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UNIFORMLY EXHAUSTIVE SUBMEASURES 
AND NEARLY ADDITIVE SET FUNCTIONS 

BY 

N. J. KALTON1 AND JAMES W. ROBERTS2 

ABSTRACT. Every uniformly exhaustive submeasure is equivalent to a measure. From 
this, we deduce that every vector measure with compact range in an F-space has a 
control measure. We also show that co (or any E.-space) is a T;space, i.e. cannot be 
realized as the quotient of a nonlocally convex F-space by a one-dimensional 
subspace. 

1. Introduction. The purpose of this paper is to study and provide partial solutions 
for two questions which arise naturally in the study of F-spaces (complete metrizable 
topological vector spaces). Both of these questions have attractive formulations 
independent of F-space theory. 

It is well known that the control measure problem for countably additive vector 
measures is equivalent to a classical problem of Maharam [11] on the existence of a 
control measure for a continuous submeasure. We now describe our results on this 
problem, giving first a different but equivalent formulation of the Maharam problem 
in terms of exhaustive submeasures. 

Let &T be an algebra of sets. Throughout this paper a measure X on CT is, unless 
otherwise stated, positive and finitely additive. A submeasure 4: CT -4 R is a map 
satisfying 

(i) O(0) o, 
(ii) 4(A) O4)(B), A C B 

(iii) O(A U B) < o(A) + O(B), A, B c . 
4 is exhaustive if 

(iv) limn, I0O(An) = 0 

for every disjoint sequence (An: n C N) in (B. 
Two submeasures 4 and 4 are equivalent if 4(A) -0 if and only if 4(A1 ) 0. 

Maharam's problem asks if every exhaustive submeasure is equivalent to a measure. 
A submeasure 4 is pathological if whenever X is a measure with 0 < X < 4 then 

X = 0. If there is an exhaustive submeasure not equivalent to a measure then there is 
a nontrivial exhaustive pathological submeasure. Examples of pathological submea- 
sures have been constructed in [2, 14 and 21]; unfortunately these are not exhaustive. 
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In [21] Talagrand defines a submeasure 4 to be uniformly exhaustive if given E > 0 
there exists n E N such that for any disjoint sets AI, A2,... A 

minm (Ai) < E. 
I- i,--n 

Clearly if 4 is equivalent to a measure it is also uniformly exhaustive. Our main 
result, which answers a question of Talagrand, is that 4 is equivalent to a measure if 
and only if it is uniformly exhaustive. This implies, for example, that every vector 
measure with relatively compact range has a control measure. 

The second question was raised in [7]. In [7] it was asked whether there is a 
nonlocally convex F-space X containing an uncomplemented line L such that 
X/L Co. This can be reduced to a problem on set functions [8]. We answer this by 
showing that there is a universal constant C < 45 so that whenever (& is an algebra of 
sets and f: (d -4 R is a map satisfying If(A U B) -f(A) -f(B) 1< I whenever 
A n B = 0, then there is an additive set-function ,t: (& -4 R with I f(A) - ,t(A) I < C, 
A E (B. This implies that if X/L -co then X is locally convex and so L is 
complemented (and X _ c0). Similar conclusions hold for any E&0-space. 

The main technique employed is the idea of a concentrator. We describe this in 
?2. As certain types of graphs these have been studied in several recent papers (see 
[4] and associated references). In fact we need only very elementary facts about 
concentrators, and our requirements are satisfied by Proposition 2.1, which was 
shown to us by E. Szemeredi. Although this is sufficient for our qualitative results, 
the constant in Theorem 4.1 can be improved by using a more complicated result of 
Pippenger [13, Proposition 2.2]. 

Finally we recall for future reference that an F-norm on a real vector space is a 
map xi- Hx II satisfying 

(i)x 11 > 0, x 0, 
(ii) limt >0), 11 tx 11 = , x E X, 

(iii) HaxHl < l1xH, Ia I 1,x E X, 
(iv) lx +y ? < lxl + H1yH1, x, y E X. 

A quasinorm x "-1 x satisfies 
(i)' x 11 > 0, x 7# 0, 

(ii)' HaxHl =I a11 lxll, a E R, x E X, 
(iii)' lx +yl < C(llxll + llyll), x, y E X 

for some constant C. 
A quasinorm is p-subadditive (O < p < 1) if II x II P is an F-norm. A locally bounded 

F-space can be topological by a p-subadditive quasinorm for some p, and is called a 
quasi-Banach space. 

2. Concentrators. If m C N then [im] will denote the set {1,2,. .. ,m} and 2[m] is 
the collection of all subsets of [m]. If m, p C N and R: [m] 2-Pl is a map, then for 
E C 2[m] we define 

R[E]= U R(j). 
jzE 

For any set A let I A I denote the number of elements in A. 
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If m, p, q, r E N where m ap a q, then we say that a map R: [i] m 2PI is an 
(m, p, q, r)-concentrator if 

(i) I7=m I R(j) lrm, 
(ii) I R[E] a El whenever E E 2[m] with I E I < q. 

R may be alternatively considered as a bipartite graph or a subset of the product 
space [im] X [p]. In the case p = q concentrators have been studied in a number of 
articles (see [4, 12, 13]). The following result is apparently well known and its proof 
was shown to the authors by E. Szemeredi. 

PROPOSITION 2.1. Suppose m, p, q, r E N with 3 < r s q < p s m, and 2e2mq r-2 

< prl Then there is an (m, p, q, r)-concentrator. 

PROOF. Let 2 be the set of all maps R: [m] -2[P so that R(j) r forj & [m]. 

Then 

Let P be the probability measure on Q given by 

P(A) = I A 1/1 Q 

Suppose F eI& p with I F n where r < n < q. Then 

P(R(; C F)= (rn) (rp)-l . n r 

If E C [m] with E 1= n then 
rn 

P(R[E] C F) P(R() C F) < rn 
jEE 

Now let A be the set of R so that I R(E) I<I E l for some E E 2[r] with IE I< q. 
Then 

q n rn 

P(A) < 2,P(R[E] C F) < (m )(P)pr 
llq n=r 

We next use the estimate n! - > nne-n to obtain 

q mne2nn(r-2)n n( 

n=r p(rl )n n= 
2 

Now pick any R 4 A and R is an (m, p, q, r)-concentrator. 
Proposition 2.1 will supply all we need in this paper for qualitative results. 

However for certain quantitive results we observe that a more delicate argument of a 

similar nature has been used by Pippenger [13] to show: 

PROPOSITION 2.2. For every m E N there is a (6m, 4m, 3m, 6)-concentrator. 

Fix r & N and 0 < 8, e < 1. We shall say that H(r, 8, e) holds if there are 

sequences of integers {mk}, {Pk}, {qk} so that Mk -x , pPk/Mk < 8 and qk/mk E9 
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and for each k there is an (mk, Pk' qk' r)-concentrator. For fixed r E N and e > 0 
let 

0(r, e) inf{6: H(r, 8, -) holds). 

PROPOSITION 2.3. (i) 0(r, e) s (2e 2)1/(r-1)e(r-2)/(r-l1) ( r > 3). 
(ii) 0(6, 2 ) S 23 

These are immediate from the preceding propositions. 

3. Applications to submeasures. Let Q2 be an abstract set and let (& be any algebra 
of subsets of 2. For A E (f we denote by 'A the characteristic function of A, so that 
lA: g2 R. 

LEMMA 3.1. Let 4: A -4 R be a submeasure with the property that for some a, 3 >, 0 
whenever n E N, and A1, A2'. ,A ( are disjoint then En 14(Ai) s an + /. 
Suppose B1 . . . Bm & and m1l 1 B (1j-e)1 Q. Then for r E N with r > 3, 

m m 

m Ol?(Bi) 0?(S2) - ar - #(r, ) 

PROOF. Suppose first B1,... , Bm &E ( with 
m 

and there is an (m, p, q, r)-concentrator R: [im] 2 PI where q/m > e. 
Let & be the collection of E e 2[m] with IE I< q. For every E there is 

one-one map fE: E - [ p] with fE(j) C R(j) for j C E; this follows from Hall's 
Marriage Lemma [5]. 

For E C & define 

CE= nO(\Bk)n n Bk. 

kEE k E 

By hypothesis on B1,.. * Bm, UEESCE = S3 
For i C [m] andj C [p] let 

Aij = U (CE: i & E,fE(i) j). 

Aij 11 0 implies thatj C R(i) and hence the number of nonempty sets {Aij} is at 
most rm. 

For fixed j C [p], the sets {Aij; i C [m]) are disjoint. Indeed if Aij and Akj 

intersect then for some E C 6, CE C Aij and CE C Akj So that i, k C E and 

fE(i) = fE(k) = j. Thus i = k. If n1 denotes the number of nonempty sets {Aij; i C 

m]}, we have 
m 

4(Aij) < anj + / 
i=lI 

and hence 
P m P 

+(Aij) < a n. + /p < amr + pp. 
j=1 i=1 
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On the other hand for i C [m], 

I ( (A ij) < U A1) =< U CE ) =( S\ B) ) - ) (Bi). 
j=1 i~~c[p] iESE 

Thus 
m 

so that 

m O(Bi) >- (0(s2) -ar) -j . 

Now suppose instead that there is an (n, p, q, r)-concentrator where m < n and 
q > en. We can apply the above argument to the collection of sets {B1,... . Bm} 
repeated s = [n/m] times and n - ms copies of 2. We obtain 

1m rns I _ _n 
- 

_ s_ 

n m (Bi) n n(2) >-(2)-ar n 

Thus if H(r, 8, e) holds we obtain 
m 

-2 O(Bi) >: 0(s2)- ar - PS m i 

and so 

1m 
m2 (Bi) > 0(2)-ar -#0(r, e). 

i=l 

Let C C (& be a collection of sets. We define the covering index J(( ) of (C to be the 
supremum of all T - 0 so that there exists C1, . . , Cn E C with 

i n 

If 4 is a submeasure let 

C(p; 6) ={C: cp(c) < 6). 

The following proposition collects the facts on the covering index that we shall 
require: 

PROPOSITION 3.2. (i) (Kelley [10]). If C, C (& is any subset there is a measure ,u: 
C R with ,u(C) < J(C) (C C C) and tt(2) = 1. 

(ii) (Christensen [1]). If 4 is a nontrivial pathological submeasure, J[C(k; 8)] = I 
for every 8 > 0. 

THEOREM 3.3. Let 4 be a uniformly exhaustive pathological submeasure. Then 
= O. 

PROOF. Suppose 0(42) > 0. Then there exists N e N so that if A1,... ,AN+? are 
disjoint 

mnin (Ai) < 50(2). 
1 Si N+ I 
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Thus for any disjoint collection {A,,... ,AJ} we have 
n 

O f(Ai) < ?no(U) + NO(U) 
i=lI 

Let 8 = 5+(Q) and suppose BI, ... .,Bm E (4(0; 8) and 
1 m 

- ' 
Bi >( )0 

i=l 

Then by Lemma 3.1 with r = 3, 

By Proposition 2.3, there exists E > 0 so that NO(3, e) <-h. Thus 

J(C(; 8)) < 1-2f -. 

By Proposition 3.2, this is a contradiction, so that we must have = 0. 

THEOREM 3.4. Let 4: CT -- R be a submeasure. Then a necessary and sufficient 
condition that 4 is equivalent to a measure is that 4 be uniformly exhaustive. 

PROOF. Of course if 4 is equivalent to a measure, 4 must be uniformly exhaustive. 
The converse is a standard deduction from Theorem 3.3 (cf. [1 and 20]) which we 
give for the sake of completeness. The argument is based on one used by Talagrand 
[21]. 

Let En -? 0 be such that for every disjoint collection Al,... ,An E cT we have 

min,< 4i4no(Ai) < En- Choose (yi: i E I) a maximal collection of nontrivial mea- 
sures so that 0 < pi < 4, and if i #j, 

Ai A pj(2) = inf (Ki(A) + pj(2\A)) = 0. 

For any , and qr > 0 we can find Al,... A C E &T disjoint so that piJ(Aj) > 
i-(s2)- q, j = 1, 2,. . .,n. Hence 

minpij (2) < en + 7B. 

Since 'q > 0 is arbitrary, 

minpij(s2) < E 
jsn ' 

It follows that the collection (yi: i E I) is either finite or countably infinite. 
Hence there are (ci: i E I) so that ci > 0 and Ec= 1. Let A = Ei,cipi. Then ,t is a 
measure on &T which is equivalent to 4. 

In fact 4(An) -> 0 implies i(An) - 0 for every i E I and hence p(An) -4 0. 
Conversely suppose tt(A) < 2-n and define 

n)~~~~~~~~ 
4(B) = lim limo B n U Ak. 

m n k=m+ I 

4 is a uniformly exhaustive submeasure on (B. Suppose v is a measure on cT so that 
O < v < A. 
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Since 4, is exhaustive, for any m E N, 

p n 

lim lim i U Ak\ U Ak =O. 
n-oo p -oo n+1 m+1 

Thus 

n 
limr (\ UAk =0 

n --oo m+ I 

and hence 
n 

lim v 2\ U Ak =O. n - o m+ I 

Now, for i F I, 
n 

vA lAi(2) J< v 
2\U Ak +cl.-2-m 

m + I 
so that v A ui = 0 for i E I. By the maximality of I, we conclude v = 0 and hence 4 
is pathological. Thus 4 = 0 so that limm. O(Am) = 0. 

4. Approximately additive set functions. Let &, be an algebra of subsets of a set Q 
and let f: 6C -- R be any function. We shall say that f is A-approximately additive if 
f(0) 0 O and given A, B E (d disjoint we have I f(A U B) -f(A) -f(B) I < A. The 
following theorem solves a problem posed by the first author (explicitly in [8] and 
implicitly in [7]). 

THEOREM 4.1. There is a universal constant K < 45 with the property that if f: 
-* R is A-approximately additive there is an additive function ,: C R with 

I f(A) - Ki(A) I < KA. 

PROOF. It obviously suffices to consider the case A= 1. We also note that it 
suffices to consider the case of a finite algebra d. Indeed suppose the theorem is 
proved for every finite algebra and that C, is an infinite algebra. Then for every finite 
subalgebra 6F of &, there is an additive map tig: 6F-4 R with If(A) - ,is(A) < K, 
A E CF. Extend each ty to d? by setting ttq(A) = 0 for A E d\6Y. Order the 
subalgebras 6J by inclusion. Then the set {pt} is contained in the compact subset 
{g: I g(A) I tf(A) I +K} of Re and so has a convergent subnet. The limit y of this 
subnet is the required additive map ,i: &T -4 R with If(A) - y(A) < K, A E d(. 

Thus we suppose 6( is finite and, in fact, C = 2Q. For any function g: 6C -* R with 
g( 0) = 0 we let 

V()-max (g(A) -g(B)). 
A, BC Q 

If f: 2Q -- R is 1-approximately additive, select an additive yt: 22- R so that 
V(f - IA) is minimized. Let g = f - IA, and suppose 

maxg(A) = a, nmn g(A) = -b 
A Ed Aed 
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where a > b (if b > a consider instead -g in the ensuing argument). Then 

If(A)-A(A) I< a, A EC . 
Note that g is 1 -approximately additive. 

Select S C 2 so that g(S) = a. If B C S then g(B) > g(S) - g(S\B) - 1 > -1. 
Now define 4: 2S 5 R by 

o(A) = I + supg(B), A 0, 
BCA 

=0, A= 0. 
Then 4 is a submeasure. If AI,..., An C S are disjoint then there exist Bi C Ai 

(1 < i < n) so that 
n n 

2 (A)= n + 2 g(Bi) 
i=l1 i=l1 

n 

n + 2,g(BI U ... UBJ) +n-1I < 2n +(a -1 

Note also that 4(S) = a + 1. 
We now estimate J(C) where C, = C((; 4). Suppose X: 2S -5 R is a measure 

satisfying X(S) = 1 and M(A) < 4 whenever A C C. We consider the map h: 20 -* R 
given by 

h(A) = g(A)-X(A n s), A c . 

Then by the original choice of y we have V(h) > a + b. However we shall show that 
for A C &, 

-b- < h(A) <a a-, 

and thus obtain a contradiction. 
Suppose h(A) 2 a -, then g(A) > a - . Now 

g(A\S) < 1 + g(A U S) - g(S) < 1 

so that 

g(A n S) 2 g(A) - g(A\S) - 1 > a -2 

If B C S\A, 

g(B) <g((A n s) U B) - g(A n s) + 1 < 2 

so that 4(S\A) < 9. Hence X(S\A) < 4 and X(A n s) > 4. Thus h(A) < a -2 

contrary to assumption. 
Now suppose h(A) < -b - 4. Then g(A) < -b + 4 and if B C A n s, 

-b + 2 > g(A) > g(B) + g(A\B)- 1. 

Hence g(B) < 3 and 4(A n S) ? 24. Thus, X(A n s) < 4 and hence 

h(A) > g(A) -2 > -b-2, 

contrary to assumption. 
Now V(h) < a + b, contrary to assumption to ,t. We conclude that for every X: 

2- R with X(S) = 1 then there exists A C (C with X(A) 1 2. By Proposition 3.2 
this implies J(C @) 21 
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Now we claim that since (C is finite there exist Cl,,. C ., Cm E ( so that 

i I c 2 l m 2 lci 

In fact J(C)-' is the solution of the linear programming problem: 

Minimize: 2 XC 
ceC 

Constraints: 2 xclc(o) > 1, co E 2, 
c&C 

xc > 0. 

Any basic feasible solution (x-c: C E C() of this problem has X-C rational for every 
C E C. (See, for example, [20, p. 14].) Thus J( C) is rational and 

2 J(0)xc 
I 

2la 
ccC 

Now by choosing m as a greatest common denominator of (J(AC)xc: C E C() and 

repeating sets as required we can find C1,..., Cm EC ( with 

m l I) 2la. 

Now by Lemma 3.1 for any r E N, 

9 1 
2 ~> - 2k (CI) > (a + 1) -2r- (a- 1)0(r,2) 

i=1 

If r is chosen so that 0(r, I) < 1, 

a < (7 + 4r - 20(r, 1))/2(1 - 0(r, 2)). 

Proposition 2.3(i) (depending only on Proposition 2.1) shows there exists r E N so 
that 0(r, 2) < 1. However 2.3(ii) gives a better estimate (depending on 2.2), i.e. 
0(6, 2) < 2. Hence 

7 + 24 - 4/3 89 
2/3 2 

REMARKS. The problem of determining the best constant K is unsolved. B. Pawlik 
has communicated to the authors an example to show that K > 3 is necessary. 

5. The control measure problem. Let X be an F-space, and let (& be a a-algebra of 
sets. Let y: (& -- X be any countably additive vector measure. A control measure X 

for y is a countably additive scalar measure X: &T -- R such that X(An) -O 0 implies 
1 [(A0)1 -4 0. It is well known that the Maharam problem is equivalent to the 

problem of the existence of a control measure for a countably additive vector 
measure. In this section we show how the results of ?3 give us some positive results. 

THEOREM 5.1. Suppose ,u: 6l -4 X is a countably additive vector measure with 
relatively compact range. Then ,t has a control measure. 
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PROOF. We define for A E (T, 

Il i 11(A) = sup 11/L(B)II. 
BCA 

Then IIIt I is a submeasure on C. We claim that IIIt I is uniformly exhaustive. 
Given E > 0 pick an integer r so that IIr -1M(A)II < 2e for A E C; this is possible 

since ji(i) is relatively compact and hence bounded. Pick N E N so that t(i) can 
be covered by N sets K1, . . , Kn of diameter at most e/2r. Let Al, ... gArN be disjoint 
sets in (&, and suppose 11,i(Ai)ll > e, i = 1,2,... ,rN. Then there exists j< N and 
il < i2 < ... < ir so that t(Ai) E Kj for I = 1, 2,. . . ,r. Thus 

Ilt (Ai) -(AiIA)1 ?< e/2r 

and hence 

191 ) Ail - r(Aj) < E/2. 

Thus 

||r-I, U Ail )- (Ai, ) ||< E/2 

and so 

11 t(AJi, 1 < 6 

contrary to assumption. 
We conclude that 

min IpKlI(BJ)?< 
I < i?rN 

for any collection of disjoint sets B ,. . . ,BrN. 
Now let X be a measure equivalent to I tHI. Then if An I 0, I1t II(AJ) 0, i.e. X is 

countably additive, and clearly X controls [t. 

COROLLARY 5.2. If, in addition to the assumptions of the theorem, ,t is nonatomic, 
then tt(d) is a compact convex set which is locally convex. 

PROOF. The fact that M(C) is convex is shown in [9] for quasi-Banach spaces, but 
the argument goes through unchanged. Now since y has a control measure, the set 
co t4( d) is quasiconvex in the sense of [6, Theorem 4.1], i.e. it has enough continuous 
affine functionals to separate points. Hence being compact it is locally convex. 

REMARKS. Corollary 5.2 has a geometrical interpretation. There are compact 
convex sets which are not locally convex [16, 17] and do not satisfy the Krein-Mil- 
man Theorem. However the closure of the range of a vector measure (sometimes 
called a zonoid) can never be such a set. 

Now suppose X is a quasi-Banach space. We shall suppose X is equipped with a 
quasinorm II * 11 which is p-subadditive where 0 < p < 1. We say that lo is (crudely) 
finitely representable in X if there exists c > 0 so that for every n E N there is a 
linear embedding T: In -- Xso that cllxii IITxII llxii, x E I n . 
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THEOREM 5.3. Let X be a quasi-Banach space and suppose 1l, is not finitely 
representable in X. Then every countably additive vector measure ,u: 6 x has a 
control measure. 

PROOF. Suppose M: 6, - X has no control measure. First we observe (see [19]) that 
co f(fd) is bounded so that if cl,. . ., cn E R and Al,.. .,An E 6e are disjoint, 

n 

Ci| c(Ai ) ||< M max ci 

If d(A) = supBcA II tA(B)IIP then 4 is a submeasure which cannot be uniformly 
exhaustive. Hence for some 8 > 0 and any n E N we can find disjoint (An,i: 1 < i < 

n) in 6 so that I I L(An )II n e. Define Tn: ln -Xby 
n 

Tn(x) = M_ XiIj(An,i). 

Then IITnl I 1 and IITn(ek)II > M-8 for each basis vector ek (1 ? k < n). Now by 
a theorem of Drewnowski [3], loo is finitely representable in X, contrary to assump- 
tion. 

6. Twisted sums. In [7] an F-space X was defined to be a Cspace if whenever Y is 
an F-space with a one-dimensional subspace (a line) L C Y so that Y/L _ X, then L 
is complemented in Y, so that Y _ X G) R. In [7] it is shown that the Banach space 11 
is not a Cspace (see also [15, 18]) while lp (1 < p < oo) is a Cspace. The problem 
raised in [7] is to determine whether co is a Cspace; in this section we show that 
Theorem 4.1 shows that co is a Cspace. 

More generally we recall that a Banach space X is an K.-space if there is a 
constant c > 1 such that for every subspace F of X with dim F < x there is a 
further subspace of G of X with G D F and dim G = m < x and a linear isomor- 
phism T: G -- lo so that 11 T * 11T'II < c. 

If X is a Banach space then a functional f: X R is called quasilinear if for some 
constant A = A(f ) and any xI, x2 E X, 

(i) If(XI + X2) -f(XI) -f(X2) 1?z(IIx1I + 1x2 11), XI, X2 E X, 

(ii) f(tx) = tf(x), t E R, x E X. 
We recall Proposition 3.3 of [7]. 

PROPOSITION 6.1. Let X be a Banach space. Then X is a TCspace if and only if for 
every quasilinear map f: X -- R there is a linear (not necessarily continuous) functional 
h: X -- R with I f(x) - h(x) I < L II x II, x E X, for some constant L. 

We observe that if f is quasilinear and x, ..., xn E X then 

n nn 

f( xi) - ::f(xi) <?-A( kIxII)Xk 
I i-I ) i=l'i) k=I kl) 

This is proved by a simple induction (cf. Lemma 3.2 of [7]). 
Let Q be a finite set and let lW(S) denote the space of all real functions on S2 with 

the usual sup-norm. 
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PROPOSITION 6.2. Let f: l.(Q2) -- R be a quasilinear map. Then there is a linear 
functional h: l.(Q2) -- R with If(x) - h(x) I- lOO I AIxIl where A\ = A(f ). 

PROOF. The set function A F- f('A) for A C S2 is A-approximately additive and so 
there is an additive set-function ,t with I f(A) - ,i(A) I < 45A, A C 2Q (Theorem 4.1). 
Let h be the natural linear extension of y to l.(Q2). Then g = f - h is quasilinear and 

g(lA)I<45A,A e20. 
If x E lU(Q) then x = EL Ex(c)e,where e, = 1,, ). Thus 

Ig(x)- 2 x(,o)g(e.) < I s2 12 11 lxl 

and so 

I g(x) I< (I S2 12 + 45)A 1 IIXII. 

Now suppose 0 < x < 1Q. Then for suitable AI, . . . Am E 2Q 
ml 

|| 7, 1k 1 Ak < 2- 
k=1 22n 

and 

g(: -iA~ - _g(2)A? (g z k Ak ) z k g(1Ak)S :E n 2k <2 
k=1 2 k=1 2 k=1 2 

Thus 

I 12kA )| 

Hence 

I g(x) I< 47A + 2-m(l S 12 + 45 | S J)A + A(l + 2-m). 

Letting m -o, I g(x) I < 48A. 

Now for any x e l.(2) with x = u - v, where u, v > 0, and 11ul, luii v lxii, 
then 

g(x) l?g(u)I +Ig(v) I -A(llull + llvii) 
< (48A + 48A + 2A)l11xl11 < lOOlA1x 

as required. 

THEOREM 6.3. Let X be a Banach space with is an E. -space. Then X is a STspace. 

PROOF. Suppose that f: X -- R is a quasilinear map with A =A( I). There is a 
constant c > 1 so that whenever F C X is a finite-dimensional subspace, there is a 
finite-dimensional subspace G with G D F and a linear isomorphism T: G -* lm with 

11 T-'11 < c. 

Let F be any finite-dimensional subspace of X and choose G D F as above. Then 
oT-' is quasilinear on l1 mwith A( f oT') T< lT-' IA. 
Hence there is a linear map h: lm -- R with 

11f(T-'u) - h(u) I< 10011T-1'I11Au11, u e l. 
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Define dF: F -- R by dF(x) = h(Tx). Then 

I f(x) -dF(X) I 10011 T-1 1I Av 1I Tx 11 < IOOCA 1I x 11, x C F. 

Ordering the finite-dimensional subspaces of X by inclusion we obtain a net of 
functions d*: X -- R where d*(x) = dF(X) (X E F) and d*(x) = 0 for x 4 F. For 
any x E X, 

Fd*(x) I lOOcA IIxII + If(x)l 

and d* has a subnet converging pointwise to a linear functional d: X -- R. Clearly 

If(x) - d(x) I< lOOcA1Ix11, x E X. 

COROLLARY 6.4. The Banach space co is a X3space. 

THEOREM 6.5. Let X be a quotient of E.-space. Then X is a X3space. 

PROOF. Let Y be an c,,-space, Q: Y -- X a quotient mapping, and f: X -> R a 
quasilinear map. Then f o Q is quasilinear on Y so that there exists a linear map h: 
Y -- R with If o Q(y) - h(y) I LI ly Y l, y C Y, for some constant L < oo. If y E 
Q-(0), I hh(y) s L 1 y I1, and so by the Hahn-Banach theorem there is a continuous 
linear functionaly* C Y* with IIy*11 < L so thaty*(y) = h(y) fory e Q'(0). 

Now h -y* = d o Q for some linear functional d on X. 
If x E Xandx = Qythen 

If(x) - d(x) I=If(Qy) - d(Qy) I<If(Qy) - h(y) I +Iy*(y) I< 2LIIyII. 
Hence 

I f(x) -d(x) I < 2L 1x1l x X X, 
and X is a XGspace. 

REMARK. We recall ([7, Theorem 4.10]) that if X is a 3Cspace and Y is any F-space 
with a locally convex subspace N such that Y/N _ X, then Y is itself locally convex. 

We conjecture that a Banach space X is a XCspace if and only if lo is not finite 
representable in X* (or equivalently X does not contain uniformly complemented 
1n 's). In this context we remark that the assumptions of Theorem 4.7 of [7] already 
imply this conclusion. 
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