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TWISTED SUMS OF SEQUENCE SPACES 
AND THE THREE SPACE PROBLEM' 

BY 

N. J. KALTON AND N. T. PECK 

ABSTRACT. In this paper we study the following problem: given a complete 
locally bounded sequence space Y, construct a locally bounded space Z 
with a subspace X such that both X and Z/X are isomorphic to Y, and such 
that X is uncomplemented in Z. We give a method for constructing Z under 
quite general conditions on Y, and we investigate some of the properties of 
Z. 

In particular, when Y is lp (1 < p < oc), we identify the dual space of Z, 
we study the structure of basic sequences in Z, and we study the endomor- 
phisms of Z and the projections of Z on infinite-dimensional subspaces. 

1. Introduction. Let X and Y be complete metric linear spaces. A twisted 
sum of X and Y is a space Z which has a subspace X 1 isomorphic to X, with 
Z/X 1 isomorphic to Y. The twisted sum Z is trivial if X 1 is complemented in 

Z; otherwise, Z is nontrivial. 
In this paper we give a general method of constructing nontrivial twisted 

sums of sequence spaces, based on a modification of a construction first 

described by Ribe. A special case of one of our main results is that for 
0 <p < oo there is a nontrivial twisted sum of Ip with itself. For 0 <p < 1, 
this solves a problem raised in [4]. For 1 <p the twisted sum obtained is 

actually a Banach space, by a result of Kalton. In particular, we have an 
alternate solution to the 3-space problem for Hilbert spaces, which was solved 
by Enflo, Lindenstrauss, and Pisier. 

We summarize here the organization of the paper. 
??2 and 3 are technical in character; in them we collect the basic facts 

needed for the construction. In ?2 we show that nontrivial twisted sums arise 

from-and give rise to-"quasi-linear" maps. ?3 details two simplifications that 
can be made in the construction of quasi-linear maps. One of these reduces 

constructing quasi-linear maps to the problem of constructing "quasi-addi- 
tive" maps; the section ends by studying quasi-additive maps on the real line. 

In ?4 we apply the results of ??2 and 3 to a quite general class of sequence 
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spaces. The main result of the section is that under very general conditions on 
the sequence space X, there is a nontrivial twisted sum of X with itself. 

In ?5 we restrict our attention to a class of twisted sums of lp (1 <p < oo) 
with itself, which we denote by lp(,(). We calculate the dual space of Ip(o) and 
then study the structure of basic sequences in lp(4). Finally, in ?6 we study 
the spaces Zp (1 <p < oo) which are a subclass of the spaces lp(o). In a 
sense, the spaces ZP are "extremal" solutions to the three space problem. 
They yield sharp estimates for the rate of growth of projections on ipn; the 
inclusion map and the quotient map defining the twisted sum are, respec- 
tively, strictly co-singular and strictly singular; and the endomorphisms of Zp 
obey rather strong conditions. 

We close this section by collecting some definitions and results we will 
need. A quasi-norm on a real vector space X is a function II X -> R 
satisfying 

(1) llxll > O for x E X, x =# 0, 
(2) IItxll = Itl llxll, forx E X, t E R, 
(3) lix + yll < C(IIxII + IIyII), for x,y E X. 

The constant C in (3) will be called a modulus of concavity of I I, and 
(X, 11 11) will be called a quasi-normed space. 

If we take U = {x E X: llxll < 1}, then the scalar multiples of U form a 
neighborhood base at 0 for a Hausdorff vector topology on X. With this 
topology, X is locally bounded, i.e. has a bounded neighborhood of 0. 
Conversely, every locally bounded topology on a vector space is given by a 
quasi-norm. 

The locally bounded space X is locally p-convex, 0 < p < 1, if it has a 
bounded neighborhood V of 0 such that ax + fly E V whenever x,y are in V 
and IaI IP + I A IP < 1. X is a p-Banach space if it is p-convex and complete. 

Let V be as above in the definition of p-convex. Then the gauge functional 

I I of V is a quasi-norm with the additional property that x lix 1P is a 
subadditive function of x. 

A fundamental result of Aoki and Rolewicz [1], [9] is 

THEOREM 1.1. Every locally bounded space is p-convex for some p > 0. 

It follows that, if (X, lIIi) is locally bounded, there are positive numbers p 
and L such that 

n (n / 

||EXi| < Lt lixill ) 

forallnandxl,..., x,,e X. 

Throughout, R, Z, and N denote, respectively, the real numbers, the 
integers, and the positive integers. R' is the space of all finitely-supported 
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real sequences. An F-space is a complete metrizeable linear space. The linear 
span of a set A will be denoted by lin A. And the symbol ix denotes the 
identity map on a space X. 

2. Twisted sums. Suppose that X, Y, and Z are F-spaces. Suppose further 
that Z contains a subspace X1 which is isomorphic to X, with Z/X 1 
isomorphic to Y. Loosely we may say that Z is a "twisted sum" of X and Y 
(in that order!). In other language, a twisted sum of the F-spaces X and Y is a 9 ~~~jq short exact sequence of F-spaces 0-> X > Z -* Y -*0. If X, Y, and Z are 
quasi-normed F-spaces with 

lvxll =llxll, x E X, 

and 

ylyllYinf,llzll:qz=Y y EY 
I q 

then we say that 0 -* X - Z -> Y -O 0 is an isometric twisted sum of X and Y. 
In this case Z has a subspacej(X) isometric to X and Z/j(X) is isometric to 
Y. In this section we collect a few basic facts about twisted sums; in 
particular, we show that they arise from-and give rise to-"quasi-linear" maps 
from Y into X. 

Let X and Y be fixed F-spaces and let Z1 and Z2 be two twisted sums of X 
and Y. 

DEFINITION 2.1. (a) The twisted sums Z1 and Z2 are equivalent if there exists 
a continuous linear operator T: Z1 -* Z2 such that the following diagram 
commutes: 

Ii~~~q O X Z- Y 0 

Pix IT liy 

0 X L Z2 _ Y 0 

(b) The twisted sums Z1 and Z2 are projectively equivalent if there exist a 
continuous linear operator T: Z1 -* Z2 and nonzero scalars a and /3 so that 
the following diagram commutes: 

0 X Z- Y 
O 

fl x X T 4aiy 
12 q 

0 X Z2 i > Y 0 

In both (a) and (b), T is necessarily one-to-one and onto, and by the open 
mapping theorem, T is an isomorphicm. 

From now on we shall restrict ourselves to locally bounded F-spaces. A 
result of Roelcke (see also Kalton [4, 1.1]) asserts that the twisted sum of 
locally bounded F-spaces is a locally bounded F-space. 
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PROPOSITION 2.2. Suppose X and Y are p-Banach spaces and that Z is a 
p-convex twisted sum of X and Y. Then Z is projectively equivalent (and hence 
isomorphic) to an isometric twisted sum of X and Y. 

PROOF. We may suppose that Z is quasi-normed by a p-subadditive 
quasi-norm. Suppose j: X -> Z and q: Z -> Y are the maps inducing the 
twisted sum. 

From the open mapping theorem there exist constants a,13 > 0 such that 

'B13x11 > llxll, x E X, 

and 

alzl>in~f Iliz -jxll, z e Z. 
xEX= X 

Now define 

lizilo = iLnfX (lz -jxIIp + B -PiixiiP)1/P 

and 

llzlll = max(allqzll, lizilo). 

Then 

llzllpo < jllZlP 
and 

llzlll < (max{callqll, l}))jzjj. 

Clearly 11 is ap-subadditive quasi-norm on Z. Let Z1 be the quasi-normed 
space (Z, 11 111), and let T: Z -> Z1 be the identity map. Then the following 
diagram commutes: 

O X Z Y O 

Ivlix IT laiy 
aqi 

O X Zi Y O 

Now, 

Ajxill liijxlio = inf {I (fx - xl)llP + I -Pjix1jjP} 

> inf ,8{IPIIIx - xlllP + _pjx1jjlp} 
x1 EX 

- llxllp = f -PIII3xIIP > 11IfjxI1P. 
Hence /Bj is an isometry. Clearly IaqzII < 11z111. For - > 0 and z E Z we may 
choose x E X so that 

liz -jxil < (1 + -)allqz|l = (1 + c)|laqzll. 

Hence liz -1jxl1 < (1 + c)jJaqzjl. 
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These conditions together imply that Z1 is complete, that it is an isometric 
twisted sum of X and Y, and that it is projectively equivalent to Z. The proof 
is complete. 

DEFINITION 2.3. Let F be a map from Y to X. The map F is quasi-linear if it 
satisfies 

(a) F(ty) = tF(y) fory E Y, t E R, and 

(b) IIF(yI + Y2) - F(Y1) - F(Y2)II < M(I(I1YII + IIY211) 
for y1, Y2 E Y, where M is a constant independent of y1 and Y2. 

Given any quasi-linear map F: Y -> X we can construct a twisted sum 
X eF Y as follows: X EDF Y is the vector space X E Y with the quasi-norm 

II(x,y)II = IIYII + lIx - F(y)II. (We are using the same symbol I I I to denote 
the quasi-norm on X ff Y, Y, and X.) It is easy to see that the maps 
jx = (x, 0) and q(x, y) = y define, respectively, an embedding of X into 
X eF Y and a quotient map of X eF Y onto Y. It follows that X eDF Y iS 

complete and hence a twisted sum. This construction was first described by 
Ribe [7]; a very similar construction is also given by Kalton [4, 4.6]. The 
following converse result is implicit in Proposition 3.3 of [4]: 

THEOREM 2.4. If Z is a twisted sum of X and Y, then there is a quasi-linear 
map F: Y -> X such that Z is equivalent to X eF Y. 

PROOF. Let C be a modulus of concavity for the quasi-norms on X, Y, and 
i q 

Z. Let 0-> X - Z -> Y ->0 define the twisted sum. Then there is a linear, 
possibly discontinuous, map 9: Y -> Z such that qO = iy. Since q is open 
there are a constant K and a map 4: Y-> Z such that II4(y)II < KIlyll and 
qp(y) = y for ally E Y. We may suppose that 4(ty) = tp(y) fory E Y. 

Now let F(y) = j- 1((y) - 0(y)). Let L be such that IIj-1zII < LIIzII for 
z E j(X). Then for y 1, Y2 E Y, 

IIF(yI + Y2) - F(y1) - F(Y2)I = I + Y2) - (Y 1)-(Y2))I 
< L1I0(y1 + Y2) - k(Y1) - 

O(Y2)11 

< C2L(I|0(Y1 + Y2)II + II|(Y1)II + II(.(Y2)II) 
< 2C3KL(|yjY11 + IIY211). 

Hence F is quasi-linear. 
Now define T: Z -> X eF Y by Tz = (j -1(z - Oqz), qz). Then 

11 TzII = I-1(z - 0(qz)), qzlll < LIIz - 4(qz)| + 1qzll 

< CL( Iz 1 + Ilo(qz) 1) + 1 ( qzll < (CL + Kg qll + 11 qll) 1zll 

Hence T is continuous. It is easy to see that T induces an equivalence 
between Z and X EF Y; the proof is complete. 

We shall say that two quasi-linear maps F, G: Y-> X are (projectively) 
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equivalent if X ED F Y and X e) G Y are (projectively) equivalent twisted sums. 
Note that if F 0_ on Y then F induces the ordinary topological direct sum 
X E Y. We shall say that F is trivial if it is equivalent to the identically zero 
map. In this case the short exact sequence 0 -O X -> X DF Y -> Y ->0 splits. 

THEOREM 2.5. (a) The maps F and G are equivalent if and only if there exist 
a constant M and a linear map A: Y -> X such that 

jIF(y) - G(y) - A(y)jj < Mllyll, y E Y; 
(b) F and G are projectively equivalent if and only if there exist constants M 

and a, a # 0, such that 

IIF(y) - G(ay) - A(y)jj < Milyll, y E Y; 

(c) F is trivial if and only if it is projectively equivalent to the zero map. 

PROOF. (a) If F and G are equivalent there is a continuous linear map T: 
X EF Y>X eG Y of the form T(x,y) = (x + Ay,y), where A: Y->X is 
linear. Then T(F(y), y) = (F(y) + Ay, y) and hence 

IIF(y) - G(y) + AyII < 11711 IIyII . 

Conversely, if F, G and A satisfy the hypothesis, define T: X EF Y 
X EG Y by T(x, y) = (x + Ay, y). It is easy to check that T is contilnuous 
and induces an equivalence between X EDF Y and X eDG Y' 

The proof of (b) is similar, and (c) is obvious. 

3. Simplification of the construction of twisted sums. There are two im- 
portant simplifications of the construction of quasi-linear maps and hence of 
twisted sums. The first allows us to consider quasi-linear maps defined only 
on a dense subspace of Y; the second allows us to drop the requirement of 
homogeneity in the definition of quasi-linear map. 

THEOREM 3.1. Suppose that X and Y are quasi-normed F-spaces and that YO 
is a dense subspace of Y. Suppose FO: YO -- X is a quasi-linear map. Then 

(i) there is a quasi-linear map F: Y -* X such that F(y) = Fo(y), y E YO; 
(ii) if F*: Y -* X is any quasi-linear map such that F*(y) = Fo(y), y E YO, 

then F* and F are equivalent. 

PROOF. Consider the space X EF0 Yo quasi-normed by 

Il(x,Y)I1 = lix - Fo(y)II + IIyll. 
Let Z be the completion of this space; then Z is a twisted sum of X and Y. 
To see this, define j: X ->X EF Yo by j(x) = (x, 0) and q: X ED F. Yo Y 

by q(x, y) = y. Then q extends to an open mapping q of Z onto Y whose 
kernel is precisely j(X). For this last point, note that (as in [4, 3.3]) if (x", Yn) 
is a sequence in X EDF0 Yo converging to z in Z and (xn, Yn) = Yn ->0 then 
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(Fo(y), yn) -? 0 and hence (xn - F0(yj), 0) -> z. Thus (x" - F0(yn)) con- 
verges to some x0 in X and z = j(xo). 

Now by Theorem 2.4, Z is equivalent to X eH Y for some quasi-linear H, 
i.e. there exists T: Z -> X eH Y such that the following diagram commutes: 

O X Z Y O 

ix > T iy 

O - X X EH H -Y - 0 

Then TIX eFo Yo has the form T(x,y) = (x + Ay,y) where A: Y0-> X is 
linear. From this, 

IIFo(y) + A(y) - H(y)I| < IITII IIyII y E YO. 
If we define 

F(y) = H(y) - A(y), y M YO, 

=Fo(y), yE Yo, 
then F is a quasi-linear extension of F. Uniqueness up to equivalence is 
guaranteed by the fact that any extension of Fo defines a completion of 
X EF Yo. The proof of Theorem 3.1 is complete. 

Let Y0 be a dense subspace of Y. 
DEFINITION 3.2. A mapf: Y0 -> X is quasi-additive if it satisfies 

(i) lIf(YI + Y2) f(YI) f(Y2)II < K(11Y111 + 11Y211)'Y1'Y2 E YO; 
(ii) limt)Of(ty) = O, Y E Yo; 
(iii) f(-y) = - f(y), Y Yo. 

Thus we weaken the homogeneity assumption of quasi-linearity, replacing it 
by antisymmetry (iii) and continuity at zero along lines (ii). With K the 
constant in (i), we say thatf is quasi-additive of order K. 

The following lemma is a simple modification of Lemma 3.2 of [4]: 

LEMMA 3.3. Suppose X and Y are quasi-normed F-spaces. Then there exist 
positive constants r and L such that whenever YO is a dense subspace of Y and f: 

YO-> X is quasi-additive of order K, 

(f i>1 Yi) - _f(yi) < KL( 11 Yi|Ir) 
for any y1, . . ., Yn E Yo. If X = Y = R, then L can be taken to equal 1 and r 
can be taken to equal! 

LEMMA 3.4. Suppose X is a quasi-normed F-space. Then there is a constant 

Bx depending on X such that whenever f: R -> X is quasi-additive of order K, 
then 
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PROOF. By replacing f by g(t) = f(t) - tf(l), we see that it suffices to 
consider the case whenf(l) = 0. In this case, 

I1f(2n) - 2f(2-(n+1))II < K2-n 
and hence 

112nf(2n) - 2f(2(n)| < K 

Now L and r can be chosen satisfying Lemma 3.3 with Y = R and also such 
that 

xi < L( a 11xill 
r 

for x1, ... , xn E X (by Theorem 1.1). We then have 

112nf(2-n)ll < LKnl/r, n E N. 

Let t be in (0, 1); we suppose that 2-n < t < 21-n for some integer n. Then 
00 

t = 2 Ek2 
k=O 

where E0 = 1 and each Ck is either 0 or 1. Let 
m 

tm = 2 1 -k2 
k=O 

Then 

k (tm) - 
ekaf(2 (n+k)) < KL 2 (n+k ) r < KL( 1 2 r 

From this, 
m llr 

Vf(tm)II <KL2 (1 - 2r)1 + k ek(n + k)2-(n+k)] 

?? llr 
< KL2 (1 - 2-r)-1 + k0] = L*K, say. 

k =O 

Finally, I If(t) - f(tm) - f(t - tm) II < K and hence 

IIf(t)JI < L(Ilf(tm)IIr + Krllf(t tm)llr + Kr)l/r 

< LK((L*)r + 1 +IIf(t- tm)llr)l/r 

Sincef(t - tm) -> , we have, on letting m -* oo, that 

jjf(t)ll < L((L*)r + 1)l/rK 

and the result is proved. 
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THEOREM 3.5. Suppose X and Y are quasi-normed F-spaces and YO is a dense 
subspace of Y. Then if f: YO X is quasi-additive, the map F: YO -> X defined 
by 

F(x) = IxIIf(x/IIxII), x # 0, 

=0, x=0, 

is quasi-linear. 

PROOF. If Ix I 1 andf is quasi-additive of order K, then 

jIF(x) - f(x)II < BxK 

by Lemma 3.4. Let C denote a modulus of concavity for X. Then if 

IlxII + IIYII < 1/C, we have lix + yll < 1 and so 

IIF(x + y) -f(x + y)|I < BXK. 

Now, 

11F(x + y) - F(x) - F(y)Jj < C(jjf(x + y) - f(x) - f(y)II + 3C2BxK). 
Hence 

jIF(x + y) - F(x) - F(y)II < C(K + 3C2BXK). 
Thus F is quasi-linear, and the proof is complete. 

We now turn to the form of quasi-additive maps from R into R. Let 
B = BR (as obtained in Lemma 3.4). 

LEMMA 3.6. Iff: R R and g: R -- R are quasi-additive of order K and 

If(2n -g(2 )I 6 M 2n, n E Z, 

then 

[(t) - g(t)j < (M + 4BK)Itj, t ER. 

PROOF. For t in R+, choose n in Z so that 2n-1 < t < 2n, and define 
f(n)(r) = f(2nr), g(n)(r) = g(27r), r E R. The functions f(n) and g(n) are quasi- 
additive of order 2nK. Hence 

V(n)(2 -nt) - 2ntf (n)( 1) < 2nBK, 

Ig(n)(2-nt)-2- ntg(n)(l)l < 2nBK. 

Then 

If(t) - g(t)I < 2-ntlf(2n) - g(2n)l + 2n+1BK 

< (M + 4BK)t. 

This proves the lemma for nonnegative t; since f and g are antisymmetric, we 
have the result for all real t. 
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THEOREM 3.7. (a) If 0: R R is a Lipschitz function, then the map 

f(t) = t0(log(l/jtj)), t #7 O, 

=0, t=O, 
is quasi-additive, of order L log 2 where L is the Lipschitz constant of 0. 

(b) Conversely, if f is quasi-additive there exists a Lipschitz function 0: 
R -* R such that 

sup f(t) o(log <i)<o 

PROOF. (a) For tl, t2 > 0, 

f(tl + t2) -f(tl) - f(t2) 

tl + t2 

=o(log 
1 _ ti 

l(ogiI 
o(gI~ 

t, + t2) t, + t2H tj t + t2 (t) 

< Lt tI log ti + t2 + t2 log tl + t2) 

where L is the Lipschitz constant of 9. Since 

tlog + (1 - t)log1 < log2, 0 <t < 1, 

we conclude that 

Vf(tl + t2) -f(tl) -f(t2)I < L log 2(t1 + t2). 
It now follows easily thatf is quasi-additive. 

(b) rff is quasi-additive of order K, then 

Jf(2n+1) -2f(2n)l < K. 2n+1, n E Z. 

Hence 

|f(2 n) _ f(2 n) |< K. 
2 n+1 - 2n K 

Now choose 0 a Lipschitz function of Lipschitz constant K such that 
0(n) = 2nf(2-n), n E Z, and define 

g(t) = t0(-logltl/log 2), t #& O, 

=0, t=O. 
Then g is quasi-additive of order K andf(2n) = g(2n), n e Z. Thus 

f(t) g(t) 
< 2BK, t 7$ 0, 

t t 

by the preceding lemma, and the result follows. 
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4. Twisted sums of sequence spaces. In this section we apply the results of 
the preceding two sections to the construction of quasi-linear functions on 
sequence spaces. We obtain that under very general conditions on the 
sequence space E, there is a short exact sequence 

O > E-* Z-- E-O 
which does not split. In particular, we give an alternate proof of the solution 
of the 3-space problem for Hilbert spaces. 

DEFINITION 4. 1. A solid quasi-normed FK-space is a sequence space E 
satisfying: 

(i) if en denotes the nth basis vector (en(k) = Snk), then the linear span R? 
of (en) is dense in E; 

(ii) the quasi-norm 11 on E satisfies 
(a) llsxll < IlslIK, lixll, s E loo, x E E; 
(b) IlIell = 1,n EN; 
(c) llxllK < llxll, x E E. 
Under these circumstances (en) is an unconditional basis for E. 
Notation. Let 1, denote the class of Lipschitz functions 4: R -* R such that 

4)(t) = 0 for t < 0. 
For 4 in C, we define a quasi-additive mapf: R?? R? by 

f(x)[k] = x(k)4)(-logjx(k)j), x(k) # 0, k E N, 

-0, x(k) = 0, k E N. 

To see that f is quasi-additive (for the quasi-norm on E), observe that if L is 
the Lipschitz constant of 4, then for x1,x2 in E, 

|f(x1)[k] + f(X2)[k] -f(x + X2)[k]/ < L log 2(1xl(k) + X2(k) ). 

From this, 

/X(X) + f(X2) - f(XI + X2)j < L log 2(jxIl + Ix21) 
(using the obvious lattice operations on E). Thus 

j[(X1) + f(X2) - f(XI + X2)|| < L log 2(11 lxiI + IX21 11) 

< CL log 2(I1 xl 11 + 11 x211) 

where C is a modulus of concavity of 11 - 11. 

Next, by Theorems 3.5 and 3.1, f induces a quasi-linear map FO: R? -? R: 

Fo(x) = llxllf(x/llxll), x # 0, 

=0, x=0, 

and Fo may be extended to a quasi-linear map F: E -* E. We now study the 
properties of the twisted sum E EDF E. 

Note first that there is no gain of generality in relaxing the restriction 

0(t) = 0, t < 0; each 4 may be replaced by 
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+(t) = +(t) - j40), ~t > 0, 
-0, t<O, 

and it is easily seen that + induces a twisted sum equivalent to E eDF E. 
Secondly, note that although F is not unique, it is unique up to equivalence. 

Notation. For 0 in X, E(4)) denotes the (unambiguously defined) twisted 
sum E eF E. 

THEOREM 4.2. Let E be a solid quasi-normed FK-space such that no sub- 
sequence of (en) is equivalent to the unit vector basis of co. Let 4 and 4, be in C. 
Then 

(a) the two twisted sums E(+O) and E(%P) are equivalent if and only if 

sup l+0(t) - ,(t)j < ci; 
O<t< oo 

(b) E(+O) and E(41) are projectively equivalent if and only iffor some a # 0, 

sup jl+(t) - aq4(t)j < oo; 
O<t< oo 

(c) E(+) is trivial if and only if 4 is bounded. 

PROOF. (a) Suppose 4 and 41 induce the quasi-linear maps F: E -> E and G: 
E -- E. Then by 2.5, E(+O) and E(41) are equivalent if and only if there is a 
linear map A: E -* E such that 

jIF(y) - G(y) - Ayll < MlIyll, y E E. 

It is immediate that if 

sup l+(t) - 4(t) < xo, 
O<t< C 

the above condition holds with a = 0. 
For the proof of the converse, suppose there is a linear map A: E -4 E such 

that 

jIF(y) - G(y) - Ayll < MIIyII, y E E. 

Let H be the quasi-linear map F - G. Observe that H(en) = 0 for all n, and 
hence IIAenII < M, n E N. In particular, IIAenII0. < M, n E N, and so we may 
select increasing sequences of integers (n(k)) and (m(k)) such that A (en(k) - 

em(k)) -> 0 coordinate-wise. 
Now by a standard gliding hump argument we may select a subsequence 

(n)no= 1 of (en(k) - em(k))k??= 1 and an increasing sequence (Pn) such that po = 0 
and 

(1) A- +1fn- pk=p, -+, (Aff(k))ekII ? 2"; 
(2) supp{fn} = {qn, rn} C {Pn-l + 1, **P- 

Define a linear map A: lin(fn) -* E by 

Afn = (Afn)(qj)eqJ + (Afn)(rj)ern 
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Then IIjAfjj < 2CM, where C is a modulus of concavity for 11 Hence, 
IIAfnIoo < 2CM, and so lAfnl < 2CMlfnl, n E N. 

For x = I tjn in lin(fn), we have max It, ? llxloI< < jjxj. Hence 
N Pn 

Ax - E tn E (Afn(k))ek < Mllxjj, 
n=1 k=pn-I+l 

where M1 depends only on the modulus of concavity of II (This follows 
from (1) above and Theorem 1.1: if r and L are chosen as in Theorem 1.1 and 

lyilI < 2-', then 
N N ll/r 

EYi < Lt : yilrJ < L(l - 2-r)-1/r 

for any N.) Thus 
N P 

H(x) - tn E (Afn(k))ek < M2*llx 
n=1 k=pn-1+l 

and hence 
N 

H(x)- E tnAJn,f < M211XII, 

with M2* and M2 independent of x. 
Now let sn = fi + +fn, n E N. Then 

n 

H(sn)- E Afi < M21Snl 

However, H(sn) = (4p(logIIsn1) - 4{(log IlsnlI))sn and so 
n 

||A(log jjsnll) -_ 4(log jjSnjj)j ISnl- AfiJ < M2jjsn I 

for all n. Further, 
n 

| AIJ < 2CMIsnl, n EN, 

and hence if Ik(log i I sn 11- )- (log I sn I 1) > 2 CM, then 

10(logllsnll) - 4(logjjsnjj)| - 2CM < M2. 

Thus 

j|(logfjsnjj) -4(logljsnlj)l < 2CM + M2, n E N. (*) 

Note that if supn I I Sn < K o, the sequence { eq, er,, eq2, er2, . . . } is equiv- 
alent to the usual basis of co. For assume SUpn IS, l = S is finite; then if 
x = I i tieq, + j tjerii 

max { }tjj,j|tjl} < 1jxjl <5 *mia.x { |tj|, tjj } 
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Hence from our assumption it follows that s, oo. Also, IIf ? < 2C and 
hence 

llsnll < C(1sns1jj + 2C), n E N. 

Thus 

logllsnll < log C + log(ls|n-Ijj + 2C) 

< log C(1 + 2C) + log j|Sn-111. 

It follows that for any t > 1 there exists an integer n such that 

loglsn-1Ill < t < log Ijsnll 

and 

logllsnll - log llsn-Ill < log C(1 + 2C). 
Since 4 and 4 are Lipschitz, we conclude from inequality (*) and the above 
inequalities that supo<t<.O k+(t) - 4(t)j < oo, which was to be proved. 

(b) If E(+) and E(4) are projectively equivalent then F(x) and G(ax) are 
equivalent for some a =# 0. (F and G are induced by 9p and 41, respectively.) 
Define Ga(x) = G(ax); then E eG E is equivalent to E(8), where 

9(t) = a4'(t + log I/lal) - a4'(log I/lal). 

Hence 

sup 1+(t) - aip(t + log I/lal) + a4i(log l/jaj)j < 0o, 
O<t< oo 

and since k and 4 are Lipschitz, 

sup jp(t) - a4i(t)I < co. 
O<t< o 

This proves (b). 
(c) is immediate from (a) and (b). 
DEFINITION 4.3. A pair of F-spaces (X, Y) is said to split if every twisted 

sum of X and Y is trivial (i.e. every short exact sequence 0 -O X -* Z -> Y 
0 splits). 

Since the class e contains (many!) unbounded functions, an immediate 
consequence of Theorem 4.2 is: 

COROLLARY 4.4. Let E be a solid quasi-normed FK-space such that no 
subsequence of (en) is equivalent to the usual basis of co. Then (E, E) fails to 
split. 

Suppose that E is a quasi-normed F-space with an unconditional basis, no 
subsequence of which is equivalent to a co-basis. Then E is isomorphic to a 
space satisfying the assumptions of Corollary 4.4, so (E, E) fails to split. In 
particular, 

COROLLARY 4.5. The pair (1p, lp) fails to split for 0 < p < oo. 
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COROLLARY 4.6. For 0 < p < 1, there exists a quasi-normed F-space Z 
which is not p-convex, but which has a subspace Y isomorphic to lp with Z/ Y 
also isomorphic to lp. 

Corollaries 4.5 and 4.6 solve a problem raised in [4] for 0 <p < 1. For 
p = 1, these results are known; they are equivalent to results of Kalton [4], 
Ribe [7], and Roberts [8], which are constructions of a nonlocally convex 
F-space whose quotient by a one-dimensional subspace is a Banach space. 

Theorem 2.6 of [4] implies that a twisted sum of two B-convex Banach 
spaces is (after renorming) a B-convex Banach space. This and Theorem 2.2 
give 

THEOREM 4.7. If 1 < p < oo and 4 E X, then Ip(o) is isomorphic to a Banach 
space. In particular, lp(4) may be renormed so that it is projectively equivalent to 
an isometric twisted sum of lp and lp. 

Corollary 4.5 for p = 2 and the above theorem give 

COROLLARY 4.8. There is an isometric twisted sum of Banach spaces 

0 -*12 -* Z -* 12 -*0 

which does not split. 

This was originally established by Enflo, Lindenstrauss, and Pisier [2]. 
Their approach was "local" in nature; our construction seems more "global" 
and somewhat simpler. The corresponding result for p # 2 also follows 
simply enough. 

It is possible to extend these results slightly by using the ideas of Turpin 
[12]. We modify Turpin's approach slightly but not essentially. 

Suppose X is a (nontrivial) quasi-normed F-space. Then the galb G(X) of X 
is defined to be the space of all real sequences {an} such that I anxn 
converges whenever (xn) is a bounded sequence in X. The space G(X) is a 
quasi-normed F-space when equipped with the quasi-norm 

m 

IItan)}II= sup SUp _ aixi 
m vlx,nr1i= 

It is easily verified that G(G(X)) = G(X), and that G(X) satisfies the hy- 
potheses of Theorem 4.2 (see [12, 2.2 and 5.2]). 

COROLLARY 4.9. Suppose X is a nontrivial quasi-normed F-space. Then there 
is a quasi-normed F-space Z with a subspace Y isomorphic to G(X) such that 
Z/ Y is isomorphic to G(X) but such that G(Z) c G(X). 

PROOF. From Corollary 4.4 there is a space Z with a subspace Y isomor- 
phic to G(X) with Z/ Y isomorphic to G(X) and Y not a direct summand of 
Z. Assume that G(Z) = G(X). For each n define e,, in G(X) by en(k) = ink. 
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Let q be the quotient map of Z onto G(X); then by the openness of q we may 
choose z,n in Z with qzn = e, and Iz,n < M, M independent of n. Then since 
G(Z)= G(X), 

|| E a,,zn M*jj{a1 a2 ... . am, 0, }IIG(X) 

where M* is independent of m and al, ... , am. Thus we may define a 
continuous linear operator T: G(X) -* Z such that qT = iG(X). (T is defined 
by Ten = z, n E N.) This implies that Y is a direct summand of Z; the proof 
is complete. 

THEOREM 4.10. Suppose E is a solid quasi-normed FK-space and 4 E z&. 

Then E(+) has a basis. 

PROOF. Suppose 0 induces the quasi-linear map F: E -* E. Then E(+) = 

E ( F E. Let 

U2n -I = (en, 0), 

U2n = (?, en )' n E N. 

Then (un) spans a dense subspace of E(+); we verify that it is a basic 
sequence. It is enough to show that there is a constant C* such that if p < q 
and tl, . . . , tq are in R, then 

Il,EltuillAc*lq tiuill p q~~~i 

Suppose first that p is even, p = 2n. Then 

p n /n \ n 

| ti Ui 2i - Ie - F( I t2iei) + | t2i ei 

n 

= || - I t2(1o9 an - log t2i ))ei + an, 

where aln = IlE niX71 t2ie I. Now suppose n < N, and let a = = t25e,l. Then 

|| E tUi < C| (t2i- I-t2io(log a - log t2i ))ee 

n1 
+ L t2i(log a- log an)e| ] + an, 

where C is a modulus of concavity for and L is the Lipschitz constant of 
4. Hence 
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2n N 

E tiUi < C E (t2i 1 - t2io(log a - l1g0t2ijei)) 

+ CL log( a a)a + an 

N irr 

<C2 tiui + ( e + 1)a 

< c + ~ + xtiui.- 

(For the second inequality we have used that It log tI < e- for 0 < t < 1.) 
Nowifp =2n - 1,n <N, then 

||Eti ui| < c(| ti Ui| 
+ 

lt2n U2nl 

< c(c + CL + I N tiUi+ Clt2nk 

where C is a modulus of concavity for I * However, 
N 2N 

It2n| < t2iei < tiiu 

so that 

ti (C2 + 2CC|L tiui 

Finally, since 

2kU 2k+ 
I 

||E ti ui| < || E ti uil 

for any k, the result follows-with q equal either to 2N or 2N - 1. 

5. The Banach spaces 4,(p), 1 < p < oo. For 1 <p < o and k E e, the 
space Ip(4) is a reflexive Banach space, since 1p is reflexive. In this section we 
obtain some of its properties. We first identify the dual space of IV); then 
we study the structure of basic sequences in Ip(o). 

Toward our first objective: the adjoint of the short exact sequence 

O ->lp >lp + lp O 

is a short exact sequence 

w folqlowslp l()* i O 

with Il/p + llq = 1. It follows that Ip(o)* is a twisted sum Iq (DG Iq, with the 
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duality given by 

<(x,y), (w, z)> = <y, w> + <x, z> 
for x,y in Ip and w,z in 4q. The quasi-linear map G can readily be identified: 

THEOREM 5.1. The space Ip(o)* is equivalent to 4q(l4), where 

p(t) = -0((p - l)-'t), t > 0. 

PROOF. The crucial step in the proof is the following lemma: 

LEMMA 5.2. If xl, . . . , xn,y1, . .. . yn are in R then 

n / _ _ _ 1 ( 

, x.v.Ilocg Ii 1 ? -((P - 1)llXllq + Ilyllp). 

(Here, 1 <p < oo, l/q + I/p = 1, and 0 logO = 0 log oo = 0.) 

PROOF. Let J denote the set of indices in { 1, . .. , n} such that lxii S 

Iyi11, i E J; and let K denote the remaining indices. Then 

I X~i lg lxii / = ya X o iI iyl- 
iEY-J yj 1" I i lllEJ lylp l l ylp )I 

1 lp < e (IIYII) 

(using It logltI I S l/e, ItI < 1). Now, 

l I 
I' lp 

l I p-l 

\x lX q-1 I xilX 

so 

xiYi log | =i _____ lo ( xi| ) 

(p ) -1 Xllq 

The inequality follows from combining these two estimates. 
PROOF OF 5.1. We suppose that 4, induces the quasi-linear map H: 4q Iq4 

so that for x E RX, 

(H(x))n = Xni( log9 Xnl) 
( lXn ll) 

Let Rq' denote the space RX with the lq norm, and define T: Rq' EDH Rq' 

Ip(o)* by T(w, z)(x, y) = <y, w> + <x, z> for x,y in R'. The inequalities 
which follow show that T(w, z) defines a continuous linear functional and 
that T is a bounded operator. 
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Write 

<y, w> + <x, z> = <x - F(y), z> + <F(y), z> 

+ <y, H(z)> + <y, w - H(z)>. 

By definition of F, H, and ib, 

I<F(y), z> + <y, H(z)>l 

- y yizi[k(log l) +(og ( )9] i= 1 lYi I zil I 

< L y yizi log( \*(zjj) ) 
i= I Yil llZlI 

= E |Yizi log((||) *1lii 1 

Here, L is the Lipschitz constant of 0; and if any yi or zi is zero, the 
corresponding term in the sum is taken to be zero. 

The last expression above equals 

- 1 W Iz log[ Iyp?i: ] 

where 

z=* zil sgn log 1 i)lli11]. 

Now let ui = IYlIll/yll and let vi = z?0/Iz*I11. Then 

I<F(y), z> + <Y H(z)>I LIY IIYI liz1 uiv logvi p - I l~~~~uilp-, 

S 
(p - IIYIe II 

by Lemma 5.2. 
Letting K = max{ Lp/((p - l)e), 11, we see from the above and Holder's 

inequality that 

I<Y, w> + <x, z>I1 K(IIx - F(y)II lIzIl + IlyII lizil + IlyII 11w - H(z)II) 
< KII (x, y) 11 11 (w, z) 11. 
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This shows that T(w, z) is continuous on Rp?? EDF Rp? and hence that T(w, z) 
defines an element of Lp(o)*; it also shows that T is a bounded operator from 
R' efH R' into ip()* 

It is easy to check that T induces an equivalence between the diagrams 

0 q Rq fH q R q0 

and 

-*Rq lp( ) R"' - 0. 

The equivalence continues to hold when we pass to the completions of the 
spaces in the diagrams, and the proof of the theorem is complete. 

We thank Haskell Rosenthal for simplifying the original proof of Lemma 
5.2; the proof presented here is essentially due to him. We also thank 
Heinrich Lotz for pointing out an error in an earlier version of the deduction 
of Theorem 5.1 from Lemma 5.2. 

We now turn to the structure of basic sequences in lp(4). For convenience, 
we suppose that 0 is differentiable with bounded derivative. As before, the 
quasi-additive map f induced by 4 is f(t) = to( - log t). Then 

f'(t) = +(-log t) - 0'(-log t), 
so that If I is increasing near 0 provided I1(t)I oo as t - oo. Indeed, for 
p > 1, t-'I f(t)IP is increasing near 0. 

Notation. lp, is the space of all real sequences (xn) such that I' If(Txn)IP 
< oo for all T > 0. 

This is the usual Orlicz sequence space lM' where M(t) = If(t)IP in a 
neighborhood of 0 and M is extended so as to be an increasing function. The 
space lM is a Banach space, since t - 1M(t) is increasing near 0 and M is 
therefore equivalent to a convex Orlicz function. 

LEMMA 5.3. Let (vn) be a normalized block basic sequence in 1p and let 

Wn = (F(Vn), vn) in lp(4). Then 
(a) the sequence (wn) is a basic sequence; 
(b) if limtOO 4'(t) = 0 monotonically, then (wn) has a subsequence equivalent 

either to the usual basis of lp or the usual basis of lfp; 
(c) if +(t) = ct, c 7# 0, then (wn) is equivalent to the usual basis of lfp. 

PROOF. (a) The sequence (wn) is block basic with respect to the basis 
constructed in Corollary 4.9, and hence is a basic sequence. 

(b) Assume first that ?' 1 tnwn converges. Then ??1 tnvn converges, so 

n I ItnIP < ox. 
Now suppose ? t,tn" K oo. Let 

N (/p 
O7N= E Itnlp n E N, 

n= 1 
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and 

?? l/p 

n = (1 
Assume that vn = + vn(k)ek, where (In) is an increasing sequence of 
integers. Then 

: tnWnW = (TN + ( 1 1 tKI Iv (k) l+(log -tvk) 

(log Ivn(k)l ) I/P 

Since UN -* a and 4 is Lipschitz, it is easy to see that if 
N 

lim 
| nE t" Wn| N--oo n1 

exists, the limit must be 

a + ( I tnI vn k)j 4log U l'og 1 p1/ 

n= 1 k=ln1+l Itnv(k) vn(k)l I / 
(**) 

Hence, since (wn) is boundedly complete (lp(4) is reflexive), EX tnwn 
converges if and only if the expression (**) is finite. 

By assumption, limtoo +'(t) = 0 monotonically, so that 

|(log v(k)) - ( log Ivn(k)I) 

< |Qlog T) - ) (O) = (log n 

Thus 'X I tnwn converges provided 

n-1 nlo| g i < )o; 

or, since 4 is Lipschitz, provided 
oo 

E Vf(tn)lp < O0 (** n=1 

We now have two cases. 
(i) If an = max{Ivn(k)I: In + 1 < k < ln > - > 0 for all n, we show that 

the finiteness of (**) implies the finiteness of (***). (Then (wn) is equivalent to 
the usual basis of l,P.) In this case, the expression (**) is greater than 
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E( z | tn lp (iog t) - k(log -) ) 

> e Iani |(iog I$jI) ) - e(L + 1)0(log I/e)a; 

this implies (***) is finite. (L is the Lipschitz constant of 4.) 
(ii) If infn an = 0, there is a subsequence (vk,,) of (vn) such that I '(t)I < 2- 

for t > log(l/ak,,). For ease of notation we assume kn = n. Then 

( logIt..kl ) log 1 < 2-n log la2 
Itnvn(k)l I vn(k)I Itn 

Now, using that It log a/tl < ae-' for 0 S t < a, we have that the expression 
(**) is bounded above by 

a+ ( 2-ItnlP(log ) a + ae 1: 2 
- 

) < n-. 

Thus in this case, (vk ) is equivalent to the usual basis of lp. The alternatives 

(i) and (ii) imply (b). 
For the proof of (c), note that if +(t) = ct, c 0 0, then the expression (**) 

equals 

(a + IcI( I | tnl| log I P|)/; 

thus (wn) is equivalent to the usual basis of IAP. 

THEOREM 5.4. Suppose that either limt,o 0'(t) = 0 monotonically or +(t) = 

ct, c =# 0. Then every normalized basic sequence in Lp(k) has a subsequence 
equivalent either to the usual basis of lp or to the usual basis of lf . 

PROOF. Suppose that wn = (un, vn) is a normalized basic sequence in Ip(o) 
If vn*0, then 

II(un, vn) - (un - F(vn), ?) =(F(vn), vn)II O. 
Also, (un -F(vn), 0) is in j(lp). Hence, by a standard perturbation of bases 
argument, (wn) has a subsequence equivalent to a normalized basic sequence 
in lp. From this the result follows easily. 

Now suppose IIvn +> 0. Then by passing to a subsequence we may assume 
that II n I > E > 0 for all n. From the fact that (wn) is shrinking and the 
characterization of Ip (4)*, it follows that vn -O0 weakly. Again, by passing to 
a subsequence, we may suppose that there is a block basic sequence (Yn) in lp 
with llvn - ynll 2- . 

By passing to a further subsequence and using Lemma 5.3, we may suppose 
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that (F(yn), y) is a basic sequence equivalent either to the usual basis of Ip or 
to the usual basis of lI,p. Let zn = (F(Yn), Yn); then zn O-0 weakly. 

If Iwn- znI- 0, a subsequence of (wn) is equivalent to a subsequence of 

zn; an application of Lemma 5.3 completes the argument in this case. 
If - -n-zni -> 0, by passing to a further subsequence we may assume that 

(wn- zn) is a basic sequence. However, wn -Zn = (Un- F(Yn), Vn - Yn), and 

II -vn yn - . Hence by the very first part of the argument we may assume 
that (wn- zn) is equivalent to the usual basis of Ip. 

Thus if I ' 
I tnwn converges, then 2 ?1 tnvn converges, and hence 

Y-= ItnIP 00. Then Y??= tn(wn - zn) and hence ? tnzn converge. Con- 
versely, if 2 1I tnzn converges, then since 2 1I t,y, converges, certainly 

' 
I I tnIP < oo; and we may reverse the reasoning. 

The converse is trivial by using the sequences (en, 0) and (0, en). This 
completes the proof of Theorem 5.4. 

COROLLARY 5.5. If we take 

kr(t) =t, O < t < 1, 

=tr 1 < t < oo, 
then the spaces Ip(Qr) (O < r < 1) are mutually nonisomorphic. 

This is immediate from Theorem 5.4, since 'p(4r) contains lf,P, where fr is 
induced by or. Since fr and f, are not equivalent at 0 for r =# s (see [5, 4.a.5]), 
the result follows. 

Strictly speaking, in order to apply Theorem 5.4 we should first smooth 4or. 

COROLLARY 5.6. Let +(t) = ct (c # 0) and let (wn) = (un, vn) be a normal- 

ized basic sequence in Ip(o) with inf livnil > 0. Then (wn) has a subsequence 
equivalent to the usual basis of Ifp. 

PROOF. This follows from an examination of the proof of Theorem 5.4. By 
Lemma 5.3(c), the sequence (zn) in the .proof of Theorem 5.4 is equivalent to 
the usual basis of IfP. 

6. The Banach spaces Zp, 1 <p < oo. In this section we examine more 
carefully the extremal example of the class of spaces we have constructed. 
For fixed p, the spaces 5p(@) obtained by taking +(t) = ct, c # 0, are projec- 
tively equivalent twisted sums and hence isomorphic as Banach spaces. 

Notation. Zp denotes the (isomorphism class of) the Banach space lp(j), 
+(t) = ct, t 7# 0. 

The next theorem summarizes the properties of Zp obtained so far. 

THEOREM 6.1. For 1 < p < oo, Zp is a reflexive Banach space with a basis. 

Zp may be normed in such a way that it has a closed subspace M isometric to lp 
with Zp/M also isometric to lp. Further, ZP* is isometric to Zq, where I/p + 
I/q = 1. However, Zp is not isomorphic to lp. 
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We claim that Zp is, in certain senses, an extremal solution to the three- 
space problem for lp. In this section we will make the meaning of this more 
precise. 

Let (ri) denote the sequence of Rademacher functions. For a Banach space 
X and for 0 < p < 2, the number an p(X) is defined to be the least constant a 
such that 

(o|ilri (t) x,| dt) < a( lixilip) 

for all x,, . .. , xn in X. The space X is of type p if supn anP(X) < x. Enflo, 
Lindenstrauss, and Pisier [2, Theorem 3] show that if X is a twisted sum of 
two Banach spaces of type 2, then an2(X) = O((log n)a) for some constant a. 
Our next result sharpens this somewhat. 

THEOREM 6.2. (a) Let X be a twisted sum of two Banach spaces which are 
isomorphic to subspaces of L. (1 < p < 2). Then an'P(X) = O(log n). 

(b) There is a constant c > 0 such that anp(Zp) > c log n (1 <p < 2). 

PROOF. The space X is isomorphic to an isometric twisted sum of subspaces 
Y and Z of L. Then anp(Y) = anp(Z) = 1 for all n. Now the proof of 
Theorem 3 of [2] shows that if p = 2, an2#,(X) < 2an'P(X) + 1, n = 1, 2,. 
The same inequality for 1 < p < 2 follows from identical reasoning. 

Thus if a2,p(X) = k, then 

a2 2np1(X) < 2nk + 2n -I < (k + 1)2, n = 1, 29 .... 

Since anp (X) is increasing in n we easily obtain (a). 
(b) Take +(t) - t; then Zp is isomorphic to lp(4p). In Lp(o) let un = (0, en). 

Then IIunII = I and for 0 < t < 1, 

nnn 

E ri(t)u1 = F ri(t)e1) + ri(t)e1 
n n 

= ||E ri(t) log(n/1P)e, + | ri(t)e1 

= (-(log n) + I )n /IP; 

while (II Jju,jjP)l/P = n11P. Of course this calculation used the given quasi- 
norm on Ip(4), and we only conclude that for the norm on Zp, anp(Zp) > 

c log n for some c > 0. This completes the proof. 
In a similar vein we have 
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THEOREM 6.3. For 1 <p < ox there is a sequence of 2n-dimensional normed 
spaces En satisfying 

(a) each En has an n-dimensional subspace Fn such that F,, and E,,/F,, are 
isometric to ipn; 

(b) if y,, denotes the least norm of a projection of E,, onto F,, then yn > 
c log n for some c = c(p) > 0. 

PROOF. By duality it is enough to consider the case 1 <p < 2. Let +(t) = 

t; in lp@() = lp EF i,p let E,, be the linear span of (0, ej), (ej, 0) (1 < j < n) and 
let Fn be the linear span of (ej, 0) (1 < j < n). 

Then Fn is isometric to and En/Fn is isometric to Ip, although En as a 
subspace of lp(Q) is only a quasi-normed space. However, Ip(o) is isomorphic 
to the Banach space ZP, and so we may consider En and Fn as subspaces of Zp 
with its (Banach space) norm. Thus for some K = K(p) < oo, Fn and En/Fn 
are K-isomorphic to lpn. Now by using the technique of Proposition 2.2, the 
(normed) spaces En may be uniformly renormed so that Fn and En/Fn are 
isometric to lpn. It therefore suffices to prove the result using the original 
quasi-norm on Ip(o). 

Suppose that P: En -* Fn is a projection; then, for x in lpn, 

11 P(F(x), x) 11 < 11 Pll 11 Xll 

where F: p -p is the induced quasi-linear map. Since P is a projection, it 
has the form P(x, y) = (x + Ay, 0), where A: lpn --> lpn is a linear map. Hence 

11 F(x) + AxII < 11 PlIl 11 xI 
and so IIAejI<I I P I I forj < n (since F(ej) = 0). Now 

[i F( E rj(t)ej) + 2 rj(t)Aej dt] 

< 11 PII || rj(t) ej| = J JJ11 Plnl/. 

However, 

LO F( E rj(t)ej) + E rj(t)Aej|| dt ] 

p n I pnp I/ 
> n ((1/p E r(t)ej dt rj(t)Ae dt 

1 ~ ~ ~~~n Il/p 

p (log n)n'IP - IAel1 

.1 n/P((l1p) log n - 11Pll). 



26 N. J. KALTON AND N. T. PECK 

Hence (1/p)log n - IIPiI < I 1, i.e., IIPII > (1/2p) log n. 
This completes the proof. 
REMARKS. (1) The construction of a sequence of spaces En as above with 
-- ?? is the essential part of the solution to the three-space problem given 

by Enflo, Lindenstrauss, and Pisier in [2]. In their construction, y, > 

c(log n)1/2; the result above improves this estimate slightly. 
A theorem of Figiel, Lindenstrauss, and Milman [2a, Theorem 6.5] shows 

that yn must be O(log n)2. Our Theorem 6.2(a) obtains the estimate in their 
proof: an 2(X) = O(log n). 

(2) We conjecture that the rate of growth yn - log n is the best possible 
here. That is, there exists d > 0 such that whenever dim En = 2n and Fn is an 
n-dimensional subspace of En with FnI _l7 EI/Fn, then there is a projec- 
tion of En onto Fn of norm at most d(log n + 1). 

It is perhaps worth noting that the Radamacher averaging technique used 
in Theorem 6.2 can be used to show directly that the pair (1p, lp) does not split 
for 1 <p < 2. 

ALTERNATE PROOF OF 4.5 FOR 1 < p < 2. Let +(t) = t, t E R, and let F be 
the induced quasi-linear map. If lp(,) is trivial, there are a linear map A: 
R?- Ip and a constant M such that IIF(x) - Axll < M llxll, x E R'. Since 
F(e1) = 0 for all i, we have that IIAeiII < M for all i. 

Now for 0 < t < 1 and n E= N, let xn(t) = En= 1 ri(t)ei. We have that 

IIx|(t)ll = n IP and ||F(xn(t))l | -(log n)n1/IP. 

Now, 

l|A (xn(t) > (l/p)(logn)n1/P - Mn11P. (1) 

On the other hand, 

(|'IIA(xn(t)P ct) = dt r1(t)Ae1 dt) 

< M'Mn1IP (2) 

(again, as in Theorem 6.2, using that lp is of type p for p < 2). Inequalities (1) 
and (2) cannot both hold for large n, and the argument is complete. (Note 
that the argument is valid for 0 < p < 1 as well!) 

To conclude the paper we describe another sense in which Zp is an 
extremal twisted sum of Ip'S. 

We need two definitions. If X and Y are Banach spaces, an operator S: 
X -> Y is strictly singular if for any infinite-dimensional Banach space M and 
any operator A: M -> X, the composition SA fails to be an isomorphism. 
Dually, S is strictly co-singular if for any infinite-dimensional Banach space N 
and any operator B: Y -> N, the composition BS fails to be an open map. It 
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is easy to construct a quotient map which is strictly singular (e.g., an operator 
from 11 onto 12), or dually, an isomorphism which is strictly co-singular. 

However, O Ip p 4 p O 0 provides an example of a short exact 
sequence such that j is strictly co-singular and q is strictly singular. We know 
of no other example of this. 

THEOREM 6.4. For 1 < p < oo, the map j: lp - Zp is strictly co-singular and 
the map q: Zp -* lp is strictly singular. 

PROOF. By Theorem 5.1 the adjoint of the short exact sequence 

O I->lp Z-*p -, p --0 

is (projectively equivalent to) the short exact sequence 

0 lq *Zq > Iq *0, 

l/p + I/q = 1. So by duality we only need show that q: Zp -p is strictly 
singular. Assume not; then (since Ip is hereditarily 9p), there is a normalized 
basic sequence (wj) in Zp equivalent to the usual Ip basis such that IIqwn > E 
> 0 for all n. By Corollary 5.6 this is impossible, and the proof is complete. 

We now examine further the strictly singular operators on Zp. For each of 
the known prime Banach spaces X = Ip (I < p < oo) or co, the following 
property holds: if T: X -* Y is not strictly singular, there is a subspace XO of 
X isomorphic to X such that T is an isomorphism on XO. For lp (1 < p < oo) 
and co this is well known. For lo, this follows from a theorem of Rosenthal 
[10, Theorem 3.7]: if T: lo<, Y is not an isomorphism on any subspace 
isomorphic to lo, then T is weakly compact. Since T has the Dunford-Pettis 
property, T is not an isomorphism on any infinite-dimensional subspace of 
lo. It turns out that Zp has a similar but weaker property. 

THEOREM 6.5. If T: Zp -* Zp is not strictly singular, there is a subspace W of 
Zp which is isomorphic to Zp such that T is an isomorphism on W. 

PROOF. Since Zp is a twisted sum of Ip,'s it is hereditarily lp; hence there is a 
subspace M of Z4, M isomorphic to IP, such that TIM is an isomorphism. Let 
(un) be a basis of M equivalent to the usual lp basis. Then by Corollary 5.6, 

JJqunII -O0 and IIqTun II> 0. By the first part of the proof of Theorem 5.4, we 
may assume (by passing to subsequences) that there are basic sequences (vn) 
and (wn) inj(lp) such that 

IIun - vnjllj0 and IITu. - wnll-*O. 

Passing to subsequences again, we may assume that there are block basic 
sequences (vn) and (wn) in lp such that 

jlun - jvnll < 2-, jj Tun - jwnll < 2-, n E N. 
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Now for large enough N we may construct bounded operators A: Zp -Zp 
and B: Zp -Z Zp with IIA 11 < JIB 14 < 2? and such that 

A(jvn)=un-jvn, n>N, 

B(Tun) =jwn - Tun, n > N. 

(The operators A and B are easily defined in terms of Hahn-Banach exten- 
sions of the coefficient functionals for the bases (jvn) and (Tun), respectively.) 
Then 

(I + B )T(I + A )jvn = jwn, n > N. 

Let S = (I + B)T(I + A). Since I + B and I + A are invertible, it suffices 
to prove the result for S. 

Now define V: R' E R? - R$ D R? by 

V(e, 0) = (vs, 0) = 1(v), V(O, en) = (F(vn), vn) 

and extending linearly. We will show that V is an isomorphism; then after 
extension V may be regarded as an isomorphism on Zp. For x,y in R?', 

V(x, y) = ( E xnvn + E ynF(v), E YnVn) 

where the sums are finite. Hence (using the original quasi-norm on ZP), 

11 V(x,y)j = | Xnvn + EynF(v) - F( EYnVn)U + || EYnVn|| 

If vn = + vn(k)ek, then 

EYnF(vn) - F(Eynvn) = E E ynvn(k) log( iivhi vNI ek 
n 1+1 ||Yn I) 

= Eyn log JIYflI ylV 

Now there exist positive constants a, ,B so that a < lIvnIl < /, n= 

1, 2 .... Hence 

nVn + YnF(vn) - F( YnVn) < ? B( xn + Yn log 
ll IYnlI 

< |Xn +Yn log -LL[ +P Ey log 1 0llI 

< J31x - F(y)II + /(log %v IIY.I - 
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Hence I VI I < /8 + /8 log( ,8/ /a). For the other direction, 

F IIvnhI lyn~ ~ ~~I I/ 
Xn Vn + EyYnF(Vn) - F( Eynvn) > a E Xn + Yn log lIE lY l 

11 (1 )11yn(Vn1 1 

> a IIx - F(y) II - a(log 9)IlyII. 
Thus, 

1I V(x, y)II > max(aIIx - F(y)II - a(log (13/a))IIyII, allyll). 
If llx - F(y)II > 2(log (//aI))yII, then 

2 1 + 2 log(,8/a) ) 

if llx - F(y)IH < 2(log (,8/a))IyII, then 

11 V(x,y)II > IlyI > (1 + 2 log(8/ a))-'II(x,y)ll. 
Thus, V is an isomorphism. 

Similarly, if we let 

W(en, 0) = (Wn, 0) = j(Wn), W(O, en) = (F(wn), wj) 

then W defines an isomorphism of Zp into Zp. 
Now consider the map W - SV. By construction, (W - SV)(en, 0) = 0, 

n > N. Hence there is a subspace Y of finite codimension such that (W - 

SV)j Y factors through ql Y. It follows that W - SV is strictly singular. As W 
is an isomorphism, it follows that there exists an integer n0 such that the 
restriction of SV to lin{(ej, 0), (0, ej): j > no} is an isomorphism. Hence S is 
an isomorphism of V(lin{(ej, 0), (0, ej): j > no}), which is isomorphic to 
As remarked earlier, T is then an isomorphism on a subspace isomorphic to 

Zp, and the proof is complete. 

COROLLARY 6.6. Every infinite-dimensional complemented subspace of Zp 
contains a subspace isomorphic to Zp. 

COROLLARY 6.7. ZP has no complemented subspace isomorphic to lp. 

COROLLARY 6.8. Z2 can not be embedded in any Lp (1 < p < oo). 

PROOF. If p > 2, then every Hilbertian subspace of Lp is complemented in 

Lp by a result of Kadec and Pctczynski [3, 3. Corollary 1]; the result then 
follows from 6.7. Assume 1 < p < 2 and Z2 embeds in LP; then by a theorem 
of Rosenthal [11, Theorem 8] Z2 embeds in Lp for somep' in (1, 2]. Now by a 
theorem of Peiczynski and Rosenthal [6, Theorem 3.1], since Z2 contains a 
Hilbertian subspace it contains a complemented Hilbertian subspace; again 
this violates Corollary 6.7. This finishes the proof. 
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COROLLARY 6.9. ZP has no complemented infinite-dimensional subspace with 
an unconditional basis. 

PROOF. By 5.4, any basic sequence in Zp has a subsequence which spans 
either Ip or Ifp; if the original sequence is unconditional, the span of the 
subsequence is complemented in the span of the original sequence. Also, the 
space lfP contains a complemented subspace isomorphic to Ip. (This follows 
from the fact that the function xP is in the set EM, 1; see, for example, [5, p. 
157].) 

Corollary 6.7 and the above now give the desired conclusion. 
REMARK. Zp has an unconditional decomposition into two-dimensional 

subspaces. To see this, simply take En to be the span of the two vectors (e", 0) 
and (0, e"), n = 1, 2, . .. ; the spaces En form the desired decomposition. 
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