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A SYMPLECTIC BANACH SPACE 
WITH NO LAGRANGIAN SUBSPACES 

BY 

N. J. KALTON1 AND R. C. SWANSON 

ABSTRACT. In this paper we construct a symplectic Banach space (X, Q) which does 
not split as a direct sum of closed isotropic subspaces. Thus, the question of whether 
every symplectic Banach space is isomorphic to one of the canonical form Y X Y* is 
settled in the negative. The proof also shows that P- X) admits a nontrivial 
continuous homomorphism into C_(H) where H is a Hilbert space. 

1. Introduction. Given a Banach space E, a linear symplectic form on E is a 
continuous bilinear map 2: E X E R which is alternating and nondegenerate in 
the (strong) sense that the induced map Q: E E* given by Q(e)(f ) = Q(e, f ) is 
an isomorphism of E onto E*. A Banach space with such a form is called a 
symplectic Banach space. It can be shown, by essentially the argument of Lemma 2 
below, that any symplectic Banach space can be renormed so that Q2 is an isometry. 
Any symplectic Banach space is reflexive. 

Standard examples of symplectic Banach spaces all arise in the following way. Let 
Y be a reflexive Banach space and set E = Y Y*. Define the linear symplectic 
form Q y by 

QY[(y, Y*), (z, z*)] M z*(y) - y*(z). 

We define two symplectic spaces (El, 01) and (E2, i2) to be equivalent if there is an 
isomorphismA: El E2 such that Q22(Ax, Ay) = 21(x, y). 

A. Weinstein [10] has asked the question whether every symplectic Banach space is 
equivalent to one of the form (Y E Y*, iQy)4 (See also [8].) 

A closed subspace F of a symplectic space E is isotropic if Q(x, y) = 0 for every x, 
y C F. F is Lagrangian if it is isotropic and possesses an isotropic complement. As 
Weinstein notes [10] the question is thus whether every symplectic space has a 
Lagrangian subspace. 

An obvious approach to this question is to construct a maximal isotropic subspace 
of any given symplectic space. However a maximal isotropic subspace of a sym- 
plectic space need not be Lagrangian. Indeed, let Y be a reflexive Banach space and 
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M be an uncomplemented closed subspace of Y. Letting M' {y* C Y*: y* I M 
O}, the subspace M E M' of (Y E Y*, Qy) is maximally isotropic, but cannot be 
complemented. 

In this paper we shall describe an example of a symplectic space (Z2, i) which 
has no Lagrangian subspaces; in fact e-very complemented isotropic subspace is 
finite-dimensional. Prior to giving our construction, we shall make some general 
remarks on the background and motivation behind this problem. 

In recent years, various authors have called attention to the practical and 
theoretical importance of symplectic forms arising in the setting of Banach spaces 
and, more broadly, Banach manifolds. For example, Weinstein's proof of the 
Darboux theorem [10] in Banach spaces reduces the local classification of symplectic 
structures to the study of alternating bilinear forms on Banach spaces. Moreover, 
symplectic forms in Banach spaces play a decisive role in the Hamiltonian formula- 
tion of infinite-dimensional mechanics due to P. Chernoff and J. Marsden [2]. Such 
familiar systems as the Schrodinger equation, the Euler equation of hydrodynamics, 
the Einstein equations of relativity-all readily lend themselves to a symplectic, i.e. 
Hamiltonian, approach in Banach spaces. For equations with side conditions, one 
would employ symplectic forms in Banach manifolds. 

Since Lagrangian submanifolds (and their linearizations, Lagrangian subspaces) 
are preserved by Hamiltonian flows (linear Hamiltonian flows) in Banach spaces, 
they are natural objects of study. Indeed, a linear Hamiltonian flow always induces a 
flow of Lagrangian subspaces whose topological features, e.g. intersection number, 
yields qualitative information about solutions. This point of view was evolved by J. 
Duistermaat [3] to give an ingenious wholly finite-dimensional proof of the Morse 
index theorem for geodesics. In Banach spaces, a similar approach leads to index 
theorems for elliptic partial differential equations with a one-parameter family of 
boundary values [Swanson, 9]. 

How much freedom is there in selecting the underlying symplectic Banach space? 
As Lagrangian subspaces play a strong role in applications, are they inevitable given 
a symplectic Banach space (as in Hilbert space)? This is precisely Weinstein's 
question given above. The symplectic space (Z2, i) (that we construct in ?2) reveals 
limits on the amount of structure inherent in the symplectic form itself. 

The space Z2 was introduced in [6] as a " twisted sum" of two Hilbert spaces; thus 
Z2 has a closed subspace M -12 so that Z2 I M _ 12. It may be noted that all the 
twisted sums 12<, of [6] are symplectic Banach spaces. However Z2 has many special 
properties. It fails to have an unconditional basis and, more generally, fails to have 
local unconditional structure [5], but has a symmetric unconditional decomposition 
into two-dimensional subspaces. At the time of this writing, it is unknown whether 
Z2 is prime or isomorphic to each of its closed hyperplanes. 

This paper leans heavily on ideas in [6]. However we do point out one deviation 
from the approach in [6]. In showing that Z2 is a Banach space, we use the linear 
symplectic form Q to introduce an equivalent norm, rather than appealing to more 
general results on type as in [6]. Also in places we indicate simpler arguments than 
given in [6]. 
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We feel that our approach to proving that Z2 has no Lagrangian subspaces may 
have some interest in Banach algebra theory. In particular, we use the symplectic 
form on Z2 to induce an involution on the algebra f(Z2) of endomorphisms of Z2 in 
the obvious way such that for all x,y in Z2 and Tin C(Z2), 2(Tx, y) = 2(x, T*y). 

Thus, f(Z2) is a *-algebra. It is easy to see that a projection P on Z2 has isotropic 
range iff P*P = 0. Indeed, the range is a Lagrangian subspace iff P*P 0 O and 
P* + P = I. We show that this is not possible by constructing a nontrivial *-homo- 
morphism A: fe(Z2) -3 f&(H) where H is a real Hilbert space. In fact, the kernel of A 
is the two-sided ideal of strictly singular operators on Z2 so that any projection with 
isotropic range has finite rank. 

The example is easily complexified and can be used to solve a problem of Lance 
[7] on general sesquilinear forms on Banach spaces. However Lance's question as 
stated requires no reflexivity and has the easy negative solution E 11 as suggested 
in [7]; the requirement of reflexivity makes a solution much more difficult. 

Before constructing the desired example, we shall recall some definitions. A linear 
mapping of Banach spaces A: X Y is called strictly singular if there is no 
infinite-dimensional subspace X1 C X such that A I Xl is an isomorphism into Y. 

If (bn) is a basis of a Banach space X then a block basic sequence of (bn) is a 
sequence of form 

Pn 

Un = z a1b 

Pn-I +1 

wherepo 0 <P I<P2 <P3 < 

We shall use repeatedly the "gliding hump" technique. If vn F X is a sequence 
such that vn -O 0 weakly, then given any sequence of positive numbers en, there is a 
block basic sequence (un) and a subsequence (Vmn) of (vn) such that 11 Vm -Un 11 < &n. 

2. The example. For any real sequence x = (xn)n= I we denote by Ex, the even 
subsequence of x, i.e. Ex = y whereyn = X2 n 

If x E 12 we denote by k(x) the sequence (On(x))? I where 

02n(X) = Xn, n = 1, 2,.. .. 

2n-X) = Xnlo l 
X112 n =1,2,.... 

Here, of course, II x 11 2 X Xn 12n) and we interpret both 0 (log 0) and 0 (log oo) as 
0. 

The properties of 4 that we require are essentially established in [6], i.e. 

4((ax) = a(x), a E R, x E 12, 

114(x + y) - W(x) - k(Yy)11 2 ? C(I x 112 + 11 y 11 2), x y 12, 

where C is a constant independent of x, y (C = 3 log 2 will suffice). 
Now we define Z2 to be the space of sequences x = (xn) such that 

llxll = IhEx112 + lix - I(EX)112 < O? 

Then Z2 is a linear space and 11 11 is a quasi-norm on Z2; in fact 

lix +yii Y< (C + l)(iixii + iiYii). 
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It can be checked that Z2 is complete for this quasi-norm and that the standard unit 
vectors (e, ) I form a basis for Z2. 

The subsequence (el, e3, ... ) spans a closed subspace M of Z2 isomorphic to 12; in 
fact if x F M, H x H I x 2. It also is easily checked that for any x F Z2 d(x, M) = 
infm EM x - mH ExH2 so that the map E: Z2 -- 12 is a quotient mapping (i.e. 
Z2/M_ 12). 

We can define an alternating bilinear form Q on R? (the finitely nonzero 
sequences) by 

00 

Q(X, Y) = (X2nY2n-I -X2n-IY2n)- 

We shall show that Q is continuous on R? and hence can be extended to an 

alternating bilinear form on Z2, also denoted by U. 

LEMMA 1 (CF. [6, THEOREM 5.1]). For x, y F R??, |(x,y) Hx HyH. 

PROOF. First we claim that 

( Q (EX), ((EY)) I< 2e1EX 2 11 EY 12 

Indeed suppose 11 Ex 1 2 Ey 1H 2 = 1. Then 
00 x2 2 

((Ex), O (Ey)) || X2nY2nog Y 
n=1 ~Y2 n e 

as in Lemma 5.1 of [5]. 
Next observe 

Q(x - p(Ex), y) I < x - 4( Ex) 11 211 Ey 1H 2, 

Q(x, y - (Ey)) I< IEx 11 2 11y- (EY)l 2- 

Q(x - (Ex), y - (Ey)) = 0. 

LEMMA 2. Z2 can be given an equivalent norm II * II 0 so that 

Hx%lO = sup Q(x, y) 

PROOF. First let 

III x III = sup (X, Y) 

Then for x F M, IiIxilII HxHI while for any x C Z2 we have IlixilI 2 HEX 2= 
d(x, M). Thus if IIIX(n)III 0 there exist u(n) F M with x (n) - u (n) 0. Then 

III u(n) III 0 and so IIx (n)l 0. It follows that III is a norm equivalent to the 

quasi-norm 1 Thus there is a constant B so that 

III x III < 11 x 11 < B III x 111, x F Z2. 

Now use Zorn's Lemma to choose a minimal norm I H0 so that 

B-III gxIII < ?1 x o < B III, X F Z2, 

and I Q(x, y)I X HxHl0HYyH10, x, y F Z2. Define 

llx H1 sup IQ(x,y)l. 
IyIIO?1 
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Then 

xHl*' 2 sup iQ(x, y) j SUp S i (x, Y) =B-IIIXIII- 
B III y III II y I I? B' 

Thus B-1 III x III < 11 x* < 11 x 110 < B II x 111. Let 

IxH * - (2(1 X 1 *)2 + 21 X 11 )12 

Then as I Q(x, y) x< Ylx yll and I Q(x, y) 1I< HlxH0Hoy%11 , we have 

I s(x, y) 12 
X 2 [(x0 H*xo 11)2 + (11 Y 11o 11 y 11*)2] 

and hence 

IQ(x, y) I < 11 x 1*o*Y 11o 

Thus 11 x 11* 11 x 110 and so 11 x 110 = 11 xo 11 * has the desired properties. 
Although Z2 iS therefore a Banach space, it is convenient to continue working with 

the original quasi-norm. Since Z2 is reflexive (both M and Z2/M are reflexive), Q is 
a linear symplectic form on Z2- 

The basis (en) is not unconditional. However it is easily seen that if -n ? 1 for 
all n, then the map defined by Se2 n = ne2n Se2n1 -= ne2n- 1 is an isometry on Z2- 

Thus for some constant C, the operator defined by 

Se2n = ane2n, n = 1, 2, ... . 

Se2nI = ?ne2n-11 , n = 1, 2, ..., 

for a bounded sequence (an) satisfies 11 S 11 < Clsup I an I . (The constant C1 is not 1, 
since 11 11 is not a norm, but merely a quasi-norm). Thus, as remarked in [4], Z2 has 
an unconditional Schauder decomposition into two-dimensional subspaces. 

We shall use repeatedly the "symmetry" of this Schauder decomposition, particu- 
larly in arguments where we pass to a subsequence. 

Let (w(n): n = 1, 2,...) be a bounded block basic sequence (with respect to (en)) 
contained in M. We shall define the induced block basic operator W: Z2 -0 Z2 by 

We2n- I = W(n)I n = 1,2, ..., 

We2n = (-(V(n)), n = 1,2,..., 

where v(n) 2 is given by V(n) = W2W) 1. To show that W is bounded we first check 
that if II wH(n) 1 for every n, then W is an isometry. Suppose that 

pn 

w(n)= E a 'e2i- I 
I =Pn- + I 

where 0 =PO <PI <P2 < ... ; then EPn_ a 2 = 1. If x F R?? and Ex = 0, then 
1Wx1 x1. Assume then that Ex 11 2 = 1- If pn- + 1 < i < Pn, and Wx = w, 
then 

W21 =X2n a, W21-1 X2n- la, + x2na1log 1/1 ai I 

Thus, Ew22= 1, and 

( ) )2- 1 =x2n a1 1 
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Now, 

H1w 
- 

4(Ew) 
121 Xlog a 2 X - (p(EX)11 2 

Therefore, i12 X2n-I - X2nlo )2a H (E) 

Therefore, if II w(n) 11 I for all n, W is an isometry. In general, if w(n) = anv(n) for 

1I v(n) HI 1, then W VS where Vis the block basic operator given by Se2= a e2, 

Se2n- I =ane2n- I discussed above. Hence, in general 

HI W HI < C,supll H(n) II. 

The algebra fE(Z2) of all bounded linear operators on Z2 is a *-algebra if we 
introduce the involution * by 

Q2(Tx, y) = Q(x, T*y), x, y C Z2. 

Note that if Wis a block basic operator for w(n)I where 11 w(n) 11 = I for all n, then 

Q(Wx, WY) = Q(x, y), x, y C Z2, 

(check this for basis elements) and hence W*W = I. 
Our next lemma is established in [6] and can be deduced from elementary 

calculations with block basic sequences. 

LEMMA 3. Let (u(n)) be a basic sequence in Z2 with 0 < infll u(n) 11 < supHl U(n) 11 < oo. 

Then: 
(a) If limn -11 Eu (n) 11 2 = 0 then u(n) has a subsequence equivalent to the usual basis 

of 12. 

(b) If lim supn H00 Eu(n) 11 2 > 0 then U(n) has a subsequence equivalent to the usual 
basis of the Orlicz sequence space lf where f is defined in a neighborhood of 0 by 

f(t) = (t log I /t)2. 

REMARK. The statement of 3(b) simply means that u(n) has a subsequence v(n) 

such that D V (n) converges if and only if 

00 001 12 

2 n + tn log t <? 
n=1 n=1 n 

The next lemma is a consequence of Lemma 3; see Theorem 6.4 of [4]. 

LEMMA 4. The quotient map E: Z2 -_ 12 is strictly singular. 

LEMMA 5. (a) If T F (Z2), then 

lim 1ETe2n-II2=O' 
n - oo 

(b) If T F f(Z2) is strictly singular then 

lim I1ETe2nH2=o- 
n - oo 

PROOF. (a) ET: M -* 12 is strictly singular and hence as M -12, ET is compact 

(see [2]). 
(b) Otherwise there is a subsequence of (Te2n) which is a basic sequence 

equivalent to (e2n) by Lemma 3(b) and so T is not strictly singular. 
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Now define L: Z2 -* Z2 by Le2n e2n- 1 and Le2n-1 = O for n = 1,2,3,.... Thus 
Lx II = II Ex 11 2 for x F Z2, and L is strictly singular. 

LEMMA 6. For T E P(Z2), 

lim 11 LTe2n - Te2n- 0 .- 
n -, oo 

PROOF. By passing to subsequences it suffices to consider the case when 
00 

I IITe2n1 - w(n)l < X 
n= I 

for a bounded block basic sequence w(n) in M; note d(Te2n-1, M) 0 by Lemma 
5(a). 

Let W be the associated block basic operator. Define K: Z2 -* Z2 by 

Ke2n-1 = Te - w(n) n = 1,2,..., 

Ke2n= O, n= 1,2,.... 

Then K is compact and [T- (W + K)](M) = (0). Hence T- (W + K) factors 
through E and is strictly singular. Thus T - W is also strictly singular and so 

1E(T- W)e2n ll 2 0- i.e. 

H1 L(T- W)e2nH- 0. 

However LWe2n= w= . 
Now let 19i be a nonprincipal ultrafilter on N. Define a bilinear form on f( Z2) by 

(S, T) = lim U(Se2n-11 Te2n). n E G11 

Denote by K, > the standard inner product on 12* 

LEMMA 7. (a) (S, T) = limnfl-O<XESe2n, ETe2n). 
(b) (T, T) = limn, -011ITe2n-1 112. 

PROOF. (a) By Lemma 6, 

lim Q2(Se2n- 1 , Te2n) = lim Q(LSe2n , Te2n) = lim KESe2n, ETe2n>. 

(b) (T, T) = lim n, 11 ETe2n 112 = limn6k 11 Te2n__ 11 2 by Lemma 6. 
Lemma 7 shows that ( , ) is a nontrivial symmetric nonnegative bilinear form on 

f(Z2). Let H be the Hilbert space obtained by completing the quotient of f&(Z2) by 
the space (T: (T, T) = 0). Then there is an algebra homomorphism A: f&(Z2) - (H) 
defined by A(A)T = AT, A, T EE f(Z2). 

Note by Lemma 7(b) that 11 A(A)HI < I A 11. 

If A Ef(Z2) then 

(A(A*)S, T) = limU(A*Se2n-1, Te2n) = limU2(Se2n-1, ATe2n) 

= (S, A(A)T). 
Thus A(A*) = A(A)* and A is a *-homomorphism. Clearly A(I) = I and so A is 

nontrivial. Denote by 4 the *-ideal (T: A(T) = 0). 

THEOREM 8. Z2 contains no Lagrangian subspace. 



392 N. J. KALTON AND R. C. SWANSON 

PROOF. If Z2 has a Lagrangian subspace, there is a projection P so that 

Q(Px, Py) = O, x,Iy Y Z2, 

Q((I-P)x, (I -P)y) = O, x, y E Z2' 

Now P*P = 0 and so A(P*P) = 0. Hence A(P)*A(P) = 0 and thus A(P) = 0. 
Similarly A(I - P) = 0 and thus A(I) 0 which is a contradiction. 

We can extend Theorem 8 a little by identifying the kernel of the homomorphism 
A. 

LEMMA 9. 4 is the ideal of strictly singular operators in E(Z2) and this ideal is a 
maximal two-sided ideal. 

PROOF. If A E f(Z2) iS strictly singular then Lemma 5(b) implies A(A) = 0. For 
the converse use the argument in Theorem 6.5 of [6] to show that if A is not strictly 
singular then there are invertible operators Ul, U2 and block basic operators W, V so 
that W = UIA U2V, and Wcorresponds to block basic sequence w(n) with HI w(n) II = 1. 

Then W*W = I and so if A belongs to some two-sided ideal, this ideal is trivial. 
REMARK. This argument also can be used to show that the range of W is 

complemented, which was first observed by Johnson, Lindenstrauss and Schectman 

[5]. 

THEOREM 10. If F is a complemented isotropic subspace of Z2 then dim F < oo. 

PROOF. If P is a projection on F, then A(P) = 0. 
REMARK. We do not know if A maps onto a closed *-subalgebra of @(H). Clearly 

this example can be "complexified" to yield, for complex Z2, that E(Z2) is a 
*-algebra whose strong radical [1] is the ideal 4 of strictly singular operators. The 
question is then whether E(Z2)/0 is *-isomorphic to a B*-algebra. 
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