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A RIGID SUBSPACE OF Lo 
BY 

N. J. KALTONI AND JAMES W. ROBERTS2 

ABSTRACT. We construct a closed infinite-dimensional subspace of LO(O, 1) (or Lp 
for 0 < p < 1) which is rigid, i.e. such that every endomorphism in the space is a 
multiple of the identity. 

1. Introduction. In this paper we shall show how to construct a closed infinite- 
dimensional linear subspace X of Lo = L0(O, 1) which is rigid, i.e. such that every 
linear operator from X into itself is a multiple of the identity operator. In fact the 
space X can be chosen to embed in every Lp for 0 <p < 1, and to have the 
property that every quotient space of X is also rigid. 

In [9] Waelbroeck constructed the first known example of a rigid topological 
vector space. The space he constructed was metrizable but not complete. Its 
completion X was an F-space with the property that the algebra of all endomor- 
phisms of X, f(X), was commutative; in fact e(X) _ L. Shortly after this, the 
second author constructed a rigid F-space [7] but the details have never been 
published. In this paper we modify the construction in [7], allowing us to construct 
such a subspace of Lo, 

All vector spaces in this paper will be real. It is not difficult to check the 
construction also works for complex scalars, with very minor modifications. 

Our notation is fairly standard. An F-norm on a real vector space X is a map A: 
X -* R satisfying 

(1.0.1) A(x) > 0 if x # 0, 
(1.0.2) A(ax) < A(x), lal S 1, x E X, 
(1.0.3) lima-o A(ax) = A(0) = 0, x E X, 

(1.0.4) A(x + y) < A(x) + A(y), x,y E X. 
A quasi-norm is a map x -- Ix IIx (X -* R) satisfying 

(1.0.5) llxil > 0, x # 0, 
(1.0.6) laxIl = lal lIxii, a E R, x E X, 

(1.0.7) lix + yll C(<IxII + IIyII), x,y E X, 

where C is independent of x andy. The quasi-norm isp-subadditive (0 <p < 1) if 
(1.0.8) llx + yllP < llxllP + IIyIIP, x,y E X. 
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A complete metrizable topological vector space X is called an F-space and its 
topology may be induced by an F-norm; if it is locally bounded then its topology 
may be induced by a quasi-norm, and is then a quasi-Banach space. 

The space Lo = L0(O, 1) consists of all Lebesgue measurable real functions, 
where functions differing only on a set of measure zero are identified. Equipped 
with the topology of convergence in measure, Lo is an F-space and may be 
F-normed by 

f + 1 If(x) I. dx. 

For 0 <p < oo, LP = Lp(O, 1) consists of allf E Lo such that 

lifl = { If(x)IP dx} < 00, 

is a locally bounded F-space, and 11 * Ilp is a quasi-norm on LP; of course for 
1 P < ?o, I I Ilp is a norm, while for 0 < p < 1, I I Ilp is onlyp-subadditive. 

If X and Y are two quasi-Banach spaces and T: X -* Y is a linear operator, then 
T = suplxi 11 I Txl. One easily established fact we shall use in the sequel is that 

if T: X -* X satisfies T I < 1 then I - T is invertible on X; the proof is exactly 
the same as for Banach spaces. 

If X is a quasi-Banach space and N is a closed subspace of X, then the quotient 
space X/ N is quasi-normed by the quotient quasi-norm 

ll +NII= inf Ix +yll. 

Then X/ N is also a quasi-Banach space. 
The plan of the paper is as follows. In ?2, we list some basic results. In ?3 we 

construct a simple example of a rigid closed subspace of Lo, This construction is 
self-contained and fairly elementary. In ?4, we use some results from [3] to obtain a 
stronger example, a rigid closed subspace of Lo for which every quotient space is 
also rigid. 

2. Some basic results. Our first lemma is a finite-dimensional result due to N. T. 
Peck, who kindly showed us this improvement of our original estimate (replacing 
(dim X)' P by (dim X)'IP- 1). 

LEMMA 2.1. Let X be a finite-dimensional quasi-normed space, and suppose the 
quasi-norm is p-subadditive. Then for xl, ... ., xm E X 

m m 

|| EXi| < (dim X)'/wl lixill. 

PROOF. Let B = {x: xlxiI < 1). Then as x -lxii is certainly continuous (it is 
p-subadditive), B is compact. 

We may suppose I IIxiII > 0. Let u = (Em=1 IIxi If I1 xi. Then u E co B. 
Now by a well-known result of Caratheodory, since B is balanced, we may write 
u = EN I CjVj where N = dim X, Vj E B (1 < j < n) and cj > O with L cj = 1. 
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Hence 

N \/P 
u < E |Cjp < N'/P-1 

j= 1 

and 
m m 

|| xi-X| < N'IP E 1 lxill. 
j=1~~~~~i 

Our remaining results in this section concern the spaces Lp for 0 < p < oo. 

LEMMA 2.2. Suppose 0 < q < p < ox. Then if f E Lq there exists a linear operator 
T: Lp >- Lq with TI = f and 11TIh = IlfIllq 

REMARK. Here 1 denotes the constant function one. 

PROOF. For the case p = q this is essentially proved in Rolewicz [8, pp. 253-254]. 
The general case follows easily by composing with the inclusion map. 

Now let C be the one-dimensional subspace of LP consisting of the constant 
functions. Let po: Lp -* Lp/C be the quotient map so that 

IIPoAlp = min lif - Xiip f E Lp. 

The space L /C is (isomorphically) the space Lp/1 as defined in [4]. The next 
result shows that L / 1, although not isomorphic to Lp [4] nevertheless embeds into 

LP; this fact was independently observed by N. T. Peck. The same result is true for 
p = 0 by essentially the same argument. 

LEMMA 2.3. There is a linear operator S: Lp -* Lp such that IIpof IIp < II Sf llP < 

2'1/PjjpfjPf , f E- Lp. 

PROOF. Note that L is isometric to Lp((O, 1) X (0, 1)). We define S: L 

Lp((O, 1) X (0, 1)) by Sf(x, y) = f(x) - f(y). Then 

ISP (x) - f(y)p dx a4 > lIpoflp 

and 

II SI1P < f f .f(x)jp + If(y)ip dx ay = 21If lfl. 

As SI = 0, 11 Sf IIP < 21pof IIP. 
The next lemma is a well-known application of stable processes; see [5]. 

LEMMA 2.4. There is a linear embedding (isomorphism into) S: Lp-* Lo such that 

f exp(itSf(x)) dx = exp(-I t IP II f IiP). 

3. Elementary construction of a rigid space. Let us suppose that for < S p < 1 we 
are given: 

(3.0.1) A closed subspace Wp of Lp such that 1 E Wp and 4(1) = 0 for every 
continuous linear functional 4 on Wp. This means that 1 belongs to the convex hull 
of every neighborhood of zero in Wp. 
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(3.0.2) A constant K(p) where 0 < K(p) < x0. 
For the purposes of this section it will suffice to take Wp = Lp and K(p) _ O. 

The greater generality will however be useful in ?4 when we construct a further 
rigid subspace of Lo with every quotient also rigid. 

Select now any sequence (cn: n > 1) of positive numbers so that E: Cnl < . 
With these assumptions we prove: 

LEMMA 3.1. We may select sequences (Pn: n > 0) and (en: n > 0) and a sequence 
(Vn: n > 0) offinite-dimensional subspaces of Lp so that: 

(3.1.1) (pn) is increasing with Po = p p n 1 for all n, and limn,. Pn = 1. 
(3.1.2) en > O for all n. 
(3.1.3) 1 E Vn and Vn c Wp>. 
(3.1.4) If Mn = 7n - I dim Vi then 

nM en < cn, n > 1, nK(Pn)en <c,n>1 

(3.1.5) For n > 0, there exists {Vn k: 1 < k < I(n)) in Vn with Ilk21 Vn, k = 1 and 
l(n) 

2 II Vn,kj < en, n > O, 

I(n) 

1: 1 Vn, k||n+ < __npn+,, n > O. (3.1.6) 

PROOF. We select the sequences by induction. To start the induction takepo = 

Co = 2 and V0 = C, the space of constants in L,/2. Then let 1(1) = 1 and vo I = 1. 
Now suppose (po' . .. * Pm- )' (c0, ... * c - ) and ( V0, . . ., Vmi -) have been 

chosen so that (3.1.1)-(3.1.5) hold for n 6 m - 1 and (3.1.6) holds for n < m - 2. 
Then since Ej-lk ) IIVml, kII < cm-I, we may choosepn >pn- sufficiently close to 
I so that (3.1.6) holds for n = mr-I, and so thatpn > 1 - 1/m. Now cm >0 so 
that (3.1.4) holds for n = m. Since 1 is in the convex hull of every neighborhood of 
0 in Wp1,, there exist vm, I .... Vm l(n) E Wpm so that (3.1.5) holds for n = m. Finally 
we may let Vm = lin(vm, 1, ... 9 Vm, l(n)) 

Keeping the notation of the preceding lemma we introduce now a space Z of 
real-valued measurable functions on (0, oo). Z consists of all f such that 

A(f) = E' 
I 

|f(X) |P dx < ox. 
n=On 

Then (modulo functions zero almost everywhere), A is an F-norm on Z and Z is an 
F-space. Furthermore Z is locally bounded and may be quasi-normed so that 

Ilfil 1 if and only if A(f) < 1. It is easy to see that the unit ball is the 2-convex, 
or equivalently 

,if + gil"/2 < llfll,/2 + jig,,/29 fg g E Z, (3.1.7) 

and this implies 

IV + gil < 2(llfll + jghj), f, g E Z. (3.1.8) 
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We denote by Z(a, b) the subspace of Z of functions supported on the interval 
(a, b). Let P,, En and Qn be the natural projections of Z onto Z(O, n), Z(n, n + 1) 
and Z(n, oo) respectively. Then IIPnII = IIEnII = IGQnII = 1 for n E N and I= 
+ Qn = Pn + En + Qn+l 

Note that if f, g e Z(n, oo) then 

lIf + gljPn < lifilPn + IIgllPn. (3.1.9) 
There is a natural isometric isomorphism Tn: Lp -* Z(n, n + 1) given by 

Trf(x)=f(x-n), n <x <n +1, 

= , x f4 (n, n + 1). 
Let Un =T nVn, en = Tnl and en, k = TnVnV,k, and 1 < k < I(n). We shall let Y be the 
closed subspace of Z spanned by U '? Un, and let M be the closed linear span of 

(en: n > 0). Let p: Z -* Z/M be the quotient map so that IIpfII = infgeM If - gIl. 
Note that if f E Z(n, n + 1), 

lipf 11= inf IVe-Renl = min lif-Xenji. 

LEMMA 3.2. Suppose f E Z(O, n) with IIf I = 1. Then there exists a linear operator 
A: Z(n, n + 1)-* Z(O, n) with Aen = f and IIA Il = 1. 

PROOF. Supposef = ho + * * * + hn,- where hi E Z(i, i + 1) for O < i < n-1. 
Then n7-' I hihP = 1. By Lemma 2.2, there exist linear operators Fi: Z(n, n + 1) 

Z(i, i + 1) with Fi IHI = IIhiII and Fien = hi. Let A = Fo + Fn. Then 
Aen = f and if g E Z(n, n + 1) with 11 gIl = 1 then 

n-I n-I 

A(Ag)= E |1Figllp' < 2 11hillp' < 1. 
i=O i=O 

Hence IA II = 1. 
Now let (ffn)n'=o be a partitioning of N into infinite disjoint subsets with the 

property that, for every n > 0, n < min ffin For each n, I choose (-yk: k E (fn) to 
be a dense subset of {f: f ? Uo + + Un, If II = 1) with the property that 
Yk = en infinitely often. 

By Lemma 3.2, we find linear operators Ak: Z(k, k + 1) -- Z(O, k) with IIAkII = 
1 so that Akek = Yk Define T: Z -* Z by T = I CkAkEk. Then since Z is 
2-convex, 

11 7]11/2 < a Ck/2 

i.e. 

11 TIJ < 4 (3.2.1) 

and 

T(Z(O, k + 1)) c Z(O, k), k E N, (3.2.2) 
T(Z(0, 1)) = tO}. 
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Now let S = I - T. Then S: Z -* Z is invertible. If we let Ml = S(M) then Ml 
is closed and Ml c Y. Let ?T: Z -* Z/MI be the quotient mapping and let 
X = 7T( Y) -Y/ M1. We shall show that X is a rigid space. 

First we prove 

LEMMA 3.3. Suppose f E Z(O, n + 1). Then 

|IpEn,f 11 < 411 f ||* (3.3.1) 

PROOF. For8 > 1, chooseg E Mwith If- Sgl I I<L 7TfII. Then 

IIpE,j - pE,Sgll < 811 kf 11. 

Since pEng = 0, this implies IIpEnf + pEnTgII < 8 Ln TfII. Now EnTg = EnTQn+Ig 
(since T(Z(O, n + 1)) c Z(0, n)) and so 

lIpEn;f 1 < 2(811 iTf 11 + || T|| |I Qn+ I gll) 
S281?,gf 1 + + (3.3.2) 

However, since Qn+ If = 0, 11 Qn+ ISg1 < 8 ILnTfII and so 

11Qn+1 gI < 2(8117Tf 1 + 11 Qn+ I Tgll) 
= 2(8117Tf 1 + || Qn+ I TQn+ 1IgI9) 

S 8117Tf ||+ 
1 
||Qn +I j 

so that 11 Qn+ 1 gll < 4811K7f I I. 
Returning to (3.3.2) we obtain lIpE,J1 < 48117Tf I. As 8 > 1 is arbitrary, the 

lemma follows. 

LEMMA 3.4. X is infinite-dimensional. 

PROOF. It follows from condition (3.1.4) of Lemma 3.1 that en -O 0, and from 

(3.1.5) combined with Lemma 2.1 (note all spaces have 2-subadditive quasi-norm) 
that dim( Vn) -s o. Hence dim(Un) -x oc. Forf E Un, by Lemma 3.3 

11 7Tf1 >4Ilpf = 4AminR Ilf -Xenll 

Hence dim 7T(Un) > dim Un - 1, and so dim X = so. 

LEMMA 3.5. The set (?vT(ej): n E N, X E R) is dense in X. 

PROOF. Suppose f E UO + . + Un and If II = 1. Then there is an infinite 

subsequence C of N with lim1E< yj = f. Now T(cj- lej) = yj and so 

7T(cj- lej) = r(-yj) --- 7(f). 

Since multiples of such f are dense in Y, the lemma follows immediately. 

THEOREM 3.6. The space X is rigid. 

PROOF. Suppose A: X -- X and IIA 11 < 1. We shall show that, for each n E N, 

7T(en) is an eigenvector of A. In view of Lemma 3.5, this will show that each x E X 

is an eigenvector of A, and this will imply by easy algebraic arguments that A = XI 

for some X E R. 
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Fix n E N and let 6n' = {j E ? y, = en,. Forj E 1we have Tej = cjen and 
hence 7T(ej) = cj7T(en). Now 

1(j) 1(j) 

ej = , ej and E IIej,kII < -j. 
k=l k=1 

As IIA II < 1, there existsgj k E Y with 7gj, k = A Tej,k and 

I1gj,k1l < IIej,kII' 1 < k < 1(j). 

Let h '= lk(j I gj k. Then 7Thj = ATej. Nowpjgj k dso by 
Lemma 2.1 

1(j) 

||Pjhy|| I Iy pj |gj, k||< Mj -j < Cj/j 
k = I 

Similarly Qj+ I gk E Z(j + 1, oc) and so applying (3.1.9) 

I(j) 11Pj+ l 

IIQ+ hjII < E jj9j, k1P'+1' < 'j. 
k = < 

Thus 

IIPjhj + Qj+'IhjI S 4cj/j, K hj- Ehj < 4cj/j, (3.6.1) 

and this implies 

jA Ten - cj- 'TEjhjj < 4/j, j e 6I. (3.6.2) 

Now suppose i, j E ?n' and i < j. We have from (3.6.2) 

jjc7-',gEjhj - cj'7Ejhjll < 8(1/i + l/j). 

Now Cj- LEJ hj - cE- hE E Z(O, j + 1) and applying Lemma 3.3, equation (3.3.1): 

|| cj- fpE)hjIj < 32(1 / i + 1/j) 

i.e. there exists X = X(i, j) E R so that 11 cj- l(Ehj - Xej)II < 32(1/i + I/j). Thus 

||cj- 1( 7TEjhj 
- A7(ej))II < 32(1/i + 1/j). 

Now by (3.6.2) and since cj- i(e) = 

IIAT(en) - X7(en)II < 64/i + 72/j. 
As i, j e 6Bn' can be chosen arbitrarily large we deduce that, for some ,u E R, 

A 7(en) = 7Ts(en) and this completes the proof. 

THEOREM 3.7. (a) The space X is isomorphic to a subspace of Lo. 
(b) X is isomorphic to a subspace of Lp for 0 < p < 1. 

PROOF. (a) X - Y/M1 and embeds into Z/M1. As S: Z -- Z is an invertible 
operator and S(M) = M1, we have Z/M _ Z/M1. 

The proof will be completed by showing that Z/M is isomorphic to a subspace 
of Z, and that Z is isomorphic to a subspace of Lo, 

For the former statement we note by Lemma 2.3 there exists a linear operator 

An: Z(n, n + 1) -- Z(n, n + 1) with 
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Then if A = = 
A, 

EandfeZ 
00 00 

A(Af) = E IIAnE,JllPn < E 21pE,fllpn 
n=O n=O 

< 2A(f) < A(4f). 
Hence IIA 11 < 4, and A(M) = 0 so that 

IlAf 11 < 411pf 11 f E Z. (3.7.1) 

Conversely A(Af) > ' n IIpEnfIlPn. 
If f E Z(O, m), then there exists k, 0 < n < m - 1, so that IIpEnfII = IIE,f - 

XnenII and hence 
00 00 

E: IIPEfIlPn = E IIJE,f - nenlp = A(f - g) 
n=O n=O 

where g = E X,1en. Hence if I4I1pf = 1, A(Af) > 1 and so IIAflI > 1. By a 
density argument we have 

IIAfJI > IIPlpfI f E Z. (3.7.2) 

Combining (3.7.1) and (3.7.2), we have Z/M isomorphic to a subspace of Z. 
To embed Z in Lo we first note that Lo- Lo(Q) where Q is the countable product 

of (0, 1) with the product measure m. Suppose Bn: Z(n, n + 1) -> L0(O, 1) is an 
isomorphism with 

f exp(itB.J(x)) dx = exp( -tIPnf If(x)lPn dx) 

(see Lemma 2.4). Then define B: Z -> Lo(Q) by 
00 

Bf(Joo, CO . .* , on . * ) = E Bn(Er,f)(Cn) 
n=O 

(Formally this is defined for f of bounded support and then extended by continu- 
ity.) Then 

f exp(itBf) dm = exp(-A(tf)) 

and this implies easily that B: Z -- Lo(Q) is an isomorphic embedding. 
This last step is of course standard. For general results on embeddings of 

Musielak-Orlicz spaces into Lo see [1]. 
(b) First observe that, for each n, Y is a direct sum of a finite-dimensional space 

and a pn-convex space. Hence Y is pn-convex. As pn -- 1, Y is p-convex for every p, 
0 <p < 1, and the same is true of its quotient X. Now by applying Nikisin's 
theorem [2], [6], if X embeds into Lo then X embeds into every Lp for 0 <p < 1. 

4. Modified construction. In this section we use a result proved in [3], i.e. one may 
choose Wp to satisfy (3.0.1) in such a way that the quotient Wp /C (C = space of 
constants) is isomorphic to a Banach space. As shown in [3] we may arrange 

Wp/C _ 11. Thus for eachp, 2< P < 1, there is a constant K(p) such that 
n n 

p0f, < K(p) IIpof,II (4.0.1) 
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forfi, .f . , f, E Wp. This determines K(p) in (3.0.2). We now repeat the construc- 
tion in ?3, and we shall have the property that if fl, .. ., f E Ur then 

n n 
pi| < K(Pn) -Pfi|I- (4.0.2) 

THEOREM 4.1. Suppose X is constructed as above. Suppose N is a closed subspace of 
X and q: X -- X/N is the quotiet mapping. Then if A: X -> X/N is any linear 
operator we have A = Xq for some X E R. 

PROOF. We may suppose IIA 11 < 1. As in the proof of Theorem 3.6, if n E N and 
j E n we may pick gj k E Y with 

q'79gj k = A 7Tej,k 1 < k < 1(j), 

and 

||9j,k|| < ||ej,d)| I < k < 1(j). 

Let hj = zlkj) I gj k. As before IIhj - EjhjI I 4cj/j. 
However in this case we use Ejgj k E Uj so that we can use (4.0.2) to deduce 

l(j) 
jpEjhjjl < K(pj) E IIPgj,k|| S K(p1)cj < Cj/j. 

Hence there exists AJ E R with IIEjhj - XjejII < cj/j and 

lhj - Ajejll < 10cj/j, 

||qS( lhj) - jcyj-7lqg(ej) || < 10/j, 

jjA'7en - Xq7T(en)jj | 10/j. 

Again asj E ?13' can be chosen arbitrarily large we have As7en = Ainqs7en for some 

A,n and as before we can deduce that A = ,uq for some ,u E R. 

COROLLARY 4.2. Every quotient space of X is rigid. 

PROOF. If A: X/N -- X/N, then Aq = Xq for some X E R so that A = XI. 

COROLLARY 4.3. If two quotient spaces of X, X/ N1 and X/ N2, are isomorphic then 

N, = N2. 

PROOF. Suppose S: X/N1 -> X/N2 is an isomorphism, and ql, q2 are the 
respective quotient maps. Then Sql: X -- X/N2 and hence Sq1 = Xq2 for some 
X E R. Clearly X -# 0 since S is onto; hence if x E N1, q2x = 0, i.e. x E N2. By a 
symmetric argument N1 = N2. 

COROLLARY 4.4. There is an uncountable family (Xa: a E Ui) of mutually noniso- 
morphic rigid F-spaces, each of which is isomorphic to a subspace of Lp for 0 < p < 1. 

PROOF. Let (Fa: a cx Ui() be the uncountable family of one-dimensional subspaces 
of X. Each Xa = X/ Fa is rigid by 4.2 and the spaces are mutually nonisomorphic 
by 4.3. Each embeds into L/1 (see ?2) and hence into Lp for 0 <p < 1 (Lemma 
2.3). 
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5. Concluding remarks. We here mention three problems. First, does Lp (O <p < 
1) have a rigid quotient? It seems that this might be more difficult to achieve. More 
generally, does every F-space with trivial dual have a rigid quotient? Similarly does 
every F-space with trivial dual have a closed rigid subspace? 

REFERENCES 

1. D. J. H. Garling, Non-negative random measures and order preserving embeddings, J. London Math. 
Soc. 11 (1975), 35-45. 

2. N. J. Kalton, Linear operators on 4L for 0 < p < 1, Trans. Amer. Math. Soc. 259 (1980), 319-355. 
3. __ , Sequences of random variables in Lp for 0 < p < 1 (to appear). 
4. N. J. Kalton and N. T. Peck, Quotients of Lp(0, 1) for 0 < p < 1, Studia Math. 64 (1979), 65-75. 
5. M. Kanter, Stable laws and embedding of 4,-spaces, Amer. Math. Monthly 80 (1973), 403-407. 
6. E. M. Nikisin, Resonance theorems and superlinear operators, Uspehi Mat. Nauk 25 (1970) 

129-191 = Russian Math. Surveys 25 (1970), 124-187. 
7. J. W. Roberts, A rigid F-space, unpublished manuscript, 1976. 
8. S. Rolewicz, Metric linear spaces, PWN, Warsaw, 1972. 
9. L. Waelbroeck, A rigid topological vector space, Studia Math. 59 (1977), 227-234. 

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MISSOURI, COLUMBIA, MISSOURI 65211 

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SOUTH CAROLINA, COLUMBIA, SourH CAROLINA 29208 


	Article Contents
	p. 645
	p. 646
	p. 647
	p. 648
	p. 649
	p. 650
	p. 651
	p. 652
	p. 653
	p. 654

	Issue Table of Contents
	Transactions of the American Mathematical Society, Vol. 266, No. 2 (Aug., 1981), pp. 335-670
	Volume Information [pp. 669-670]
	Front Matter
	The Topology on the Primitive Ideal Space of Transformation Group $C^\ast$- Algebras and C.C.R. Transformation Group $C^\ast$-Algebras [pp. 335-359]
	The Discontinuous Initial Value Problem of a Reacting Gas Flow System [pp. 361-387]
	The Cyclic Connectivity of Homogeneous Arcwise Connected Continua [pp. 389-396]
	Nonweakly Compact Operators from Order-Cauchy Complete $C(S)$ Lattices, with Application to Baire Classes [pp. 397-413]
	A Counterexample to the Bounded Orbit Conjecture [pp. 415-422]
	Isomorphism Theorems for Octonion Planes Over Local Rings [pp. 423-439]
	Symmetry Properties of the Zero Sets of Nil-Theta Functions [pp. 441-460]
	Generalizations of Cesàro Continuous Functions and Integrals of Perron Type [pp. 461-481]
	On Purely Inseparable Algebras and P.H.D. Rings [pp. 483-498]
	Liapounoff's Theorem for Nonatomic, Finitely-Additive, Bounded, Finite-Dimensional, Vector-Valued Measures [pp. 499-514]
	Weak and Pointwise Compactness in the Space of Bounded Continuous Functions [pp. 515-530]
	On the Genus of Symmetric Groups [pp. 531-538]
	Integralgeometric Properties of Capacities [pp. 539-554]
	Global Warfield Groups [pp. 555-572]
	Manifolds of Nonanalyticity of Solutions of Certain Linear PDE's [pp. 573-582]
	Cartan Structures on Contact Manifolds [pp. 583-602]
	On Asymptotically Almost Periodic Solutions of a Convolution Equation [pp. 603-616]
	$L^p$ Norms of Certain Kernels on the $N$-Dimensional Torus [pp. 617-627]
	Arborescent Structures. II: Interpretability in the Theory of Trees [pp. 629-643]
	A Rigid Subspace of $L_0$ [pp. 645-654]
	Baire Category Principle and Uniqueness Theorem [pp. 655-665]
	Erratum to "The Kinematic Formula in Complex Integral Geometry" [p. 667]
	Back Matter





