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ABSTRACT. Two person zero sum differential games of survival are considered; these 
terminate as soon as the trajectory enters a given closed set F, at which time a cost or 
payoff is computed. One controller, or player, chooses his control values to make the payoff 
as large as possible, the other player chooses his controls to make the payoff as small as 
possible. A strategy is a function telling a player how to choose his control variable and 
values of the game are introduced in connection with there being a delay before a player 
adopts a strategy. It is shown that various values of the differential game satisfy dynamic 
programming identities or inequalities and these results enable one to show that if the value 
functions are continuous on the boundary of F then they are continuous everywhere. To 
discuss continuity of the values on the boundary of F certain comparison theorems for the 
values of the game are established. In particular if there are sub- and super-solutions of a 
related Isaacs-Bellman equation then these provide upper and lower bounds for the 
appropriate value function. Thus in discussingyalue functions of a game of survival one is 
studying solutions of a Cauchy problem for the Isaacs-Bellman equation and there are 
interesting analogies with certain techniques of classical potential theory. 

1. Introduction. The present work is a sequel to our earlier papers on 
differential games ([1], [21, [31). As before, a differential game is a dynamical 
system whose dynamics are described by a family of differential equations, in 
which there are present two controllers or players J1 and J2 with directly 
conflicting interests. In papers [1] and [21 we discussed fixed time games, and in 
[31 we treated pursuit-evasion games and generalized pursuit-evasion games 
which end when the trajectory enters a certain set F, called the terminal set. The 
time at which this occurs is called the capture time. When the game ends a real 
valued quantity called the payoff is computed. For fixed time games the payoff 
is of the form of an integral of a positive or negative function together with a 
possibly nonlinear functional on the space of trajectories. In generalized pur- 
suit-evasion games the payoff is the integral up to the capture time of some 
nonnegative function h, whilst for pursuit-evasion games h is identically one so 
that the payoff is just the time elapsed before capture. During the course of the 
game the two players can affect the outcome of the game by choosing certain 
control variables. The greatest value that J, can force is called the lower value of 
the game, whilst the least value the minimizing player J2 can force is called the 
upper value. 
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This paper is concerned with games in which the payoff consists of the integral 
up to the capture time of a function h, which may be positive or negative, 
together with a terminal payoff (i.e. a function g of the final position as the 
trajectory enters 1). Such games are called games of survival. Because h may 
change sign it is not a priori clear at any initial point which player should aim to 
terminate the game by trying to force the trajectory into F, so the situation is 
considerably more complicated than generalized pursuit-evasion games. 

In ?2 differential games of survival and their value functions are defined. New 
value functions Q' and Q_ are introduced; these naturally occur because of the 
delays when strategies are pieced together. Dynamic programming results are 
obtained in ?3 relating values at any initial position with values at a later 
position. 

Using the results of ?3 the value functions are shown in ?4 to be solutions (or, 
respectively, sub- or super-solutions) of the Isaacs-Bellman equation at points of 
differentiability. 

If there is a C' sub-solution 0 of the Isaacs-Bellman equation satisfying 
G(t,x) > g(t,x) on the boundary of F, then approximation results proved in ?5 
enable one to show O(t,x) ? Q+(t, x). 

The boundary aF of F is said to be regular (see Definition 6.2) if certain value 
functions are continuous on 8F. It is shown in ?6 that if aF is regular then, 
roughly speaking, the value functions Q+ and V$ are then continuous every- 
where. The problem of determining sufficient conditions for the regularity of aF 
is, therefore, of some interest and in ?7, using the estimates of ?5, it is shown that 
aF is regular if there exist sub- and super-solutions of the Isaacs-Bellman 
equation or a related equation. 

Some methods used in ?7 are interesting adaptations of techniques used by 
Perron [101 in discussing the regularity of boundary problems for the Laplace 
operator. Finally, in ?8, all the upper and lower values are shown to be equal if 
aF is regular and the Isaacs condition is satisfied. 

Some of our results are extensions of those of Friedman [41 for survival games, 
but all the techniques and the emphasis of this paper are rather different. Indeed, 
although the work has its origins in differential games of survival, as the above 
summary indicates it is really more concerned with functions related to solutions, 
and sub- and super-solutions, of Cauchy problems for the Isaacs-Bellman 
equation. For example, the results of ?4 show that if the value function of the 
differential game is Lipschitz continuous then it is a generalized solution of this 
Cauchy problem. As the reference to Perron above indicates this is reminiscent 
of techniques of probabilistic potential theory where solutions to certain parabol- 
ic equations are constructed using an associated random process. Using the 
methods above one can obtain results concerning solutions to Cauchy problems 
for a whole family of nonlinear partial differential equations by constructing 
related differential games of survival, but this is something we discuss in another 
paper. 
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We wish to thank A. Friedman for finding an error in the original draft of this 
paper and for simplifying the proof of Lemma 4.3 by observing that the map of 
Lemma 4.2 is in fact a strategy. 

2. Differential games and values. Let Y and Z be compact metric spaces; we 
consider the differential equation 

(1) dx/dt = x(t) = f(t, x,y, z) 

where x E R' and t, denoting time, belongs to [to, oo].f: R x Rm X Y X Z -R 
is continuous and satisfies a Lipschitz condition in x: 

(2) jIf(t, xl,y, z) -f(t, x2,y, z)jj < Kljx - x2 11, 

where xi, x2 Ei R'. We shall consider a differential game of survival G(to,xo) 
associated with (1) and the initial conditions 

(3) x(to) = xo 

terminal set F C R x R', where F is closed and F D [T, oo] x R' for some fixed 
T, and payoff 

(4) P(y, z) = g(tF, x(tF)) + F h(t, x(t),y(t), z(t)) dt. 

Here tF is the first time of entry of the trajectory x(t) into the terminal set, 
h: R X R' X Y X Z -> R is continuous, and g: R x Rm -- R is continuous. The 
player J, controllingy E Y is trying to maximize P whilst J2 is trying to minimize 
P. 

A map y: [to, oo] -- Y is measurable if for every continuous real valued 
function 4 on Y, 4 o y is Lebesgue measurable. Denote by Al (to) the space of 
such measurable functions, where two functions equal almost everywhere are 
identified. Similarly .At2(to) denotes the space of measurable maps [to, oo] -* Z. 
For s > 0 we definean s-delay strategy a for J, as a map a: stl2(t0) -t11 (to) such 
that whenever 

zI(t) =z2(t) a.e. tO < t < t1 

then (azl)(t) = (az2)(t) a.e. to < t < t1 + s. (Note that the values of y = a(z) in 
[to, to + s) are independent of the function z(s).) The set of s-delay strategies is 
denoted by I10(s). We define s-delay strategies for J2 similarly and denote the set 
by Ato(s). 

The value u(a) of a E P,0(0) is defined as 

u(a) = inf[P(az,z);z E s112(t0)], 

and then 
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U(to,xo) = sup[u(a);a E r, (0)]. 

Similarly, for A Ee Ato(O), 

V(f8) = sup[P(y,/3y);y E st'e(to)] 

and 

V(to,Xo) = inf[v(p8);8 E Ae o)] 

The upper and lower values V+ and V_ are defined by 

V+(to,xo) = inf[v0(); e Uo 

V-(to,xo) = sup [u(a); aE eU r, (s 

and in general we have (see [3]) V_ < U, V < V+. 
For games of survival it is necessary to introduce another concept of value. 

First we define the s-perturbed value of a strategy; this is the value of a strategy 
when it is adopted only after a time s has elapsed. Thus in the initial interval 
[to, to + s) the player is assumed to adopt any possible control function, concei- 
vably the worst available. We say for two strategies a, a' E PtO(O), that a' 
E to's(a) if for any z E 200) 

(a'z)(t) = (az)(t) a.e. to + s < t < oo. 

Similarly we say for /3, /3' E At0(O) that 8' Ee Ato (,8) if for any y E -ztl (to) 

(/'y)(t) = (fly)(t) a.e. to + s < t < oo. 

The s-perturbed value of a E rtO(O) is then defined as u3(a) = inf[u(a'); a' 
E to'S(a)] and the s-perturbed value of /3 E At0(O) is defined as *(,83) 
= sup[v(I3');,8' E W10(p)]. 

We write sli,f [to] for the space of measurable functions y: [to, to+ s] -* Y and 
also define rto[s I y] as the set of strategies a E 1to(s) such that az(t) = y(t) a.e. 
to < t < to + s where y E -A4tl[to] is fixed. dA42[t0] and Aj0[s I z] are defined 
similarly. We define the value Q5-(to,xo) by 

Q5 (to,x0) = inf sup u(a). 
YE1l [toI ce0r[jsIyJ 

Similarly we define 

QS+(to,xo)= sup inf v(/3). 
Ze(A1'[toI pEA0lsIzI 

Then clearly we have the relations 

Q (to,xo) 2 sup uqo(a) and Q+(to,xo) < inf v,(f8). 
a (=er,0o(s) 
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Next we define 

Q+(to,xo) = Jrm Q+(to,xo) = inf Q+(to,xo), s-0 .O> s> 

Q-(0,xo) = lim Q(t00xo) = sup Q(t0,x0). 

The quantities Q+ and Q- are alternative definitions of upper and lower value, 
in place of V+ and V . However, if Q+ = Q- then we can certainly assert that 
V+= V-. 

Lemma 2.1. Q (to,xo) < V-(to,xo) and V+(to,xo) < Q+(toIXo). 

Proof. This is immediate from the definitions, for clearly 

Q-(to, xo) = inf sup u(a) ? W_(to, xo) for s > 0 Qs 
~~yEA'Itol r=r,.[,s1y 

and so Q-(to, xo) < V-(to, xo). The other inequality is similarly proved. 

Lemma 2.2. If G is a fixed time game (i.e. F= [T, cc] X Rm) then Q+(to,xo) 
= V (to, xo) and Q (to, xo) = V (to, x). 

Proof. We sketch then details only. If a E P,0(0) then I P(a'z, z) - P(az,z)l 
= 0(s) uniformly in z E -A42(t0), a' E rI,,(a) and a E ItO(O). Therefore lu(a') 
- u(a) = O(s) so lu(a) - us(a)l = 0(s) uniformly in a E P10(O). In particular, 
for a E rt(s), since Q-(to,xo) 2 supxer, (s) u(a), u(a) < Q (to Ixo) + 0(s). 
Therefore V-(to,xo) < Q-(to,xo) and so VW(to,xo) = Q (to,xo) by Lemma 2.1. 

The following example shows that in games of survival the situation is more 
complicated. We consider only a simple game in which Jj (the maximizer) 
appears only in a trivial role, i.e. he has no effect on the course of the game. In 
this case the game reduces to an optimal control problem for J2, the minimizer. 

Example 2.3. Let Z C R2 consist of all points z = (&, 42) such that 6 > 0 and 
412 + 2 < 1. We consider a game played in R2 with dynamics 

(5) dx/dt= z e R2, 

to = 0, initial conditions xo = x(O) = (0,4) and terminal set F= {(t, t, 2);{ 
< ?,t2 < 0) U {(t,t,{2);t > 1). The payoff is 

(6) P = f; I dt = tF. 

It is clear that J2's optimal strategy is to adopt z(t)- (0,- 1) and in this case the 
payoff is given by tF = 3, so that V+(to, x0) = 4. However, if s > 0 and J2 has 
no control over his choice of z(t) for 0 < t < s, then the trajectory may move 
to the point (s, 4), and then no possible choice of z(t) results in a payoff of less 
than one. Hence Q+(to, xo)-1. 

3. Dynamic programming. We now consider a very general type of differential 
game formed from the original game G(to,xo). Let 0 be any function (not 
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necessarily continuous) defined on R x R' and let r be any map ': -Ml1 (to) 
X m2Q(to) - [to, oo) which prescribes a stopping time r(y, z) corresponding to any 
pair of control functions. We define a game GT(to, xo; 9) as the game with initial 
condition (3), dynamics (1) and payoff: 

(7) PTO(Y, z) = 9(T(Y, Z), X((Y,Z))) + f(Y, ht, x(t),y(t),z(t))dt. 

For a E PtO(O) we define 

u1,q(a) = inf [PJ,(az, z); z E stv2(to)] 

and 

uS,T,e(a) = infku,;,(a'); a' E rto-(a)]. 

For ,8 E A40(0) similarly 

vt,9(/3) = sup[P,19(y,fly);y E s!1(t0)J, 

v,,, (p) = sup[VT,e (/'); /' E Ato(f3)]. 

Then, by exact analogy with the game G(to,xo), 

UtLf0,x0;O) = sup[uf,(a);a E rto(0)1, 

VoQ0,x0;O) = inf[v,e(/3);3 e Atom]e 

C (to,xo;9) = sup Ute(a); ES> 

V, +(to, xo; 0) = inf 

[v,(3); 
EE UAo 

Q- (to,xo; 0) = inf sup[u,9(a); a E Jto[s I Y]J, 

Q+t4(t0,x0; 9) = SUp inf[L4,9(1); /3e A10[s I ] 
sllr YE_V2z[t0J 

Q$ (to,xo; 9) = sup Q f((tRx); I), 

(8) Q;-~~(to, xo; I ) =su QS (to, xo; i 0< 11 x; 

S>O 

Q'+(to, xo0;) = inf Q+ (to, x0;) 

As usual we have the relationships 

(8) Q'_r(to, xo0;) ? ICQ (o, xo;90) ?U (to0, xo0;;) 

(9) Q+(to,xo; 9) ? J+(to,xo; 9) 2 (to,xo; 0). 

Furthermore, since any a E P0(O) and 8 E At0(s) produce a unique control pair 
y E= :A1(to), z EE st2(to), such that ,By = z and az = y, we have 

(10) U (to,xo; 9) < J$+(to,xo; ) 
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and similarly 

(l ) V,(to x0; ) 2 K -(to, x0; ). 

We now use games G,(t0,x0;0) to derive several "dynamic programming" 
results relating the values of G(to, x0) to those of GT(to, x0; 0) for various 0. Note 
that G(to,xo) is just the game GIF(to,x0;g); we shall consider T such that 
r(y, z) < tF(y, z) for all y, z. T is said to be nonanticipating if whenever 

y'(t) = y(t) a.e. to < t < T(y, z), 

z'(t) = z(t) a.e. to < t ?< T(y, z), 

then T(y', z') = (y, z). 
Note that tF is nonanticipating. 

Theorem 3.1. Suppose T is nonanticipatory and T < tF. Then 

(12) U(to,xo) = UW(to,xo; U), 

(13) V(to,xo) = f(to,xo; V). 

Proof. Only the former identity will be proved; the second follows by 
symmetry. For (t, x) E Rm+I1 and ? > 0 there is an a = a(t, x) E ], (0) such that 
u(a) ? U(t,x) - (e/2). There is also an a0 E P,0(0) such that uuiu(ao) > U,(to, 
xo; U) - (e/2). Now define a' E P,,(o) as follows: For z E .A2(to) let a(z) 
= (aoz, z) and define (a'z)(t) = (aoz)(t), to < t < a(z), 

(a'z)(t) = a(a(z), x(A(z)))z(t), a(z) < t < ?o, 

where x(t) is the trajectory corresponding to (a0z,z). The second equality above 
is interpreted by restricting z to an element of cA(2(a(z)). It is clear that 
a' E P,0(0) and furthermore 

P(a'z, z) = g(tF, X(tF)) + F hdt 

= f ) hdt + {f,,h dt + g(tF,x(tF))} 

2 () hdt + U(a(z),x(a(z))) - (e/2) 

? PI,U(aoz,z) - (e/2) 

2 UL(to,xo; U) - e 

so that U(to, xo) 2 ULT(to, xo; U). Conversely, given ao E P,0(0) then there exists 
a control z E s!42(t0) with 
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f4(Z) h dt + U(a(z), x(a(z))) < Ur(to, xo; U) + (e/2) 

for the trajectory x(t) corresponding to (aoz, z). Now define i E r, I)(0) by 
ico(t) = ao z(t), a(z) < t < oo, where 

@(t) = z(t), to < t < a(z), 

= (X(), a(z) < t < 00. 

Then in G(a(z), x(a(z))): u(a-) < U(a(z), x(a(z))) and so there is a control func- 
tion wo E S142(a(z)) with 

P(o wo0,wo) < U(a(z),x(a(z))) + (e/2). 

If we now define 

co (t) = z(t), to < t < a(z), 
= wo(t), a(z) < t < oo, 

then we have 

P(ao W1,W) = P(aio0,wo) + f0) h dt 

< o(z) hdt + U(a(z),x(a(z))) + (s/2) 

< Ur(to,xo; U) + e 

so that U(t0,x0) < Ur(to,xo; U). 
We now consider similar results for V+ and V_. However, in this case delay 

strategies do not fit together as neatly as ordinary strategies and so we only 
obtain inequalities in place of the equalities of Theorem 3.1. 

Theorem 3.2. Suppose Tr is nonanticipating and T < tF. Then 

( 14) V+ (to, xo) 2 K,+(to Kxo; + ) 

(15) V (to,xo) < K(to0xo; V ). 

Proof. We prove only the latter inequality. Suppose a E r,*(s) for some s > 0 
and z E ctM2(to). Again write oz = o(z) = T(az,z) and consider G(az,x(oz)) 
where x(t) is the trajectory corresponding to (az, z). For w E sl't2(oz) define 
X E .:A42(to) by 

@(t = z(), to < t < a(z), 

@(t) = @(t), o(z) < t < 00, 

and a E rt(s) by 
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a)(t) = aZZ(t), a(z) < t < 00. 

Note that ci depends on z(t), to < t < az, and aw is independent of c in 
[ez,az + s). In G(oz,x(0z)), u(a) < V-(oz,x(0z)) and so there exists c 
E ::M-2(z) such that P(a-w,w) < VW(az,x(uz)) + e. Therefore in G(t0,x0) 

P(aZ-3) < f() hdt + V (az,x(az)) + e 

< Py-(az@,zu) + E 

= PJ,v-(az,z) + e. 

Hence u(a) < 1,v-(az,z) + e and so u(a) < uv,v-(a) + E and (15) follows. 
Finally we consider Q+ and Q-; in this case we first have to treat Q+ and Qs-. 

Theorem 3.3. Suppose Tr is nonanticipating and s < T < tF. Then 

(16) Q+(to,xo) < Q+ (to,xo ;Qs) 

(17) Qs (toXO) 2 Qj4(t0ox0; Qs). 

Proof. We prove only (17). For e > 0, (t, x) E Rm+ I and y E A't (to) there 
exists a = a(t, x,y) E ,[s I y] such that, in GQ, x), u(a) 2 Q (t, x) - e. 

Now suppose ao E I'(s). For any z E -a-M2(to) define Oz = T(aoz,z) and 
suppose x(t) is the trajectory induced by (a0z,z). ia E P,(s) is then defined by 

az(t) = aoz(t), to < t < az + s, 

oiz(t) = a(az,x(az),y)z(t), az + s < t < oo, 

where y(t) = aoz(t), az < t < az + s. It is easy to check that i E r,,(s). For 
example, suppose z, (t) = z2(t) a.e. to < t < az + sl, where 0 < s, < s. Then 
UZI = aZ2 and aoz1 (t) = aOz2(t) a.e. to < t < az + si + s, and in particular 

yl(t) = y2(t) a.e. az < t < az + s. 

Hence a(az1, x(az1 ),y1) = a(Uz2, x(az2),y2) and so 

avz (t) =Z cz(t) a.e. to < t < az + s + s, . 

Now P(az, z) = 4fo0Z h dt + P* (a'z, z) where P* denotes the payoff in G(az, x(az)) 
and a' - a(az, x(az), y) E rJ,(s). Thus 

P(az,Z) 2 hdt + u(a') 

> j, h dt + u(a(uz, x(az))) > jz h dt + Q- (az, x(az)) - E 

= IQ (-aZ%) - E = PI, -(aoz,z) -E 
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Therefore u(a-) 2 U Q (ao) - e. Suppose ao E r1,[s I yo]. Then it is clear since 
s < r that ax ET rTs I yol. Hence 

sup u(a) ? sup U1QsQ(a) -E 
aer,o[sjyol aE1lsjYJ 

and so Q (to, xo) 2 Q-T(to, xo; QS), i.e. (17) is established. 

Corollary 3.4. If lim,0 Q (t, x) = Q-(t, x) uniformly on compacta then 

(18) QF (t0,x0;Q ) < Q (t0ox0). 

Similarly, if lim QS+(t, x) = Q+(t, x) uniformly on compacta then 

(19) Q" (to, xo; Q+) > Q+ (to, xo). 

Proof. It is easy to show (see [21) that every possible trajectory (t, x(t)) with 

x(to) xo determined by (1) lies in a bounded subset B of R"+'. Define 

n(s) SUP(,,) [ (T X) - Q -(t, x)] so that by hypothesis lim,,Oq(s) 0. Then 

clearly Q- (to, xo; Q-) - Q(to, xo; Q5) < -q(s) and so 

Q-(to,xo; Q ) < lim {Q5,(toxo; Qs ) + (s)} 

< limr{Q(t09X0) + 'q(s)} = Q-(to,xo). 

This proves (18) and (19) follows by the dual argument. 

Lemma 3.5. 

(20) Q+,(to, xo; U) < QS+(t, xo), 

(21) QSTr(to, xo; Vt) 2 QS1 (to, xo). 

Proof. Again the proof of only one, (21), of the inequalities is supplied. 
Suppose s > 0 is given. Since 

Q (to,xo) = inf sup u(a) 
Ie. 41'EJ aEr,,[slyI 

given e > 0 there is an a E rio[s I y] such that 

u(a) 2 Q (to,xo) - e/3. 

For z E s142(to), 

(22) P(az, z) > Q (to, xo) - e/3. 

Now consider uyv(a); then there exists zo E s112(to) such that 

(23) ,v(azo,zo) < uy,(a) + e/3. 
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Write ozo = r(azo,zo) and suppose xo(t) is the trajectory given by (azo, zo). Then 
there is a strategy /0 3E A020(O) in G(azo,x(ozO)) such that v(/30) < V(Ozo, 
x(azo)) + e/3. Since a is a delay-strategy, a and 80 can be played against each 
other from azo onwards (cf. [3, ?31). Therefore, there exists a z E zA2(to) such 
that 2(t) = zo(t), t0 < t < ozo, and (,3oa)z(t) = (t), azo < t, where (i a)y(t) is 
interpreted as ,80 acting on the restriction of az(t) to ozo < t. Then 

P(az, z) = f00 h(t, xo(t), azo(t), zo(t)) dt + P*(oZ 1) 

where P* denotes the payoff in G(azo,x(ozo)). Thus 

P(aZ) < |; hdt + v(fO) 

? J;o hdt + V(azo,x(qzo)) + e/3 = Iry(azozo) + e/3 

? u1,v(a) + 2e/3 by (23) . 

Substituting z into (22) we obtain Q-(t0,xo) < uv(a) + e, and therefore 
QS (t xo) < Q4(to, xo; V). 

4. The Isaacs-Bellman equation. We first prove extensions to metric space 
valued functions of Lusin's theorem and Fillipov's lemma. 

Lemma 4.1. Suppose z: [0, 11 -l Z is a measurable function with values in the 
compact metric space Z. Then for any e > 0 there is a subset E C [0, 11 with 
mE > 1 - e such that z is continuous on E. (m denotes Lebesgue measure.) 

Proof. As Z is a compact metric space there is a countable dense subset 
{k; k = 1,2, ... }. Consider the functions Qk: Z -* R where Qk(z) = d(4k, z), 
k = 1, 2, . . ., d, denoting the metric on Z. By definition z(t) measurable means 
Qk(z(t)) is measurable in the usual Lebesgue sense, so by Lusin's theorem [61, for 
E/2k there is a subset Ek of [0, 1] such that Qk(z(t)) is continuous on Ek and 
mEk > 1-e/2k, k = 1, 2 .... Put E = nklEk. Then mE > 1-e and 
Qk(z(t)) is continuous on E for all k = 1, 2, . It is then immediate that z(t) is 
continuous on E. 

We shall need the following extension of Fillipov's lemma: 

Lemma 4.2. Y and Z are compact metric spaces and m: Y X Z -* R is contin- 
uous. z: [0, Tj -* Z is measurable. Then there is a measurable function y: [0, T]- - Y 
such that m(y(t), z(t)) = maxye ym(y, z(t)) for almost all t E [0, T]. Furthermore 
there is a strategy a E ro(o) such that y - az for all z E sa't2(0). 

Proof. For any e > 0 by Lemma 4.1 there is a subset E of [0, T4 such that 
mE > T - e and z(t) is continuous on E. Write M(z) = maxy-ym(y,z) so that 
M: Z -* R is continuous, and thus M(z(t)) E m(Y,z(t)) is continuous on E. 

As Y is a compact metric space there is a continuous map K of the Cantor set 
K onto Y (see [7, Theorem 3.281). We can, therefore, write M(z(t)) 
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= maxSEKm(ic(s), z(t)). For each t E E denote by K(t) the set of all s E K that 
satisfy m(ic(s), z(t)) = M(z(t)). Continuity of m and c implies that K(t) is closed, 
and so compact. Write u(t) = min(s E K(t)). It remains to prove that u(t) is 
measurable, and this will be the case if we can show that for any real X the set 
{t E E; u(t) < A) is closed. Suppose this is not the case; then there exists a 
sequence t E E such that tj E E but X<u(A). As K is compact 
there is a subsequence {ty} of {tj} such that u(tj ) -u'a e K as j' - oo, and we 
must have 

(24) u < u(i). 

Letting t = tj, converge to T in the identity m(K(u(t)),z(t)) = M(z(t)) we 
have, by continuity on E, m(K(-u), z()) = M(z(t)). Thus the point R belongs to 
K(t). But from the definition of u(i), u(I) < iu, which contradicts (24). Thus 
{t E E; u(t) < A) must be closed, and so u(t) is measurable on E. Now take 
E = l/n and denote the corresponding set E by E,. We see that u(t) is measurable 
on each En and so on their union E*. As the measure of E* is T we see u(t) is 
measurable on [0, 4. Because the map K is continuous the composite function 
K 0 U(t) = y(t) is measurable on (0, T] and gives the required function y5. Note, 
by the method of selection, that y(t) depends only on z(t) and so the map a 
sending z to its corresponding y is a strategy in ro (0). 

Suppose now the two players play a very simplified differential game K(m;r) 
where the payoff is of the form P = fjo m(y(t), z(t)) dt. Here T is fixed and 
m: Y X Z -) R is continuous. Thus in K(m; T) the dynamics are trivial and the 
form of the game does not alter with time. We determine various values of the 
game K(m; T). 

Lemma 4.3. For K(m; T) we have 

Q= = U = 4Tmin max m(y,z)} 

and 

Q= = V = 4max min m(y,z)}. 

Proof. Suppose J2 adopts a constant strategy: ,ly(t) - zo(t) zo. Then 

P(y,/fy) = J m(y(t),zo(t))dt < T max m(y,zo) 

so 

(25) V+= Q+ < min max m(y,z), by Lemma 2.2. 

Again write M(z) = max m(y, z) so M: Z -* R is continuous and suppose 
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z(t) E s=i2(0). By Lemma 4.2 there is a strategy a E ro(O) such that 

(26) m(az(t), z(t)) = M(z(t)) for all z E -442(0). 

Clearly u(a) = T minzM(z) = T minzmaxym(y, z) and so 

U > T min max m(y, z). z y 
From Lemma 2.1 and the remarks preceding it we see Q+ = V = U = 
T min_zmaxym(y, z). The dual result follows similarly. 

We now return to the general game discussed in ??2 and 3. Our object is to 
show the relationship between the value functions U, V, VW, V+, Q- and Q+ of 
(t, x) and the solutions of certain partial differential equations associated with the 
system, first considered by Isaacs [8]. We define for the differential game 
associated with (I)-(4) the upper Isaacs-Bellman equation (in R x R' - F): 

(27) L+w- a + min max(Vw *f + h) = O 

and the lower Isaacs-Bellman equation 

(28) VL-w-a + maxmin(Vw *f + h) = O, at ? 

where both equations are subject to the boundary condition w(t,x) = g(t,x) for 
(t, x) E aF, F being the terminal set. 

Theorem 4A. At points of differentiability we have 

L+(U) = 0, L-(V) = 0, L+(V+) < 0, L-(V-) 2 0. 

Proof. Suppose (to, xo) 4 F, the terminal set; then for some fixed so > 0 we 
have, for any trajectory starting at (t0, xo), tF > t0 + s0. Furthermore, in the time 
to < t < t0 + s0, all trajectories are contained in a bounded set B. Let 

(29) sup supsup jjf(t, x,y, z)j| M < 00. 
(t,x)EB yG YzGZ 

Now suppose (to, xo) is a point of differentiability of U, so that 

U(to + s,xo + t) = U(to,xo) + saU/at + t * VU + (jsj + lIIII)R(s,U). 

Here R is continuous at 0 and R(O, 0) - 0 and the partial derivatives are 
evaluated at (t0, x0). Using (29) we deduce that, if (t0 + s, x0 + t) is on a trajectory 
starting at (to, x0), 

(30) IU(to + s,x0 + 0) - U(to,xo) - saU/at - J * VUI < sn(s), 

where limS~o q(s) = 0. Fixing T = to + s where s < so, we have, by Theorem 3.1, 
U(to,xo) = UL(to,x0; U). Write W(t0 + s;x) = U(t0,xo) + saU/at + (x - x0) 
V V U; then by (30) 
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|U1r(t0,xo; U) - UtoQ,xo; W)A < s57(s) 

Hence IU(to,xo) - UQ(t0,xo; W)I < siq(s) and so U4(to0,xo; w0)l < snq(s) where 
Wo(to + s;x) = saU/at + (x - xo) VU. In the game GQ(to,xo; WO) the payoff 
corresponding to a pair of controls y E cAl (to), z E -aM42(to), is given by 

p s yt + (x - xo). V U+J h(t,x,y(t),z(t))dt 

= l ( au + f (t, x,y(t), z(t)) * v u + h(t, x,y(t), z(t)) dt 

where, of course, the partial derivatives are evaluated at (to, xo). 
Now consider the game K(m, s) where 

m(y,z) = aU/at +f(to,xo,y,z) * VU+ h(to,xo,y,z). 

Clearly the payoff in K(m, s) corresponding to the same pair of controls P 
satisfies IP' -P ? s8(s) where lim33o8(s) = 0. Hence by Lemma 4.3 

| U(to, xO; WO) - sL U(t0, xo)I < s(s), 

and hence IL+ U(to,xo)I < 8(s) + -q(s), i.e. L+U(t0,xo) = 0. 
The corresponding results for V+ and V- follow from Theorem 3.2 in place of 

Theorem 3.1. The same problem for Q+ and Q- depends on the weaker result 
Corollary 3.4. However, in this case we obtain 

Theorem 4.5. Under the hypothesis of Corollary 3.4, at points of differentiability 
we have 

L+Q+ > 0 and L-Q- < 0. 

5. Comparison theorems. The results of this section are based on the following 
'strategy selection theorems'. Suppose that p: Rm+1 X Y x Z -- R is continuous 
and define 

(31) '1(t, x) = min max rp(t, x,y, z). z y 

Theorem 5.1. Let G be the diferential game given by (1)-(4). Then given a 
bounded subset B of (-oo, T] X R' there exists a function 7: [0, oo) -* [0, oo) such 
that lim3-0 -q(s) = 0 and with the following property: For every (to, xo) E B there 
exists /3 E A,1(s) such that whenever /3' E 40(/3) and y E ,-Ml (to), then for the 
trajectory x'(t) induced by (y, ,B y) we have 

(32) rp(t, x'(t),y(t), f'y(t)) < 4(t, x') + 44(s) 

whenever to + s < t < T.; 

Proof. Every trajectory with initial point in B is contained in a further bounded 
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set B' for t < T (see [2, ?3]). Write M = supB,xyxz 1f(t, x,y, z)JJ. Suppose x1 (t) 
and x2(t) is any pair of trajectories corresponding to the same pair of controls 
(y(t), z(t)) but with initial conditions (to, x,) and (to, x2) e B'. Then using (2) we 
obtain 

l1x1(t) - x2(t)ll < eK(0-to)lx - x2jj 

< M'IIx-x2j1, to < t < T, 

where M' = eK(T-to). For s > 0 let 

sup I(tj, X1,y, Z) - (t2, X2,y Z) = Y(S), 

where the supremum is taken over (y,z) e Y x Z and (tl, xi) and @2, x2) in B' 
such that Jt2 - t< I ? 2s, f x2-x, 1- < 2M(M' + I)s. By uniform continuity of 4p 
on B' x Y x Z, lim3,0y(s) = O. Now fix (to,xo) e B and let tn, = to + ns, 
n = 1, 2, .... We define ,B as follows: Let zo be any fixed control value in Z. 
Then for any y E l41 (to) we let 

My(t)=zo, to < t < ti. 

Then we define 

/3y(t)=z Z, tl < t < t2 

where z1 is chosen such that 

max (to,xo0,y,z1) (toxo) 
y 

The pair (y(t), By(t)) induce a trajectory x(t), to < t < t2, and we then choose z2 
such that 

max 4p(tl, x(tl ),y, z2) = (tD1, x(tl)) 
y 

and define /ly(t) = z2, t2 < t < t3. We then repeat this process and eventually ,B 
is defined so that 

/3Y(t) = Zn, tn < t < tn+l., 

where 

max (t.I, nX(-1),Y, Zn) = 4(D(tn-i X )) 
y 

Using Zorn's lemma /3 is extended to the whole of AI (to) as in Lemma 4.3. 
Clearly /8 E- AO(s). Now suppose /' e YM0(/3) so that /3y(t) = /3y(t), t> to + s. 
Let x'(t) be the trajectory induced by (y, /3'y). Then 

llx'(tl) - x(tl)ll < 2Ms 
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and so 

jjx'(t) - x(t)jj < 2MM's, to < t < T. 

Now if n > 1 and t_ < t < t"+, then Ijx'(t) - x(t,,.,)jj < 2MM's + 2Ms and 
It - t 2s, and so 

qT(t, x'(t),y(t), Z.) - p(t.- , x(t0-1 ),y(t), zJ)j < y(s). 

Clearly 11(t1 x'(t)) - ?F(t01, x(t.1 ))I < y(s) and so 

p(t, x'(t),y(t), ,/'y(t)) < 1D(t, x'(t)) + 2X(s) 

for t,1< t < T. 

Theorem 5.2. For every (to, xo) with to < T and every e > 0 there exists a 
strategy a E rtO such that if z E st'V2(to) and x(t) is the trajectory corresponding to 
(a-Z, Z) 

(33) p(t, x(t), az(t), z(t)) 2 0(t, x(t)) - e a.e. 

for to ? t < T. 

Proof In Lemma 4.3 we showed that if m: Y x Z -- R is continuous there 
exists a strategy a for J,, a: s142(0) -- z41l (0) such that 

m(a z(t),z(t)) > min max m(y,z) a.e. t > 0; 

for any z E dA12(0). Thus, by the same reasoning, for any (t-x) e Rm+1 there is 
a strategy a[t, x]: .-;412(to) -- se1t (to) such that 

q(t-, x-, a[t-, x-]z(t), z(t)) 2 OQ9- z-) a.e. t 2 - 

For s > 0 and (to,xo) fixed we define tn = to + ns and construct a. E Ft,; thus 

a,z(t) = a[t0,x0]z(t), to < t < t1. 

Then (az,z) determines a trajectory x(t), to < t < tl. We define a3z(t) = a[tl, 
x(t1)]z(t), t1 < t < t2, and proceed inductively. Clearly a, E rto and 

T(tn, x(tn) as z(t), z(t)) 2 ?(DQ,x(tn)) a.e. 

for tn < t < tn,,w and n > 0. Using the uniform continuity of g as in Theorem 
5.1 we obtain for to< t 

rp(t, x(t), a.z(t), z(t)) 2 4(t, x(t)) - q(s) a.e. 

where lim,,o71(s) = 0. This proves (33). 
We now come to the main theorem of the section, in which we compare a C' 

function 9 satisfying either L+ > 0 or L+O < 0 everywhere with the value of the 
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game G. Results of this type were first considered by Rao [11] and later by 
Friedman [5]. However, in [11] Rao restricts his attention to fixed time games and 
Friedman, who approximates by solutions of parabolic equations, requires that 0 
is C' and piecewise C2, together with his condition (f). The referee tells us that 
Rao considered comparison theorems for pursuit-evasion games in his thesis 
(University of Rhode Island, 1971). 

Theorem 5.3. Let G be the game given by (1)-(4) and suppose 0 is a continuous 
function on Rm+1 which is C' on Rm+- int F. Suppose 

(a) 0(t, x) 2 g(t, x), (t,x) G 8 F, 
(b) L+0 < 0, (t,x) E Rm+1 - int F. 
Then 

(34) 0(t, x) 2 Q+(t, x), (t, x) E Rm+I - int F, 

and for any bounded subset B of Rm+1 - int F there exists a function -q: [0, oo) 
-- [0, oo) such that lim3..,0'q(s) = 0 and 

(35) 0(t,x) 2 Q+(t,x) - n(s), (t,x) E Rm+1 - int F. 

Proof. Let p(t, x,y, z) = 8a/8t +f * VO + h for (t, x,y, z) E (Rm+l - int F) X Y 
x Z and extend qp to be defined and continuous on Rm+1 x Y x Z. Then 

()(t, x) = min max p(t, x,y, z) 
(36) Z .V 

= L+ , (t, x) E Rm+1 - int F. 

We now quote Theorem 5.1: Suppose B is a bounded subset of Rm+ I_ int F and 
- is the function determined by Theorem 5.1. For s > 0 and (to, xo) E B choose 
13 E A,0 (s) as in Theorem 5.1 and let /3' E A\,0(,8). Then if y E --M,(to) and x'(t) 
is the trajectory corresponding to (y, /3'y), 

(t, x'(t),y(t), /'y(t)) < (t, x'(t)) + q(s) 

for to + s < t < T (equation (32)). 
For to + s < t < tF (if tF > to + s) we have p(t, x'(t),y(t), ,8'y(t)) < 1(s). 
Suppose, as before, that every trajectory with initial point in B is contained in 

the bounded set B' and that 

sup sup kp(t,x,y,z)I = M", 
(t,x)EB' (y,z)EYXZ 

as qp is continuous. Then 

(37) JF Fp(t, x'(t),y(t), fl'y(t)) dt < M"s + (T- to),r(s). 

However 
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JtF 

p(t, x'(t),y(t), f3'y(t)) dt 
tF 8 

8 J ( +f* VO + h) dt 

(38) 'F dt(F 

=|0t(t, x(t)) dt + h hdt 

{tF 

(tF,x (tF)) - (t0,XO) + J hdt. 

We use here Lemma 3.22 of Friedman [4], that t i-* 0(t, x(t)) is absolutely 
continuous and 

dO(t,x(t)) = + 
dt +a X 

Thus by (37) and (38) 

P(y, 3'y) = g(tF, X'(tF)) + h dt 

0 (tF, X'(tF)) + |h dt 

= o(t0, x0) + IF q(t, x'(t),y(t), /3'y(t)) dt 

< 0(to,xo) + M"s + (T- to)'q(s). 

Hence 

v(/8') < 0(t0x0O) + M"s + (T- to)-q(s), 

v3(13) < 0(to,xo) + M"s + (T- to)-q(s), 

and so by the remarks preceding Lemma 2.1 

Qs (to, xo) ? 0(to, xo) + 71'(S) 

where 71'(s) = Ms + (T - to),(S). This proves (35) and (34) follows immediately. 
We remark that as in Friedman [5], we may improve Theorem 5.3 by observing 

that since every trajectory emanating from a fixed point (to, xo) is contained in a 
bounded set B" we need only insist that L+9 < 0 on B" to obtain 0(to,xo) 
2 Q+ (to Ixo). 

We now prove the converse theorem using Theorem 5.2: 

Theorem 5.4. Suppose G is given by (1)14) and 0 is continuous on Rm+1 and 
continuously differentiable on Rm+- int F. Suppose 
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(a) (t, x) < g(t, x), (t, x) E a F, 

(b) LO+ 0, ? (t,x) E Rm+I - int F. 

Then 

(39) 0(t,x) < U(t,x), (t,x) E Rm+- int F. 

Proof. We omit the proof as it is almost the same as that of Theorem 5.3, using 
Theorem 5.2 instead of Theorem 5.1. 

Naturally, both the above theorems may be stated for L- with Q- replacing Q+ 
and V replacing U. 

Theorem 5.5. Suppose there is a Cl-solution 0 of the upper Isaacs-Bellman 
equation (27) (i.e. L+0 = 0), with 0 = g on aF. Then 0(t, x) U(t, x) V+ (t, x) 
= Q+(t,x). 

Proof. By 5.3 we obtain 0 > Q+ and by 5.4 we obtain 0 < U. As U ? Q+ we 
obtain the result. 

6. Continuity of V+ and Q+. Thus far we have not referred to the problem of 
continuity of the functions V+ and Q+. In general (see ?2) we may expect that 
V+ and Q+ are discontinuous. The behavior of the functions near the boundary 
turns out to be critical. Although we omit the proof, which uses Theorem 3.1, we 
may observe that U is continuous if and only if U is continuous at each point of 
aF (i.e. iff U(t, x) -* U(t', X') = g(t', x')whenever (t, x) -) (t', x') E aF). 

Define for each (t, x) E R+ I - int F 

(40) Q (t, x) = lim sup Q+ (t, x). 

Then we have immediately that for each s > 0 the function U,+ is upper 
semicontinuous. 

For R > 0 write BR = {(x,t): |lx|i + It| < R}. 

Lemma 6.1. Suppose for (t, x) E BR n aF 

(41) lim Q+(t,x) = g(t,x). 

Then there exists a monotonic increasingfunction r: [0, oo) - [0, oo) with limY.gyq(y) 
= 0, such that 

(42) Q+(t,x) < g(t,x) + (s + p) 

for (t, x) E BR. Here p = p(t, x) is the distance of (t, x) from F. 

Proof. (For (t,x) E BR n a8F, (42) is simply Dini's theorem since each Q5+ is 
upper semicontinuous.) Define 
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n(Y)= sup (Qs(t,x) - g(t,x)). 
s+p<y 

We must show that lim7,ql(y) = 0. If not, there exist sequences sn -* 0 and 
(t,,,xn) E BR such that 

inf (Q+(tn, x) - g(tn sxn)) = e > 0, 

and limn+oop(tn,xn) = 0. By selecting a subsequence we may suppose that 
(tn,Xx) -* (to,xo). Clearly p(to,xo) = 0, i.e. (to,xo) E F. For a > 0 there exists 
no such that for n 2 no, Sn < a. Then Qsn(tn,Xn) < Q+(tn,xn), n 2 no, and so 
Q0(to,xo) 2 g(to,xo) + e for all a > 0, contrary to assumption (41). 

Definition 6.2. A point (t, x) of aF is Q+-regular if it satisfies (41) and U is 
continuous at (t, x), i.e. lim(T,)0(,tX) U(r, t) = U(t, x) = g(t, x). We shall say aF 
is Q+ regular if every point of aF is Q+ regular. 

In order to prove the next theorem it will be necessary to replace the Lipschitz 
condition (2) in x by a Lipschitz condition in both t and x: 

(43) fif (tl, x1,y, z) - (t2, x2,y, Z)1 < K(ft, - t2f + IixI - x2 1). 

Theorem 6.3. Under the Lipschitz condition (43), suppose aF is Q+-regular, then 
Q+ is continuous (on Rm+I - int F) and 

lim Q+(t,x) = Q+(t,x) 

uniformly on compacta. 

Proof. Note if (t, x) E aF the continuity of Q+(t, x) follows from Lemma 6.1 
and Definition 6.2. Consider the set C = Br n (Rm+l - int F) for some r > 0. 
Then any trajectory with initial point in C is contained, for t < T, in a larger 
compact set BR. 

First we observe that g and h are uniformly continuous on BR and BR X Y X Z 
respectively. Thus there exists a function AI (8) with limS oAI (S) = 0 and 

(44) 1g(tl, x) - g(t2, x2)1 < Al (8), 

(45) fh(tl,xl,y,z) - h(t2,x2,y,z)l < Al(8), 

whenever 

(46) ft, - t2f + ffxl - x2ff < SeK(T+R). 

Next we set 

(47) A2(8) = q(8eK(T+R)) 

where 7q is defined as in Lemma 6.1. Finally on BR we can determine A3(8) such 

that lim6.*,OA 3() = 0 and 
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(48) g(tx) - U(tx) ? A3(8) 

whenever p(t, x) < OeK(T+R). This follows by a simple compactness argument. 
Now suppose (tl,xl) and (t2,x2) e BR - F and write 

Or = t2-t, 8 = 1t2 - tl + fix2 - X 1. 

Then if y = y(t) e C44 (t,) and z = z(t) e c412(t,) we can determine naturally 
controls y = y*(t) E c(t2j) and? = z*() E cuIl2(t2) by 

*(t) = y(t - ), Z*() = Z(t- ). 

The mapping (yz) + (y*,z*) is a nonanticipating invertible map c44(tj) 
X .A2(t,) -- .Al (t2) x s12 (t2) and induces a map between the sets of strategies 
for each player in G(tl,x1) and G(t2,x2). Suppose t1(t) and t2(t) are trajectories 
corresponding to (y, z) and (y*f z*) respectively, with initial conditions , (t1) 
= xI, 42(t2) = x2. Then 

(49) A(4(t) - 42(t + a)) = f(t440(t),(z(t))-f(t + a,t2(t + a),YQ),zQ)) 

and we may show that 

ll(t) - 42(t + a)f1 < 6eK(t1t) - jaf for t1 < t < T. 

Hence 

(50) Ilf(t) - 42(t + a)f ? OeK(Tr+R) - fal for t1 < t < T. 

Next we define a stopping time r: c-,V (tl) x zAlj (t2) -* R by r = r(y, z) where 

min{p(r,41(r));p(T + a,42(T + a))) = 0 

but 

min{p(t,41l)); p(t + a,42(t + O))) # 0 

for t, ? t < . Then r is a nonanticipating stopping time, and r < T. Hence by 
(50) 

max{p(r, 41 (r)); p(T + a, 42(r + a))} < OeK(T+R). 

Wrlte supQ,x)EBRsuPpyUysupEZIf(l(txyz)II = MR and tR = min(p(t1,x1)M;R, 
p(t2,x2)MR-'). Suppose s < tR < . Now by Theorem 3.3, equation (16), 

Q+S t1w X1 I) < QS+t(l 01 XI QS+) 

(51) ? QS+,( xix;g) + t(8eK(T+R) + S) by Lemma 6.1 

? Qss(t,,xj;g) +A2(+s) by(47). 
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Now jg(r + a,t2(r + o)) - g(,tj(T))| < A1(O) and 

fh(t1,, (t),y(t), z(t)) dt - h(t, t2(t),y* (t), z* (t)) dt 

'? Al(8)dt < (r+ T)Aj(8). 

Thus 

(52) Q+,(tl,xl;g) < Q9+0r+,O(t2,x2;g) + (1 + r + T)A1(8). 

So by (48) 

(53) Q+a (t2,x2;g) < QS+ (t2,x2; U) + A3(O). 

Finally, by Lemma 3.5, 

(54) QST+o (t2, X2; U) < Qs (t2, x2). 

Combining (51), (52), (53) and (54): 

(55) Qs(tl,xl) < Q+(t2,x2) + (1 + r + T)A1(8) + A2(6 + s) + A3(8). 

By symmetry 

(56) IQsj(tl,xl) - Q+(t2,x2)1 < (1 + r + T)A1(8) + A3(0) + A2(O + s). 

Letting s -O, if A4(8) = (1 + r + T)A1(8) + A3(8) 

IQ+ (tl - XI -Q+ (t2, X2)j < A4 (8) + A2 (28) 

so that Q+ is continuous. 
Let M(c) = {(t, x) E C: Q+(t, x) - Q+(t, x) 2 e). Then as Q+ is monotone 

decreasing the sets M,(e) are monotone decreasing in s and nf>0o M(e) = 0. 
Suppose (t,x) E Mj(E) n (BR - F) so that for some (to,xo) E M,(e) n (BR 

F) 

It-tol + llx-xofj <6. 

Then 

Q+(t,x) - Q+(t,x) 2 Q+0(t,X0) -Q+(to,xo) 

- 2A4(8) - A2(28) - A2(8 + s) 

2 - 2A4(8) - A2(28) - A2(8 + s). 

As 8 is arbitrary Q+(t, x) - Q+ (t, x) 2 e - A2(2s). By Lemma 6.1 and Definition 
6.2 a similar inequality holds when (t,x) E Mj(e) n aF. Because lim.OA2(2s) 
= 0 we conclude that nf>oM,(e) - 0. By the compactness of C there exists so 
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such that M2e) = 0, i.e. Q,(t,x) - Q+(t,x) < e for s < 5* Hence lim,. Q' 
= Q uniformly on C. 

Theorem 6.4. If the Lipschitz condition (43) is satisfied and aFis Q+lregu1ar then 

Prof. Let (t0,xo) e R+l -F and suppose Q+(to,xo) - V+(to,xo) = e > 0. 
Then every trajectory im G with initial point at (0, xo) is contained in BR for some 
R>0. 

Write M = supBsx<y,ztif(tx,y,z)jj. We determine inductively a sequence 
(tI,x) in BR for n > I with p(t,,x.) > 0 for all n. Suppose (tk,xk) has been 
determined. Then let 

(57) k= t + (2(M + l))-'p(tk,Xk), 

and consider the game CJ(tk,xk; Q+). Then by Theorem 6.3 and Corollary 3.4 

Q' (tk,Xk) <5T~ %(tk,Xk kQ )- 

However, C (tkIXk; Q*) is a game of fixed duration, and Q+ is continuous, so 
that, by Lemma 2.2, Q+Qk, Xk) ? k (tk, xk; Q+). However, by Theorem 3.2, 
V+(tk,xk) ? J4+Q(kIxk; V). It follows that there exists a trajectory t(t) in 

Crktk9Xk) with Q (tk+;,xk+l) - V(tk+1,Xk+1) > Q (tk,xk) - V+(tX,k) 
- e/2k+2, where tk+l = rk and t(tk+1) = xk+1. Furthermore p(tk+I,xk+I) ? p(tk 
Xk) - (M + l)(tk+Il - t) > 0. Also (t,,x4) is a sequence in BR as each (t.,,x,) 
can be reached from (to, xo) by a trajectory. By construction 

(58) Q (tn,xn) - V+(tn,xn) ? te( - 2 2-k+I)) > e/2. 

For each n, (t,; x) a F so that t, < T for all n. Hence 

n-o t =t4 + Mk2 I (4+tkjI= tk 

exists and we have lk o (tk+ - tk) = 0. By (57), limk--oo p(tk,Xk) =0. 

Clearly since Ixk+1 -Xk 1 ? M(tk+l - tk) the sequence xk converges to X say. 
Then p(i, x) = 0, i.e. (?,x) e F. Hence 

lim (Q (tk,xk) - VU(tk,xk)) 

k-oo 

= 0 by Theorem 6.3 and the regularity of aF. 

However, this contradicts (58), and so Q+(0,x0) = V+(t0,x0). 

7. Criteria for regularity. In this section we present two convenient tests for the 
Q+tregularity of the boundary W. The first is based on the comparison theorems 
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of ?5 whilst the second is based on a similar criterion for the regularity of the 
boundary for the Laplacian operator V2 given by Perron [10] (see also Krzyzan- 
ski [9, pp. 377-396]). 

Theorem 7.1. Suppose that there exist functions 0I, 02 both Cl on Rm+1 - int F, 
such that 0, = 02 = g on a F and L+0 < 0 < L+02 on Rm+ I int F. Then aF is 
Q+-regular. 

Proof. By Theorem 5.3, equation (35), on any bounded set B C Rm+ - int F 

QS < Al(t,x) + 71(s), (t,x) E aF. 

Hence Q+(t,x) = g(t,x), (t,x) E MF, where Q+=lim50o Q.+. Similarly, by 
Theorem 5.4, 

U(t,x) ? 02, (t,x) E Rm+1 int F, 

and so 

lim inf U(T, ) 2 g(t, x), (t, x) E a F. 

But 

lim sup U(, 0) < Q+(t, x) = g(t, x). 
(T,{ 0-(t'X) 

Therefore, U is continuous at each point of MF. 
The next criterion involves not the operator L+ but the operator L involving 

only the dynamics of the game: 

(59) Lo+4 = aA + min max(V4' ff) 

Theorem 7.2. Let (t0, xo) E a F and suppose there is a neighborhood N of (to, xo) 
and there exist C' functions 01, 02 on N such that 

(i) 01 (t0,X) = 02(t0, XO) = 0, 02(t, X) < 0 < 0 (t, x) for (t, x) E (N - int F), 
(t, x) # (toI x0), 

(ii) 4L01 < 0 < 4 02 on N - int F. Then (to, xo) is Q+ regular. 

Proof. Let 

Nr = {(t,x): It-to + ||X-x-oI < r}. 

For small enough r, Nr C N. We also let Mr = Nr n (Rm+l - int F). Write 

(60) O,(r) = inf{ 0(t,x): (t,x) a Nr n M.), 

(61) 82(r) = sup {02(t, x): (t, x) E a N, n M,). 

By a simple compactness argument 6, (r) > 0 > 82(r) for r > 0. Write 0, 
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= {Q,x) e N: '8,(r) > 0, Q,x) 2 2(t,x) > 52 (r)); then 0, is a neighborhood 
of (to, xo). Finally let 

(62) suplh(t,x,y,z)j = H < oo 

(for we may assume N is bounded), and let X be the function of r such that 

(63) X(r) = sup Ig,x) - g(to,x)o). 
(t,4 x)N, 

Now let p(t,x,y,z) = aOl/ar + V0, -f (we may suppose 0, is defined on Rm+l). 
Taking 0, n M, as B we apply Theorem 5.1; let q be the function determined as 
in Theorem 5.1 satisfying (32). Suppose (t, x) E 0, n M,. Then there exists 
/3 E Ai(s) such that for /3' E Aj(f) and y E : (E), with {(t) the trajectory 
determined by (y, ,'y): 

p(t,)y(t), ffy(t)) < 0(t, Q(t)) + il(s) for I + s < t < T. 

Here 1(t,x) = minzmaxyp(t,x,y,z) = 141 (t,X), so p(tQ,(t),y(t), yQ(t)) < "(s) 
for(t,Q(t)) E Nandt+s < t < T. 

Suppose BR is a set large enough to contain every trajectory starting in N, and 
let 

A = sup 9(t, x,y, z). 
BRXYXZ 

With t(t) the trajectory above, let t' be the time when g(t) hits aM,. Then (t', (t')) 
either belongs to aN, or to MF. 

Suppose (t',((t')) E aN,. Then 01(t',4(t')) 2 81(r) > 0,Q(t)) + 1O,(r). 
Hence 

gt at+ V, *f) dt- dtl dt > 
1 
81 (r); Ji V0,.t)dt dtd 

d ? 

that is 

gt(t(t),y(t), f'y(t)) dt 2 28 (r). 

Therefore (t' - i)'(s) + As > ,8, (r), and, as t' - < 2r, 

(64) 2rq(s) + As < 81 (r). 

However, lim-0Xq(s) = 0 so s can be chosen small enough so that 2r'q(s) + As 
<2 1 (r) thus contradicting (64). Therefore, (t', (t')) E OF and t' - tF. Then 

P(V, Ply) = JIF h(t, (t),y(t), f'y(t)) dt + g(tFt()) 

< 2Hr + X(r) + g(to, xo) 

so that v(/3') < 2Hr + X(r) + g(to,xo). Hence Q+(t-,x-) < 2Hr + X(r) + g(to,xo) 
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and so Q+(to,xo) < 2Hr + A(r) + g(to,xo) for s small enough. 
Therefore, since limr,oX(r) = 0 we conclude that 

lim ,+ (to,xo) = g(to,xo). 

A similar argument enables us to conclude that 

lim U(t, x) = g(to, xo) 
(0sX)-00,X0) 

and hence that (to, xo) is Q+-regular. 

Corollary 73. Suppose under the hypotheses of Theorem 7.2 we have, instead of 
4 02 2 0, that 4 02 > 0 on N. Then (to, xo) is both Q+- and Q-regular. 

Proof. 40 2 2 Lo 02 and 4 2 4 in general. Hence, by Theorem 7.2, (to, xo) 
is Q+-regular. However, conversely we always have 4 0A < Lo4 0 < 0, and so we 
may apply the 'negative version' of Theorem 7.2 to deduce that (to, xo) is Q.- 
regular. 

The conditions of the corollary may be considered as allowing both players to 
force (t, x(t)) nearer (to, xo) from any initial position (t x, x). They are, therefore, 
a localized version of Friedman's conditions (1) (see [4, p. 81]). We now prove 
that a generalization of Friedman's conditions ensures regularity. 

Theorem 7.4. Suppose there exist CI-functions 01 and 02 such that 01 = 02 = 0 on 
aF, 0 ?0?02 on Rm1l -Fand 4O01 <0<Lo+02on E). Then aFis Q+- 
regular. 

Proof. For (to,xo) e aFlet 

l* 1(t,x) = 01(t,x) + y1(It - tol2 + fix - x0112). 

Then for suitable yl and in a small enough neighborhood of (to, xo) 

Lo+@ < O, 91* > ol0 (tx) 0 (to Ixo). 

Similarly we construct 

02 (t. X) = 02(t, X) - y2(ft -to 12 + {IX -Xo 112) 

with small enough y2 so that in some neighborhood of (to,xo) 

to 02 > ?, 02* < 0, (ti,X) 0 00, XO)- 

Therefore, we may apply Theorem 7.2 to deduce that (to, xo) is Q+-regular. 
Friedman [4] uses p and -p for 01 and 02 and assumes F is sufficiently smooth 

to guarantee the differentiability of p near MF. 
Of course, it is possible to 'mix' the criteria of Theorems 7.1 and 7.2. For 

example, for every point of aF to be Q+-regular it is sufficient that there exist 01 
as in Theorem 7.1 and for each (to, xo) E a F a function 02 as in Theorem 7.2. 
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In the particular case of a generalized pursuit-evasion game where g 0 and 
h > 0, it is easy to see one has L+(92) > 0 where 02 is the function identically 
zero. Thus the existence of a function 02 satisfying the conditions of Theorem 7.1 
is automatically guaranteed by the type of game under consideration, and one 
only has to establish 'one-sided' conditions of the type of Theorems 7.2 or 7.4 to 
prove regularity. 

8. Existence of value. Suppose now that G is a game of prescribed duration (i.e. 
F = [T, oo) x Rm ). Then if G satisfies the Isaacs condition (see [21): 

(65) min max(p * f + h) = max min(p * f + h), 
z y ~~~y z 

for t < T and (x,p) e Rm x Rm, we can show that V+ =- (the main result of 
[2D. In this section we extend this result to games with regular boundary. 

Theorem 8.1. Suppose the Isaacs condition (65) and the Lipschitz condition (43) 
are satisfied. Suppose further that aF is Q+- and Q_-regular. Then Q+ Q-. 

Proof. By Theorem 6.3 and Corollary 3.4 we have for any nonanticipating 
stopping time T: 

Q+(to,xo; Q+) ? Q+(to,xo) for (to,xo) E R+'- int F. 

Similarly 

Q? (to0 xo; Q) < Q (to0 xo). 

Now suppose T is a constant such that T < tF for any possible trajectory. Then 

QT (to, xo; Q) = Qf (to, xo; Q) 

by Lemma 2.2 and the main theorem (9.2) of [2]. Note that Q+ and Q- are 
continuous. Hence 

Q (to,xo) - Q(to,xo) < Q (to0xo; Q+) - Q (to0xo; Q) 

= Q$ (to, xo; Q) - QT (to, xo; Q). 

We can now apply the inductive construction of Theorem 6.4 to deduce a 
contradiction if Q+(t0,x0) # Q (t0,x0). Therefore, Q+(to0xo) = Q-(to,xo) for 
all (to, xo) E Rm+ - int F. 

It is worth observing that the Isaacs condition (65) implies L+ L- and also 
that Lo = Lo. Hence, the sufficient conditions for Q+-regularity of ?7 will also 
ensure Q-regularity. It seems reasonable to conjecture that Q+- and Q- 
regularity are equivalent in general if the Isaacs condition is satisfied. 
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