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DECOMPOSITIONS OF BANACH LATTICES
INTO DIRECT SUMS

P. G. CASAZZA, N. J. KALTON AND L. TZAFRIRI

ABSTRACT. We consider the problem of decomposing a Banach lattice Z as a
direct sum Z = X @Y where X and Y are complemented subspaces satisfying
a condition of incomparability (e.g. every operator from Y to X is strictly
singular). We treat both the atomic and nonatomic cases. In particular we
answer a question of Wojtaszczyk by showing that L@ L2 has unique structure
as a nonatomic Banach lattice.

One of the most important problems in the theory of Banach lattices, which
is still open, is whether any complemented subspace of a Banach lattice must be
linearly isomorphic to a Banach lattice. The main difficulty seems to lie in the fact
that most of the criteria for a Banach space to be isomorphic to a lattice do not
really distinguish between lattices and their complemented subspaces.

We do not actually treat this question in the present paper but rather consider
the situation Z = X ® Y, where Z is a Banach lattice and X and Y two com-
plemented subspaces which are assumed to satisfy different conditions that make
them “distinct” in some or another sense. This line of research was initiated by P.
Wojtaszczyk [28] (and also by I. S. Edelstein and P. Wojtaszczyk [3]) who proved
that if Z has a normalized unconditional basis {2, }32, (i.e. it is a separable atomic
lattice) so that every linear operator from Y into X is compact then {z,}32; splits
into two disjoint parts which are respectively equivalent to bases of X and Y. In
particular, both X and Y have unconditional bases. The proof of this result is
based on a fundamental theorem from [28 and 3|, which is mentioned below as
Theorem A. We give here a different proof which does not make use of Theorem A
but instead is based on a simple “change of signs” result from [2], which is described
below as Theorem B. We also consider the case when the compactness assumption
above is replaced by the total incomparability of X and Y for which we prove a
similar result provided X and Y have unconditional bases. Unfortunately, the most
interesting case when every operator from Y into X is assumed to be strictly singu-
lar (which was raised as an open problem in [28]) remains unsolved. We conclude
the section devoted to the atomic case with a simple theorem on block bases of a
space with unconditional basis {z,}52; whose span is complemented. Such a block
basis splits into two disjoint parts, the first equivalent to a subsequence of {2,}32,
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and the second equivalent to a sequence in the complement of the span of the block
basis.

In the continuous case we show that a nonatomic Banach lattice Z which has
some nontrivial cotype cannot be split into totally incomparable infinite dimensional
subspaces; thus if Z ~ X @Y with X,Y totally incomparable then either dim X <
oo or dimY < oco. The same result, under the assumption that every operator
T:X — Y is strictly singular, is false as the example L; & L, shows. However, in
this case we give some partial results which suggest that the general result may be
true if Z has some nontrivial type.

We conclude by studying the structure of Banach lattices of the form L; & X,
where X is reflexive. We show that if Z is a Banach lattice isomorphic to L; @Y,
where Y has some nontrivial type then Z has a band decomposition Z ~ Zy @ Z5,
where Z; is an AL-space and Zg- is isomorphic to Y. As a consequence the Banach
space L1 @ Lo has a unique structure as a nonatomic Banach lattice; this answers
a question raised by P. Wojtaszczyk [28].

0. Preliminaries. In order to make the paper as self-contained as possible, we
quote in this section some results that are used very often. We begin with a result
which is crucial all throughout the article; instead of presenting the two available
versions separately we incorporate them as one theorem.

THEOREM A [3, 28]. Let X and Y be two Banach spaces and suppose that
they are either totally incomparable (i.e. no infinite dimensional subspace of X s
1somaorphic to a subspace of Y) or that every bounded linear operator T fromY into
X 1s strictly singular (i.e. there exists no infinite dimensional subspace of Y so that
T restricted to Y is an isomorphism). Let V be a complemented subspace of X @Y .
Then there exists an automorphism v of X ®Y such that v(V) = X; ® Y, where
X1 =9v(V)NX and Yy =9 (V)NY are complemented subspaces of X, respectively
Y.

The first section of the paper is devoted to spaces with an unconditional basis.
The standard material on such spaces can be found e.g. in [15]. We quote here a
decomposition theorem which is used several times.

THEOREM B [2]. Let X and Y be two Banach spaces and @ a bounded linear
projection from X @Y onto a subspace V with a finite or infinite K-unconditional
basis {vn}ner S0 that

Qu) =) v} (w)vg,
ner
where {v}; }ner are functionals biorthogonal to {vp}ner. Let Px and Py denote the
corresponding projections from X @Y onto X, respectivelyY. Fiz 0 < o < 1 and
split T into two disjoint subsets Tx and Ty so that v}, (QPxvy) > «, forn € Tx and
v (QPyvy) 21— o, forn E1y.

Then there exists a constant M = M(||Q||, K, &) so that, for any choice of 1 <
p < 00, {Un}nery and {vp}ner, are respectively M-equivalent to {ry(t)Pxvn tnerx
and {rn(t)Pyvn}ner,, considered as elements of L,(X) and L,(Y). Moreover,
(7 (8) Pxvplnery and [rn(t)Py vnlner, are M-complemented in L,(X), respectively
Ly(Y).
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Here, as usual, {r,(t)}32,; denotes the sequence of the Rademacher functions
and L,(X) stands for L, ([0, 1], X).

The spaces with an unconditional basis can be viewed as atomic lattices. In the
second and third sections, we study nonatomic and also general lattices. The stan-
dard material on this topic is available, for instance, in [16 and 26]. Of particular
interest are the order continuous Banach lattices, i.e. those in which any decreasing
net {2} whose g.L.b. is 0 satisfies lim, z, = 0. Order continuous Banach lattices
with a weak unit admit a very useful representation theorem (cf. e.g. [16, 1.b.14]).

THEOREM C. Let Z be an order continuous Banach lattice with a weak unit.
Then there exist a probability space (U, X, u), an (not necessarily closed) ideal Z of
L1(Q, %, u) and a lattice norm || - || 3 on Z such that

(i) Z is order isometric to Z.

(ii) Z is dense in L1(Q, S, 1) and Loo(, S, 1) 1s dense in Z.

(i) [[flls < NFllz < 2 flloos S € Loo (€2, 5, ).

(iv) The dual of the above order isometry maps Z* onto the Banach lattice Z*
of all g for which

llgll 5. =Sup{/nfgdu; 1fllz < 1} < 00

and g(f) = Jo fodu.

A lattice of functions as above will be called a Banach function space.

We point out that a Banach lattice which contains no subspace isomorphic to
¢o is order continuous. In fact, such a lattice has the stronger property that any
increasing net {2} er with sup,¢r [[24]| < co converges to its l.u.b.

As we have already mentioned, the third section studies embedding of L;-spaces
into Banach lattices. One of the most important tools used in this section is a
representation theorem for operators from L;(0,1) to a Banach lattice containing
no copy of cg, which is presented and used extensively in [10 and 11]. Rather than
discussing these results in detail, we collect here only those facts that are needed
in the sequel. We also quote a theorem concerning the so-called sign-preserving
operators.

An operator T from L;(0,1) into a Banach space Z is called sign-preserving
provided there exist a § > 0'and a subset A of [0, 1] of positive measure so that
IT ()|l > 6, whenever ¢ € Lq(0,1) has mean zero and || = xa (x4 denotes the
characteristic function of A).

THEOREM D. Let Z be a Banach lattice containing no isomorphic copy of co.

(i) [11] If T is an isomorphism from L1(0,1) into Z then there exists also an
order isomorphism S from L1(0,1) into Z.

(ii) [11, 25] An operator S from L1(0,1) into a Li(Q, %, u)-space is a lattice
homomorphism if and only if there exist measurable functions 0 < a:(} — R and
0:Q0 — [0,1] so that

S()(w) = a(w)Y(o(w), weN ae.,
for all € L1(0,1).
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(iii) (7] If T s a sign-preserving operator from Ly(0,1) into Z then T is an
isomorphism on some subspace of L1(0,1) which is isomorphic to L;(0,1).

Additional details on operators from L;-spaces into Banach lattices can be found
in [10, 11, 24, 25, 7, 4 and 5].

1. Spaces with an unconditional basis (atomic lattices). We start this
section by presenting an alternative proof of P. Wojtaszczyk’s decomposition the-
orem from [28]. The original proof relies on Theorem A while ours uses instead
Theorem B whose proof is considerably simpler than that of Theorem A.

THEOREM 1.1. Let X and Y be two Banach spaces such that every bounded
linear operator from'Y into X is compact. Then every unconditional basis {zn}5%
of X®Y splits into two disjoint parts {z, }nec, and {2, }nec, that are respectively
equivalent to bases of X and Y. In particular, X and Y have unconditional bases.

PROOF. We can assume without loss of generality that ||2,| = 1, for all n, and
that the direct sum X @Y is taken in the sense of /;. In this case, the corrresponding
projections Px and Py from X &Y onto X, respectively Y, are of norm one. For
each subset C of the integers, let Q¢ denote the projection defined by

Qc (i anzn) = Z AnZn,
n=1

neC

for any choice of {a,}32 ;. Put K =sup||Qc|-
Split now the integers into two disjoint subsets A; and As such that n € 4; =

ThTn > 2 and n € Ay = Yhyn > 3, Where 2, = Px2n, Yn = Pyzn, 7}, =

Przr, yr = Pyz; and {z;}n=1 are the biorthogonal functionals associated to

{z’ﬂ }‘;.Lo:l'
By Theorem B, we conclude the existence of a constant M = M(K) so that

1
Z a;2; S./o Z a;ri(t)z; Z a;2; ‘

1€A, 1€A, 1€A;
1
S /
0

for any choice of scalars {a,}$2,. Similar inequalities hold in the dual.

M! dt< M

and

M—l

E aiZ;

1€EA2

> airi(t)ys

1€EA2

dt < M' Z a;y;
1€EA2

LEMMA 1.2. There ezists a subset By of Ay so that {zp}nep, 15 equivalent to
{Zn}neB, and |A; ~ By is finite.

PROOF. Suppose the assertion of Lemma 1.2 is false. Since

E a;T; E aiz;

1€EA; 1€EA;

<

b

for any choice of {a;}, we can easily construct a sequence {C;}?2, of mutually
disjoint finite subsets of A; and vectors u; = Ez‘ec,» biz; such that ||u;|| = 1 and
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| Pxuj|| < 2=U+1, for all j. The inequalities mentioned above show the existence
of signs ¢; = +1, 1 € C}, j =1,2,..., such that

Z &bzl 2 M1
i€C,

Consider now the automorphism T, of X ® Y defined by T.z; = €;2;, for all 1,
where ¢; is chosen as above if ¢ € C}, for some j, or €; = +1, otherwise. Since the
operator PxT,y:Y — X must be compact it follows by passing to a subsequence
if necessary that PxT.Pyu; — z, as j — oo, for some z € X. Since |u; —
Pyuj| < 27U+ we also get that PxT.u; — z, as j — oo. On the other hand,
PxT.u; = Ziecj €:;b;z; and therefore ||z|| > M~!. This shows that the sequence
{u;}52, does not tend weakly to zero. Hence, there is a functional u* on X @ Y
and a subsequence {u;(x)}3>; of {u;};=1 so that infy u*ujy > 0. It follows that
{u5(k) 132, is equivalent to the unit vector basis of I, and, moreover, that [u;(x)]22,
is complemented in X @Y. A standard perturbation argument shows that there is
a lo so that [Py u;(k)]k>1, is complemented in Y and isomorphic to ;. This means
that there are quotient maps from Y onto X which, of course, is a contradiction. [

LEMMA 1.3. There ezists a subset By of A2 so that {zn}nep, i equivalent to
{Yn}nep, and |Az ~ Bs| is finite.

PROOF. If the assertion of Lemma 1.3 is false then one can construct exactly as
in the proof of Lemma 1.2 a sequence of mutually disjoint finite subsets {D;}52,
of Ay and vectors v; = 37, diz; such that [v;]| = 1 and ||Pyv;| < 2-U+1) for
all j.

If {v;}52 does not tend weakly to zero then it contains a subsequence which is
equivalent to the unit vector basis of /;. By Theorem B, the subspace [ry(t)yn]nea,
of Ly(Y) also contains a subspace isomorphic to I;. Hence, by G. Pisier [20], we
conclude that Y contains an isomorphic copy of /;. A standard gliding hump
argument shows that one can find in Y a sequence of elements which, on one hand,
is equivalent to the unit vector basis of {; and, on the other hand, is equivalent to
a block basis of {z,}22,. Therefore, Y contains a complemented copy of [; and
we can easily construct noncompact operators from Y into X. This contradiction
shows that v; = 0, as j — oo.

Now for each j, let v; € X* be so that ||v]|| = 1 and v} (Pxv;) > 1-2-0+D 1t
follows that v} (v;) > 1 — 277, for all j. By passing to a subsequence if needed, we

can assume without loss of generality that v} v v*, as j — oo, for some v* € X*.
Since v*(v;) — 0, as j — oo, we can choose an integer j; so that |v*(v;)1| < 1/8.
Then we can find an integer ¢; so that v} (vj,)| < 1/8. Put wi = vj — v} and
notice that w} (v;,) > 1—1/27 —1/8 > 1/4. Repeating this procedure, we construct
a subsequence {v;, }32; of {v;}22, and a sequence {w;}32,, which are differences
of the v¥’s and therefore w*-limy_, o, wj = 0, such that wi(v;, ) > 1/4, for all k. By

J
a gliding hump argument, we can assume without loss of generality that

wy = E ¢z} + Wy,
ief)k
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where {ﬁk}z"zl are mutually disjoint finite subsets of the integers, {¢;} suitable
scalars and {w;}%2, a sequence which tends in norm to zero. Therefore, we will
assume that ||@j| < 1/8, for all k. It follows that

1, . 1
1< wi (vy,) < Z ci2; Z diz; | + 3
1€ Dy €D,
which implies that

> ez Zé,

i€DxND,,

for all k. By Theorem B, applied to the dual of X @Y, we find signs &; = £1, 7 €
DnDj,, k=1,2,... so that

* i
Z &iC¥i || > gaf
iEDkﬂD]k

for all k.

Let now T be the linear operator on X @Y which is defined by ngz = g;2;, if
1€ Dk N Dj, for some k, or by Tez1 = 0, otherwise. Since PngPy is compact it
follows that its adjoint P3T* P} is also compact and thus, we can assume without
loss of generality that P}T;Pj}w,’; — 0, as k — oo. Since wy € X*, for all k, we
get that

Z eiciyf = PYT? Z ciz; | =0,

iEDkﬁD]k iebk
as k — oo, and this, of course, is a contradiction.

LEMMA 1.4. There exists a subset D of the integers such that
(i) Y = [yn]neD-
(i) {zn}tneD s equivalent to {yn}nep.

PROOF. Suppose that the complement B§ of By in N consists of the integers
{ni <ng<--<my <---}. Put Eyg = By. If yp, € [Ynlner, then omit this
vector; if Yn, & [ynlner, then set E; = BoU{n;}. A simple verification shows that
{zn}neE, is equivalent to {yn}rner,.- Indeed, suppose that there exists a vector
Y ome B, On?n # 0 80 that Yone £, @nYn = 0. By our assumption on y,, , we conclude
that the coefficient of y,, must be zero. Hence, ), . anyn = 0 which, by Lemma
3, implies that ), c 5 anzn =0, a contradiction.

We continue this procedure with na,n3,... and construct subsets Ey, E3,... of
the integers as above. If the argument stops after m steps then we put D = E,,
and the proof is completed since [y,]nek,, must be equal to Y. On the other hand,
if this procedure can be repeated as many times as we like, then there exists a
sequence {E; } 2, of subsets of the mtegers so that

()Bz—EoCElc CEC

(b) [yn]neE]_l # [yn]nEEJ #Y, fOI‘ all j.

(©) [vnlneuse By = ¥
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Hence, there exist vectors y € Y such that ||¢;|| = 1 and d(y}, [ynlner;_,) > 3,
for all 5 > 1. Since, by our assumption, the restriction of the operator Px@p, to Y
is compact it follows, by passing to a subsequence if necessary, that PxQp, y; — z,
as 7 — 0o, for some z € X. Suppose now that

e . © .
y;»=Za£,zn=Za£lyn, J=12,....
n=1 n=1
Then

lim E alz, =z.
J—00
n€B;

But, by Lemma 2, {2, }nep, is equivalent to {z,}nep,. Hence,

lim E alyn = v,
J—00
ne B,y

for some y € Y. Since
B ~ By = (A; ~ B1) U (A3 ~ By)

there exists an integer ! so that [yu]neps C [Ynlnek,, whenever k > I. Tt follows
that, for y > k& > [, we have

DN | =

d ( Z ‘lﬁyn, [yn]nEEk) = d(y}, [yn]nGEk) > d(y}, [yn]neEj-l) >
n€eB,

This implies that d(y, [yn]ner,) > 1/2 for all k. Hence, d(y,Y) > 1/2 which, of
course, is contradictory. 0O

We return now to the Proof of Theorem 1.1. Let D be the set constructed in
Lemma 1.4 and notice that if 2 € X N[zp]pep thenz =" cpdnzn =Y, cp dntn
for a suitable sequence of scalars {d, }nep. Hence, ) .p @nyn = 0 and, by Lemma
1.4, also z = 0. Thus, X N [2p)nep = {0}. Actually, X + [2p)nep is a closed
subspace of X @& Y. Indeed, if there exist sequences {ux}%>; in X and {vk}%,
in [2p]nep with |luk| = |lvk|l = 1, for all k, and limg_,co ||ux + vk|| = O then
limg— 00 ||ukx + Pxvk| = 0. Let S be the isomorphism from Y onto [z,],ep given
by Lemma 1.4. Then PxS is a compact operator which maps S~ vy into Pxuvg, for
all k. Hence, {Pxvk}re, and thus also {ux}g>, contain convergent subsequences
and this contradicts the fact that X N [2p]nep = {0}.

Observe now that Y is contained in the internal direct sum X @ [2,]n,ep since
Y = [yn]nep and, for m € D, ym = 2m — Tm € X @ [25]nep. Therefore,

[zn]:o=l =XoY=Xo® [zn]neD

which readily implies that X is isomorphic to [2,]nepc. This completes the proof
since we already know that Y is isomorphic to [2p]nep, by Lemma 1.4. O

P. Wojtaszczyk raised in [28] the question whether Theorem 1 remains valid
when the assumption that all the operators from Y into X are compact is replaced
by the weaker condition that all the operators from Y into X are strictly singular.
This question seems to be still open. As far as we know, it is still unknown if the
above compactness condition can be replaced by the total incomparability of X and
Y. We prove such a result under some additional assumptions.
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THEOREM 1.5. Let X andY be two totally incomparable Banach spaces having
each an unconditional basis. Then every unconditional basis {2}, of X®Y splits
into two disjoint parts which are respectively equivalent to bases of X and Y.

PROOF. We shall maintain the notation used in the proof of Theorem 1.1 as
well as the basic assumptions made there. We need first a lemma.

LEMMA 1.6. If there exists an o > 0 so that z,(z,) > «, for all n, then
(i) {2n}5%,, s equivalent to {x,}2,., for some integer m.
(i) Y s finite dimensional.

PROOF. By Theorem B, there is a M = M (K, o) so that

00 1]] o0
Z cnznl|l < / Z enTn(t)Ty
n=1 0 n=1

for any choice of {¢,}22 ;. A similar inequality holds in the dual situation for
{5}, and {4},

Let now {&;}2, be a normalized unconditional basis for X and let {£}$2, be
the corresponding biorthogonal functionals. For z = E?L b; & put

oo
E CnZn

n=1

M! dt <M

oo [o ]
2| =3 Ibile; and |zl = [bil?és.
=1 =1

Then, for any ehoice of {¢,,}32,, we have

00 1| oo 1 00 1/2
Z CnZn / Z cnn(t)2n > —= (Z |cnmn|2)
n=1 0 |n=1 vz |\

Pf= 2 ( / 1 z;:(f(s))rn(s)ds) wmllin e (),

7, (Tn)

defines a projection of norm < M from Ls(X) onto [r,(¢)z,]S2; and since, as

above,
. . 1/2
Y dnz| > (Z |dnz;;|2)
n=1 n=1

for any choice of {d, }22 ;, we can apply a standard duality argument and conclude

that
) o0 1/2
Z Cpin| < ]\44\/§ (Z |cnzn|2) s
n=1 n=1

for every choice of scalars {c,}32 ;.

Suppose now that either (i) or (ii) do not hold. In this case, it is easily verified
that there are integers pp = 1 < p; < pa < +-- < p; < -+ and blocks u; =
S 41 0i% 50 that [lus|| = 1 and | Pxu;]| < 270+D, for all j.

Notice that u; 20, as j — oo. Indeed, if this is false then we can assume
without loss of generality that {uj};?‘;l is equivalent to the unit vector basis of ;.
Moreover, [u;]%2, is complemented in X ® Y. In view of the condition satisfied by

M > dt

Since

MV2
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{Pxu;}32,, it follows that ¥ contains a complemented copy of /;. Since {2y},
is equivalent to {r,(t)z,}5%, considered e.g. as a sequence in Ly (X), we conclude
that also Ly(X) contains a complemented subspace isomorphic to /;. By [20], X
contains a copy of 1, too, and this contradicts the assumption that X and Y are
totally incomparable.

Now, for each 7, put

1/2
P, /

85 = Z |anTn|? €X.

n=p,-1+1
Then, for every i, we have
lim &7 (s;) =0.
j—o00

Indeed, if for some fixed ¢ there exists a 3 > 0 so that £ (s;) > g, for all j, then

2 1/2 1/2
1 p; by
[ Y am@ge)| ¢ = ¥ jwg@r] >s
0 |n=p,_1+1 n=p,_1+1

Hence, there are signs &, = 1, pj—1 < n < pj, such that

p; b,
PR | Y. antnzn | =& | Y. anenza | 25
n=p, 1+1 n=p, 141

for all j. This contradicts the fact that w-lim;_, o u; = 0. The condition satisfied
by {s;}%2, shows that there is no loss of generality in assuming that {s;}2, is
actually a block basis of {£}5°, (note that, by the inequalities established above,
1/M*V2 < ||sj|| € MV/2, for all j). These inequalities also yield that, for any
choice of {b;}% ;, we have

o o P; 1/2 o
MVZ| Y bjui| 2| | D16 D0 lanzal’ || =3 lbslss
j=1 7=1 n=p,_1+1 7=1

and, also

o0 oo
Y bjugl| < MAVEZ(D fbsls;

j=1 =1

It follows that [u;]%2; is isomorphic to the subspace [s;]72, of X. However, the fact
that ||Pxu;| < 27U+1), for all 5, implies that [u;]%2; is isomorphic to a subspace
of Y. This, of course, contradicts the total incomparability of X and Y. O
We return to the Proof of Theorem 1.5. Let A; and A; be defined as in the proof
of Theorem 1.1. By Theorem A, there exists an automorphism ¥: X®Y — X @Y
such that
$(zalnea) = X1 @Y1,

where X1 = ¥([zn|neca, )N X and Y1 = ¢¥([2n]neca, )NY are complemented subspaces
of X, respectively Y.
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Put 2, = ¢¥(2,);n = 1,2,..., and let {2;;}32, be the functionals biorthogonal
to {£,}52,. In general, the set

Ay ={neN;2,(Pxza) > 1}

need not coincide with A;. However, A; and A 1 can differ only by a finite number of
elements. Indeed, if e.g. A;NA; contains an infinite sequence {n;}$2, and {z,, },
does not tend weakly to zero then, by Theorem B, both Lo(X) and L2(Y) must
contain an isomorphic copy of /1. By [20], so do X and Y and this is a contradiction.
If, on the other hand, z,, = 0 then we can assume without loss of generality that
{yn. }2; and {PxZn,}2; are mutually disjoint blocks on {2,}52;, respectively
{2,352,. Hence, again by Theorem B, {yn,}2; is equivalent to {2y, }2; and
{Px%n,}2, to {2,,}2,;i.e. X and Y are not totally incomparable.

It follows from these considerations that ¥([zn],c4,~4,) I8 @ space of finite
codimension in X; @ Y7, and

w([zn]neAlnA,) = Xl @ Y/l’

where X; and Y; are spaces of finite codimension in X;, respectively Y;. By Lemma
1.6, Y7 must be finite dimensional and thus £ = dimY; < oco.

Suppose now that X = X; & Xp and Y =Y; @ Y2. Then ¢([2n]neca,) is clearly
isomorphic to X, ® Y,. In view of the total symmetry of our assumptions, we can
conclude, as above, that m = dim X3 < oo. If e.g. m > k then we switch m — k
vectors from A; to A; thus obtaining new sets C; and Cs. It is easily checked that
¥([2n]nec, ) is isomorphic to X and ¢([zn]nec,) to Y. O

REMARK. It is not clear if the assumption made in the statement of Theorem 1.5
that X and Y have unconditional bases is actually needed. As is well known, the
problem whether every complemented subspace of a space with an unconditional
basis must have itself an unconditional basis is still unsolved. Theorem 1.5 could
perhaps provide some means to construct a counterexample since it specifies in a
precise manner an unconditional basis for X whenever X @Y has an unconditional
basis and X and Y are totally incomparable.

In order to prove results on splitting of bases of a direct sum, one has to make
some additional assumptions, otherwise, the result clearly fails. This fact is put in
evidence by a simple example pointed out by P. Wojtaszczyk in [28]. He noticed
that, for 1 < p # 2, L,(0,1) is isomorphic to L,(0,1) ®l5 but the image under any
isomorphism of the normalized Haar basis in L,(0,1) is an unconditional basis of
L,(0,1) & I which does not split as e.g. in Theorem 1.1.

In the simpler case when one of the factors of the direct sum is ¢y or {,, the
situation is considerably clearer, as shown by the next result.

THEOREM 1.7. Let X and Y be two Banach spaces and suppose that X 1s
1somorphic to co or Iy, for somep > 1. If X ®Y has an unconditional basis then
so does Y.

PROOF. The cases when X is isomorphic either to cg or to I; can be treated
separately. For instance, suppose that X is isomorphic to ¢g and that X & Y has
a normalized unconditional basis {2,}32 ;. If every operator from X into Y is
compact then we conclude that Y has an unconditional basis, by using Theorem 1.
On the other hand, if there exists a noncompact operator T' from ¢q into Y then
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we can find a v > 0, a normalized block basis {u,}32; of the unit vector basis of
cp and a block basis {v, }32; of {2,132, so that ||v,|| > v and || Tu, —v,|| < 277,
for all n. It follows easily that {v,}32; is equivalent to the unit vector basis of ¢
and therefore Y contains a complemented copy of ¢g. Hence, X ® Y is isomorphic
to Y and this completes the proof of this case.

We pass now to the case when X is isomorphic to I,, for some p > 1. We
shall assume that every bounded linear operator from Y into X is strictly singular;
otherwise, Y contains a complemented subspace isomorphic to I, and thus Y is
isomorphic to ¥ @ X which has an unconditional basis. We shall keep the notations
and the conventions introduced throughout the proof of Theorem 1.1.

We consider first the vectors {z,}nca,. By Theorem B, [2,]nca, is isomorphic
to [rn(t)Zn|nea,, considered e.g. as a complemented subspace of L,(X) which, in
turn, is isomorphic to L,(0,1). By Theorem A, [2,]nc4, is isomorphic to a direct
sum of the form X; @ Y;, where X; and Y; are complemented subspaces of X,
respectively Y. It follows that Y7 is either isomorphic to Iy or is an L,-space. In
the case when Y7 is an infinite dimensional £,-space it contains a complemented
copy of [, (cf. [14]) and thus, there exist nonstrictly singular operators from Y into
X. Therefore, either Y is isomorphic to I3 or it is finite dimensional. In both these
cases, Y7 has an unconditional basis.

We proceed now with [2,]nca,. Let Xo and Y2 be such that X = X; & X,
and Y = Y; @Y;. Then, by Theorem A, [2,]nc4, is isomorphic to X, & Y. If
dim X2 < oo then Y, is of finite codimension in a space with an unconditional
basis and therefore it has itself, an unconditional basis. Suppose now that Xj is
isomorphic to I,. In this case, we can find a block basis u; = ij:qj_l 110n2n, J =
1,2,..., of {#p}nea, so that

(a)

(b)

() {u;}%2, is equivalent to a sequence in X.

luj]| = 1, for all j.

{u;}92, is equivalent to the unit vector basis of ip.

(d) [us]%2, is a complemented subspace in [z,]ne4,-
Let R be a projection from [2,]nca, onto [u;]%2;. We can assume without loss of
generality that

[ee)
R(z) =Y _uj(2)u;, 2 € [znlnca,,
j=1
where u} = 35:41_1 41 bnzy, for all 5, and {b,}5% 4, are suitable scalars so that
bnay, > 0, for all n. Notice that {u;f };?‘;1 is equivalent to the unit vector basis of {4,
where ¢ = p/(p— 1). Since

1 9 a4
/ Z bnrn(t)y:z Z an"'n(t)yn dt
0 \n=q,_1+1 n=¢;-1+1

q, 1
= Z anbny:z (yn) > iu; (uj)
n=qg;-1+1
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for all j, we conclude the existence of signs €, = %1, ¢;_1 <n <gq;, 7=1,2,...,
so that

q; q; 1
Z bnEny:z Z An€nlYn Z Ea
n=g;j_1+1 n=q;_1+1

for all 5. We write now
q; q;
vy = Z an€nYn and vj = Z bnEnynm, Jj=12,....
n=g;—1+1 n=qgj-1+1

By switching to a subsequence, we may assume with no loss of generality that
{v;}92, and {v}}$2, are block bases of {2,}72, respectively {z;}72,. Hence,

(al) v3(vy) > 3 and v} (vp) = 0, for all j and all b # j.

(b') {v;}%2, is dominated by the unit vector basis of I, and {v}}?2, by that of
lg.
It follows easily, by a simple duality argument, that {vj}?‘;l is equivalent to the
unit vector basis of [, and {v}}$2, to that of [;. Moreover,

R'(y) =Z%w, yey,
j=1 7

defines a bounded projection from Y onto [v;]52,. This means that Y contains a
complemented copy of I, and thus there are nonstrictly singular operators from Y
into X.

Since both Y; and Y; have unconditional bases it follows that so does Y. 0O

We conclude this section with a result on block bases of an unconditional basis
which span a complemented subspace.

THEOREM 1.8. Let Z be a Banach space with a normalized unconditional basis
{zn}azy1 and let {z;}52, be a normalized block basis of {zn}L. Suppose that
Z = [a:j];";l @Y, for some subspace Y of Z. Then there is a partition of the
integers into two subsets A and B so that

(i) {z;}jea is equivalent to a subsequence of {z,}5 ;.

(ii) [z;];eB is isomorphic to a complemented subspace of Y.

PROOF. Denote by K the unconditionality constant of {z,}3; and suppose
that

Py
Tij= Y. anin,
n=p;-1+1
for a suitable sequence of scalars {an}ff: Py 141> 7 = 1,2,..., and for integers
po=1<p; <pg2 <---. Let P be a bounded projection from Z onto [a:j];?‘;l. As

in the proof of Theorem 1.7, we an assume without loss of generality that
o o}
P(z) = Zz;(z)mj, z€Z,
j=1

where z} = Zﬁ;p]__ +1bn25, 7=1,2,..., are functionals biorthogonal to {z,}52,
and {bn}fzf:pj__l+1, j = 1,2,..., are suitable scalars so that a,b, > 0, for all
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n ({2;}22, denotes, as usual, the sequence of the biorthogonal functions associated
with {2,}%2).
Put

A= {j eN; sup anb, > 1/2}
p;—1<n<p;

and B =N ~ A. We prove first that {z;} ;e is equivalent to {z,(;)}jc4, where, for

each j € A, n(y) is selected to be one of the indices satisfying p;—1 < n(j) < p(7)

and ap(;)bn(;) > 1/2. Notice that |a, ;)| < K and |b,(j;)| < ||P]], for all 5. Hence,

for any choice of scalars {c;}jca, we have

1Pl - chzn(j) chP(zn ]) ch n(5) %5 || = 4K2 Zc]zj

JEA JEA JEA JEA

v

24 J;ﬁcﬂn(a)znu) = 16K5 Zc,zn]) )

and this completes the proof of (i).
We consider now the set B. For j € B and p;—1 < n < p;, we have 0 < apb, <
1/2. Thus, we can choose signs €, = £1 so that

Dy
wj = Z Enlnby,
n=p;-1+1
satisfies |w;| < 1/2, for all 5. Put
Dy
y; = Z enan(I — P)z, €Y

n=p;_1+1

and observe that
Py p;
Yi= Y. EnlnZn—wimi= Y (€n —wj)anzn,
n=p;—1+1 n=p;_1+1

for all . Hence, for every choice of scalars {d;},cn, we get

pj
1
K Zd,-x,- > Ed,- > entnzn 2 T D ds;
jEB JEB  n=p;_1+1 JEB

Py

|I P|| Zd Z (n — wj)anzn

JEB n= p]—1+1

djz;
> HTP 24w

since e, —w;| > 1/2,forall p;_y <n<p;, 7=1,2,....
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Finally, in order to prove that [y; 52y 18 complemented in Y, we notice that the
operator @, defined by,

o0 D,

(o ]
Qz) = Z Z Inbren | ¥y, z= Zcizi € Z,
=1

Jj=1 \n=p;_1+1

where l,, = 1/(en —wj), pj—1 <n <p;, j=1,2,...,1s a bounded linear projection
from Z onto [y,]%2,. O

REMARK. The assumption made in Theorem 1.8 that [z;]%2, is a block basis
of {2,}22; is not redundant. Indeed, take as Z the direct sum I, ® 1,1 < p # 2,
and as {2, };2; the union of the unit vector bases of /;, and l1. Let {v;}$2; denote
the unit vector basis of the space (} .o, @ {%)p and T, an isomorphism from this
space onto l,. Then clearly the sequence z; = Tp(v;), j =1,2,..., cannot be split
as in the statement of Theorem 1.8.

2. Nonatomic lattices. In this section we shall consider some continuous
versions of the results of section one. We show that if Z is a nonatomic Banach
lattice with some nontrivial cotype and Z = X @ Y where X and Y are totally
incomparable then either dim X < oo or dimY < oo. Some similar but rather
less complete results are obtained for the situation when every operator T: X — Y
is strictly singular. We give an example to show that the cotype assumption is
necessary and prove a lattice analogue of Theorem 1.7.

Let us state first our main result on totally incomparable subspaces.

THEOREM 2.1. Let Z be a nonatomic Banach lattice with nontrivial cotype and
suppose Z = X ®Y where X and Y are totally incomparable subspaces of Z. Then
etther dim X < 0o or dimY < oo.

Theorem 2.1 is an immediate consequence of Theorem 2.2(a).

THEOREM 2.2. Let Z be a nonatomic Banach lattice with nontrivial cotype, and
suppose Z = X @Y where every bounded operator T: X — Y 1s strictly singular.
Then each of the following conditions implies dim X < oo:

(a) X contains no subspace isomorphic to .

(b) Z has nontrivial type and X contains no complemented subspace isomorphic
to 12.

(¢) Z has nontrivial type and Y contains a complemented infinite dimensional
subspace with an unconditional basis.

The proof of Theorem 2.2 involves a series of lemmas. The consequence of
Lemma 2.3 is that we need only consider the case when Z is a Banach function
space as described in §0.

LEMMA 2.3. Let Z be an order-continuous Banach lattice and suppose Z =
X @Y where X and Y are infinite dimensional subspaces of Z such that every
bounded operator T: X — Y 1is strictly singular. Then there is a band Zy in Z
with a weak order-unit such that Zg = Xo ® Yy, where Xg and Yy are, respectively,
infinite-dimensional complemented subspaces of X and Y.

If, in addition, Y contains a complemented subspace with an unconditional basis,
then we can further assume that Yy has a complemented subspace with unconditional
basts.
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PROOF. Let X’ and Y’ be separable infinite dimensional subspaces of X and Y,
respectively. Then there is a band Zy with a weak order-unit containing X’ and
Y'. As Zj is complemented by a band projection, P, say, we can use Theorem A
to deduce that Zy = X @ Yy, where Xy and Yy are complemented subspaces of X
and Y, respectively. If Py is the projection of Z onto Y then Pyz, is not strictly
singular so that dim Yy = oo (since Py |z, is identity on Y’). Similarly Pxz, is not
strictly singular so that dim Xy = oo.

For the last part we may assume Y’ is complemented and has an unconditional
basis. Then Y’ is complemented in Zg and so Y’ = X; @ Y7, where X; is comple-
mented in Xy and Y7 is complemented in Yy. Clearly we must have dim X; < oo
and so Y; has an unconditional basis. 0O

LEMMA 2.4. Let Z be an order-continuous Banach function space on a non-
atomic probability measure space (2,3, ). Suppose f € Z with f # 0.

(a) There is a sequence {f,} € Z with |fu| = |f|, for alln and f, 5 0, as
n — 0.

(b) If Z has nontrivial cotype then {fn}3>; may be chosen in (a) to be a basic
sequence equivalent to the standard lo-basis.

(¢) If Z has nontrivial type then {f,}3, may be chosen in (b) so that [fn]3%,
18, in addition, complemented in Z.

PROOF. We first prove (b). If Z has nontrivial cotype then the map
A:Lo(,8,u) = Z

given by A(g) = |f|g is g-absolutely summing for some 2 < g < oo (cf. [18]). By the
Pietsch Factorization Theorem (cf. [15, 2.b.2]) there is a positive linear functional
F on Ly, with F(xq) =1 and a constant C' so that

I1£1gll < C(F(|g|%)) 2.

Clearly we can assume F is u-continuous so that for some A € Ly(u),h > 0 and

Jq hdp =1, we have
1/q
I1flgll < © ( /Q gl d,u) .

Now, by Liapunoff’s theorem [16, 2.e.8], we can find 2, ; € £ forn =0,1,2,...,
J=1,2,...,2" with Qp 1 = (2 so that

(l) Qn,?j—l U Qn,2j = Qn—l,j-

() fo,, |fldu=27" [;|f|du.

(iii) fﬂn ; hdu=2"".
Let ¢, = 25;1(_1)j XQ,, and let f, = |f|¢n. Then, by Khintchine’s inequality,
{fn}S, is equivalent in L;(u) to the ls-basis, and so

00 oo 00
Zanfn 2/ Zanfn d,uz/ Zan¢n
n=1 Qp=1 Q|p=1

0 1/2
> 2 (Swer)

n=1

|f]du

S
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On the other hand,

Z CnPn

q 1/q
<C (/ hdu)
'Q n=1

00 1/2
< C’ (Z |an|2) y
n=1

by Khintchine’s inequality in L,(h du), when C’ is a suitable constant. Thus (b) is
established.

Note that (a) follows by constructing (2, ; to verify only (i) and (ii). Then
fn — 0 weakly in L, () as n — oo and since {f,}32, is relatively weakly compact
in Z we have also f,, — 0 weakly in Z, as n — oo.

For (c) note that Z is a p-convex lattice for some p > 1, and the inclusion
Z — Ly(u) is thus a p-convex operator. Thus, by [12] (cf. [16, 1.d.12]), the
inclusion can be factored through an L,-space. Then there exist operators A;: Z —
Ly(v), Ag:Ly(v) — Li(u) so that AyA;(f) = f. In particular, {A:(fn)}o, is
a basic sequence equivalent to the ly-basis in L,(v) and so has a subsequence
{A1(fr.)}%2,, whose span is complemented. Then [f, ]3>, is also complemented
inZ. O

Before proceeding with the main part of the proof we introduce a concept which
will be useful and make some preliminary observations. Let {u,}32; and {v,}52,
be any two basic sequences in Z. We say {u,}32; and {v, }32, are strongly equiv-
alent if there exist operators S: Z — Z and T: Z — Z with Su, = v,, Tv, = uy.
Note that strong equivalence implies equivalence. Note also that if X and Y are
complemented subspaces of Z and {u,}32, C X,{v,}32; C Y are strongly equiv-
alent then there exist nonstrictly singular operators from X into Y and from Y into
X.

We shall use an easy perturbation argument repeatedly. Let us suppose {un}52,
is a basic sequence so that 0 < inf,, ||u,|| < sup, ||un|| < co. Suppose {v,}52; is a
sequence in Z and A: Z — Z, B: Z — Z are operators such that ||u, — B(v,)|| — 0
and |lv, — A(up)|| — 0, as n — oo. Then there are subsequences {un, }5>, and
{vn, }52, which are strongly equivalent basic sequences. In particular this holds
when A=B=1.

LEMMA 2.5. Let Z be a Banach function space on (0, X, u) with nontrivial
type. Let {fn}32, C Z be a normalized unconditional basic sequence such that
[fr]3, is complemented in Z. Then either {f,}5%, is equivalent to the standard
la-basis or {fn}92, has a subsequence {fn,}3>, which is strongly equivalent to a

disjoint sequence {hx}%2, in Z.

0o
Z an fn
n=1

REMARK. Indeed [hi|f2; is complemented.
PROOF. Let {f}% ; be the dual basis in Z*, so that the projection P: Z —

[fr]32, is given by
P(g) = E . .
(g) Pt <‘/9 In gdﬂ) In

Note that Z is reflexive so that Z* is also order-continuous. We distinguish three
cases.
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(1) Suppose
inf/ | fr]du=0.
nJa
Then, by passing to a subsequence, we may suppose
lim / |[faldp =0
n—o0 Q
and, for each m,
lim ” Ifml A 'fnl “ =0.
n—oo

Now, by a standard disjointification argument, we may pass to a further subse-
quence so that, for some disjoint sequence {h,}22 ,,
lim ||fn — hnl =0.
n—oo
The conclusion follows on passing to yet another subsequence.
(2) Suppose
inf/|f;;|du=0.
n

Arguing as in (1) we may pass to a subsequence and assume that {f}32, is strongly

equivalent to a disjoint sequence {h}}32,. Further [h}]32, is complemented in Z*.

If A, =supph;, and Q: Z* — [h},] is a projection then set

Q1(g") =D x4.Q(g" x4,)-

n=1

Then ||@Q1] £ ||Q| and @ is also a projection (cf. [15, 1.c.8] for the discrete

version). Now
Qd¢)=§:<£ﬂﬂmm0h;

n=1
for a disjoint sequence {h,}22; in Z. Then {h,}32, is equivalent to {f,}52; and,
as [hy]2; is complemented, it is strongly equivalent.
(3) Suppose 6§ > 0 and

[imlauzs, [ Ig1dezs  n=t2....
Q Q

Then, by Khintchine’s inequality, for a;,...,a, €R, n=1,2,...,

5 [ 1/2
su du > — a;|?
el:gl/n > M_ﬁ(;hI)

n
> aiifi
1=1

and so, for some v > 0 independent of n,

n n 1/2
Zaifi > (Z |ai|2)
i=1 i=1

and similarly we can assume
n 1/2
2
o ()
=1

n
 ail;
i=1
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Now there exists g* € Z* with ||g*|| =1 and

Zai/ g*fidp =
=1 Q

If P is the projection of Z onto [f,]32; then

> aifs

=1

2\ 1/2
/g*fz-du )
Q

n 1/2
<y7H|P| (Z Iai|2>

i=1

n

1251 2 1127 (g™)ll = ~ (Z

i=1

and hence

n
> aifi
i=1
so that {f;}2, is equivalent to the l-basis. O
From now on we assume that Z is a Banach function space over a nonatomic
probability measure space ({2, 2, u) with nontrivial cotype. We suppose Z = X @Y
and Px and Py are the respective projections.

LEMMA 2.6. If X contains no subspace isomorphic to la, or of Z has nontrivial
type and X contains no complemented copy of lo then X satisfies:
(4+) For every f € Z and € > 0 there exists g € Z and A € ¥ so that
a) lg| = |f].
b)lg - xall <e.
¢) I(Px(g))xa~al <e.
d) fo|Px(9)ldu <e.

PROOF. Let us consider the first case. If f € Z and f # 0 then, by Lemma 2.4,
we can find f, € Z, n=1,2,... with |f,| = |f], for all n, and {f,}32; equivalent
to the [5-basis. We show

(
(
(
(

it [ [Px(fo)ldu=0.

Indeed, if not then, for some § > 0,
[1Pxtianzs n=t2....
Q

By passing to a subsequence, we may suppose {Px(f,)}32; is basic in X (since
IPx(fn)|| > 6 but Px(fs) 2 0 as n — 00). Now, by a theorem of D. J. Aldous
and D. H. Fremlin [1], we can pass to a further subsequence and assume that, for
some ¢ > 0,

n n 1/2
/Q Y aiPx(fi)| du>c (Z |ai|2> ;
i=1

=1

n 1/2
>c (Z |ai|2) .
i=1

for a;,...,a, € R and all n. Thus

' > aiPx(f:)
=1
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However,

> aifs

=1

n 1/2
< K||Px|| (ZI%’P) )

=1

< || Px]||

> aiPx(fi)
1=1

for some constant K. Thus {Px f,}32, is equivalent to the /;-basis which is a
contradiction.

If, in addition Z has nontrivial type, then we can repeat the argument at the end
of Lemma 2.5 since {Px(f,)}5%, is equivalent to l3-basis in both Z and L, (u). We
then can pass to a further subsequence and obtain that [Px f,]3; is complemented
which is also a contradiction.

In either case we may now assume lim,_, o fﬂ [Px(fn)|du=0. Let A, = {w €
Q: |Px(fn)| = €/3}. Then u(A,) — 0 and so |[fxa,| — 0, as n — oco. Also

1Px (fn) - Xa~aall < 2Px(fn) - Xa~a4llo <&
Hence, for large enough n, we may take g = f, and A = A, and (+) will hold. O

LEMMA 2.7. Suppose X satisfies (+) and {fn}52, is a normalized disjoint
sequence in Z. Then {fn}5L, has a subsequence strongly equivalent to a basic
sequence in Y.

PROOF. Use (+) to pick hy, € Z, A, € ¥ so that ||hnxa, | < 1/n, |[Px(hy) -
Xa~4,ll £ 1/n and [ |Px(hn)|dp < 1/n, for all n. Let us put gn = hnxa~4, —
Px(hn)xa,- Then {g,}32; is a bounded sequence in Z. If m < n

1
/ lgm] A 1P () xa, du < &
Q n
so that
Jim [ |gm| A lgnl Il = 0.
—00

Now there is a subsequence {gn, }$2; of {g»}32, and a disjoint sequence { Bx}5>
of sets in 3 so that

klim ”gnk - gnkXBk:” =0.
—00

Let Cx = (supp fn,) N B N {(Q ~ Ay, ), and define ¢ € L, by

— h”k (w)/fnk: (W), w € Cg,
w(w)—{o, we~U2, Ck.

Define A: Z — Z by A(f) = ¢f. First we note that A(fn,) = hn,Xc, and ||hn, —

h'"-kxck” < ”gnk - gnkXBk:” — 0, as k — oo.
Thus
lim ||Afn, — hn.l|=0.
k—o0

Now Px(gn) = Px(hn — hn - Xa,) — Px(Pxhn — (Pxhn) - xa—4,) so that
| Px (gn)Il < 2||Px||/n.
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Thus ||Py(gn) — gn|| — 0. Also
| Py (Pxhn) - xa)ll = | Py (Pxhn) - xa-a,)l < | Py]l/n— 0
so that
[Py (gn) — Py (hn-Xa-a,)l =0 and |[Py(gn) — Py(hs)|| =0, asn—oo.
We conclude that
kll{glo ”gnk - Py(hnk)” =0.
Next note A(gn,) = fn, - X(Q-An,)nB, and so
1A(gne) = frell < 1/nk + [|rneX (- a0, )~Bel
<1/ng+ ||9nk —gn.XB:|| 70 ask — oo.
Combining these remarks we have
klim ”PyAfnk — Gn, ” =0, klim ”Ag'ﬂk - fnk ” =0
— 00 — 00
so that
kllxr;o |APy Afp, — fa.ll=0.

Thus, for some further subsequence {f),}22 ,,{f} 132, is strongly equivalent to
{Py A(J!)}22, which is a basic sequence in Y. 0O

LEMMA 2.8. Suppose X has the property that no basic sequence in X is strongly
equivalent to a disjoint sequence in Z. Then Z embeds intoY" =Y @ --- @Y (n
times), for some n € N.

PROOF. First we note that the norm on X must be equivalent to the L;-norm
i.e., for some C, we have

Ifl<c /Q fldu,  feX.

Otherwise, we can find a sequence {f,}>2; C X with ||f»]| =1 and
lim | |fn|du=0.
n—00 Q

Then limy, o0 || [fm| Al fr] || = 0 and so {fn}22; has a subsequence strongly equiv-
alent to a disjoint sequence.

Next we note that X must be reflexive. For otherwise /; must embed comple-
mentably into X, and Z must contain a disjoint sequence equivalent to the /;-basis
whose closed linear span is complemented.

Thus the unit ball of X is weakly compact and so, for any € > 0, there exists § > 0
so that if f € X, ||f]| <1 and A € & with u(A) < § then [, |f|du < &. Choose
§ corresponding to € = 1/2C and partition ) into n disjoint sets {2k, 1 £ k < n,
with ;I.(Qk) < 6. Let Zy, = Zlﬂk
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If f € Z then

E%”PXU)H > /m |Px (f)] du
=/ |PX(f)|du—/ |Px ()| dp
Q Q~Qp
> 2Pl = [ Pl du

~Q

> ZIP(O - 1Py (D)1

Hence, . .
1Py (NIl 2 551Px (NIl 2 55U = 1By (HI)
and )
12y (DIl > 75551111

Hence, Zy embedsin Y and Z~ Z, ® --- ® Z,, embeds into Y*. O

Now we complete the proof of Theorem 2.2. We may suppose by Lemma 2.3
that Z is a Banach function space.

PROOF OF 2.2(a). By Lemma 2.6, X satisfies (+) and so by Lemma 2.7, X
satisfies the hypotheses of Lemma 2.8. Thus X embeds into Y" and hence dim X <
oco. 0O

PROOF OF 2.2(b). Similar. O

PROOF OF 2.2(c). If Y contains a complemented copy of I this reduces to case
(b). Otherwise, we can assume Y contains no complemented copy of ls. Thus Y
satisfies (4+), but by Lemma 2.5 there is a basic sequence in Y strongly equivalent
to a disjoint sequence in Z. Lemma 2.7 then completes the proof. O

The statement of Theorem 2.1 requires that Z be a Banach lattice with some
nontrivial cotype. The purpose of the following example is to show that this as-
sumption is not redundant.

EXAMPLE 2.9. There exists a nonatomic order continuous Banach lattice Z
which decomposes as a direct sum Z = X @Y and X and Y are infinite dimensional
nontotally incomparable spaces.

The idea is to construct an order continuous Banach function space X on [0, 1]
which contains no isomorphic copy of ls. Then Z = X & L(1,2) provides the
desired counter-example.

As X we shall take a separable Orlicz function space Has(0,1) which is con-
siderably “smaller” than the space Hy(0,1) with N(z) = (¢ —1)/(e — 1). The
space Hy(0,1) is, by [21], the smallest rearrangement invariant space in which the
Rademacher functions span l;. More precisely, let e.g. M(z) = (e‘”4 —-1)/(e—1)
and consider the space Hjps(0,1) of all measurable functions f on [0, 1] so that

/OIM(@) dt < oo,

for every A > 0. The norm in Hps(0,1) is defined, as usual, by

17l =inf{x>o;/olM cayens
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It is well known that the simple functions are dense in Hps(0,1) and therefore this
space is a separable order continuous lattice. Suppose now that Hps(0,1) contains
a subspace V isomorphic to l3. Then, by [6], either there exists a constant « > 0
so that u{t € [0,1];|f(¢)| = a||f|lsm} = @, for all f € V, or V contains a normalized
sequence which is equivalent to a sequence of mutually disjoint norm one functions
in HM (0, 1).
In the first case,
11l > *2llflln,  feEV.

On the other hand, a simple calculation shows that, for f > 1 and z > 0, z? <
(p/4e)P/%e*". Hence, there exists a constant C independent of p so that

”f“P < Op1/4||f||M’ f € HM(Ov 1))

i.e. onV the |- ||z and | - || s-norms are equivalent. Let R be the orthogonal
projection from Ly(0,1) onto V. Then, for any p > 2 and g € L,(0,1), we have

IR(9)ll» < Cp"*|IR(g)llne < Cp/*a™?|R(g)ll2 < Cp"/*a/? |4,

i.e. the norm of R as a projection in L,(0,1) is < C’'p'/4, for all p > 2 and some
constant C’ independent of p. This implies that the factorization constant ~,(l2) is
< C"p'/4, for some C”, while in fact, by [8], 7,(l2) behaves like p'/2, when p — co.
This contradiction completes the proof in the first case.

We consider now the case when V contains a normalized sequence equivalent
to a sequence of mutually disjoint functions in Hps(0,1). This situation, however,
is again -contradictory since any such sequence of norm one disjoint functions in
Hjs(0,1) contains a subsequence equivalent to the unit vector basis of c¢g. This
fact is known and can be deduced easily in the following way. Let {h,}52; be
a normalized sequence of mutually disjoint elements of Hps(0,1) and assume, as
we clearly may by passing to a subsequence, that there are sets {B,}52; such
that ||hn — Ay - xB, || < 271 and |h,(t)| > 27*1, for t € B, and all n. Since
e?* < 2¢%/A, for 0 < a < 1/2 and x > A, it follows that, whenever 0 < |a,| < 1/2,

for all n,
lanhn| 1
e
/ (ZannXB)dt Z/ 1 —Fdt <1,

i.e.

o0 (e o]

Z anhn - XB, <1 and Z aphn <2

n=1 M n=1 M

It is highly likely that Theorem 2.2 can be improved in the case when Z has
nontrivial type. Note however that the example L;(0,1) & L2(1,2) shows that
Theorem 2.2(a) requires some condition on X.

We conclude this section with an analogue of Theorem 1.7.

THEOREM 2.10. Let X be a Banach space with nontrivial type and assume
that 1 < p < oo. Suppose X ® I, is isomorphic to a Banach lattice Z. Then X 1is
1somorphic to a Banach lattice.

REMARK. The case p = 1 can be obtained from results in the next section and
the case of ¢y then would follow by duality. We leave the reader to fill in the details.
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PROOF. If X contains a complemented copy of I, then X ~ Z and the theorem
is immediate. Assume therefore that every bounded operator T: X — [, is strictly
singular. Z can then be decomposed into two bands, Z; and Z; so that Z; is atomic
and Z; is nonatomic. By Theorem A, Z; ~ X; @ Y; and Z; =~ X, ® Y5, where X;
and X, are complemented subspaces of X and Y7,Y; are complemented subspaces
of I,.

Assume first dimY; = oo, so that Y, = [,. Then Theorem 2.2(c) implies
dim X, < oo and so Z; ~ [, (which implies p = 2). Then X ® [, has a possi-
bly uncountable unconditional basis. However, the copy of I, can be supported
only on countably many basis elements and so we can write X = W; & W, where
W1 has an unconditional basis, W is separable and W; @ [, has an unconditional
basis. Thus, by Theorem 1.7, X is isomorphic to a Banach lattice.

Assume then dimY; < oo. Thus I, embeds complementably in Z; and so Y7 ~ .
Note that if dim Z; = 0, then arguing as above the result follows from Theorem
1.7. Assume therefore dim Z5 > 0 so that Z5 ~ I @ Z,.

Now Z ~ (Z:;® X1)®l, ~ X®l, and so by Theorem A, Z, & X, ~ U, 0V1, p =
Uy @Va, where X1 ~ U1®U; and [, = V1®V;. Clearly dim V1 < oo and dim U; < oo.
However, (Zo®X1)®U; ~ X®V; and (Zo® X)) Uz ~ Zo @ X since Zg & Zy®lsy.
Thus Z; & X; ~ X.

Again from Theorem 1.7, X7 is isomorphic to a Banach lattice and so the theorem
is proved. 0O

3. Banach lattices containing complemented copies of L;-spaces. The
object of this section is to study different situations in which an L;-space embeds
complementably into a Banach lattice. We consider first lattices which contain
complemented subspaces isomorphic to /1, in the spirit of Theorem 2.10.

THEOREM 3.1. Let Z be a nonatomic order continuous Banach lattice and
suppose that Z = X &Y, with Y being isomorphic to ly. Then X is isomorphic to
Z.

PROOF. It clearly suffices to show that X contains a complemented subspace
which is isomorphic to ;.

Since Z is order continuous and contains an isomorphic copy of I; there exists a
sequence {ux}52,; of mutually disjoint elements in Z which is equivalent to the unit
vector basis of [; (this fact is well known; cf. [26]). Then, for each k, we use Lemma
2.3 in order to construct a sequence {uk ,}o2,; which converges weakly to zero and
so that |uk | = |uk|, for all n. If Px and Py denote the corresponding projections
from Z onto X, respectively Y, then Py (uk,) = 0, as n — oo. However, since
I; has the Schur property it follows that |Py (ug.)|| — 0, as n — oo. Choose
now an integer n(k) such that || Py (ug,n(x))ll < 2~ (k+3) for all k, and notice that
{uk,n(i) }321 is equivalent to the unit vector basis of [; and its span is complemented
in Z. The above choice of n{k) shows that so is { Px (t,n(x)) } 5=, and this completes
the proof.

It was shown in [11, Theorem 3.1] that if a Banach lattice Z contains no iso-
morphic copy of ¢g and has a subspace isomorphic to L;(0,1) then Z also has a
sublattice which is order isomorphic to L1(0,1). In the next theorems, we consider
this situation from different points of view.
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THEOREM 3.2. Let Z be a Banach function space over a probability space
(Q, %, 1) which contains no subspace isomorphic to co. Suppose that Z =X @Y,
where X does not contain isomorphic copies of L1(0,1) while Y is an Li-space.
Then Z has a band Zg which is order isomorphic to an Li-space such that its
orthogonal complement Zg- contains no isomorphic copies of L1(0,1).

PROOF. Step I. Our first aim is to construct the band Zy. To this end, we call a
set A € ¥ with u(A) > 0 acceptable provided there exists a lattice homomorphism
S:L;(0,1) — Z having the form

SW)(w) = aw)y(o(w)), ¢ €L(0,1),

where a:( — R and 0: Q2 — [0, 1] are measurable functions and a(w) > 0 for w € A.
Notice that a subset of positive measure of an acceptable set is acceptable and
also the countable union A = U;’il A; of a sequence {A4;}72; of acceptable sets
is acceptable. Indeed, if S;(¥)(w) = a;(w)¥(o;(w)) is the lattice homomorphism
corresponding to A, then we set

a(w) = a;(w)/2°||S;ll,
weA;, j=12,...,
o(w) = oj(w),

and a(w) = o(w) = 0, for w & A. It follows that S(¢)(w) = a(w)Y(o(w)); w €
Q, ¥ € L1(0,1) is a lattice homomorphism from L;(0,1) into Z and a(w) > 0 for
w € A. The above observations show that there exists a maximal acceptable set g
i.e. a subset (g of 1 having the following properties: ’

(i) Qg is acceptable.

(ii) @ ~ Qo contains no acceptable subset.

Let Zy be the band of Z generated by Qg i.e. Zo = {f " Xqo;f € Z} and Zg its
orthogonal complement.

Suppose now that there exists an isomorphism T from L;(0,1) onto a subspace
of Zg-. Then, by Theorem D(i), there exists also an order isomorphism S from
L1(0,1) into Zg-. Let J denote the formal identity mapping from Z into L (Q, =, ),
given by Theorem C. Then JS is a lattice homomorphism from L;(0,1) into
L1(Q ~ Qo, g~y B0~ ) and thus by Theorem D(ii), JS(¢)(w) = a{w)¥(a(w));
we~Q, € Li(0,1), for suitable a and o. Since S # 0 it follows that a(w) > 0
on a subset Ag of positive measure of () ~ {)g. This contradiction to the maximality
of Qg shows that Z3- contains no subspaces isomorphic to L; (0, 1).

Step 11. It remains to prove that Zy is order isomorphic to an Li-space. To this
end, we shall prove first that, for every € > 0 and z € Z;, there exists a function 9
so that || =1 and || Px(¢2)|| < e.

Since (g is an acceptable set there exists a lattice homomorphism Sp: L1(0,1) —
Z having the form

So(¥)(w) = ao(w)(oo(w)),  we, ¥ € Li(0,1),

with ag and o being measurable and ag(w) > 0, w € . Fix now & > 0 and
z € Zg, and choose a bounded measurable function g on {lg such that ||z — ag|| <
/2| Px||, where Px and Py have the usual meaning. Then define the operator
T:L;(0,1) — Z, by setting

T(¥)(w) = 9(W)So(¥)(w),  we, ¥eLi(0,1).
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Since || T|| < ||g]loo || Sol| it follows that PxT is a bounded operator from L; (0, 1) into
X. By our assumption, X contains no isomorphic copy of L;(0,1) and therefore,
by Theorem D(iii), PxT is not sign preserving. Hence, there exists a mean zero
function p € L;(0,1) with |p| = 1 so that || PxT(p)|| < €/2. Then, with the notation
(W) = p(oo(w)), w € 0, we get

1Px(®2)|| < /2 + |IPxT(p)ll <e,
which completes the proof of Step II.

Step III. We shall prove now that Zy is order isomorphic to an L;-space. Let
{2j}7L, be a sequence of mutually disjoint elements in Zp. Then, by the assertion
proved in Step II with ¢ = || 3572, 2;]|/m, we find functions {t;}7~, for which
[;] = 1 and || Px(dy2;)|| < | 7=, 2ll/m, for all 1 < 5 < m. It follows that

Z 251l = Z %525 < Z 1Py (525l + Z

For each 1 < j < m, let 2 € Z* be so that z; (Py(z/)jzj)) = ||Py(¢;2;)| and
2]l = 1, and consider the operator W:Y — I, defined by

W) ={z(Py(f xp, )},  fE€Y,
where B; denotes the support of z;. In order to verify that W is a bounded operator,

suppose that Y is an £ x-space, for some A > 1. Then, since {; is of cotype 2 with
constant \/5, we get,

W NI? = Z|Z (Pv(f-xs;) |2<Z“PYf x8;)|I?

j=1 7=1
2

< 2)? / er )Py (f-xs,)| dt|.

Jj=1

for all f € Y. Hence, |[W|| < V2| Py |-

However, by a famous result due to A. Grothendieck (see e.g. [15, 2.b.6]), every
operator from an [;-space to a Hilbert space is absolutely summing. It follows
that the absolutely summing norm m; (W) of W satisfies

W) < V2K ?| Py,

where K stands for Grothendieck’s constant. Hence,

S IPy (w2l =Y 25 (Py (w52;)) = D IW (%525)
7j=1 Jj=1 J=1
<m (W) max, Zejwjz] < V2Ke)\?||Py| - Z zj
Therefore,

m m
Sl < 1+ V2EX2 (P ) (|3 2
j=1 =1

which clearly implies that Zy is order isomorphic to an L;-space. O
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One cannot expect to prove in Theorem 3.2 that Zz is isomorphic to X. For
instance, if X = I; ® X; with X being a reflexive band of Z and Y = L,(0, 1) then
we shall get that Zo = L1(0,1) and Zg- = X;. As we will see later, it is precisely
the assumption that X contains no isomorphic copy of /; that is needed in order
to conclude that, essentially speaking, X is isomorphic to Zz . Before proving this
fact, we need a preliminary result.

THEOREM 3.3. Let Z be a Banach function space over a probability space
(2, p). If Z contains no isomorphic copy of co and Z**[Z is an Lq-space then
either Z has a band Zy which is order isomorphic to an Ly-space or Z is a dual
space.

PROOF. Since Z contains no subspaces isomorphic to ¢g it is a band of Z** and,
moreover,

P(z**)=V{z€Z;O§z§z**}, 02" ez,

extends to a norm one positive projection from Z** onto the canonical embedding of
Z into Z**. Thus, Z** = Z® Z*, where Z+ denotes the orthogonal complement of
Z in Z**. By our assumption, Z+ is an £;-space. However, it is well known that a
lattice, which is an £-space, is already order isomorphic to an Li-space. Therefore,
there exists an Ly-norm || ||z, on Z+ which satisfies C~1|z**| < [|z**||l < Cll=**|l,
for some 0 < C < oo and any z** € Z+. Define now a function F on Z*, by setting

F(z*) = sup{[2"(2")|: 2™ € Z*, |||l < 1},
for all 2* € Z*. We clearly have

[FE) < Cll, 2" ez,

and, moreover, the duality between L; and M-norms show that F' is a seminorm
on Z* so that

F(2] + z3) = max(F (1), F(23)),

whenever 27 and z; in Z* satisfy 27 A 25 =0.
By using F', we define, for each partition m = { By}, of {1 into sets of positive
measure, a function fr € Lo (2, X, i) by

Br(w) = F(xp,) fweBg 1<k<m.

It is quite clear that 8, > B, whenever the partition 7' refines w. Therefore,
{Br}r is a decreasing net of functions in the lattice Lo (€, X, ), which is order
complete. Consequently, there exists a § € Loo(f2, X, ) so that § = A, B and
then 8, > B a.e. for every .

We distinguish between two mutually exclusive cases.

Case 1. Suppose that B(w) > 0 on a subset of (2 of positive measure and find a
6 > 0 and a subset Qg of Q with u(Q) > 0 so that S(w) > §, w € Qy. We shall
prove that in this case the band Zg = {f - xq,;f € Z} is order isomorphic to an
Li-space. Let g € Z* be a simple function of the form Y . a;x4,, where {A;}7,
are mutually disjoint subsets of {}g each having positive measure. Then, since F is
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an M-seminorm, we obtain

Plo) = ol Plxa) 2 (max Jod) - (i, Plca,)

1<i<m 1<i<m 1<i<m

= [l9lleo ‘webr%,i,:rllA' Br (W),
for any partition 7 which includes the sets {A;},. Since fr(w) > B(w) a.e. it
follows that

> > . mi >
Cligl 2 Flg) 2 llglleo - , min , A(w) 2 6]lg]leo,

which clearly implies that C||z*|| > §]|2*||co, Whenever z* € Z* is supported by (g.
Hence, for any z € Zy, we have ||z||; < ||z|| < C67!||2||;. This completes the proof
in Case I. '

Case II. B(w) = 0, for a.e. w € 2. We shall prove that in this case Z is a
conjugate space. Choose first an increasing sequence {m,}32; of partitions of (2
such that g, (w) — 0, as n — oo, for a.e. w € (). By Egoroft’s theorem, there exists
a countable partition {(2;}$2,; of (1 so that u(Q2 ~ U;”;l ;) =0 and B, (w) — 0,
as n — oo, uniformly for w € Q;, j = 1,2,... . For each j, let V; be the closure
of Loo(Qy, X0, K0,) in Z* and Z; = {fxa,:f € Z}. Since Z = 322, @D Z; is
a boundedly complete unconditional decomposition (for Z contains no copy of ¢g)
it would follow that Z is a dual space provided we show that Z; is a conjugate
space, for every j. This will be achieved by proving that Z; is order isometric to
Vj*. To this end, fix 7, let 6 € Vi and find a Hahn-Banach extension 2** of 6 to an
element of 2**. If Zjl denotes the orthogonal complement of Z; in Z then clearly
Z* =7;®Z;-®Z* . Hence, 2** = z+2'+2* with z € Z;, 2/ € Z;- and 25* € Z+.
Then, for v* €V},

0(v*) = 2" (v*) = v (25) + 25" (v")
and the proof will be completed once we show that z3*(v*) = 0, whenever z3* € Z+
and v* € V;. However, in view of the definitions of F' and Vj, it suffices to prove
that F' vanishes on Lo (Q;, EIQ].,MIQJ ). In order to verify this fact, notice that, for
any measurable subset A of (}; and each n, we have

= < <
F(xa) Joax F(xanB) < max F(xp) < géagj Brn(w) — 0,
ANB#£®

asn—o0. 0O

"THEOREM 3.4. Let Z be a Banach function space over a nonatomic probability
space (0,5, n). Suppose that Z = X @Y, where X is a reflexive space and Y
18 isomorphic to an Li-space. Then there exists a band Zy of Z such that Zy s
linearly isomorphic to Y and order isomorphic to an Lq-space while its orthogonal
complement Zy- is reflexive and isomorphic to X, up to a finite dimensional space.

PROOF. By Theorem 3.2, Z has a band Zg which is order isomorphic to an
Li-space and such that Z3 contains no isomorphic copies of L1 (0, 1).

We observe now that every operator T' from an L;-space into a reflexive space
is strictly singular since T is weakly compact and L; has the Dunford-Pettis prop-
erty (thus, the unit ball of any reflexive subspace of L; is mapped by T into a
norm-compact set). We may therefore apply Theorem A and find decompositions
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X=X ®X;and Y =Y; ®Y; so that Z; is isomorphic to X; ® Y; and ZOl to
X2 @Y,. This already implies that dim X; < oo.

Since (Zz )** is isomorphic to X, @ Y5* it follows that (Zg-)**/Zg is isomorphic
to Y;*/Ys. On the other hand, Y; is clearly an £;-space and thus so is Y;*/Y>.
By using Theorem 3.3, we conclude that Z3- is a dual space (here, we use the fact
that (2, X, ) is nonatomic which implies that any nontrivial band of Zz that is
order isomorphic to an L;-space must contain an isomorphic copy of L;(0,1), a
contradiction). Let X5 and Y; be subspaces of Zg- so that Zg- = X, & Yy, X}
is isomorphic to X, and Y; to Y. Since X3 is reflexive it would be a w*-closed
subspace of the dual space Zg-. Hence, Y5, which is isomorphic to Zz- /X3, will be
a dual space, too.

Notice now that, since the dual Z* of Z is contained in L ({2, %, ), the set
{xa;A € L} is weakly compact and its span is dense in Z. Hence, Z is a weakly
compactly generated (WCG) space and so are its complemented subspaces Y and
Y,. By using a result of H. P. Rosenthal [23, Corollary 2.2], we obtain that Y;
is isomorphic to a complemented subspace of L;(0,1). Thus, by D. R. Lewis and
C. Stegall [13], Y; is either isomorphic to /3 or dimY; < co. However, in view of
Theorem 3.1, the first possibility cannot take place. Hence, dim Y2 < oo. It follows
easily that, up to a finite dimensional space, Zy is isomorphic to Y and Z to X.
However, Zy contains a complemented subspace isomorphic to /; and therefore Z,
is precisely isomorphic to Y. O

REMARK. Theorem 3.4 remains true even when (Q, X, 1) is an arbitrary proba-
bility space. The proof of this fact uses both Theorems 1.1 and 3.4. Let Z’ be the
band of Z containing all the atoms of Z and Z” its orthogonal complement, which
is a nonatomic lattice. If Z = X @ Y with Y being reflexive and Y isomorphic to
an L;-space then, by Theorem A, there exist decompositions X = X’ & X" and
Y'=Y'@Y" so that Z’ is isomorphic to X’®Y"' and Z” to X" ®Y". The band Z'
is actually a space with an unconditional basis. Since every operator from X’ into
Y’ is compact it follows from Theorem 1.1 that Z’ = Z{ @ Z3, where Z{ and Z3/ are
orthogonal bands so that Z] is isomorphic to X’ and Z4 to Y’. On the other hand,
by Theorem 3.4, Z" = Z{ @ Z}, where again Z{ and Z} are orthogonal bands such
that Z{' is isomorphic to X", up to a finite dimensional space, and ZJ is isomorphic
toY"”. Put Z, = Z| ® Z{ and Zy = Z} ® Z}. Then Z = Z, ® Zs, where Z; and
Zy are orthogonal bands so that Z; is isomorphic to X, up to a finite dimensional
space, and Z2 to Y.

The difficulties encountered in Theorem 3.4 and the remark following it stem
from the fact that we do not know whether a reflexive Banach lattice must be
isomorphic to its hyperplanes.

Suppose that we replace the assumption made in the above remark that X is
reflexive by the assumption that X has nontrivial type. In this case, Z; will be
a lattice with nontrivial type and therefore, by Lemma 2.4(c), Z; would contain
a complemented copy of l3. Thus, Z; will be isomorphic to its hyperplanes which
implies the existence of an isomorphism between Z; and X. We summarize these
conclusions in the following corollary.

COROLLARY 3.5. Let Z be a Banach lattice with a weak unit and suppose that
Z=X®Y, where X 1s a subspace with nontrivial type and 'Y is isomorphic to an
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L1-space. Then there exists a band Zg of Z which is isomorphic to Y and so that
its orthogonal complement Zy- is isomorphic to X.

Corollary 3.5 enables us to solve positively a problem raised by P. Wojtaszczyk
in [28].

COROLLARY 3.6. If a nonatomic Banach lattice Z is linearly isomorphic to
the direct sum L1(0,1) @ L2(0,1) then Z is already order isomorphic to L1(0,1) &
L2(0,1).

This result means that L;(0,1) @ L2(0,1) has, up to isomorphism, a unique
structure as a Banach function space on [0,1]. Further results on uniqueness of
structures in Banach function spaces can be found in [9].

We remark that we can now list all the Banach lattices isomorphic to L; & Ls.
These are L1 @ Ly, L1 ®lay, L1 ® Lo ®loy L1 D1 ® Ly, L1 ® 11 ®lo, Li® 11 &
Lodly, Li® Ly 13 for n € N.
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