sequence {hn}°n°=l in Z. Then {hn}°n°=l is equivalent to {fn}°n°=1 and, 
as [hn]°n°=l is complemented, it is strongly equivalent. 

(3) Suppose 6 > O and 

| Ifnldu>6) | Ifnld,ll>6) n=1,2,.... 
Q Q 

Then, by Khintchine's inequality, for al, ..., an E X, n = 1, 2, .... 

st =+1 |Q E aiEifi dH > /B ( lai 12 ) 

and so, for some ey > O independent of n, 

n / n X 1/2 

Eaifi > ty | E lai12 | 
i=l \i=l J 

and similarly we can assume 

n / n X 1/2 

E aifi* > ty tE lai 12) 
i=l i=l 
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Now there exists g* E Z* with 119*11 = 1 and 

n n 

EaiJg*fid,u= Laifi i 
i=1 X i= 

If P is the projection of Z onto [fn]°n°=1 then 

(i=l IQ ) 
and hence 

n n \ 1/2 

E aifi < ty-l glPIg iS lai 12) 
i=l i=l 

so that {fi}i°°1 is equivalent to the 12-basis. 0 
From now on we assume that Z is a Banach function space over a nonatomic 

probability measure space (Q, , p) with nontrivial cotype. We suppose Z = XE Y 
and Px and Py are the respective projections. 

LEMMA 2.6. If X contains no subspace isomorphic to 12, or if Z has nontrivial 
type and X contains no complemented copy of 12 then X satisfies: 

(+) For every f E z and E > O there exists g E Z and A E S so that 
(a)lgl=lfl 

(b) 119 XA II < E 
(c) II(PX(9))XQ AII < s 

(d)nlPx(9)ldU<6. 

PROOF. Let us consider the first case. If f E z and f 7G 0 then, by Lemma 2.4, 
we can find fn E zx n = 1, 2,... with Ifnl = If lx for all n, and {fn}°n°=1 equivalent 
to the 12-basis. We show 

inf X gPX(fn)l d,u = O. n X 

Indeed, if not then, for some 6 > O, 

/ IPx(fn)l d,u > 6, n = 1, 2, .... 
Q 

By passing to a subsequence, we may suppose {PX(fn)}ono=l is basic in X (since 

IlPx(fn)ll > 6 but PX(fn) O as n - ) oo). Now, by a theorem of D. J. Aldous 

and D. H. Fremlin [1], we can pass to a further subsequence and assume that, for 
some c > O, 

n n \ 1/2 
| ,aiPx(fi) d,u > c Elail2) 

for al,...,an E 1R and all n. Thus 

n n \ 1/2 
EaiPx(fi) > c E lail ) 
i=l i=l 
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However, 
n n 

EaiPx(fi) < |lPxlI Laif 

i=l i=l 

/ n \ 1/2 
< KIIPx 11 tE lai 12) 

i=l 

for some constant K. Thus {PXfn}ono=l is equivalent to the 12-basis which is a 
contradiction. 

If, in addition Z has nontrivial type, then we can repeat the argument at the end 
of Lemma 2.5 since {PX(fn)}ono=l is equivalent to 12-basis in both Z and Ll(,u). We 
then can pass to a further subsequence and obtain that [PXfn]ono=l is complemented 
which is also a contradiction. 

In either case we may now assume limn 0O AQ gPX(fn)l d,u = O. Let An = {w E 
Q: gPX(fn)l > s/3}. Then ,u(An) ) O and so lifxAn 1l > O, as n ) x. Also 

IlPx(fn) XQ An || < 211Px(fn) XQ An lloo < 6- 

Hence, for large enough n, we may take g = fn and A = An and (+) will hold. a 

LEMMA 2.7. Suppose X satisfies (+) and {fn}°n°=l is a normalized disjoint 
sequence in Z. Then {fn}°n°=l has a subsequence strongly equivalent to a basic 
sequence in Y. 

PROOF. Use (+) to pick hn E Z, An E S so that ||hnXAn|| < l/n, glPx(hn) 
XQ An 11 < l/n and JBQ gPx(hn)l d,u < l/n, for all n. Let us put 9n = hnXn An- 
PX(hn)XAn- Then {9n}°n°=l is a bounded sequence in Z. If m < n 

| Igm l A IPX (hn) |xAn d,u < 

so that 
nlim 11 Igml A Ignl || = ° 

Now there is a subsequence {9nk Wk°°=l of {9n}°n°=1 and a disjoint sequence {Bk}°k°= 
of sets in S so that 

lim ||9nk 9nkXBk 
k oo 

Let Ck = (SUpp fnk ) n Bk n (s] Ank )) and define 0 E Loo by 

(U, = I hnk (U)/fnk (U) W E Ck, 

t °) W E 0 Uk=l Ck. 

Define A: Z ) Z by A(f ) = d)f . First we note that A(fNk ) = hNkXCk and lihnk- 

hNkXCk || < ||9nk 9nkXBk || ) 0) as k x. 

Thus 
lim IIAfnk hnk || 

k oo 

Now Px(9n) = PX(hn-hn XAn)-PX(PXhn-(PXhn) * XQ-An) SO that 

IIPx(gn)ll < 211pxllln. 
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Thus glPy (9n)-gn 11 ) 0. Also 

|IPY((PXhn) XAn)|| = |IPY((PXhn) XQ-An)II < IIPYIIIn ° 

so that 

PY(9n)-PY(hn XQ-An)ll > O and ||Py(gn)-Py(hn)ll ) 0, as n oo. 

We conclude that 
lim ||gnk -Py(hnk)ll ° 

k oo 

Next note A(gnk) = fNk * X(X-Ank)nBk and so 

IIA(9nk ) - fNk || < 1/nk + 11 hNk X(Q-Ank ) Bk 11 

< 1/nk + ||9nk gnkXBk 11 ) ° as k oo. 

Combining these remarks we have 

lim |lPYAfNk -9nk 11 = °) lim ||A9nk fNk || = ° 
koo koo 

so that 
lim |lAPYAfNk fNk 1l 

koo 

Thus, for some further subsequence {fn}°n°-1,{fn}°n°=l is strongly equivalent to 
{PyAt tn)}°n°=l which is a basic sequence in Y. O 

LEMMA 2.8. Suppose X has the property that no basic sequence in X is strongly 
equivalent to a disjoint sequence in Z. Then Z embeds into yn = y @ @ Y (n 
times), for some n E NJ. 

PROOF. First we note that the norm on X must be equivalent to the L1-norm 
i.e., for some C, we have 

llfil<Clifid,u, fEX. 
Q 

Otherwise, we can find a sequence {fn}°n°=l C X with llfnil = 1 and 

lim |lfnid,u=O. noo X 

Then limnoo 11 Ifml A Ifnl 11 = O and so {fn}°n°=1 has a subsequence strongly equiv- 
alent to a disjoint sequence. 

Next we note that X must be reflexive. For otherwise 11 must embed comple- 
mentably into X, and Z must contain a disjoint sequence equivalent to the 11-basis 
whose closed linear span is complemented. 

Thus the unit ball of X is weakly compact and so, for any E > 0, there exists 6 > 0 
so that if f E xx llfil < 1 and A E S with ,u(A) < 6 then J%A If l d,u < s. Choose 
6 corresponding to E = 1/2C and partition Q into n disjoint sets QkX 1 < k < n, 
with ,u(0k) < 6. Let Zk = ZlQk 
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If f E Zk then 

2C glPx(P)ll > IQ IPx(f)l dU 

= | IPX(X)l dU-| IPX(X)l dH Q QQk 

> CIIPx(P)ll-| IPy(f)l dH 
QQ k 

> CIIPx(f)ll - IIPy(Y)ll. 

Hence, 

glPY(P)ll > 2CIIPx(f)ll > 2C(llfll - IIPy(Y)ll) 

and 
[lPy(P)ll > l + 2C llfll 

Hence, Zk embeds in Y and Z z Z1 @ @ Zn embeds into yn. O 

Now we complete the proof of Theorem 2.2. We may suppose by Lemma 2.3 
that Z is a Banach function space. 

PROOF OF 2.2(a). By Lemma 2.6, X satisfies (+) and so by Lemma 2.7, X 
satisfies the hypotheses of Lemma 2.8. Thus X embeds into yn and hence dim X < 
x. O 

PROOF OF 2.2(b). Similar. O 
PROOF OF 2.2(c). If Y contains a complemented copy of 12 this reduces to case 

(b). Otherwise, we can assume Y contains no complemented copy of 12. Thus Y 
satisfies (+), but by Lemma 2.5 there is a basic sequence in Y strongly equivalent 
to a disjoint sequence in Z. Lemma 2.7 then completes the proof. O 

The statement of Theorem 2.1 requires that Z be a Banach lattice with some 
nontrivial cotype. The purpose of the following example is to show that this as- 
sumption is not redundant. 

EXAMPLE 2.9. There exists a nonatomic order continuous Banach lattice Z 
which decomposes as a direct sum Z = X@Y and X and Y are infinite dimensional 
nontotally incomparable spaces. 

The idea is to construct an order continuous Banach function space X on [0,1] 
which contains no isomorphic copy of 12. Then Z = X @ L2(1,2) provides the 
desired counter-example. 

As X we shall take a separable Orlicz function space HM(O, 1) which is con- 
siderably "smaller" than the space HN(O, 1) with N(x) = (eX _ 1)/(e-1). The 
space HN(O, 1) is, by [21], the smallest rearrangement invariant space in which the 
Rademacher functions span 12. More precisely, let e.g. M(X) = (eX _ 1)/(e-1) 
and consider the space HM(O, 1) of all measurabl functions f on [0,1] so that 

| M ( If t )I ) dt < oo, 
for every A > 0. The norm in HM(O, 1) is defined, as usual, by 

llfllM = inf {> > 0;1 M ([[( )I) dt < 1} . 
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It is well known that the simple functions are dense in HM(OS 1) and therefore this 
space is a separable order continuous lattice. Suppose now that HM(O) 1) contains 
a subspace V isomorphic to 12. Then, by [6], either there exists a constant oe > O 
so that ,u{t E [0,1]; If(t)l > OtilfllM} > 0tX for all f E VX or V contains a normalized 
sequence which is equivalent to a sequence of mutually disjoint norm one functions 
inHM(O,l). 

In the first case, 
||fil > oU3/2||g|| g E V 

On the other hand, a simple calculation shows that, for f > 1 and x > 0, xP < 

(p/4e)P/4eX . Hence, there exists a constant C independent of p so that 

lIfilP < Cp / lifllM, f E HM(O) 1)X 

i.e. on V the 11 * 112 and 11 IIM-norms are equivalent. Let R be the orthogonal 
projection from L2(0, 1) onto V. Then, for any p > 2 and 9 E Lp(O, 1), we have 

glR(g)llp < Cpl/4llR(g)llM < Cpl/40t-3/2llR(9)ll2 < Cpl/40t-3/2||9||p 

i.e. the norm of R as a projection in Lp(O, 1) is < C'p1/4, for all p > 2 and some 
constant C' independent of p. This implies that the factorization constant ap(12) is 
< C"pl/4, for some C", while in fact, by [8], ap(12) behaves like pl/2, when p ) x. 
This contradiction completes the proof in the first case. 

We consider now the case when V contains a normalized sequence equivalent 
to a sequence of mutually disjoint functions in HM(O) 1). This situation, however, 
is again-contradictory since any such sequence of norm one disjoint functions in 
HM(O) 1) contains a subsequence equivalent to the unit vector basis of c0. This 
fact is known and can be deduced easily in the following way. Let {hn}n=l be 
a normalized sequence of mutually disjoint elements of HM(O) 1) and assume, as 
we clearly may by passing to a subsequence, that there are sets {Bn}n=l such 
that ll hn-hn XBn 11 < 2-(n+l) and ghn (t) l > 2n+1, for t E Bn and all n Since 
eaX < 2eX/A, for 0 < a < 1/2 and x > A, it follows that, whenever 0 < lanl < 1/2, 
for all n 

J M ( E anhn xgn ) dt = E |B e 1 dt _ , 

i.e. 
00 00 

anhn XBn < 1 and E anhn < 2. 

n=l M n=l M 

It is highly likely that Theorem 2.2 can be improved in the case when Z has 
nontrivial type. Note however that the example L1(0, 1) @ L2(1,2) shows that 
Theorem 2.2(a) requires some condition on X. 

We conclude this section with an analogue of Theorem 1.7. 

THEOREM 2.10. Let X be a Banach space with nontrivial type and assume 
that 1 < p < oo. Suppose X d3 Ip is isomorphic to a Banach lattice Z. Then X is 
isomorphic to a Banach lattice. 

REMARK. The case p = 1 can be obtained from results in the next section and 
the case of c0 then would follow by duality. We leave the reader to fill in the details. 
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PROOF. If X contains a complemented copy of Ip, then X t Z and the theorem 
is immediate. Assume therefore that every bounded operator T: X ) Ip is strictly 
singular. Z can then be decomposed into two bands, Z1 and Z2 SO that Z1 is atomic 
and Z2 iS nonatomic. By Theorem A, Z1 z X1 d3 Y1 and Z2 t X2 ffl Y2, where X1 
and X2 are complemented subspaces of X and Y1, Y2 are complemented subspaces 
of tp. 

Assume first dimY2 = x, so that Y2 t tp. Then Theorem 2.2(c) implies 
dimX2 < oo and so Z2 t Ip (which implies p = 2). Then X (3 Ip has a possi- 
bly uncountable unconditional basis. However, the copy of Ip can be supported 
only on countably many basis elements and so we can write X = W1 @ W2, where 
W1 has an unconditional basis, W2 is separable and W2 @ Ip has an unconditional 
basis. Thus, by Theorem 1.7, X is isomorphic to a Banach lattice. 

Assume then dim Y2 < oo. Thus Ip embeds complementably in Z1 and so Y1 t Ip. 

Note that if dimZ2 = 0, then arguing as above the result follows from Theorem 
1.7. Assume therefore dim Z2 > O SO that Z2 t 12 ffl Z2 

Now Z t (Z2 eX1) 31p t Xd31p and so by Theorem A, Z2 EX1 t U1 EV1, Ip t 

U2 33V2, where X1 t U1 d3U2 and Ip t V1 fflV2 . Clearly dim V1 < oo and dim U2 < oo. 
However, (Z2 fflX1) EU2 t XEV1 and (Z2 eXl ) eU2 t Z2 EX1 since Z2 t Z2 312* 

Thus Z2 @ X1 t Xv 

Again from Theorem 1.7, X1 is isomorphic to a Banach lattice and so the theorem 
is proved. O 

3. Banach lattices containing complemented copies of L1-spaces. The 
object of this section is to study different situations in which an L1-space embeds 
complementably into a Banach lattice. We consider first lattices which contain 
complemented subspaces isomorphic to 11, in the spirit of Theorem 2.10. 

THEOREM 3.1. Let Z be a nonatomic order continuous Banach lattice and 
suppose that Z = X @ Y, with Y being isomorphic to 11. Then X is isomorphic to 
Z. 

PROOF. It clearly suffices to show that X contains a complemented subspace 
which is isomorphic to 11. 

Since Z is order continuous and contains an isomorphic copy of 11 there exists a 
sequence {uk}°k°=l of mutually disjoint elements in Z which is equivalent to the unit 
vector basis of 11 (this fact is well known; cf. [26]). Then, for each k, we use Lemma 
2.3 in order to construct a sequence {uk,n}°n°=l which converges weakly to zero and 
so that luk,nl = lukl, for all n. If Px and Py denote the corresponding projections 

from Z onto X, respectively Y, then Py(uk,n) w o, as n oo. However, since 11 has the Schur property it follows that llPy(ukn)ll - ) 0, as n oo. Choose 

now an integer n(k) such that llPy(ukn(k))ll < 2-(k+3), for all k, and notice that 
{Uk,n(i) }k=l iS equivalent to the unit vector basis of 11 and its span is complemented 
in Z. The above choice of n(k) shows that so is {Px(ukn(k))}k=l and this completes 
the proof. 

It was shown in [11, Theorem 3.1] that if a Banach lattice Z contains no iso- 
morphic copy of co and has a subspace isomorphic to L1(O, 1) then Z also has a 
sublattice which is order isomorphic to L1 (0, 1). In the next theorems, we consider 
this situation from different points of view. 
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THEOREM 3.2. Let Z be a Banach function space over a probability space 

(Q, , ,u) which contains no subspace isomorphic to co . Suppose that Z = X @ Y, 

where X does not contain isomorphic copies of L1(0, 1) white Y is an Cl-space. 

Then Z has a band Z0 which is order isomorphic to an L1-space such that its 

orthogonal complement Zol contains no isomorphic copies of L1 (0, 1) . 

PROOF. Step I. Our first aim is to construct the band Zo. To this end, we call a 

set A E S with ,u(A) > O acceptable provided there exists a lattice homomorphism 

S: L1(0, 1) Z having the form 

S(+)(W) = a(U)f (a(W)), f E L1(0, 1), 

where a:Q R and :Q [0,1] are measurable functions and a(w) > 0 for S E A. 

Notice that a subset of positive measure of an acceptable set is acceptable and 

also the countable union A = U1°° 1 Aj of a sequence {Aj}j°° 1 of acceptable sets 

is acceptable. Indeed, if Sj (f ) (X) = aj (W)+(<rj (w) ) is the lattice homomorphism 

corresponding to Aj then we set 

a(W) = aj(S)/2jll5jll, 
wEAj, j=1,2,.... 

a(w) = aj(w), 

and a(w) = (w) = 0, for S ¢ A. It follows that S(+)(w) = a(w)+(a(W)); W E 

Q, ?t G L1 (0, 1) is a lattice homomorphism from L1 (0, 1) into Z and a(W) > O for 

S E A. The above observations show that there exists a maximal acceptable set Qo 

i.e. a suBset Qo of Q having the following properties: 

(i) Q0 is acceptable. 
(ii) Q Qo contains no acceptable subset. 

Let Z0 be the band of Z generated by Qo ie Zo = {f XQO; f E Z} and Z0 its 

orthogonal complement. 
Suppose now that there exists an isomorphism T from L1(0, 1) onto a subspace 

of Zol. Then, by Theorem D(i), there exists also an order isomorphism S from 

L1 (0, 1) into Zol. Let J denote the formal identity mapping from Z into L1 (Q, , p), 

given by Theorem C. Then JS is a lattice homomorphism from L1(0,1) into 

L1 (Q Qo Q S lQ Qo n #ln no ) and thus by Theorem D (ii), JS (+) (w) = a(w )+ (a(W) ); 

w E Q Qo, + E L1 (O, 1), for suitable a and . Since S 7& 0 it follows that a(g) > O 

on a subset Ao of positive measure of Q Qo. This contradiction to the maximality 

of QO shows that Zol contains no subspaces isomorphic to L1 (O, 1). 

Step II. It remains to prove that Zo is order isomorphic to an L1-space. To this 

end, we shall prove first that, for every E > O and z e ZO, there exists a function X 

so that 1+1 = 1 and tlPx(z)ll < 6 
Since Qo is an acceptable set there exists a lattice homomorphism So: L1 (O, 1) - 

Z having the form 

So(f)(w) = ao(U)f(O(U)), W E Q, + E L1(O, 1), 

with ao and vo being measurable and ao(w) > O, w E Qo. Fix now E > O and 

z E Zo and choose a bounded measurable function g on Qo such that llZ-agil < 

s/21lPxllX where Px and Py have the usual meaning. Then define the operator 

T:Ll(O,l) )Z,bysetting 

T(f )(S) = 9(U)SO(+)(W), W E Q, X E L1(°, 1) 
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Since glTIg < llgllOOggSoll it follows that PXT is a bounded operator from Ll(O, 1) into 
X. By our assumption, X contains no isomorphic copy of L1(O, 1) and therefore, 
by Theorem D(iii), PXT is not sign preserving. Hence, there exists a mean zero 
function p E L1(O, 1) with IPI-1 SO that glPxT(p)lI < s/2. Then, with the notation 
+(w) = p(ao(w)), w E Q, we get 

glPx(+z)ll < s/2 + glPxT(p)lI < 6, 

which completes the proof of Step II. 
Step III. We shall prove now that ZO is order isomorphic to an L1-space. Let 

{zj}jm=l be a sequence of mutually disjoint elements in ZO. Then, by the assertion 
proved in Step II with E = 11 ,m=l zj Il/m, we find functions {+j}jm=l for which 
lXjl = 1 and glPx(+jzj)ll < [l ̂ m=l zjll/m, for all 1 < j < m. It follows that 

m m m m 

E lizjil = E llXjzjil < E IlPy(+jzj)II + EZj 
j=l j=l j=l j-l 

For each 1 < j < m, let Zj* E Z* be so that Zj* (Py (I/)jZj)) = glPy (+jZj) 11 and 

llZj* 11 = 1, and consider the operator W: Y 12m, defined by 

W (W) = {Zj (PY (f * XB ) ) }j= l X X E Y, 

where Bj denotes the support of Zj. In order to verify that W is a bounded operator, 
suppose that Y is an El,-space, for some A > 1. Then, since 11 is of cotype 2 with 
constant , we get 

m m 

glW(W)ll2 = E |Zj*(Py(f * XBj)) 12 < E ||Py(f XBj) 1l 
j=l j=l 

<2>2 (I x,rj(t)Py(f* XB,) dt), 

for all f E Y. Hence, glWIg < AglPyll. 
However, by a famous result due to A. Grothendieck (see e.g. [15, 2.b.6]), every 

operator from an £1-space to a Hilbert space is absolutely summing. It follows 
that the absolutely summing norm r1 (W) of W satisfies 

T1(W) < XKGA211PYII, 

where KG stands for Grothendieck's constant. Hence, 
m m m 

E IlPy(+jzj)ll = Ezj*(PY(+jZj)) = E IIW(+jZj)II 
j=l j=l j=l 

m m 

< x1 (W) ma l E 6jl/)jZj < XKGA2 11PY I| E Zj 

j=l j=l 

Therefore, 
m m 

E IIZjil < (1 + XKGA211PYII) Zj v 
j=l j=l 

which clearly implies that ZO is order isomorphic to an L1-space. 0 
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One cannot expect to prove in Theorem 3.2 that ZO is isomorphic to X. For 
instance, if X = 11 @ X1 with X1 being a reflexive band of Z and Y = L1 (O, 1) then 
we shall get that Zo = L1(O, 1) and ZO = X1. As we will see later, it is precisely 
the assumption that X contains no isomorphic copy of 11 that is needed in order 
to conclude that, essentially speaking, X is isomorphic to Z1. Before proving this 
fact, we need a preliminary result. 

THEOREM 3.3. Let Z be a Banach function space over a probability space 
(Q, , ,u). If Z contains no isomorphic copy of co and Z**/Z is an El-space then 
either Z has a band ZO which is order isomorphic to an L1-space or Z is a dual 
space. 

PROOF. Since Z contains no subspaces isomorphic to co it is a band of Z** and, 
moreover, 

P(Z ) = V{Z E Z;° < Z < Z**}, ° < Z** E Z**, 

extends to a norm one positive projection from Z** onto the canonical embedding of 
Z into Z**. Thus, Z** = Z@Z1, where Z1 denotes the orthogonal complement of 
Z in Z**. By our assumption, Z1 is an £1-space. However, it is well known that a 
lattice, which is an £1-space, is already order isomorphic to an L1-space. Therefore, 
there exists an L1-norm 11 IIL on Z1 which satisfies C-1llZ**II < IIZ**IIL < Cllz**ll, 
for some O < C < x and any z** E Z1. Define now a function F on Z*, by setting 

F(z*) = sup{lz** (z*)l: z** E zl, IIZ** IIL < 1}, 
for all z* E Z*. We clearly have 

IF(z*) I < Cllz* 11, Z* E Z*, 

and, moreover, the duality between L1 and M-norms show that F is a seminorm 
on Z* so that 

F(Z1* + Z2* ) = max(F(zl ), F (Z2 ) ) X 

whenever zl* and Z2* in Z* satisfy Z1 /\ Z2 = ° 
By using F, we define, for each partition 1r = {Bk}k=1 of Q into sets of positive 

measure, a function pX E Loo (Q, , ,u) by 

:X((^)) = F(Xsk) if U E Bk, 1 < k < m. 

It is quite clear that pX > :X, whenever the partition 1r' refines 1r. Therefore, 
{:X} is a decreasing net of functions in the lattice Loo(Q, , ,u), which is order 
complete. Consequently, there exists a: E Loo(Q,S,,u) so that d = Ar:s and 
then : > d a.e. for every 1r. 

We distinguish between two mutually exclusive cases. 
Case I. Suppose that :(w) > O on a subset of Q of positive measure and find a 

6 > O and a subset QO of Q with ,u(Qo) > O so that :(U) > 6, U E QO. We shall 
prove that in this case the band Zo = {f XQO; f E Z} is order isomorphic to an 
L1-space. Let g E Z* be a simple function of the form Ei=1 aiXAt, where {Ai}im=l 
are mutually disjoint subsets of Qo each having positive measure. Then, since F is 
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an M-seminorm, we obtain 

F(g) = l <mzaxm lai | * F(xAi ) > (l <a<Xm lai l ) (l<ii<nm F(XAt ) ) 

I wEu.m=lAt A ( )' 

for any partition 1r which includes the sets {Ai}im=l. Since :X(U) > p(U) a.e. it 
follows that 

Cll9lI > F(g) > ligilo° Weui=nAt :( ) - 

which clearly implies that Cllz*ll > dgIz*lloo, whenever z* E Z* is supported by QO. 
Hence, for any z E ZO, we have IIZII1 < llZlI < CE-lilzill. This completes the proof 
in Case I. 

Case II. p(U) = O, for a.e. U E Q. We shall prove that in this case Z is a 
conjugate space. Choose first an increasing sequence {1rn}°n°=1 of partitions of Q 
such that /31rn (J) ) OX as n > x, for a.e. U E Q. By Egoroff's theorem, there exists 

a countable partition {Q;}j°° 1 °f Q so that ,u(Q U1°° l Qj) = O and /31rn(J) °n as n x, uniformly for U E Qj, j = 1,2,.... For each jX let Vj be the closure 

of Loo(Qj,SlQj,,uln) in Z* and Zj = {fXn:f E Z}. Since Z = 1°°-1(l3Zy is 
a boundedly complete unconditional decomposition (for Z contains no copy of co) 
it would follow that Z is a dual space provided we show that Zj is a conjugate 
space, for every j. This will be achieved by proving that Zj is order isometric to 
Vj. To this end, fix jX let 0 E Vj* and find a Hahn-Banach extension z** of 0 to an 
element of Z**. If Zjl denotes the orthogonal complement of Zj in Z then clearly 
Z** = Zj@Zjl@Zl. Hence, z** = z+z+Zo** with z E Z;, z/ E Zjl and zO** E zl. 
Then, for v* E Vj, 

a0(U*) = Z**(U*) = v*(zj) + zo**(v*) 
and the proof will be completed once we show that zO* (v* ) = O, whenever zO** E zl 
and v* E Vj. However, in view of the definitions of F and Vj, it suffices to prove 
that F vanishes on Loo(QjX SIninpIn2) In order to verify this fact, notice that, for 
any measurable subset A of Qj and each n, we have 

F(XA) = BEaXX F(XAnB) < BEaX F(XB) < maQx ATn (U) > O, 
AnB7&0 

asnx. O 

THEOREM 3.4. Let Z be a Banach function space over a nonatomic probability 
space (Q,,,u). Suppose that Z = X ($3 Y, where X is a refexive space and Y 
is isomorphic to an L1-space. Then there exists a band ZO of Z such that ZO is 
linearly isomorphic to Y and order isomorphic to an L1-space while its orthogonal 
complement Zol is reflexive and isomorphic to X, up to a fiinite dimensional space. 

PROOF. BY Theorem 3.2, Z has a band ZO which is order isomorphic to an 
L1-space and such that Zol contains no isomorphic copies of L1 (O, 1). 

We observe now that every operator T from an L1-space into a reflexive space 
is strictly singular since T is weakly compact and L1 has the Dunford-Pettis prop- 
erty (thus, the unit ball of any reflexive subspace of L1 is mapped by T into a 
norm-compact set). We may therefore apply Theorem A and find decompositions 
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X = X1 @ X2 and Y = Y1 @ Y2 so that Z0 is isomorphic to X1 @ Y1 and Zol to 
X2 @ Y2. This already implies that dimX1 < x. 

Since (ZO )** is isomorphic to X2 @ Y2** it follows that (Zol )** /Zol is isomorphic 
to Y2**/Y2. On the other hand, Y2 is clearly an £1-space and thus so is Y2**/Y2. 
By using Theorem 3.3, we conclude that Zol is a dual space (here, we use the fact 
that (Q, , ,u) is nonatomic which implies that any nontrivial band of Zol that is 
order isomorphic to an L1-space must contain an isomorphic copy of L1(0, 1), a 
contradiction). Let X2 and Y2 be subspaces of Zol so that Zol = X2 @ Y2, X2 
is isomorphic to X2 and Y2 to Y2. Since X2 is reflexive it would be a w*-closed 
subspace of the dual space Zol Hence, Y2, which is isomorphic to Z01/X2, will be 
a dual space, too. 

Notice now that, since the dual Z* of Z is contained in Ll(Q,S,,u), the set 
{XA; A E S} is weakly compact and its span is dense in Z. Hence, Z is a weakly 
compactly generated (WCG) space and so are its complemented subspaces Y and 
Y2. By using a result of H. P. Rosenthal [23, Corollary 2.2], we obtain that Y2 
is isomorphic to a complemented subspace of L1(0, 1). Thus, by D. R. Lewis and 
C. Stegall [13], Y2 is either isomorphic to 11 or dimY2 < x. However, in view of 
Theorem 3.1, the first possibility cannot take place. Hence, dimY2 < x. It follows 
easily that, up to a finite dimensional space, Z0 is isomorphic to Y and Zol to X. 
However, Z0 contains a complemented subspace isomorphic to 11 and therefore Z0 
is precisely isomorphic to Y. O 

REMARK. Theorem 3.4 remains true even when (Q, ,,u) is an arbitrary proba- 
bility space. The proof of this fact uses both Theorems 1.1 and 3.4. Let Z' be the 
band of Z containing all the atoms of Z and Z" its orthogonal complement, which 
is a nonatomic lattice. If Z = X ffl Y with Y being reflexive and Y isomorphic to 
an L1-space then, by Theorem A, there exist decompositions X = X' @ X" and 
Y' = Y' @ Y" so that Z' is isomorphic to X' @ Y' and Z" to X" @ Y". The band Z' 
is actually a space with an unconditional basis. Since every operator from X' into 
Y' is compact it follows from Theorem 1.1 that Z' = Zl @ Z2', where Z1 and Z2' are 
orthogonal bands so that Z1 is isomorphic to X' and Z2' to Y'. On the other hand, 
by Theorem 3 4, Z'' = Zl' @ Z2', where again Z1' and Z2' are orthogonal bands such 
that Z1' is isomorphic to X", up to a finite dimensional space, and Z2' iS isomorphic 
to Y". Put Z1 = Z1 @ Z1' and Z2 = Z2' @ Z2' Then Z = Z1 @ Z2, where Z1 and 
Z2 are orthogonal bands so that Z1 is isomorphic to X, up to a finite dimensional 
space, and Z2 ° Y 

The difficulties encountered in Theorem 3.4 and the remark following it stem 
from the fact that we do not know whether a reflexive Banach lattice must be 
isomorphic to its hyperplanes. 

Suppose that we replace the assumption made in the above remark that X is 
reflexive by the assumption that X has nontrivial type. In this case, Z1 will be 
a lattice with nontrivial type and therefore, by Lemma 2.4(c), Z1 would contain 
a complemented copy of 12. Thus, Z1 will be isomorphic to its hyperplanes which 
implies the existence of an isomorphism between Z1 and X. We summarize these 
conclusions in the following corollary. 

COROLLARY 3.5. Let Z be a Banach lattice with a weak unit and suppose that 
Z = X ($3 Y, where X is a subspace with nontrivial type and Y is isomorphic to an 
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L1-space. Then there exists a band ZO of Z which is isomorphic to Y and so that 
its orthogonal complement ZO is isomorphic to X. 

Corollary 3.5 enables us to solve positively a problem raised by P. Wojtaszczyk 
in [28]. 

COROLLARY 3.6. If a nonatomic Banach lattice Z is linearly isomorphic to 
the direct sum L1 (O, 1) ($3 L2 (O, 1) then Z is already order isomorphic to L1 (O, 1) @ 

L2(0, 1). 

This result means that L1(O, 1) @ L2(0, 1) has, up to isomorphism, a unique 
structure as a Banach function space on [0,1]. Further results on uniqueness of 
structures in Banach function spaces can be found in [9]. 

We remark that we can now list all the Banach lattices isomorphic to L1 @ L2. 
These are L1 @ L2, L1 @ 12, L1 @ L2 @ 12, L1 @ 11 @ L2, L1 @ 11 @ 12, L1 @ 11 @ 

L2 El2, L1 EL2 @12 for n E N. 
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