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LINEAR OPERATORS ON Lp FOR 0 < p < 
BY 

N. J. KALTON1 

ABSTRACT. If 0 < p < 1 we classify completely the linear operators T: Lp -- X 
where X is a p-convex symmetric quasi-Banach function space. We also show that 
if T: L- Lo is a nonzero linear operator, then forp < q < 2 there is a subspace Z 
of Lp, isomorphic to Lq, such that the restriction of T to Z is an isomorphism. On 
the other hand, we show that if p < q < o, the Lorentz space L(p, q) is a quotient 
of Lp which contains no copy of IP. 

1. Introduction. The aim of this paper is to study and classify operators on the 
spaces I4(0, 1) for 0 <p < 1 into other spaces of measurable functions. The 
underlying theme is the idea that operators on L cannot be "small" when p < 1. 
Historically the first result of this type was obtained by Day [4] in 1940 who 
showed that there is no nonzero operator of finite rank on 4L. Later, completing a 
partial result of Williamson [34], Pallaschke [26] and Turpin [31] showed that there 
is no compact endomorphism T: Lp-> Lp other than zero. Recently the author [10] 
has shown that there is no nonzero compact operator on Lp with any range space. 
In fact, if T is a nonzero operator T: -> X (where X is any topological vector 
space) there is a subspace H of Lp isomorphic to 12 such that TIH is an 
isomorphism. 

It is quite possible that this last result can be improved quite substantially. To be 
precise we may ask the question for 0 < p < 1: 

QUESTION. Suppose T: -> X is a nonzero operator and p < q < 2. Does there 
exist a subspace Y of Lp such that Y 4 Lq and TI Y is an isomorphism? 

We do not know the answer to this or the weaker question with 4q replacing Lq. 
However in [11] we showed that if T: Lp Lp is nonzero we can even obtain such 
a subspace Y Lp. Of course, in general there is no hope of a result of this 
strength; consider the inclusion map Lp -> Lo (that this does not preserve a copy of 

Lp is well known; it can be deduced easily from Example 9.9 below since 

Lpc L(p, q) c Lo forp <q < oo). 
Our main result (Theorem 7.2) here will provide an affirmative answer to the 

question when X = Lo. Of course this also implies an affirmative answer for any 
space of functions densely embedded in Lo, or more generally any space X such 
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that the space of linear operators f&(X, Lo) separates the points of X. Unfor- 
tunately, there are spaces X which are not too artificial such that F&(X, Lo) = {O}; 
an example was constructed by Christensen and Herer [2], but we also observe in 
?10 that L,(F)/Hp (0 <p < 1) is an example where F is the unit circle and Hp is 
the usual Hardy space. 

Our other result related to the question above is a negative one. We show that a 
quotient of Lp need not contain lp (0 <p < 1). We remark that a result of Turpin 
[32, p. 94] together with one of the author [15] shows that lp must be finitely 
represented in any quotient of Lp. Indeed in [13] we defined ap-Banach space X to 
be p-trivial if 1, (Lp, X) = {O} and showed that this is an appropriate generalization 
of the Radon-Nikodym property. If X is notp-trivial, the lp is finitely represented 
in X. The example in question here is the Lorentz space L(p, q) where p < q < x. 

Our main theorem is made possible by two other results. The first is Nikisin's 
theorem [21] that every linear operator T E JE(Lp, Lo) may be factored Lp 
L(p, oo) -> Lo where the second operator is a multiplication operator [here 
L(p, oo) is the weak space Lp4. The second is Theorem 6.1 that if p < 1, L(p, xo) is 
p-convex. We give in Theorem 6.4 a complete characterization of operators T: 

Lp-> L[p, oo] where 0 < p < 1. Such an operator is of the form 
00 

Tf(t) = E an(t)f(ant) 
n = I 

where an: (0, 1) -- R and an: (0, 1) -- (0, 1) are Borel maps and if 

ax (B) m E ((Ian I > x) n an1B) 
n=I 

for B a Borel set then 

ax(B) < CxPm(B), B E 1, 

for some constant C. Conversely, any such { an, {an} defines an operator T: 

Lp- L(p, oo). This result is analogous to the result for endomorphisms of Lp given 
in [11]. 

We also initiate in ??8 and 9 a general study of p-Banach function spaces where 
0 <p < 1. There are certain differences from the theory of Banach function 
spaces, which give this study a distinctive flavour. One example is the fact noted 
above that if p < 1, L(p, oo) is p-convex; thus there are symmetric p-Banach 
function spaces which are strictly larger than Lp, while if p = 1, Li is the largest 
symmetric Banach function space and L(1, oo) is not locally convex. Lotz [18] and 
the author [14] have shown that if 11 and LI embed in a Banach lattice with 
order-continuous norm then they embed as a sublattice. Here we give in ?8 similar 
but slightly weaker results for Ip or Lp embedding in a p-Banach function space. 
The difficulty, as will be seen from the proofs, lies in the fact that we may not 
suppose ap-Banach function space densely embedded in Lp. 

In ?9 we study symmetric p-Banach function spaces (0 <p < 1) and introduce 
the class of totally symmetric p-Banach function spaces. Totally symmetric spaces 
lie between Lp and L(p, oo) and hence have no analogues forp = 1. We classify 
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completely operators from L into symmetric p-Banach function spaces. We show 
in particular that if X is a separable, a-complete symmetric p-Banach function 
space, then X is isomorphic to a quotient of Lp if and only if X is totally symmetric. 

We note at this point that the study of p-Banach lattices where 0 <p < 1 is 
complicated by the fact that we cannot essentially reduce them to the study of 
function spaces; such a technique is available for Banach lattices (e.g., as in [14]). 
The possibility of such a reduction for p-Banach lattices with order-continuous 
quasinorm is closely related to Maharam's problem on the existence of a control 
measure for an order-continuous submeasure (cf. [2]). 

We conclude with a note on the organization of the paper. ?2 is purely to 
introduce notation. In ?3, we give a treatment of Nikisin's theorem which is not 
essentially original. However we believe it may be useful to give a self-contained 
treatment. We also prove it in much stronger form than is required (the notion of 
type is not needed in this paper). ??4 and 5 develop some routine techniques. In ?6 
we prove our main representation theorem for operators from Lp into L(p; oo), and 
this leads in ?7 to our main result on operators from Lp into Lo. In ?8 we study 
embeddings of Ip and Lp in p-Banach function spaces. In ?9 we study symmetric 
p-Banach function spaces and operators as Lp. Finally, in ? 10 we give some results 
on translation-invariant operators on function spaces on compact groups and an 
example of a quotient of Lp which admits no nonzero operators into a p-Banach 
lattice with order-continuous quasinorm. 

Our approach is not always economical. Results on L(p, oo) in ?6 are special 
cases of results on symmetric spaces in ?9 (Theorem 6.1 is a special case of 
Theorem 9.4; Corollary 6.5 is a special case of Theorem 9.6). However we felt there 
was an advantage in developing the theory for the main results rapidly before 
moving to a more general theory. 

2. Prerequisites. A quasinorm on a real vector space X is a map x -x 

(X -> R) such that 

Ixll>O if x7#0, (2.0.1) 

IItxll =I tl 11 xll, x E X, t E R, (2.0.2) 

lIx + yll < k(llxII +IIYII)) X,Y E X, (2.0.3) 

where k is a constant independent of x and y. The best such constant k is called 
the modulus of concavity of the quasinorm. If k = 1, then the quasinorm is called a 
norm. 

The sets { x: IlxII < e} for - > 0 form a base of neighborhoods for a Hausdorff 
vector topology on X. This topology is (locally) p-convex where 0 <p ? 1 if for 
some constant A and any xl, . . . , x, E X, 

1lx, + * * * +xnl < A(IIxilip + + **+l"xnjp)1. (2.0.4) 
In this case we may endow X with an equivalent quasinorm, 

jjxjj* = inf( i xiip) :)X+ =Xx}= (2.0.5) 
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and then 

llxll > IIxII* >A A-'IxII, x E- X, 

and 11* isp-subadditive, i.e. 

n l/p 
lixi + +XnII* < I XiII*P). (2.0.6) 

A theorem of Aoki and Rolewicz [28, p. 57] asserts that every quasinormed space 
is p-convex for some p > 0. A complete quasinormed space is called a quasi- 
Banach space, and if it is equipped with a p-subadditive quasinorm it is called a 
p-Banach space. If X and Y are quasi-Banach spaces then the space fE(X, Y) of 
(bounded) linear operators T: X -> Y is also a quasi-Banach space under the 
quasinorm 

I1TI = sup(Il Txll: 11xll < 1). 

Suppose X is a vector lattice; then 11 11 is a lattice quasinorm on X if whenever 

lxI < Iy, Ilxll < Ilyl. A complete quasinormed lattice is called a quasi-Banach 
lattice. If X is a p-convex quasi-Banach lattice, then, as in Equation (2.0.5), X may 
be requasinormed with a p-subadditive lattice quasinorm; with such a quasinorm it 
is termed ap-Banach lattice. 

Now let K be a compact metric space, and let 'i3 = 'i3 (K) be the a-algebra of 
Borel subsets on K. Suppose X is a probability measure on K (i.e. a positive Borel 
measure of total mass one), with no atoms. Then Lo(K) = LO(K, ̀!3, X) denotes the 
space of all Borel measurable real functions on K, where functions equal X-almost 
everywhere are identified. This is an F-space (complete metric linear space) under 
the topology of convergence in measure. Then a quasi-Banach function space X on 
K is a subspace of Lo(K) containing the simple functions such that if g E X, 
f E Lo and If I < I gI (X-a.e.) then f E X, and equipped with a complete lattice 
quasinorm so that the inclusion map X v-> Lo is continuous. As usual if the 
associated quasinorm is p-subadditive then X is a p-Banach function space. 

A quasi-Banach lattice X is a-complete if whenever { xn} is a bounded increasing 
sequence of positive elements of X then { xn} has a supremum in X. If X is a 
a-complete quasi-Banach function space then it may be requasinormed to have the 
Fatou property 

SUp Xn = SUp IIXn (2.0.7) n n 

for every such sequence; note that in this case supn xn in X must coincide with the 
usual pointwise supremum in Lo, We shall always assume the Fatou property is 
satisfied as in quasi-Banach function space. 

Throughout this paper, K will denote an arbitrary, but fixed, compact metric 
space and we may suppress mention of the underlying probability measure space 
(K, 9, X). Some examples of quasi-Banach function spaces on K are given by: (1) 
the spaces Lp (0 < p < oo) of functionsf such that 

ikI = If(t)J dA(t)} < x, 
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(2) the weak Lp-spaces L(p, oo), 0 <p < oo of functions f such that 

l[flP??, = sup x(X(IA > X))1P < 00, (2.0.8) 
O<x< oo 

and (3) the Lorentz spaces L(p, q), 0 <p < , 0 < q < x of functions f such that 

IlflIp,q = t'/P- (t)p dt}/q < oo, (2.0.9) 

wherefl is the decreasing rearrangement of If I on (0, 1), i.e. 

=* t) inf sup If(s) I 
X(E)=t sEIK-E 

(see Hunt [8], Saghar [29]). 
Note that 

11f1pq= q/pf t /P f*(t)q dt 

t [t /pf*(t)q] - f p/ df(t)q 

= q f F(x)'/Pxq- dx, 

where F(x) = X(If I > x) is the distribution of f (strictly, of course 1- F is the 
distribution of f as a random variable). Hence 

liflip,q = {q f F(X)q/PXq-1 dx) . (2.0.10) 

A quasi-Banach function space is called symmetric if it is quasinormed such that 

If II = 11 gII whenever f and g have the same distribution. Note that each of the 
above examples is symmetric. 

If B c K is a Borel set, then 1B denotes the indicator function of B and PB' the 
natural projection of Lo onto Lo(B), 

PBf(s) = f(s), s E B, 

=0, s E B. 

The space 6<(K) is the space of signed Borel measures, so that ,u(K) _ C(K)*. If 

,A E 9<h(K), then IyI is its total variation and if 0 <p < 1, I lp is its p-variation 

(cf. [11]). Then 11 y11 = I tLI(K) and 11 ,uIIp = (I LlIp(K))'IP; if 11 Allp < xo then Ji is 

purely atomic. 

3. Nikisin's theorem. In this section we give a self-contained treatment of 

Nikisin's theorem on the factorization of operators into Lo, In fact, Nikisin [21] 

proves a rather more general result for superlinear operators, but we shall specialize 

to the case which concerns us. We note that an earlier version of Nikisin's theorem 

is given in [19] and [20]. 

Suppose X is a quasi-Banach space. Then we say X is type p for 0 < p < 2, if for 

some constant C and every xl,. . . , x, E X, 

p1Er(x|dSC lin 

f'1 2 ri(t)x4ll dt <C 2 jx,jjP, 
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where r1, . . . , r, are the Rademacher functions on (0, 1), rj(t) = sgn(sin 27rt). If X 

isp-convex then it is also of type p (O <p < 1). 

THEOREM 3.1. Suppose X is a quasi-Banach space of type p (O < p < 2) and that 
T: X -> LO(K) is a linear operator. Then given c > 0 there exists E E 93 with 
X(E) > 1-e and such that PET E f&(X, L(p, oo)) where 

PEf(t) = f(t), t E E, 

=0, tE4E. 

PROOF. First we observe that since T is continuous, for every c > 0 there exists 
R(c) < xo such that if lxii < 1, 

X(I TxI > R(c)) <c. (3.1.1) 

We now establish: 

Given any e > 0 and x, . .. , xn E X there exists 

E = E(x1, . . . , xn) e ',i such that X(E) > 1 -e and (3.1.2) 

n 1/2 n 1/P 

Xi| T(S) 12 S<A(,-) 2l llxilip (s E E ), 

where 

Af () 4( 16 C IP R( 

To prove (3.1.2) let us assume > 0 and that xl, . . ., xn E X. Define B c [0, 1] 
to be the set of t such that 

||>ri( t)xi| > ( y I ) (> |xi||w) l1w. 

Then m(B) < c/ 16. However if 

|| E: ri(t)xills <(-)'I (E llill )11 

then by (3.1.1) the set of s e K such that 

|ri(t) Txi(s)| > 4A(,-)(y j lxjiP)1/' 

has measure at most c/16. 
Now let Q c K X [0, 1] be the set of (s, t) such that 

| ,ri( t) Txi(s)| I < A 11( 1xIllP) . 

Then (X X m)(Q) > 1 -/8. Now, by Fubini's theorem, if for s E K, 

Qs={t: (s, t) E Q} and E s: m(Qs) > 
7 

then X(E) > 1-. 
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Suppose s E E. Then 

m(t: | ri(t)Txi(s)I < 4(Ixi(s)I2)/) 3 

by the Paley-Zygmund inequality [9, p. 24], but m(Qs) > 7/8. Hence (3.1.2) 
follows. 

To complete the proof of the theorem we shall suppose that whenever E c ? 
and X(E) > 1 - c, then there exists x E X with lix II 1 and IIPETxIIP, > A. We 
shall deduce a contradiction and this will show that for some E, 4PETIIp oo < A, 
and prove the theorem. 

For each E c , let T[E] be the set of pairs (x, () such that x E X, lxIi < 1, 
1 6 < Ko and X(E n (ITxl >At)) > -P. Let 

aE = inf((: there exists x with (x, c) E E[ F]), 
= o0 if [E] =0. 

By hypothesis, aE < 0c if X(E) > 1-. Note that aE > aF whenever E c F. 
Let Eo = K and choose {E,: n =1, 2,... ), {xn: n = 1, 2,.... and {(n: 

n = 1, 2, . . . ) by induction as follows. Suppose E-I is given. If I[E E,] = 0, let 
Xn= 0, ; = ?? and E = E__, Otherwise choose (xn, ;) E r[E,,-] with (n < 
2aE__ and let 

En= En n (ITxnI < At). 

This completes the induction. Now note that X(En) < X(En -) n-P, n = 

1, 2,..., and hence 2 L:J (S 1. In particular, n ?-> c and hence atE Too. Let 
00 

Eoo =n En. 
n = F 

Then aE > aE for all n and hence aE = cc. We deduce X(Eo) < 1- and so 
for some N, X(EN) < 1-. 

If s E K\EN, then there exists 1 S n S N such that s E En_\En so that 

(n JTxn(s)I >A. Hence 

N 1/2 

E n-21Txn(S)2 >A, sEK\EN. 
n = I 

However there is a set F E 633 with /X(F) > 1 - E, by (3.1.2) such that 

N I1/2 N I/P 
2 n-21TXn(S) 12 <A 1 (np) < A, s E F. 

Thus F and K\EN are disjoint but X(F) + X(K\EN) > 1. This contradiction 
establishes the theorem. 

COROLLARY 3.2. Under the assumptions of Theorem 3.1, there exists q, E Lo with 
p >0 a.e. such that M.,T E P(X, L(p, oo)) where Mc,f = pg f,f E Lo. 

PROOF. For each n E N pick En E 6J with X(EN) > 1 - 1/n and such that 
PE T E P&(X, L(p, oc)) with IIPE Tll = f3n say. Let Fn = En\(E U ... UEEn) 
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and define 

m(s) = 2"13j', s E Fn. 

Then M.PPF T E $e (X, L(p, oo)) and IIMM,PF T < 2 -. Hence 

M,T= E MqPF T E C(X, L(p, o?)). 

4. Local convergence of operators on LP (O <p < 1). Suppose X is a p-Banach 
space. We define on e(LP, X) a vector topology which we call the topology of local 
convergence as follows: a base of neighborhoods of 0 consists of sets of the form 

= { T: 3B E '3, X(B) > 1 - e, it TPBII < ?}, 

for - > 0. These sets form a base for a metrizable vector topology on P(LP, X) 
weaker than the usual quasinorm topology. 

PROPOSITION 4.1. The topology of local convergence is stronger than the topology of 
pointwise convergence on bounded sets. The unit ball of f- (Lp, X) is conplete for local 
convergence. 

PROOF. Suppose Tn ?-0 in local convergence with II T,II < M < oo and f E Lp. 
There exists a sequence E,, ->0 and Bn E J with X(Bn) > 1 - en such that TnPBg 
< tn. Hence 

JJ T,.l < (nPlljllP +JJ T 
IlPIlf 

- PBAl ) " -*0 as n -* oo, 

since 

J f(t)JP dX(t) -- , as X(K -Bn) < -n -> 

The second half of the proposition is an immediate consequence of the first. If 
Tn < 1 and Tn is a Cauchy sequence for local convergence then Tn converges 

pointwise to a limit T and it is easy to see that Tn -* T in local convergence. 

PROPOSITION 4.2. For each T E P(Lp, X) there is an essentially unique Borel 
function t i->, (t; T) (t E K) such that 

11 TPBII = ess sup q(t; T) 
tE:B 

whenever B E J and X(B) > 0. 
Thus Tn -* T in local convergence if and only if q(t; T - Tn) -O 0 in X-measure. 

REMARK. We shall call the function 7q(, T) the local quasinorm of T. 
PROOF. For each n E N, let E(n,j) (1 < j < 2') be a partitioning of K into 2" 

disjoint Borel sets of measure 2', such that 

E(n,j)=E(n+ 1,2j-1)U E(n+ 1,2j), 1 < j< 2n,n= 1,2,.... 

and such that the algebra generated by the sets {E(n, j), 1 < j < 2n, n = 1, 2, . . . 
is X-dense in %. 

For each n E N, define pn a simple Borel function on K by 

pn(t) = 2 IITlE(nJ)JII, t E E(n,j). 
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Let 6jn denote the (finite) algebra generated by (E(n, j): 1 < j < 2n). Then 

&((pnp +j1/n)(t) = 2n(j| TlE(n 1,2j- 1) I +| T1E(n+1,2j)II|) 

> 99n(t), t C E(n, j). 

Hence pn is an 6 -submartingale and of course 0 < ?gn < II TjI . Thus pn converges 
X-almost everywhere and in L '-norm to a limit qp. We define 

rq(t; T) = qp(t)'p, t e K. 

If B c 63 and X(B) > 0, then 

1I TPB II= sup{ II TIcII/X(C) /P: C c B, X(C) > 01. 
If C c B and X(C) > 0, then for E > 0 there exists n c N and E C (yn such that 
X(EA C) < E. Then 

11 TCI cip < 11 Tll E + || T 1Elip 

< || TllIE + fEpn(t) d(t) 

< || TljjE + f p(t) dA(t) 

(since tpn is a submartingale), 

< 211 TIIlpe + | F(t) d(t) 

< 2l117jpe + X(C) ess sup p(t). 
eEB 

Thus, 

11 TPBII < ess sup r(t; T). 
teB 

Conversely suppose, X(C) > 0 and q(t; T) > a, t E C. For E > 0, choose n e N 
and E E gn as before. Thus for some m > n, 

fz'm dX > aPX(C) - 

and so 

fE)m dX > aPX(C) - -(I + | Til). 

Let El, . . . , E, be the atoms of qym contained in E. 

jjT4I E 
IIT1E^II| +jjT1 cjj (1 

E c1) 

< 11 TPBIIPX(Ej n C) + 11 IPX(E>\ C). 

Thus, 

fE9m dX < 11 TPBIIPX(E n C) + 11 71IPX(E\C) 

< 11 TPBII|X(C) + E|II T1li. 
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Hence 

11 TPBIIPX(C) > aPX(C) - e(I + 2117]jp). 
As e > 0 is arbitrary, 11 TPBII > a, and this implies 

1TPBI > ess sup q(t; T). 
t E B 

Essential uniqueness of q is obvious and the final part follows easily from the 
definition of local convergence. 

The next result is a technical lemma whose usefulness will emerge later. 

LEMMA 4.3. Suppose 4 is a subset of P&(Lp, X) which is closed in P&(Lp, X) in its 
usual topology. Suppose 4 has the properties: 

(4.3.1) If T E 4 and B E '3 then TPB E c. 

(4.3.2) If T E f&(Lp, X) and for every e > 0 there exists B E 6 with X(B) > 1 - 
e and TPB E 4 then we have T E 4. 
Then 4 is closed under local convergence. 

PROOF. Suppose T, E 4 and Tn -* T locally. Then by Egoroff's theorem, for any 
e > 0 there exists B E Ji with X(B) > 1 - e and 

ess sup q(t; T- Tj) -O 
teB 

i.e., 

II(T- Tf)PBII-*0. 

Hence by (4.3.1), TPB E ? and so by (4.3.2), T E (-. 

PROPOSITION 4.4. Suppose X is a a-complete p-Banach lattice with the Fatou 
property, II SUpn X,, = SUpn I Xn II whenever xn is a bounded increasing sequence of 
positive elements (e.g. a a-complete p-Banach function space, see ?2). Then f&(Lp, X) 
is a p-Banach lattice, and if T E f&(Lp, X) then TI II = 11Th and rq(t; ITI) = 

rq(t; T) a. e. 

PROOF. Clearly f(L4, X) is an ordered p-Banach space. To show that it is a 
lattice, consider the sets E(n, j) defined in 4.1. We define 

2m-n 

ITIlE(nj) = SUp E ITlE(m,2m-y-k+1)I, m>n k=1 

where the supremum is taken in the a-complete lattice X. The sequence on the 
right-hand side is increasing and bounded and we have 

2m-n p 

7]E(nj) Il = SUp E ITlE(m,2m-yj-k+1)l < || T|| X(E(n, j)). 
m >nk=I 

It is easy to see that I TI may be extended to a positive linear operator in f&(Lp, X) 
and that III TI II = 11Th. Clearly, ITI > ? T and is the least operator with this 
property. Thus, E(Lp, X) is ap-Banach lattice. 
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If B E ?1 then clearly ITIPB > ? TPB so that ITIPB > ITPBI and ITIPK\B > 

I TPKA.~B Conversely, I TPBI + I TPK.\BI > ? T so that 

I TPBI+ I TPK\B| >I TjIPB +I ]PK\B. 

Hence, ITIPB = ITPBI and so TI PBII = IITPBII. From this it follows that 

q(t; ITI) = q(t; T) a.e. 

5. Dominated operators. Let X be a quasi-Banach function space and let T: 
X -* Lo be a linear operator. We shall say that T is dominated if there is a positive 
linear operator P: X -* Lo such that Pf > I Tf I a.e.,f E X. 

Denote by 6%(K) the space of regular Borel measures on K. 

THEOREM 5.1. Suppose X is a separable quasi-Banach function space. Then if 
T E ,(X, LO), T is dominated if and only if there is a weak*-Borel map t H- > 

(K F4 6D (K)) such that 
(5.1.1)If B E 135 and X(B) = 0 then IvI(B) =Oa.e. 

(5.1.2) Iff E X, then f is Iv1I-integrable a.e. 

(5.1.3) Tf(t) = fK f(s) dv1(s) a.e. 

PROOF. First observe that if (5.1.1), (5.1.2) and (5.1.3) hold then (observing that 
t -V IJ is weak*-Borel, see [11]), 

Pf(t) = f(s) dlv1I(s) 

defines a positive linear operator from X into Lo. In fact, (5.1.2) shows that P 
defines a linear map. To show continuity suppose f, E X and If, I6I 2 -; then 
g = E1 f, I E X and Pf, -?0 a.e. by applying the Dominated Convergence Theorem. 

Conversely let us suppose T is dominated. As in [11, Theorem 3.1], we need only 
consider the case when K is totally disconnected. Suppose Y, is the countable 
algebra of clopen subsets of K. By modifying each on a set of measure zero we may 
suppose A F4 TlA(t) (A E E), A -* P lA(t) (A E :) additive for all t E K and that 

I T1A (t)I < P 'A (t), A E l, t E K. Extend by linearity to f E S(1), the linear space 
of all simple continuous functions on K. Then 

I TAt) I < I Pf(t) I < IJAI 00 PlK 1 KE S(E). 

Hence there exist measures Vt, y E 1(K) such that Tf(t) = JK f dv1, f E S(Y), 

Pf(t) = fK f dIl If E S(T), and I vt 6 , and 11 I= P lK(t). 
For each f E S(1), the maps t h- f f dvi, t h- f f d,i are Borel and hence as S(1) 

is dense in C(K), the maps t " Vt, t " ji, are weak*-Borel. Note that (5.1.1) and 
(5.1.2) must hold. 

Now suppose f E X and f > 0. Then there is a sequence fn E S(s) such that 
o < f4Tf a.e. Since X is separable, it follows that fn -* f in X (cf. [5]). By passing to 
a subsequence we may therefore suppose Tfn -* Tf a.e. Now Pfn < Pf a.e. for all n 
and hence by the Monotone Convergence Theorem, f is t,u-integrable for a.e. t. 
Hence f is I PtI-integrable a.e. and so by the Dominated Convergence Theorem, 
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Tf(t) = lim Tfn(t) a.e. 
n--*00 

= lim ff dv, a.e. 

= f fdv, a.e. 

The theorem now follows by linearity. 
We shall call the map t - v, of 5.1 the kernel of T. Note that it is essentially 

unique. 

COROLLARY 5.2. If T is dominated there exists an operator I TI = sup( + T, -T) in 
e, (X, Lo) and I T I has kernel, t -> I 1. 

REMARK. Since l2(L1, LI) is a lattice (Chacon-Krengel [1]), every T GE f(L1, LI) 
is dominated, and the same is true for f&(Lp, LP) (O < p < 1) [11]. That E(LI, Lo) is 
not a lattice and hence that there exist nondominated operators T: LI -- Lo is due 
to Pryce [27] (Pryce only observes that P&(11, Lo) is not a lattice, but the same 
argument holds for LI). See also Nikisin [22]. 

We shall say that the kernel t - v, is atomic if v, E- 6 K) a.e. where OR1a(K) is 
the space of purely atomic measures (of the form T, an6(tJ) where 2Iani < xo). 
Hence if t " v, is atomic it may be redefined in a Borel set of measure zero so that 

v, E a(fK) everywhere. 
The following theorem is (essentially) proved in Theorem 3.2 of [11]. 

THEOREM 5.3. If t 1- vt is an atomic kernel then there are Borel maps an: K -* R, 

a,: K- K(n= 1,2,...)sothat 

aJ(t)I > Ian+1(t), n = 1,2 .... (5.3.1) 

CYn(t) # (Jm(t), m # n E N. (5.3.2) 
00 

VI = E an(t)8(cnt), t E K. (5.3.3) 
n=I 

DEFINITONS. A dominated operator T will be called elementary if its kernel 
t H v, is atomic and the support of v, is (almost everywhere) at most one point; 
thus T is of the form 

Tf(t) = a(t)f(ut). 

T is locally elementary if there exist Borel sets (Bn: n E N) which are disjoint and 
satisfy X( U Bn) = 1 and such that TPB is elementary for each n. 

T is of finite type if t h v, is atomic and the support of v1 is almost everywhere 
finite. 

REMARK. T is of finite type if and only if T is the restriction of an endomorphism 
of Lo (Kwapien [17], see also [11]). 

THEOREM 5.4. If T is a dominated operator of finite type and E > 0 then there exists 
A E @ with X(A) > 1 - e and such that PA T is locally elementary. 
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PROOF. Let v, = n an(t)8(aqt) as in Theorem 5.3. Then there exists a closed 
set A with X(A) > 1 - E such that for some N, an(t) = 0 if t E A and n > N and 
?1 ... E ON are continuous on A. Now each t E K has a neighborhood Vt such that 
the sets A n ai- (Vt) (1 < i < N) are pairwise disjoint and by a compactness 
argument we may cover K with finitely many disjoint Borel sets B,, ... j Bm so that 
the sets A n ai- '(B1) (1 < i < N) are pairwise disjoint for each j. Then PA TPB is 
elementary. 

Now for ,u E 6Th(K) and x > 0 define 

A\x( l) = fi {8(t): I,Il{ t} >x}. 

LEMMA 5.5. If t i-> v, is an atomic kernel then t i-> A,x(v,) is weak*-Borel. 

PROOF. Write v, = In an(t)8(ant). Then 

Ax ( = E 8(ant) 

la.(t)l >x 

is easily seen to be weak*-Borel. 
For x > 0 define 

ax(B) = f Ax(v)(B) dX(t). 

Then for each x > 0, ax is a positive (possibly infinite) measure, satisfying 
X(B) = 0 =X ax(B) = 0. It follows that ax has a (possibly infinite) Radon-Nikodym 
derivative. For each rational x let w(., x) be a Borel derivative of ax. Since ax > ay 
if x < y, we may suppose w(t, x) > w(t,y), t E K, x >y. Now define for any 
(t, x) E K x [0, oo), 

w(t, x) = sup w(t,y). 
y >x 
yeQ 

(5.5.1) w is monotone-decreasing and lower-semicontinuous in x for each fixed 
t E K. 

(5.5.2) w(t, x) is a derivative of ax for each x > 0. 
(5.5.3) w is Borel on K x [0, oc). 
(5.5.1) is clear. To prove (5.5.2) supposeyn E Q andyn4x. Then a, (B)Tax(B) for 

each B E B and the Monotone Convergence Theorem gives the result. For (5.5.3), 
observe 

w(tX) = sup w t-m[-mx]) 

where [x] is the largest integer K x, and the functions 

(t, x) "w(t, -mI [-mx]) 

are clearly Borel. 
By an application of Fubini's theorem it can be seen that up to sets of product 

measure zero, the function w satisfying (5.5.2) and (5.5.3) is unique. 
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DEFINITION. The function w is called the distribution of the operator T (or kernel 
t - P). 

6. Operators from L into L(p, oo) and Lo where 0 <p < 1. The space L(1, oo) is 
not locally convex, although Cwikel and Saghar [3] show that its dual is nontrivial. 
Forp < 1, Saghar [29] and Hunt [8] show that L(p, q) is r-convex whenever r <p 
and r < q; in particular, L(p, oo) is r-convex for any r <p. The next result 
improves this; we note here that an inequality equivalent to Theorem 6.1 has been 
obtained by Pisier and Zinn (unpublished). 

THEOREM 6.1. If 0 <p < 1, L(p, oo) is p-convex. 

PROOF. Let Mp = 2"lPp(1 - p)-'. We shall show that if f, ... ,fn E L(p, oo), 

I[fi + +f411 < Mp?llll + +lJjnjj ) 
Let h = f1 + * * +fn and let h* be its decreasing rearrangement. For O <K < 1 
let A = A(T) = (Ihi > h*(T)). Then X(A) > T. For 1 < k < n, let 

1k ITIlfkllI 
2 Ilfi 1P + + Ilfnll 

Choose Borel sets Ek, 1 < k < n, in K such that X(Ek) = Tk and Ifk(t)l >k(Tk), 
t E Ek. Let E = El u . **U En; then X(E) < (1/2)T. 

Now, 

h*(T) < irinfA jh(t)l < Einf jlh(t)l 

MA E) jLEh(t)l dA(t) < I h(t)I dA(t) 

< - f Ifk(t)I dA(t) <T E l fkl fx'/P dx T 
k=1 K\Ek 

T 
k=1Ti 

-r(l -P) k-I (P k=1 

and the result follows. 
Now it is possible to requasinorm L(p, oo) if 0 <p < 1 as a p-Banach function 

space, as in ?2. 

COROLLARY 6.2. P_(Lp, L(p, oo)) and PS(Lp, LO) are lattices. 

PROOF. By Proposition 4.4 and Corollary 3.2. 
It follows that every T E C(Lp, LO) is dominated. We now show that the kernel 

is atomic. 

THEOREM 6.3. Suppose T E E e(Lp, LO); then if p < r < 1 the kernel Pv of T satisfies 

tI IVIr < ?? a.e. In particular, Pt is atomic. 

Equivalently there exist Borel maps an: K -- R, on: K -- K such that 

TJ(t) = , an(t)f(gnt) a.e.,f E L, 
n=1 
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and 
00 

E lan(t)jr < o a.e. 
n=1 

whenever p < r < 1. 

PROOF. By Corollary 3.2 it suffices to prove the same result for T E 

(Lp, L(p, cx)). As before, we may assume K totally disconnected. Let 6dn = {A nk: 
1 < k < 1(n)) be a partitioning of K into l(n) nonempty clopen sets of diameter at 
most n - and suppose dn , refines (n for n > 1. Pick Tkn E Ank for each 
1 < k < l(n). Let TIA k = bk, 1 < k < l(n), where each bkn is Borel. We may 
further assume that 

b n = E~~~ n + 1 

A,,+ cAn,k 

everywhere. For s E K, define 
l(n) 

,n = kn(S) (n)_ k = 1 
k=1 

If p < r < 1, Ivn I I r = l(n) I I bkn(s)lr = cn(s), say. Then I bkn Jr E L(pr-, oo) and 

(I n) )p1P 

IICnIIpr-1,oo < Mpri 1 I r IbIr Ir 

by Theorem 6.1. However, 

| Ibknr 11pr ,oo = l1bkn21r,0 <II ]IrX(An,k)r. 
Hence, 

11CnIpr-I,oo < Mpr-'II 1 r. 

Now O < cn + cn1+ everywhere and hence, as L(pr -, co) is cT-complete, c = sup cn 
E L(pr-1, oo) and ICIlpr- 100 < Mpr-,lITIIr. In particular, supnIIvnllr < oo a.e. and 
so almost everywhere the sequence { vsn: n E N) is bounded. Since T is dominated, 
it has a kernel v, and clearly l't(An,k) = limm,, v"(An,k) a.e., for each k, n. Hence 
v/f -> v, weak* almost everywhere. In particular, 

|lltllr < iMinfl lvtIllr K o a.e. 

The result now follows from Theorem 5.1. 
EXAMPLE. Suppose (t: 0 < t < 1) is a symmetricp-stable process in LO(K), i.e. if 

0 < tl < t2 < K . . < tn <1 then 5 -,_ (2 < j < n) are mutually independent 
and 

S (eitt -t') exp(-lt - SI ITIP). 

Then, Tf = f f d~t defines an embedding of Lp into Lo. The preceding theorem 
guarantees that the sample paths (t(s) (0 < t < 1) almost everywhere are jump 
functions with countably many jumps an(s) such that XIan(s)lr< Ko for any r >p. 

Theorem 6.3 does not give necessary and sufficient conditions for T E 

P&(Lp, L(p, ox)). We now proceed to this problem. 
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THEOREM 6.4. In order that the weak*-Borel map t i-> Pv be the kernel of a linear 
operator T E f C(Lp, L(p, oo)) it is necessary and sufficient that for some C, 

xax(B)'Ip < CX(B)1lp, B E =. (6.4.1) 

Then, 

II Tl? < Mp C. (6.4.2) 

REMARK. Of course, 

ax(B) = x | x(Pt) [B] dX(t), B E 1 . 

PROOF. First suppose T E &(I4, L(p, oo)). Then its kernel vt is atomic. Suppose 
as in Theorem 5.3, Pv = 2' I an(t)8(3rnt). Then ITI has kernel IvJ = 

00 
1Jna"(t)IJ8(nt) and 11 I TI 11 < Mpll TiI. Let 

n 

Jt~ = E Iak(t)|8(c?kt). 
k= 1 

Then p1' is the kernel of a positive linear operator Sn E $IL,, L(p, oo)) of finite 
type. Pick An with X(An) > 1- 1/n so that PA Sn is locally elementary. Suppose 

PAnSnPBj is elementary for 1 j < oo where U1j Bj = K. 

Suppose B c Bj for somej; let PAn SnB = h. Then 

n 

PAnSn 'B = E ak ,c< l'(B)' IA 
k= 1 

and as the sets An n, '-(B) are mutually disjoint, 
n 

M(IhI > x) = X X(a- 'B n A, n (Iakl > x)). (6.4.3) 
k=1 

Hence 
n 

XP E X(qk- 'B n An n (I akl > x)) < MpPPllTIIPI(B). 
k= 1 

Letting n -o we have 
00 

XP E /X( -'B n (I akl > x)) < MpPlllPAI7I(B), 
k= 1 

i.e., 

x(ax(B))'1P < Mpll TIIX(B)'Ip. 

For the converse, define pu", An as before. We show that the formally defined 
operator PA Sn E fe(Lp, L(p, oo)) and IIPA S,, < CMp. This follows easily from 
(6.4.3) and the fact that L(p, oo) is p-convex. Then PA SrftPf for f > 0 and P is a 
positive operator with IPIjI < CMp. P has kernel I v,I and it then follows that v, is 
the kernel of an operator T with I TI = P. Hence, I1 TiI I CMp. 
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COROLLARY 6.5. In order that Pt be the kernel of some T E e(Lp L(p, oo)) it is 
necessary and sufficient that 

ess sup WP"'(t) = C < so, (6.5.1) 

where 

WpX"(t) = sup xw(t, X)1"P, (6.5.2) 
O<x< X0 

where w is the distribution of Pt. Then 

11 TIj < CMp. 

PROOF. If ax(B) S CPx -PX(B), B E fI-, then w(t, x) S CPx P, X-a.e. for each 
x > 0. By Fubini's theorem, for X-a.e. t, xpw(t, x) < CP, x-a.e., but as w is 
monotone in x this means xPw(t, x) < CP. Hence WPo (t) < C, X-a.e. 

The converse is easy. 

COROLLARY 6.6. Suppose Tn E E(Lp, L(p, so)) have distributions wn and 

W,Pw(t) = sup Xwn(t, x)'/ . 
O<x< 00 

Then if WP'"0(t) -O 0 in A-measure, Tn -- 0 in the topology of local convergence. 

PROOF. If B E I, then TnPB has distribution 

Wn, B(t, X) = wn(t X), t E B, 

=0, t a B, 

and hence, 

1 TnPBhI < Mp ess sup WnP?00(t). 
tEB 

The result now follows from Egoroff's theorem. 

7. Operators from Lp into Lo; the main result. 

PROPOSITION 7.1. Suppose 0 < p < 1 and p < q < r < 2. Suppose T E 
e (Lp, L(p, so)) is nonzero and has distribution w satisfying 

lim xw(t, x) /P = lim xw(t, X)'/P = 0, X-a.e. (7.1.1) 

Then there is a strongly embedded subspace V of Lq such that V _ L, and Tj V is an 
isomorphism. 

[ V is strongly embedded in Lq if the Lq- and LO-topologies agree on V.] 
PROOF. Consider the following property of operators T E E(Lp, L(p, oo)). 
(7.1.2) There exists c > 0 and B E 3 with X(B) > 0 such that whenever C E - 

with C c B and A(C) > 0 then there is a strongly embedded subspace V[C] of Lq(C) 
such that Vc- L and 11 Tf 11p,00 > cjl fi1p, f E V[ CI. 

Let 5 be the subset of fC(Lp, L(p, oo)) of all T for which (7.1.2) fails to hold. I is 
certainly closed and satisfies the condition of Lemma 4.3. Hence I is closed also 
for local convergence. 
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Suppose 4 contains an elementary operator S =# 0, say Sf(t) = a(t)f(at). Then 
there is a subset A of K with N(A) > 0 such that 0 < - < Ia(t)l < 2c, t E A, and 
then the measure ,u(B) = N(a- 'B n A), B E 913, is N-continuous, with A-derivative 

Tp say. Choose E = 63 with N(E) > 0 so that 0 < 8 < 9p(t) < 26, t ( E. 
Now let A be the standard embedding of Lr into Lq by using an r-stable process 

(cf. [16] and the Example after 6.3; also cf. [8] for an order-preserving embedding). 
Observe that A embeds Lr strongly into Lq and that for some constant y depending 
only onp, IIAf lip'. = yllAfllp,f E Lr4 Suppose C e i C c E and N(C) > 0. Let 
O : C -* K be any Borel map such that N(9 -(B)) = (C)N(B), B e '1. Define 

RC: LO(K) -* LO(K) by 

RJ = f(Oct), t E C, 

=0, tr*C. 
Let V = V[C] = RCA(Lr). Then V[C] is isomorphic to Lr and strongly em- 

bedded in Lq(C). Iff E V[C], IlflIlp0, = yllflip. For x > O,f E V[C], 

N(ISI > x) > N(A n (lf o oI > xc-l)) 

- (I1 > xe' ) > a (Njfl > xeG) 
Hence, 

xX(I SA > X) I/p > XA I/P X(IA > xe - 1),/P 

- E >(xe )N(] > X-)/p 

Hence, 

II |sA p oo > C811l / Ifllp0 = -Y81/P lAlfll 
This shows (7.1.2) does hold with c = ye8 "IP and B = E. We conclude S = 0. 
Now suppose T E i has kernel Pt, where Vt = q= a(t)8(a,,t) as in Theorem 

5.3, and the distribution w of T satisfies (7.1.1). 
If T # 0 then S # 0 where S has kernel al(t)8(alt); of course S E 

e(Lp, L(p, x)) and ISI <? TI. 
For n E N, let 6i3n = {Bn,1, . . . n, B,(n} be a partition of K into l(n) disjoint 

Borel sets of diameter at most n-1. Assume 63 +1 refines 6Bn. Let Cn,i = or 'BnJ 
and 

l(n) 

Tn= P Cn, TPB. 
i= 1 

Then Tn e Jf. Tn has kernel vin where vtn(B) = vi(B n Bn,1), t E Cn,i. For fixed t, if 
t 

- 
Cn,i(n)' 

11 ltn al(t)8(alt)|| =lI tn al(t)8(alt)I(K) 

=It- al1(t)8(at)(BnJ,(n)) 
and so 

lim sup jjv - ai(t)8(a,t)II < It- al(t)8(alt)jlim sup Bn,i() 
n --- )0oo 

= Iv t- al(t)S(alt)l { alt) = 0. 
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Thus, for x > 0, 

Ax(ptn - aI(t)8(aIt)) -o 0 

and Ax(vn - a1(t)8(a1t)) is monotone decreasing. 
For x > 0, let 

an(B) = f x(v1n - a(t)8(a1t))(B) dA(t). 
K 

Since 

AVx(ptn- a(t)8(g1t)) < Ax(v,), 

we may apply the Dominated Convergence Theorem to deduce axn(B)lO for 
B e 63. 

Now let wn be the distribution of Tn - S. We can assume wn monotone 
decreasing and since JB wn(t, x) dA(t) = ax,(B), B E I, we have wn(t, x)jO a.e. 
(t, x) e K x [0, x) (apply Fubini's theorem). Hence, for X-a.e. t, wn(t, x)jO, 0 < x 
< 00. Now fix t and let 

Wn(t, x) = lim sup wn(t,y). 
y-X 

Then 

Wnt x) Wn wt, 2) x) O < x < x0, 

and so 

Wn(t, x)1? 

and each ii3 is upper-semicontinuous. Hence so is xw-n(t, x)'IP. By Dini's theorem, 

xw"(t, x) / 81? 

uniformly on compact subsets of (0, oc). By (7.1.1), we can conclude convergence is 
uniform on (0, so), i.e. WnP'"(t) O-0, X-a.e. Hence Tn - S in local convergence and 
so S E J. This contradiction proves the proposition. 

THEOREM 7.2. Suppose 0 < p < 1 and T E ie(Lp, Lo) with T #& 0. Then if p < r 
< 2, there is a subspace V of Lp isomorphic to Lr and such that T is an isomorphism 
on V. 

PROOF. We may suppose r < 1. By Nikisin's theorem there is a subset B of K 
such that S = PBT #- 0, S E Fe(Lp, L(p, oo)) and S E f,(Lr, L(r, oo)). Now 
choosep <q, <q2 < r. 

Let w be the distribution of S. Then 

sup xPw(t, x) < C1 a.e., 
o<x < o0 

and 

sup xrw(t, x) < C2 a.e. 
O<x < oo 
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Hence if q = or q2, 

XqW(t, x) < min( C,Xq-p, C2Xq-r) 

AClXq-p, 0<xa 1, 

< C2x,q 
r 

1 ?x < o. 

Hence, 

xqw(t, x) ? max(Cl, C2), 0 <x <K c, 

and 

lrM xw(t, X)l/q = lim xw(t, X)l/q = 0. 

Thus S Ef C(Lq, L(q, oo)). 
By Proposition 7.1, there is a strongly embedded subspace V of Lq2 isomorphic to 

Lr such that T maps V isomorphically from Lq, into L(q,, oo). Since V c Lq2 
T(V) c L(q2, xc). The L(q2, oo)-topology on T(V) is stronger than the L(ql, cc)- 
topology, but the Lq2- and Lq,-topologies agree on V. Hence the L(q,, c)- and 
L(q2, oo)-topologies and all intermediate L4-topologies agree on T(V), i.e., T(V) is 
strongly embedded in L(q,, oo). Hence T maps V isomorphically into Lo (of course 
the Lq2- and Lp-topologies agree on V). 

8. Embedding Ip and Lp in p-Banach function spaces. Let X be a p-Banach 
function space. Then we can apply Nikisin's theorem (Corollary 3.2) to deduce that 
there is a function qp E Lo, with qp > 0 such that M,p(X) c L(p, oo). It follows that 
we can, without loss of generality, suppose that every p-Banach function space 
considered is contained in L(p, oo) and If i x > If Ilp,, f E X [simply replace X 
by M,p(X)]. 

THEOREM 8.1. Suppose X is a p-Banach function space satisfying: 
(8.1.1) There exists c > 0 and r > 0 such that whenever fl, . . . ,fJn E X and 

lfA lfjl = 0, i =#j, then 

V + * 

+ffl 

> 
c( 

i 

jjr)l/r 

Then if X contains a subspace isomorphic to lp, there is a sequence of positive elements 
with disjoint support equivalent to the usual basis of lp. 

REMARK. Equivalently lP embeds in X as a sublattice. 
PROOF. Suppose (8.1.1) holds and that Y is a subspace of X isomorphic to Ip. We 

consider two possibilities: (a) Y fails to be strongly embedded in X, and (b) Y is 
strongly embedded in X. 

(a) In this case Y contains a sequence gn -*0 in Lo but such that I gn I > 0 
and { gn) is equivalent to the usual basis of lp. Here {gn) can be obtained as a 
block basis of the original basis of Y, by a standard gliding hump argument. 

Observe that (8.1.1) implies that whenever 0 < fnTf a.e. in X then IIf - fnII -?0. 
Hence if f > 0 andf E X and An E 6 with X(A) -0 then lf 1An 11 -?0. 

Now choose an increasing sequence of integers (m(n)), a decreasing sequence 

(en), and a sequence An E 6i3 such that 
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X(An) < en, n = 1, 2,.. ., (8.1.2) 

||gm(n)lK-An ?< en, n = 1, 2, . .. , (8.1.3) 

0 < 2 en,I < En, n = 1, 2, . .., (8.1.4) 

if X(A) < 2en+1, llgm(n) 1AII < E,n, n = 1, .(8.1.5) 

Pick c, = 1. Now suppose E1, . . . , En A1, An-l m(l), . . ., m(n - 1) have 
been chosen where n > 1. 

Let h = X 2-n I gn j; h E X and h > 0. Now by Egoroff's theorem, since gn -> 0 in 
measure, there exists m(n) > m(n - 1) and An E '3 with X(An) < en and 

19m(n)l 1K-An < Enllhll | h. 

Then 

119m(n)'K-An|l S En. 

Now choose en+I so that en+I > 0 and (8.1.4) and (8.1.5) hold. This completes 
the induction. 

Let Bn = An\ U k>n Ak andfn = gm(n) IBn. Then 

119m(n)L - fnll < |Igm(n) y 1K-AnII + |igm(n) 1 Uk>nAkIj 6 2enP 

since X( U k>n Ak) < 2En + I. Hence, 

11 gm(n) fn |I ? 

and so, passing to a subsequence, we may assume {fn) equivalent to the usual 

lp-basis. 
(b) We shall show that condition (b) leads to a contradiction. Let {fn) be 

equivalent to the usual lp-basis in Y and hence also in L(p, oo). Let V= {fn: 
n E N) and suppose 

M = sup llfnllX n 

and 

llgl + ***+ gnjjP,00 > an l/P 

whenever g,, . .. , gn are distinct elements of V, where a > 0. 
Let u be chosen so that u > 1 and 

l/p-l >2(11p)+2Mp 
a(l -p) 

and let 

a- a -_(2/p)- 2 
a 

(u-1) 

For each k, let Ak be the set of integers Onk such that 2l <O:2C < * and 

-k IPr e -> 212pa. 

We claim lAkl < oo and AkI < Mr23r/pa-lC-r. Indeed, suppose Ok < Ok 

< ... < Om E Ak; then 

fk Yl + + Ym 
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where the yi's have disjoint support and 

Ilyillp,o > 2 - 3,pa 

Hence, 

llfklIx > cm l/r2-3/pa 

and so 

m < Mr23r/pa - lC -r 

Now we may pass to a subsequence of fk (also called fk) such that IAkI = L is 
constant and for some I < LL, Oik = i i < 1, k = 1, 2, .. ., and 0ik+l > Ok, i > 1, 

k = 1, 2, .... Hence if p > 91, p belongs to at most one set Ak. Now suppose 
n > 28', and let 

hn = fl + * +fn. 
For some T = Tr, 0 <K T 1, 

> 1/p T lh /#* (Ts) > 2an l/ 

Let A = (jhn > hn*(T)) and choose E1, .. ., En E- so that X(E) = T/2n (1 < 
i < n) and If(t)l > J(/2n), t E Ei, 1 < i < n. Let E = E1 U U En so that 

X(E) < T/2 and X(A) > . 

1Ianl/p < Trllphn*(T) 2n 

T I/p 

X(A\E) fA\E Ihn(t)I dX(t) (as in Theorem 6.1) 

< 2T 1/p 
_ I 

| fk(t)| dA(t) 
k=l Ek 

nJ1 
k= 1 /2n 

< 2T '/P1NE {f u k*/xt( ) + fc fk Ifk I/ dx} 
k=1 r/2n ur2nJ 

(U - I)T'" "pnJ / n1i"' MP < nuI/ E kt 2n )+ 2 ul/P- I 1-P 

(U -I)T l/p n T I 

Hence, 

!anl/P < (U - I)T I 1"" 

4 n k=l 2n 

Pick pn to be an integer such that 2 - < T/2n < 21-P. Then TI/P < 221p-p"/pn1p 
and so 

1 ~~~~~~~~~~n 
an i/P < 221p-p/p(u - I)n 1/P_1 * (2 

k-I 
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Hence, 
n 

a n < 2 Pn/ fI Jk* (2- n). 
k= 1 

Now p,, > log2(2n/T) > log2(2n) > #Z. Hence pn belongs to at most one set Ak. 
Thus, 2 - pnpln =IJk*(2-P-) < (n - 1)a2-21p + M. Thus, a < 2-2PCa(1 - 1/n) 

+ M/ n for all n > 28'. This leads to a contradiction, and the theorem is proved. 
We now turn to the problem of embedding Lp in X. We first prove some 

preparatory lemmas; these will also be useful in the next section. 

LEMMA 8.2. Suppose X is a p-Banach function space where 0 < p < 1. Then: 
(i) Any T E f&(Lp, X) has an atomic kernel. 
(ii) If S, T E E(Lp, X) have kernels Pt and [it respectively, then the kernel of 

S V T is Pt V ,u, almost everywhere. 

PROOF. (i) Since X c L(p, ox), this follows from Theorem 6.3. 
(ii) This follows from Corollary 5.2 since S V T = (1/2)(S + T + IS - TI). Of 

course, IS - TI in e(Lp Lo) is identical with IS - TI in e(Lp X). 

LEMMA 8.3. Suppose X is a p-Banach function space with 0 < p < 1. Suppose 

Tn, T c e(L X) and O < Tn < Tn+I < T for n > 1. Suppose T has kernel [it and 

Tn has kernel titn. Then if titn -> [it weak* a.e., q(t; T) = limn, .(t; Tn) a.e. 

PROOF. Clearly q(t; Tn) is monotone increasing almost everywhere. If X(B) > 0 
and - > 0, q(t; Tn) + - < 7(t; T), t E B, n E N then, IITn PBII + - < IITPBI, n C 

N. 
Select B1 c B with X(B1) > 0 such that 

II T1BII || (ii TPBII X(B -) 

Then since K' ? tn + < [it we have II -tn0-t1 a.e. and hence TnlBI(t) 
T 1BI(t), a.e. Now by the Fatou property of the quasinorm, there exists n so that 

IITn1 B I> (II TPBII - e)X( ) 

and hence 

I| TnPBII > I| TPBII - E. 

This contradiction proves the result. 

LEMMA 8.4. Suppose T E e(Lp LO). Then there is a sequence of operators (Sn, n E 

N) such that 

I Sil AI Sil ?, i =#j. (8.4.1) 

SI + + Sn is locally elementary for each n. (8.4.2) 

If Ptn is the kernel of Sn and ,u, is the kernel of T, 
then X1 ,/ptn = Pt weak* a.e., and X, Iv'II = tn PI weak* a.e. 
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PROOF. Let 
00 

vt = an(t)S((Fnt) 
n= 1 

where as in Theorem 5.3, each an: K -> R is Borel and each on: K K is Borel, and 
ai(t) # aj(t) whenever i #j. Now let 

n 

,tn E ak(t)S(Ukt)- 
k=1 

Then pt" is the kernel of an operator Tn, e-(I, LO) with ITnI < TI1. Further, Tn is 
of finite type. By Theorem 5.4 we may select An, E 1 with X(An) > 1 - 2 -" n+ 

such that PA Tn is locally elementary. Let Bn = n (Ak: k > n); then X(B,) > 1 - 
2-n and PB Tn is locally elementary. Finally, let S, = P ,T, and Sn = P Tn - 
PB T,,1 (n > 2). Then Sn has kernel vtn given by 

n = 0, t (4 Bn, 

= ,t' teB \B,,1, 
- En n-1 

= ,,n - ,,n -I, t F- Bn_ 1* 

Clearly, jvtnj A Ivtj = 0 a.e., m 7# n, and (8.4.1), (8.4.2), and (8.4.3) follow easily. 

LEMMA 8.5. Suppose X is a p-Banach function space satisfying (8.1.1) and that 
Ti, Tn E:- T, (Lp, X)satisfy ITiI A ITjI = 0, i #&j. Then, 

f n l l/r 

rn(t; Tj + ***+ Tn) 
C c1 q7(t; Ti)) ae 851 

I.ii-1 J 

PROOF. Suppose first S = T1 + + Tn is elementary. Then by considering 
kernels we see that if I TiI A I1)1 = 0 (i #4j) then for any f E - 

ITJ1AITA = 0. 

Hence, for any Borel set B, 

IS 12/I > C(E 111TilB 1r) 

and (8.5.1) follows from the construction of the local quasinorm q as in Proposition 
4.2. 

It now quickly follows that (8.5.1) holds for locally elementary S. For general S, 
let (S) be chosen as in Lemma 8.4. Then if 

Vm =ISll + * +IS-I, 

then 

Vm= VmAITIJ+* +VmAITnl, 

and since Vm is locally elementary, 

n l/r 

77(t; Vm) > c 'q7(t; Vm Al il)r a.e. 
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Now by Lemma 8.3, 

lim r(t; Vm)= 71(t; |SI) a.e. 

and a similar argument shows 

lim ( V(t; A1 = t; Tl) a.e. 

The lemma now follows. 

LEMMA 8.6. Suppose X is a p-Banach function space (O < p < 1) satisfying (8.1.1). 
Then the locally elementary operators are dense in f&(Lp, X) in the topology of local 
convergence. 

PROOF. Suppose S E P(Lp, X). We appeal to Lemma 8.4 to define (Sn) satisfy- 
ing (8.4.1), (8.4.2), and (8.4.3). Suppose m(n) is an increasing sequence of integers 
with m(0) = 0; then let 

m(n) 

Tn= 2 Si. 
m(n-1)+ 1 

By Lemma 8.5, 

n l/r 
71(t; T, + ***+ Tj) 

C c 1(t; Ti.) a.e. 

Hence, 

c(2 it )r)llr I S(;IS) a.e. 

and hence, 

,q(t; Tj) O- a.e. 

Thus y 
5i,i is a Cauchy sequence in the topology of local convergence, and as 

1 Sil < I T| by Proposition 4.1, X, I Si converges in this topology. Clearly, 

5X I Si = S. To see this observe that given e > 0 there exists Bk E " with 
.(B) > 1-l /k and II(X 1 5 -S X7= 1 - i)nBkI - 0 as n -> oo. Thus, 

00 n 

Si- Si IBk0 -*0. 
f=l i=l 

Hence, if p7 is the kemel of 2 
'I Si, II, 

- n1 
<I(Bk) -0 as n - , i.e 

It- vI(Bk) = 0 a.e. Thus, pI, - vI(U ' 
I Bk) = 0 a.e. As X(K\ U Bk) = 0, 

I ,u, - P(K\ U k Bk) = 0 a.e. Hence , = v, a.e., and S = E- I Si. The lemma 
follows since S, + + Sn is locally elementary for each n. 

THEOREM 8.7. Suppose Lp is a p-Banach function space (O <p < 1) satisfying 
(8.1.1). Suppose Lp embeds in X. Then there is an embedding S: Lp -> X which is a 
lattice isomorphism, i.e., S(f A g) = Sf A Sg, f, g E Lp (i.e., Lp embeds as a 
sublattice). 

PROOF. Suppose Lp does not embed as a sublattice. Let 4 be the set of all 
operators T such that whenever B EE '3 and X(B) > 0 then TtLP(B) fails to be an 
isomorphism. An application of Proposition 4.2 shows that I is closed under local 
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convergence. We prove the theorem by contradiction by showing 4 = E(4L, X); 
by Lemma 8.6 we need only show every locally elementary operator is in J. Clearly 
to do this it suffices to show each elementary operator belongs to J. Suppose S is 
elementary and for some B, A(B) > 0, SPB is an embedding. Then I SPBI is a lattice 
isomorphism and an embedding. This contradicts our hypothesis and so = 

P (Lp, X) and the theorem follows. 

9. Symmetric function spaces. Let us denote by g the set of all functions F: 
[0, oo) -* [0, 1] which are monotone decreasing right-continuous and such that 

limx >00 F(x) = 0. Let AP (0 <p < oc) denote the class of maps D: g -4[0, oo] 
such that: 

(9.0.1) If F, G E g and F < G then D(F) S ?(G). 
(9.0.2) If JF, F E g and F,(x)TF(x), 0 < x < oo then lim,,. D(F,) = F). 
(9.0.3) If F, G e g and F(0) + G(O) < 1, D(F + G) < ?(F) + ?(G). 
(9.0.4) If 0 > 0 and F E 9 then D(F0) = 0 -P(F) where F0(x) = F(Ox), x > 0. 
(9.0.5) For some F E g, 0< KD(F) < oo. 

Note that by (9.0.4), D(0) = 0. 
Then we define the space L[p; (] to be the space of all f E Lo such that 

IIf = D(F)'"P < ox where F(x) = X(IfI > x). 

THEOREM 9.1. If D E AP, L[p; (] is a a-complete quasi-Banach function space 
having the Fatou property (2.0.7) and such that if fi, f2 E L[p; (D] have disjoint 
supports 

llfi + f2iIP < llfl lp + Ilf2llp. (9.1.1) 

PROOF. First we observe that (9.0.3), (9.0.4), and (9.0.5) together imply 0 < K(F) 
< oo for every simple function F. Hence L[p; D] includes all simple functions. 

Next observe that (9.1.1) holds by applying (9.0.3). We use this to show that * 

is a quasinorm. For suppose f, g, h E L[p; (] and h = f + g. Choose A E 613 with 
X(A) = 1/2. Then h1A = f 1A + glA and 

X(hl> 2 < f (Al> 
I 

x + x(Ig1Al > x 

so that 

llhAll|| < 2P(|lfAll|| +11|g1All )- 

Similarly, 

IIhlK-AII| < 2P(IlflK-All + llglKAll )' 
Hence, 

llhill < 2P+ (llfll +llgll ), 
so that 

lihil < 22/p(IIjI + llgll). 
Next we show the inclusion L[ p; (D -* Lo is continuous. Indeed if IlLf,II - 0 then 

if E > 0 and 6,, = X(If,I > f ), then if we denote -F,,(x) = (If,I > x), Fn, 1 [Oe)' 
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and hence, (D(,, 1[1,0)) 0. If lim sup 6n > 6 > 0, we obtain I(Dl 1[0e)) = 0, con- 
tradicting our initial remarks. Hence f, - 0 in measure. 

Now is clearly a symmetric lattice quasinorm with the Fatou property and 
L[p; D] is a a-complete lattice. To show L[p; D] is complete it suffices to show that 
if fn > 0 and Ilf,AII < 2-n then E f, converges. Clearly E f, converges in Lo to g say. 
If Gn is the distribution of f1? 1fi and G the distribution of g then Gn(x)t G(x) for 
0 < x < oo and sup D(Gn) < x. Hence 4?(G) < oo and g E L[p; D]. A similar 
argument shows that 

n m n 

THEOREM 9.2. Suppose X is a p-convex symmetric a-complete quasi-Banach 
function space. Then X = L[p; (D] for some D E AP. 

PROOF. We may suppose the lattice quasinorm on X is symmetric, has the Fatou 
property and satisfies (9.1.1). Then define 

?D(F) = IJAIP, f E X, 

=x, fi X, 

where F E 3 andf E Lo is such that X(IfI > x) = F(x), x > 0. 
We do not know whether every L[p; D] is p-convex. However we obtain a 

positive result with one further hypothesis. 
DEFINITION. D G AP is totally symmetric if 

D(tF) = t(I(F), F E 3, 0 < t < 1. (9.2.1) 

A a-complete quasi-Banach function space X is totally symmetric of order p if 
X = L[p; D] for some totally symmetric D E AP. 

In terms of the quasinorm on L[p; LI], total symmetry implies that if B E "I and 
a: B -> K is any Borel map such that X(a- 1A) = X(A)X(B), t E 61 , then the map 

RB: L[p; FD] -> L[p; FD] given by 

RBf(t) = f(at), t E B, 

=0, t B, 
satisfies IIRBJII = X(B)P I IfII,f E L[p; (D]. 

Of course the spaces L[p; oo] and Lp are totally symmetric of order p; so are the 
intermediate Lorentz space L(p; q), where p < q < oo. 

LEMMA 9.3. Suppose FD E AP is totally symmetric and 0 < p < 1; then there is a 
countable collection T(h(D) of continuous increasing functions M: [0, oo) -* [0, oo) 
such that: 

M(O) = 0. (9.3.1) 

M(x + y) < M(x) + M(y), x, y > 0. (9.3.2) 
00 

(1 - p)(D(F) < sup f F(x) dM(x) < (D(F), f E . (9.3.3) 
M E G M(f) t 

REMARK. f F(x) dM(x) =fJKM(jf(t)j) dX(t) if f has distribution F. 
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PROOF. It clearly suffices to produce 91Z(4) so that (9.3.3) holds for simple F. Let 
S be the linear span of the simple functions in g. For F E S we define 

,r(F) = inf(t4(G): F < tG, 0 < t < o, G E 9). 

Then X is a sublinear functional on 5; indeed it is easy to see that X is positively 
homogeneous. Further, if Fi E Si (i= 1, 2) and e > O, there exist Gi Ec (i = 1, 2) 
and ti > 0 (i = 1, 2) such that ti,4(Gi) < r(Fi) + e/2 (i = 1, 2) and Fi < tiGi 
(i = 1, 2). Suppose (without loss of generality) that t1 > t2 so that t2 = St, with 
0 <s < 1. Then 

F1 + F2 < 2t( I IG1 + I sG2) 

and 

7(F1 + F2) <(2ti(D (-GI + 
I 

<(F1) + ((F2) + (. 

Since e > 0 is arbitrary, X is sublinear. If F < 0, 7(F) = 0. If F E 9 and F < tG 
with G E 9 and t > 1 then t-'F < G and hence F(t-'F) < ?(G). Hence 7T(F) = 

?(F) for F c 9. 
Now for each F E S with rational values and discontinuities, choose linear p: 

8-> R such that p(G) < T(G) (G E 8) and p(F) = r(F), by the Hahn-Banach 
Theorem. The collection A of all such p is countable. If p c A, then p(F) > 0 
whenever F > 0, since T(F) = 0 for F < 0, and ?(F) = suppeA p(F), F E 

(since there is. a sequence Fn E S with rational values and discontinuities such that 

F,(x)tF(x) for all x). 
The function 9 " p(F0) is decreasing if F E 9 and 

(1 -)f p(F0) dO < (1 - P) 9 -P (F) dO ?< (F), (9.3.4) 

(1 -p)f p(F0) d9 > (1 -p)p(F), F E g n S. (9.3.5) 

For fixed p, let 

N(x) = p(1[o,X)) 

and 

M(x) = (1 - p)X Ni du, x > 0. 

We let 9T(hQ) be the set of such functions M. First observe that M(O) = 0 and that 
M is continuous. 

Now, 

(1 - P) P(1[0X0,-')) d9 = (1 - p) N(xA -1) d9 = M(x) 

upon substituting u = x9- . Since p is a positive linear functional, M is an 
increasing function. Further, if F E S n 9, (1 - p)fI p(F0) d9 = f o F(x) dM(x) 
(since M is continuous). Now (9.3.4) and (9.3.5) imply (9.3.3). To conclude, we 
show (9.3.2) holds. Indeed, 
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M(x)(1 -P) N( du 
x u 

is monotone decreasing and this implies (9.3.2). 

THEOREM 9.4. If 0 <p < 1 and D E AP is totally symmetric, L[p; 4D] is p-convex. 

PROOF. Suppose fl, . . . ,fn e L[p; 4D] and h = fi + * +fn. For e > 0 select 
M E 1(X(D) so that 

fKM( h(t)) dX(t) > (1 -p)[IIh lp - e] 

Then (1 - p)[IlhllP-e] < In.= M(Ifi(t)l) dX(t) by (9.3.2) and hence, 

( 1- p)[ ||lhll| - e ] 
< Y llfill 1 

for e > 0 is arbitrary, 
n 

llhllp (I _ P) E llfill1 

Now let go, be the set of all monotone decreasing right-continuous functions F: 
[0, oo) -> [0, oo] such that lim_,, F(x) = 0. If D E AP, we define its symmetric 
extension ': go -> [0, oo] by 

I(F) = sup(tF(G): G E 9, t > 0, tG < F). 

Then ' satisfies the following conditions: 
(9.4.1) If F, G E 0 , and F < G, then I(F) < I(G). 
(9.4.2) If Fn, F E 93, and F (x) F(x), 0 x K x, then lim*O I(Fn) = I(F). 
(9.4.3) If F, G e 9, 'I'(F + G) < I(F) + I(G). 
(9.4.4) If 9 > 0 and F E 9, 'I'(F0) = 9-P (F). 
(9.4.5) If F E 9. and t > 0, I(tF) = t'(F). 

Thus, provided there exists F E 9 with I(F) < x, then 'I'9 E AP and is totally 
symmetric. 

LEMMA 9.5. For F E =, 

(9.5. 1) *(F) > (D(F), 
(9.5.2) I(F) < lim sup, 0 t -D(tF), 
(9.5.3) if FD is totally symmetric, 4D(F) = I(F). 

PROOF. Only (9.5.2) requires proof. If e > 0, G E 9 and t > 0 such that tG < F 
and t4D(G) > I(F) - e/2. For T = m/n E Q, so that T < t, TAD(G) > I(F) -. 

Thus for any N, 

G 
NNn n=G Nn(+= 

and hence, 

Nn Nn 
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However, 

G F 
Nn Nm 

and hence, 

(Nm) Nn() Nm(()) 
The result now follows. 

THEOREM 9.6. Suppose X is a symmetric a-complete p-Banach function space, 
where O < p < 1, so that X = L[p; 4D] for some FD E AP. Let I be the symmetric 
extension of (D. Suppose T E f E(Lp, Lo) has distribution w(t, x). Then a necessary and 
sufficient condition that T Ef E(Lp, X) is that 

ess sup I(w(t, *)) = C < x (9.6.1) 
(EK 

and then 1I TII < C 1/P(1 _ p)f-l/P. 

PROOF. Let i, be the kernel of T and a,(B) = fK A,(v,)[B] d(t), B E 3, x > 0, 
so that aX(B) = fB w(t, x) dX(t). Consider the condition 

I[ax(B)] < C*X(B), B E 13. (9.6.2) 

If I(F) = oo, unless F = 0, (9.6.1) and (9.6.2) are trivially equivalent. 
Otherwise, we observe that if (9.6.2) holds, then for M E 6R('), 

f7 L 
w(t, x) dX(t) dM(x) < C*X(B), B E '3, 

and so by Fubini's theorem, 
00 

f w(t, x) dM(x) < C* a.e. 

Since 9T(') is countable, we obtain 

*(w(t, *)) < C*(1 - p) 1 a.e. 
Thus (9.6.2) implies (9.6.1) with C = C*(1 - p)f . Reversing the reasoning (9.6.1) 
implies (9.6.2) with C* = C(1 - p)-'. 

Now suppose (9.6.2) holds. Then if T is elementary, (9.6.2) implies that T E 

f(Lp, X) and 11TIJ < (C*)l/P, since ax(B) is the distribution of T1B. Hence this 
statement also holds for locally elementary T. To obtain the result for general T, 
we appeal to Lemma 8.4. It is sufficient to show I TI Ef E(Lp, X), and Lemma 8.4 
allows us to define an increasing sequence V,, of positive locally elementary 
operators such that V,.JT Tf a.e. for f > 0. Clearly the preceding argument shows 

Vn I? < (C*)1"P and so I TII < (C*)1/P. 

Conversely, suppose T Ef E(Lp, X). Without loss of generality we may suppose 
T > 0. Suppose first T is elementary and of the form Tf(t) = a(t)f(at) where a > 0 
is a simple Borel function and a: K -> K is Borel. Let b, . . . , b, be the nonzero 
values of a and let B, = { t: a(t) = bi). Since T is continuous into Lo, the measures 

yi(E) = X(a - E n B,), E E '3, are absolutely continuous, and hence we may 
write yi(C) = fc hi(t) d(t), E E I-, where h,,. . . , h, are positive Borel functions. 
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Next decompose K into Borel sets A 1, A2, . .. such that cij < hi(t) < 2c j, t E Aj, 
i = 1, 2, . . . , 1. Suppose E c Aj (some j) and F c E are both Borel sets of 
positive measure. Then the distributions of T1F and TIE are x i-> a,(F) and 
x " ax(E) and these must satisfy 

2 X(F) ax(E) < ax(F), x > 0, 

and hence, 

( I2 A() ax(E)) < || TI| (F), F c E. 

Allowing F to vary we obtain 

I(ax(E)) < 211T//pX(E), E c Aj. (9.6.3) 

Since ' is subadditive, (9.6.3) holds for all E E 63. 
For general positive elementary operators we simply approximate by an increas- 

ing sequence of "simple" elementary operators as above to obtain (9.6.3). This 
gives (9.6.3) also for locally elementary operators and hence by Lemma 8.4 for all 
T E E (Lp, X). 

COROLLARY 9.7. P,(Lp, X) 7# {O} if and only if Lp c X. 

PROOF. E(L, X) 7# {0} if and only if I(F) < oo for some F 7# 0. If ' is totally 
symmetric and '(lio 1)) = 1, then it is easy to see '(F) < fJ? F(x) d(xP). Hence 
'(F) < oo for some F 7# 0 if and only if '(F) < cf ' F(x)xP-1 dx for some c and 
this is if and only if ??(F) < cf O F(x)xP- dx, i.e., L[p; 1'] D Lp. 

THEOREM 9.8. Let X be a separable symmetric a-complete p-convex function space. 
Then X is isomorphic to a quotient of Lp if and only if X = L[p; (DI for a totally 
symmetric (D. 

PROOF. Suppose X = L[p; 4?] where (D is totally symmetric. Since X is separable 
the simple functions are dense in X. Suppose f is simple; then f may be "split" so 
that 

f i+ f2 + * f *+2" 
where f2kn1 + f2n+ - ffn+I (1 < nk A 2), then f,n (1 < k < 2n) have disjoint sup- 
port and identical distributions Fn. If F is the distribution of F, Fn = 2-nF. 

Now let E(n; j) be the partitioning of K described in Proposition 4.2. We define 
T: Lp- L[p; (D] such that TlE(nj, = fjn. Then, IITlE(nj)II < 2"-npIlfi and hence 

j TII < cIIfIj, where c is a constant such that 

IVfi + +fnljp < cp(llfilli + + ljfnilp) 

for g, ... gn E L[p; 4]. 
Let { h,,} be a sequence of simple functions dense in the unit ball of L[ p; (D]. For 

each n, select as above T Ef E(Lp, L[p, (D]) so that 11 TIl < c and TlK = hn. Define 
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Then II S II < C2 and is almost open. Hence S is a surjection; since Ip(Lp) _ Lp, the 
theorem is proved. 

Conversely if X is a quotient of Lp, the pair (Lp, X) is transitive (cf. [12]) i.e. 
given f E X there exists T E f&(Lp, X) such that T1K = f. However, Theorem 9.6 
shows that if X = L[p; (D] then each T EE E(Lp, X) maps into L[p, '] where ' is 
the symmetric extension of (. Hence, L[p, I] = L[p, (D] = X. 

REMARK. If we remove the condition of a-completeness we must allow the 
possibility that X is the closure of the simple functions in some L[p; (D] for totally 
symmetric (. 

EXAMPLE 9.9. If p < q < 00, L[p, q] is a quotient of Lp which contains no copy 
of Ip. 

PROOF. It is only necessary to show lp does not embed in L[p; q]. If F1, ... . Fn 
E- 9 00 

(f (2 Fi(x))q/Pxq- dx) > c(, (fI F(x) qpXq1 dx) )X 

where r = 2 if q < 2p and r = q/p if q > 2p, and c is some constant (see [25]). 
Hence if f1, . . . , fn E L[p, q] have disjoint supports, 

,VI + *+fnl > 
C( 

E 

IfilIIp)lr so L(p, q) satisfies (8.1.1). Hence if Ip embeds in L[p, q] there is a sequence fn with 
disjoint supports so that llfill < 1, but for all n and all 1, < 12 < ... < In, 

lflf + n +fil11>cn'/P 

where c > 
0. 

Suppose 
F1, 

. 
.. 

, Fn are the distributions of these functions. Since 
X(supp f) ->0, Fn(x) ->0 uniformly on [0, oo). By passing to a subsequence we 
may suppose Fn basic in Lq/p((O, co), xq- dx) and equivalent to a basic sequence 
with disjoint supports. Thus, 

.ooI n q/p p/q 

{ JO~j~ i(X)) q-1 dX < t~P' 

Thus cn1/P < Mn llq for all n. This contradiction shows that lp does not embed in 
L[p, q]. 

We conclude ?9 by giving a partial result on the classification of operators on 
L(p, oo) for 0 <p < 1. 

THEOREM 9.10. Suppose T: L(p, oo) -> L(p, oo) is positive. Then T E Ef(Lp) and 

11Tllp < 11 TIIp m. 

PROOF. We shall suppose II TI I < 1. Consider the restriction T: Lp L(p, oo). 
We suppose first that T is elementary and (as in Theorem 9.6) Tf(t) = a(t)f(at), 
where a: K -* R is simple and positive. Suppose b, > b2 > . . > b1 > 0 are the 
positive values assumed by a and let Bj = {t: a(t) = bj}. Let h1, . . , h, be positive 
Borel functions so that X(a-1E n Bj) = JE hj(t) dA(t), E E 03, forj = 1, 2, . .. , 1. 

Suppose d > 1 is arbitrary. Then we can decompose K into Borel sets (Ai: 
i = 1, 2,... ) such that cij < hj(t) < dcij, t E Ai, j = 1, 2, . . . ,1. Fix i and let 
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0 < e < X(Ai) be such that 

c<min(b1,b,... ., b71, bl, b2,.. ., b2). 

Letf e Lp(A,) be a function whose distribution satisfies 

F(x) = , O < x < ?, 

= El+PX-P e x <e, 

-0, x >e-'. 

Then Ilf P,00 = supo<x<,o xF(x)/"P = 
Now II Tf I I , < 1 + I/p, but Tf has distribution G satisfying 

G(x) > I F(xbj-')cij, O < x < oo, 
j=l 

and hence 

G(1) > E F(bJ-')c P= bjPc,,. 
j=1 j=1 

Thus 

e 61+PbjPC,j S 6 + 
j=1 

i.e., 

E bfPc, ? 1. 
j=1 

Now if E c A, is Borel then 

IITlEII= E I bjPX(a-'E n Bj)= E bjP hj(t) dA(t) 
j=l j=1 

< d E bj'Pcij(E) < dA(E). 
j=1 

Hence I TPA, p < d1"P. As this is true for all i, 

and as d > 1 is arbitrary, 

IIlI7p I 1. (9.10.1) 

Now it follows that (9.10.1) holds for elementary T by approximation of a(t). 
Then (9.10.1) also holds for locally elementary T. 

Now we apply Lemma 8.4 to introduce the sequence S, Then for each n 
0 < SI + * * * +Sn < T and hence j1SI + * +Snllp < 1. From this it follows 
easily that II TIIp < 1. 

10. Miscellaneous results. Suppose G is a compact metrizable group and X is 
Haar measure on G. Then the translation invariant operators T: LP- LP (0 <p < 
1) and T: LP- L(p, oo) have been classified by Sawyer [30] (for the circle group) 
and Oberlin [23], [24] for general locally compact groups. 
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Suppose 'D is a totally symmetric function in AP. Then l(p; 1D) denotes the 
sequence space of all (Q) such that 1D(F) < oo where F(x) is the number of n such 
that Itn I > x, and we also denote by D the symmetric extension of (. For simplicity 
we shall suppose G abelian in the next two theorems. 

THEOREM 10.1. Suppose T: Lp(G) -> L[p, (D](G) (O <p < 1) is translation in- 
variant. Then 

Tf =u*f, f e Lp,(01) 

where [L = ?= (n3(gj), with (gn: n E N) a sequence of points in G and ( E) C 

l(p; (D). Conversely, if (Q) E l(p; (D), (10.1.1) defines a translation-invariant operator 
T E E(Lp, L[p; (]). 

PROOF. Suppose T has kernel g " vg. Then for a dense sequence {ffn c C(G), 
we have, for fixed g E G 

Tfn( gh) = fn(t) dpgh a.e., h E G, 

ffn( gt) dvh a.e., h E G. 

In particular IlIg l is a translation-invariant function in L?(G); hence ll gll is 
constant almost everywhere and so T e f&(L1). Thus (see [33]), Tf = u * f, f e L1, 
where y E 6X (K). By the uniqueness of the kernel, Tf = ui * f, f E Lp, and 

'= I (n8(gn) where gn e G are distinct, and 2IjI < X. Now Ph = 
2n=l (n8(h-lgn) a.e. and hence AX(vh) = Ax(fi) a.e. Thus T has distribution w 
where 

w(t, x) = Lx(fi) a.e., 0 < x < oo, 

= F(x), 

where F(x) is the number of n such that tn I > x. Then T E C?(Lp, L[p; (D]) 
provided 'D(F) < xo. The converse is easy. 

EXAMPLES. (1) T E F(Lp, L[p, oo]) if and only if (n E l(p, o), i.e., supn nil/pn* 
< oo, where ((n*) is the decreasing rearrangment of (Q) (see Oberlin [24]). 

(2) T E C(Lp; L[p; q]) (p < q K oo) if and only if n e l(p; q), i.e. 

00 n 
q/p a ((n*)qf t q/Pl dt < X, 

n= l 
oo 

E (gn*)yn qlp - (n -1qlp ] < 00 
n=I 

which is equivalent to 

00 

E t*) qn qlp-I < X0. 
n = 

(3) If T E (Lp, LO) is translation invariant, the same proof combined with 
Nikisin's theorem shows that supn nllPtn* < oo, i.e. T E P?(Lp, L(p; xe)). 



LINEAR OPERATORS ON L 353 p 

THEOREM 10.2. Suppose ,u E 91(G) and for each f E L[p; oo], fi * f is well 
defined, i.e. for almost every g E G, 

f IfgAh)I dIi I(h) < DO. (10.2.1) 

Then 

= E (9 (10.2.2) 

where (gn) is a sequence of disjoint points in G and 

E Ktni < ??- (10.2.3) 
Conversely, if (10.2.2) and (10.2.3) hold then ,u * f is defined for all f E L(p, xe). 

PROOF. If ,u * f is defined for eachf E L(p, oo), we define 

Tf=I,lI*f, fEL[p; oo]. 
It is easy to see (by consideringf E L1 first) that Tf E Lo, Also if llfnll < 2-n, then 
llfnl converges in L(p; oo). Hence I iI*EIfnI is well defined and so I,uI*IfnI -> 0 a.e. 
Then I iI *fn -O0 a.e. Thus T: L[ p; oo] -* Lo is a linear operator. 

Now by Nikisin's theorem there is a positive function qp E Lo such that M,pT E 
PE (L(p; oo)) where 

Mcf(t) = p(ft). 

Now M,pT > 0 and hence by Theorem 9.10, Mp T E f&(LP). Now this implies that 
p(t)ll illp < oo for almost every t; thus (10.2.2) and (10.2.3) follow. 

The converse follows easily from thep-convexity of L[p; oo]. 
To conclude, we observe that our main theorem 7.2 implies a similar result for an 

F-space X in place of Lo provided there are enough linear operators T E fC(X, Lo) 
to separate points. It is easy enough to produce spaces X which fail this property 
and for which f(X, Lo) = {0}. An example is the space Lp/IHp considered in [10] 
(for the same reasons as in the proof of P,(Lp/Hp, Lp) = {0} given in that paper). 
We now prove a related result concerning this space. For convenience we convert it 
to a real space, by the process of taking real and imaginary parts. 

Let K = IF U F2 where IF and F2 denote two disjoint copies of the unit circle 
F = (z: Izi = 1). Let X = 1/2(X1 + X2) where XI and X2 denote Haar measure onri 
and F2 respectively. Let Hp be the closed subspace of Lp(K) generated by the 
function (where 0 < n < xo) 

en(z)=Rezn, zErl, 

=Imzn, zEF2, 

en*(z) = -Im n, z n E rl, 

= Re zn z E 2. 

Letf E Hp if and only if f1(z) + if2(z) E Hp where 

f1(z) = f(z), z E rl, 

f2(z) = f(z), z E F2. 

Thus Hp is a proper closed subspace of Lp. 



354 N. J. KALTON 

THEOREM 10.3. Let X be a a-comwlete p-Banach lattice with order-continuous 
quasinorm (i.e. such that for any monotone decreasing sequence x, with inf x, = 0 
then infIIx II = 0). Then f (Lp/Hp, X) = {O}. 

PROOF. Suppose T E C(L,/HP, X), and let Q: Lp -> LPIHP be the quotient 
map. Let S = ITQI E f&(L4, X), and let S1K = u E X. Let Y c X be the linear 
span of [- u, u] with [- u, u] as its unit ball; then Y is a Banach lattice which is an 
AM-space [35, p. 22]. Hence Y is isometrically isomorphic to a space C(Q) where Q 
is a compact Hausdorff space; since Y is order-complete, Q is Stonian (see [35, pp. 
59 and 92]). We shall identify Y and C(Q2). 

Now T(C(K)) C C(Q) and T: C(K) - C(-2Q) is a linear map of norm one at 
most. Hence 

Tf(w) fK d f9 f E C(K), 

where P., e p(K) and IIvP,,,I < 1. 
For any w E Q, 

fKendpwfK e,*dv,=0, n=0, 1,2. 

Let ,-l and [t be the measures induced on F by v,,171 and PJrF2. Then 

f Re zn dti + |Im zn dt2 = 0, 

-f Im zn di +f Re zn d12 = 0? 

so that 

fznd( - 4Lu2) = 0. 

Now by the F. and M. Riesz Theorem [6, p. 41], p1 - i42 is absolutely continu- 
ous with respect to Haar measure on the circle. Thus P., is X-continuous for every 
w E U. 

Let U= {f E LP(K): Ilf II,, S 1). We shall show T(U) is relatively compact. 
Suppose not; then we may find a sequence of continuous functions fn such that 

|ITfn -TfmII > E > O, m # n, 

and llfnllo < 1. By passing to a subsequence we may suppose (fn) converges in 

a(LO, L ) and hence that if gn = fn - fn 1 gn? ->0, a(L, L1), IITgnl c, n= 
1 2 .... Now Tgn(w) - 0 w E U. Let 

hn = 
SUP(ITgnI |T9n+l * ** 

in X. Then hn < u and hn E Y. Hence 

hn(W) = sup 
ITgn (W) I 

n 

except on a set of first category in w. Thus hn(w) 0 except on a set of first 
category. It follows that inf hn = 0 and so infn llhnll = 0. However, llhnll > 

SUpIt Tgnol > Ec 

It follows that T( U) is compact and hence T( U) = O (see [10]). 
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