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CONSISTENCY THEOREMS FOR ALMOST CONVERGENCE 

BY 

G. BENNETT(1) AND N. J. KALTON 

ABSTRACT. The concept of almost convergence of a sequence of real or complex 
numbers was introduced by Lorentz, who developed a very elegant theory. The purpose of 
the present paper is to continue Lorentz's investigations and obtain consistency theorems 
for almost convergence; this is achieved by studying certain locally convex topological 
vector spaces. 

1. Introduction The concept of almost convergence of a sequence of real or 
complex numbers was introduced, after an idea of Banach, by Lorentz [131 who 
developed a very elegant theory. Further studies of almost convergence and its 
relationship with general summability methods have since been carried out in 
[121, [171 and [19]. The purpose of the present paper is to obtain consistency 
theorems for almost convergence by studying certain locally convex topological 
vector spaces. 

We adopt the following notation: 
w denotes the space of all scalar (real or complex) sequences; 
e, e(k) E w are given by 

e = (1, 1,... ), 

e(k) = (O . . . , 0, 1, 0... ) with the one in the kth position; 

m is the linear span of {e(k): k = 1,2, ...; 
m -x E w: lIxI4 = supjlxjl < oo); 
c = {x E w: lim x = limjp. xj exists); 
co= {x E w: lindix = 0); 

I x EE w: llxll, = lj:, l xjl < oo}; 
bv = {x E c: lIXI, = li,- lxi - x+, I + limr,j IxJl < oc); 
bvo= bv n co; 
bs = {x E co: IIx|I = supJJj%I xjl < o). 
A vector subspace of X is called a sequence space. If E is a sequence space with 

a locally convex topology r then (E, T) is a K-space provided that the linear 
functionals 
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X --*Xi (i = 1, 21 . .. ) 

are continuous on E. If, in addition, (E, T) is complete and metrizable (respec- 
tively normable) then (E, or) is called an FK-space (respectively BK-space). For 
x E w we write 

PnX = (XIIsX2, 9 *sXn, O1 -.--. 

(E, T) is an AK-space if P x converges to x for every x E E. 
If E and F are sequence spaces containing T such that the bilinear form 

<x,y> = j I xjyj converges whenever x E E andy E F, then topologies of the 
dual pairing <E, F> provide examples of K-space topologies. In particular, we 
shall be interested in the weak topology 0(E, F), the Mackey topology T(E, F) and 
the strong topology 13(E, F) (following the notation of Schaefer [18]). 

We shall also consider matrix maps and matrix methods of limitation. Let 
A = (aij),X.. be an infinite matrix with scalar entries; we denote by WA the set of 
x E w such that lj5tI a0jxj converges for each i. For x E CoA we write 

00 

(Ax), = I aj x 
j=1 

so that A: WA -> w is a linear map. If E is a sequence space, 

EA = X E wA4: Ax E E}. 

If E is an FK-space then Zeller [24, Theorem 4.10(a)] has shown that EA is also 
an FK-space when topologized by means of the seminorms: 

X _*Xi (j = 1, 23, . .. ) 

x -sup | > a,vx.| ( 1, 2, . .. ) 

and 

x q(Ax), 

where q runs through the continuous seminorms on E. A matrix A defines a 
method of limitation, viz: if x E cA, we write limA x = lim(Ax). A is called 
conservative if c C cA or, equivalently (see [26]), 

00 

(1) sup E laj I < oo, 

(2) lim a- aj exists (J = 1,2,...), 

and 

00 

(3) lim 2 aij exists. 
1)00J= I 
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We then write 

00 00 

X(A) = limO 2 aij - aj, 

and say that A is conull when x(A) = 0. A is called regular if limA x = lim x 
whenever x E c; for regularity it is necessary and sufficient (see [26]) to have (1), 
(2) and (3) with aj = 0 (j = 1, 2,... ) and x(A) = 1. 

2. Properties of almost convergence. In this section we develop the theory of 
almost convergence, deriving the original characterization of almost convergent 
sequences given by Lorentz [13], as well as several other useful properties of the 
space aco (to be defined below). Since our approach is from the viewpoint of 
functional analysis, and therefore differs slightly from Lorentz's, we shall give a 
complete development of the subject. 

The linear functional lim on c has norm one, i.e. 

Ilim xt < lixiL (x E c) 

and so by the Hahn-Banach theorem possesses extensions L, of norm one, 
defined on all of m. We call such a functional L an extended limit. If x c w, we 
write 

Tx = (Xn+l}"=l 

and say that an extended limit L is a Banach limit if 

L(Tx) = L(x) (x E m). 

(Some authors insist that a Banach limit should also satisfy L(x) 2 0 whenever 
Xn > 0 for all n, or even limn )oO sup Xn 2 L(x) 2 limnooinf x". It is clear, 
however, that any extended limit has these properties.) 

The existence of Banach limits was proved by Banach [2]; another proof can 
be found in Theorem 1 below. If x C m is such that for every Banach limit L, 
L(x) assumes a common value, then we write Lim x for this value, and say that 
x is almost convergent to Lim x. The set of almost convergent sequences is 
denoted by ac, and the subset {x C ac: lim x = 0) is denoted by aco. aco is a 
hyperplane in ac and ac = acO + {e}; it is also easy to show that ac and aco are 
closed supspaces of m. Our first result (Theorem 1) characterizes these spaces. 

Lemma 1. If L is a continuous linear functional on m with 
(i) ||L|| 1, 
(ii) L(e) = 1, and 
(iii) L(bs) = 0, 

then L is a Banach limit. 

Proof. Since Tp C bs, it follows from (iii) that L(Qp) = 0, and by continuity that 
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L(co) = 0; therefore L is an extended limit. Moreover, for x E m, x - Tx E bs 
and so L(x) = L(Tx). 

Lemma 2. If x E m\co, then there exists an extended limit L with L(x) # 0. 

Proof. Since x E m\co, we may choose an increasing sequence {nk}k .1 of 
positive integers such that 

lim Xk = a 0. 

Define L by 

Ly = ,lim ynk 

where this limit exists, and extend L to m by the Hahn-Banach theorem. 

Theorem 1 (Lorentz) [13] . x E w is almost convergent (to a) if and only if 

(4) lim I(Xn + + Xn+p-1) = a 

uniformly in n. 

Proof. Without loss of generality we may assume that a = 0. Let {np}p..l be 
any increasing sequence of positive integers, and define the matrix map A: m 

m by 

(A x)p =(Xn, + *+ Xnp1) (x E m). 

Then we have Ae = e, A(bs) c co, IAAILO = 1. 
If L is an extended limit, then, by Lemma 1, 

(5) LA is a Banach limit 

and so, for x E aco, we have 

L(Ax) = 0. 

By Lemma 2 we have A x E co so that 

lim I(x + Xp = + n = 
p-+00 p 

Since this is true for any sequence {np}A=i, we conclude that 

lim sup 1(Xn + + Xn+l| =0, p-)-00 n p(x+ . 

which is (4). 
Conversely, (4) implies that 
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lim I(TX + + TPx)I = 0. 

Thus, for any Banach limit L, we have L(x) = 0, so that x E aco. 
We remark that (5) gives what is perhaps the easiest proof of the existence of 

Banach limits. Banach's original proof [21 also uses the Hahn-Banach theorem, 
but involves a rather sophisticated sublinear functional; Day's elegant proof [9, 
p.83], using fixed point theory, requires considerably more machinery. 

Our next result, which follows at once from Theorem 1, shows that aco and ac 
are "large" subspaces of m. 

Corollary. (aco, II -Ioo) is a nonseparable BK-space. 

We now come to a series of results which relate various properties of aco to 
those of more familiar sequence spaces. 

Theorem 2. If {x(n)}nt 1 is a sequence of points in 1, and x E I, then the follouing 
conditions are equivalent: 

(i) {x(")})t I is r(1, aco)-convergent to x: 
(ii) {x(n)}n 1 is a(l, bs + co)-convergent to x; 
(iii) supn llx(n) 11, < oo and limn, llx(n) - xl6,, = 0. 
Proof. Without loss of generality we may assume that x = 0. 
(i) X (ii) follows since bs + co C acO. 
(ii) X (iii). If x() - 0 o(l, bs + co), then x(n) -- 0 a(l, co) so that 

sup IIx(n) Ih < oo. 
n 

Also, x(n) - 0 a(l, bs) so that x(n) - 0 a(bvo, bs); this is the weak topology on bvo, 
and, since bvo is isomorphic to 1, we may use Schur's theorem [2, p. 137] to deduce 
that 

lim IIx(n) 1I, = 0. 

(iii) =X (i). Let f E aco and e > 0 be fixed. By Theorem 1 we may choose a 
positive integer p so that 

|p(Tf + *+ TP) L <e/2(l + SUpIIX(")tIi). 

We then have, for every n, 

I| kl(fkl + - * - + fk+p 

< F rX(f)x11i || (Tf + postiv+ Tpf N < t 

Furthermore, fixing p,we may choose a positive integer N so that 
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IIx(")Iv < 2(p + 1)(1 + IlfiL) 
whenever n > N. 

Now 

|> (fk+s-fk)x<)| = |: fk( )-x()) (puttingx) = O if m < 0) 

00 s 

l fkl 2 lXk r+1 -Xk rl k=1 r=1 

< SllfIL (Ilx(n) IL, + I xi(n) 1 ) 

< 2,sI|f | II|x(n)IL,V; 

Therefore 

k lP(fk+l + + fk+p)Xk - fkXk ) |2If I00I llx(n) IL, 

< whenever n > N. 

Thus, for n > N, we have 

| fk Xk )|<8 

in ~~~~~~~~k=lI 
i.e., x(n) O0 

c(l, 
aco). We remark that condition (iii) of Theorem 2 identifies sequential convergence 

in uQ,aco) with a two-norm topology. For details concerning this type of 
topology we refer the reader to [1], [6], [22] and [23]. 

Corollary 1. 1 is sequentially complete under both the topologies a(l, aco) and 
c(l, bs + co). 

Proof. If {x(n)}n= is a a(l, bs + co)-Cauchy sequence, the proof of Theorem 2 
shows that {X(n)}) 0I is a Cauchy sequence in bvo and bounded in 1. Since bvo is 
complete, there exists x E bvo such that 

lim IIX(n) - XL = 0. 

But this implies that 

xk= lim xn (k 1, 2, ...) 

so that 

00 nk 

k=1 IkI ? sup X In) I < 00, 
k=-1 n, k=1 



CONSISTENCY THEOREMS FOR ALMOST CONVERGENCE 29 

and x E 1. It then follows from Theorem 2, (iii) =X (i), that x(n) -O 0 a(l, aco), 
giving the desired result. 

Corollary 2. For a subset C of 1, the following conditions are equivalent: 
(i) C is u(l, aco)-relatively compact; 
(ii) C is a(l, bs + co)-relatively compact; 
(iii) C is 11 111-bounded and 1im,1O SUPXup-C lIX - PfXllbV = 

Proof. A subset of a K-space is relatively compact if and only if it is relatively 
sequentially compact (see [10]) and hence Theorem 2 shows that (i) and (ii) are 
equivalent. Using the sequential completeness of I in the two-norm convergence 
defined in (iii) of Theorem 2, it is clear that (i) and (ii) are equivalent to "C is 
I b111-bounded and Il Hlbv0-relatively compact." However, by a general theorem on 
bases (see [16]) this is equivalent to (iii). 

We note from Corollary 2 that the closed convex hull of a c(l, aco)-compact set 
is also a(l, aco)-compact (using (iii)); hence the Mackey topology, T(aco, 1), is the 
topology of uniform convergence on a(l, aco)-compact sets. 

We now turn to the relationship between aco and bs. 

Theorem 3. (i) acO = bs, the closure of bs in m. 
(ii) If x E bs + co, then supplim sup,,--,x.x+ + + Xn+plI < K 
(iii) acO # bs + co. 

Proof. (i) Clearly bs C acO. Conversely, if x E aco and e > 0 are given, we 
may choose a positive integer p so that 

lxn+1 + 1 + Xn+pl <Pe (n = 1,2, ...). 

In particular, 

(6) Xmp+l + * + X(m+l)p= Pam (m = 0, 1, 2, ...) 

where 13m I < e. Letting y be defined by 

Ymp+k = Xmp+k -am (k = 1,2, ... ,p; m = 0, 1,2, ...), 

it is clear that lix - yIL < e; we complete the proof of (i) by showing that 
y E bs. 

Now 

mp+k m-1 p k 
1 yi I I (xnp+= - 8n) + T1 Xmp+i - k8m 

i=1 n=O j=1I 
k 

= i xmp+i - k3m by (6). 

Consequently 
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q 

I yi/ < p(lixL + e) 

for every q, and y E bs. 
(ii) If x E bs + co, then x = y + z for some y E bs and z E co. Then 

IXn++ + + Xn+pI < lyn+i + +yn+pl + IZn+i + * + zn+pl 

so that 

lim sup Ixn1 + + xnp = urnsup Lyn+l + +yn+py I < 21jyiIJs, 

giving the desired result. 
(iii) By (ii) we may construct x E aco\(bs + co) directly; let 

Xk = 1 if k = 2n + 2m for n >m 1, 

= 0 otherwise. 

Then x does not satisfy (ii), yet it is easy to check that x E aco. 
It is interesting to note that bs + co is a BK-space which is B-invariant in the 

sense of Garling [10], and co c bs + co C m, yet bs + co is not closed in m. 

Theorem 4. (i) (aco,T(aco, 1)) is a complete AK-space. 
(ii) T(bs + co, 1) is the restriction of T(aco, 1) to bs + co [so that (aco, T(aco, 1)) is 

the completion of (bs + co, T(bs + co, 1))]. 

Proof. (i) If C is o(l, aco)-relatively compact, then by (iii) of Corollary 2 to 
Theorem 2, the set P(C) = {(f: f E C} is a(l, aco)-relatively compact. It follows 
that the operators {JP: n = 1,2,9... are T(aco, l)-- T(aco, I)-equicontinuous, so 
that the set 

S = {x E aco: PxX -- X T(aco,l)} 

is T(aco, I)-closed. However, S D q, and p is T(aco, I)-dense in aco (since 4m is 
a(aco, I)-dense); hence S = aco, showing that (aco, T(aco, 1)) is an AK-space. 

To show that (aco, T(aco, 1)) is complete we use Grothendieck's criterion [6, 
Proposition 1]. Let 9 be a linear functional on I which is o(I, aco)-continuous on 
each a(l, aco)-compact set. Then 8(x(n)) -* 0 whenever x() - 0 a(l, aco). Conse- 
quently, from Theorem 2, 9 is continuous in the two-norm topology. Using the 
standard characterization of the dual of a two-norm space [1, Theorem 4.2], it 
follows that 9 lies in the closure of bs (the dual of (1, Il l6,")) in m (the dual of 
(1, IIltL0)). Hence, by Theorem 3(i), 9 takes the form 

00 

9(X) = I fkXk, 

wheref is a fixed element from aco. It follows from Grothendieck's criterion that 
(aco, 'r(aco, 1)) is complete. 
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(ii) This follows from Corollary 2 to Theorem 2. 

Theorem 5. Let E be a separable FK-space containing co and bs. Then 
(i) E contains aco; 
(ii) x E acO implies that P1x X in E; 
(iii) e(n) -> 0 in E. 

Proof. (i) and (ii). The space (bs + co, T(bs + co, 1)) is a Mackey space whose 
dual, 1, is a(l, bs + co)-sequentially complete by Corollary 1 to Theorem 2. Thus, 
by the main result of [11] (see also [7, Theorem 5]), the natural inclusion mapping: 
bs + co -- E, which clearly has closed graph, must be continuous. If x E aco, 
then by Theorem 4, {(Px}X= I is Cauchy in (bs + co, T(bs + co, 1)) and hence in E. 
Since E is complete, {JPx}":= converges in E, and its limit must be x since E is a 
K-space. This completes the proof of (i) and (ii). 

For (iii), we note that if C is a c(l, bs + co)-compact subset of 1, then 

suplf.I < sup lf- P.-If16 -- 0 as n -- oo 
feC feC 

by Corollary 2 to Theorem 2. Consequently e(n) -O 0 T(bs + co, 1) and hence in 
E. 

We note that (iii) is true if we only assume that E contains bs (see [5, Theorem 
5]). 

Our next result answers a question left open in [6]. 

Corollary 1. There exists a BK-space E which is not the intersection of the 
separable FK-spaces containing it. 

Proof. Using Theorems 3 and 5 we may take E to be bs + co. 

Corollary 2. If A is a conservative matrix such that bs C cA, then 
(i) ac C cA; 

(ii) limnoo supm lamn I = 0; 

(iii) limmoo SUPn la.m I = 0; 
(iv) for x E ac, we have limA x = j I ajxj + X(A)Lim x. 

Proof. (i) CA iS a separable FK-space ([14, 1.4.1]; [4, Corollary 1 to Theorem 4]) 
and so, by Theorem 5(i), acO C cA. Since e E cA, it follows that ac C cA. 

(ii) e(n) -O 0 in cA by Theorem 5(iii), so that Ae(n) -O 0 in c by Theorem 4.4(c) 
of [24]. It follows that 

lim sup la,,, I = 0. 
n- oo m 

(iii) follows from (ii) as in the proof of Proposition 8 of [5]. 
(iv) If x E ac, then x - (Lim x)e E acO and, by Theorem 5(ii), 

00 

x - (Lim x)e = 2 (Xk - Lim x)e(k) in cA. 
k=I 

Now limA is continuous on CA so that 
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00 

lim x-(Lim x)lim e = 2 (xk-Lim x)ak. 

Since x E m, 2.' akxk converges and so 

co 

lim x 2 akXk+ Limx lime - 2 ak) 
A k-I A kl 

- 2 akxk+ X(A)Lim x. 
k-I 

3. Consistency theorems. In [61 we used a technique involving the Orlicz-Pettis 
theorem on unconditional convergence of series to obtain a new proof of the 
Mazur-Orlicz-Brudno consistency theorem. In this section we apply the same 
basic technique to derive similar consistency theorems for almost convergence; 
the details, however, are much more difficult than those in [6] and we shall need 
considerable preparation before coming to our main results (Theorems 6 and 8). 

We begin by introducing an idea which may be of some interest in a more 
general setting; we say that a sequence {x(")})n?.1 is superconvergent to x (in a 
locally convex space E) if {x(")}).4 converges to x and 

00 

2 (Xn - XnkI) 

converges in E for every increasing sequence {nk}k.l of positive integers. 
Our first result is elementary and its proof is omitted. 

Lemma 3. Every subsequence of a superconvergent sequence is superconvergent. 

The validity of the next result is one of the main reasons for studying 
superconvergence. 

Lemma 4. Let E be a locally convex space with dual E. If a sequence fx(n)}):.. 
superconverges in the weak topology a(E, E), then {x(n)}?,?, converges in the topology 
A(E, E') of uniform convergence on a(E', E)-compact sets. 

Proof. Direct application of the general Orlicz-Pettis theorem (see [61, [151 or 
[21]). 

Lemma 5. Let E be a Fr&chet space and suppose that x() -* x in E. Then there is 
a subsequence {z(n)}lI of {x(")}n?? I that superconverges to x. 

Proof. Suppose that {Pk)kl. is an increasing sequence of seminorms defining 
the topology on E. Choose an increasing sequence {nk)k., of positive integers so 
that 

pk(X - x(n)) < 1/2k 

whenever n > nk. Putting z(k) = x(k), k 1, 2, ..., it is easy to see that 
00 

2 (Z(k) Z(k-1)) 
k-. 
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converges absolutely, so that {z(k)})k?. superconverges to x in E. 

Lemma 6. x(n) -+ x a(m, 1) if and only if x(n) -- x G(m, q) and supn jxj(n)jI. < ??. 

Proof. A simple compactness argument (cf. [6, Lemma 3]). Alternatively, a neat 
proof may be given by using Lebesgue's dominated convergence theorem. 

Lemma 7. If x(n) -O 0 a(co, 1), then there exists a subsequence {z(n)}"a. I of {x(n)}n I 
such that 

I 
(l) + z(2) + + Z(n))lI - 0. 

Proof. In view of Lemma 6 the hypotheses are equivalent to 

(7) lim x(n) = O (n = 1,2, 2.........), 

(8) lim x(n) = 0 (j = 1,2) . o*)j n--*oo 

and 

(9) ~~~~~supIx (n)=m < oo. 
nj J 

We choose increasing sequences {fs.)^. and {t)}.%, of positive integers as 
follows. Let s5 = 1, to = 0, and suppose that sl, s.. and t1, ..., t,,,I have 
been chosen. Using (7), choose tr > tm.i so that 

(10) max I xjnt <2' 1?fn?sm 

whenever j > t,. Next, using (8), choose si+1 > sm so that 

whenever 1 < j < tn. 
If tin< j < trn+I and m > 1, then 

01) + xS2) + + x(5"), < n - 2-n if n < m by (10), 
n-I 

< m - 2-2 +xfr+')f+ j I 
k-m+1 

if n > m by (10) and (11), 

< M + 1 by (9). 

Consequently, putting z(n) = X(sn), n = 1, 2, ..., we have 

Z(1) + Z(2) + . . . + Z(n) X0S0) + X(S2 + * + x(s) 
n = sup sup n n {M 14tm<J?tm+o 
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Lemma 7 says that in the Banach space co every weakly convergent sequence 
has a subsequence whose arithmetic means converge in norm. This property, the 
so-called Banach-Saks property, is also known to hold for the spaces IP and 
LP(0, 1) (see [3D. We remark here that not every Banach space has this property. 

Lemma 8. Let x(") E co, n = 1, 2, . . ., and suppose that x() - x a(m, I). Then 
there exists a subsequence {z(n)},t.j I of {X(n)},. . that is superconvergent to x in a(m, 0. 

Proof. Without loss of generality we may assume that x = 0. The hypotheses 
are then the same as in Lemma 7 and we may choose {s)n'. I and {t,jn I as before 
so that (9) and (10) are satisfied. It is easily seen that 

(S)00',-1 0 sup xi -xjS')I<0, 
j nl-I 

and so, in view of Lemma 6, we may take Z(n) = X(sM), n = 1, 2. 

Lemma 9. If x E acO and (sn}nt I is a strictly increasing sequence of positive 
integers then the sequence 

y(n) =(PI X + PSx + *+ PS.JX) 

is superconvergent to x in a(aco, 1). 

Proof. We define 

QO 0; Qn S(S + P2+ +PS-) n= 1,29 
Rn = Qn- Q-l- 

For any finite subset M of the positive integers Z we write 
00 

Sm = Rk1, = I 6M(k)Rk 
keM k-i 

where 8M is the characteristic function of M. We show that the collection 
(SM: M is a finite subset of Z} is T(aco, 1) T(aco, I)-equicontinuous. Since 

00 X0 

I (SMf)kxk = z fk(SMX)k, k-1 k-i 

we must show that if C is a(l, aco)-compact then S(C) = {SMf: f E C, M C Z} 
is u(l, aco)-relatively compact. 

For x E 1, we have 

(Qnx), = (I - k/n)x, if Sk < p < sk+l 1 < k < n, 

=0 ifp>s,,, 

and 
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(RnX)p- ( )xp if sk<p<sk+l, l < k<n-1, 

_ O if P>sn, 

so that 

(SMx)P{ k m _ K(nxp if Sk < p < Sk+1. 
n=-k+i n(n - 1)MJX 

Now if C is c(l, aco)-relatively compact, then by Corollary 2 to Theorem 2, we 
have 

sup |lxil = K < oo, 
xec 

and 
00 

sup lxp-xp+1l = En ?- 
xeC p-n 

Now 
00 k 

I(SMX)PI < IXplI n(n - 1) <xp 

so that IISMXIII < K. If Sk < p < Sk+1, 

(SMX)P-(SMX)P+I = E n(n -1) m( ))(XP - xP ) 

so that 

|(SM X)P -(SM X)P+ I I < I|XP -XP+I |; 

while, if p = Sk, 

(SM X)P- (SMX)P+1 = kE n(n - i8m(n) XP E n(n- _)8M(n)fXp+I 

{E n(n 8M(n)}(xp- x+ I){ - n(n - 1) m(}xp+I 

+ k8M(k)xp+1, 

so that 

I(SMx)P - (SMx)P+l I < IxP - XP+j I + j tXP+I1. 

Consequently, if Sk < n < sk+, 
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00 K X0 
ya I(SMX)p - (SMX)P+II < k + Ixp - xP+1 

p=n+l p=n+l 

-k +En-> asn -oo. 

It follows from Corollary 2 to Theorem 2 that S(C) is indeed a(l, aco)-compact 
and so the collection {SM: M C Z} is equicontinuous on (aco, T(aco, 1)). In 
particular, if N is an infinite subset of Z, the operators 

n 
2 5N(k) Rk (n = 1,2,...) 
k-I 

are equicontinuous, and so, since aco is r(aco, I)-complete (Theorem 4(i)) the set 
of x E ac0 for which z Nk= (k)Rkx converges is closed. However if x E p this 
is clearly so, and so we conclude for all x e aco and all N C Z that 

'k-= ON(k)Rkx converges. Hence the sequence {Qnx)}n= superconverges in 
(aco, T(aco , 1)). 

Lemma 10. Let x(n) E co, n = 1, 2,..., and suppose that x(n) -- x o(aco,l). 
Then there exists a subsequence {z(n)})..1 of {x(n)}"=.. such that some subsequence 
{w(n) )=L1 of {(z(') + Z(2) + ... + Z(n))/n)=j superconverges to x in o(aco, 1). 

Proof. Since Pnx -* x a(aco, 1), we have 

X()- X - 0 O(CO, 1)- 

By Lemma 7 we may take a subsequence 
{z(n)}Y?j = {x(sn)})"?I 

of {x(n)}.1 such 
that 

|j l (Z(1) + ... + z(n)) --(PiX + + gnX) ? 

Taking a subsequence again, we may suppose that, for each integer n, 

||I (Z( ) + ...+ Z(Mn))- 
I 

(P'tx + ***+ P'.X)l <-I 
Mnl Mn oo 2n" 

so that the sequence 

{I (z() + ... + Z(mn)) -(J,x + ... + PIm@X)} 

is superconvergent to 0 in co. However, by Lemmas 3 and 9, the sequence 

(asc x + H + pence,wi 

is superconvergent to x in a(aco, 1). Hence, with 
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w(n) = I (z(1) + + z(m")) (n = 1,2,... ), 

{W(n)}Jn-I is superconvergent to x in a(aco, ). 

Before stating our next result we recall the following notation. For an infinite 
matrix A, acA denotes the set 

acA = {x E w: Ax E ac}. 

If x E acA, we write LimA x in place of Lim(Ax), and denote by (aco)A the 
subspace of (ac)A on which LimAvanishes. 

Theorem 6. Let A be a matrix such that 
(i) sup, SJ? laij < oo, and 
(ii) limi, a,j = 0 for j = 1, 2, . Then I is o(l, (aco)A n m)-sequentially 

complete. 

Proof. Let x E (aco)A n m be fixed. We construct a sequence {z(Z)}# l of 
elements of p such that (z(n))nt I superconverges to x in o((aco)A n m, 1). To do 
this, we first observe that 

AIPx-*Ax a(w,q). 

Condition (i) ensures that A: m -+ m is continuous and hence 

I|A PInxj < ||A 11 jxiL 

Lemma 6 gives 

APnx >A x U(m,/). 

Now condition (ii) implies that A Pnx E A(zp) C co so we may apply Lemma 10 
to deduce the existence of a sequence {v(k)}k=1 such that {Av(k)})i superconverg- 
es to Ax in a(aco, 1) and {v(k)}'= takes the form 

v(k) = -(U0) + * * * + U(Mk)) 
mk 

where (u(k)}1 I is some subsequence of (PIx)n'!=. Clearly we have 

SUpIV(k) 1 <111 
k 

and v(k) - x a(o,p) so that v(k) -- x c(m,1) by Lemma 6. 
Furthermore, since Av(k) > Ax in w, we have 

v(k) ;X in wA. 

We now apply Lemmas 3, 5 and 8 to obtain a subsequence {z(n)}"?I of {v(n))'n-I 
such that {z(n)}"?? I superconverges to x in both WA and a(m, 0; it is also clear that 
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(A z(n)}n..1 superconverges in (aco,o(ac0,1)). Now suppose that fen}.3 is a 
sequence taking only the values I and 0; for each k let 

Yk _ 2 en(zl") - zkn 1)) (where z(0) = 0). 
n=1 

Since (z(n))}L1 superconverges in both wA and (m, O(m, f)), the series 
00 

- e,(z(n) - Z(n-1)) 
n=I 

converges to y in both W4 and (m, o(m, 0); therefore y e m n wA. Now 
A: 0A -> w is continuous [24, Theorem 4.4(c)] and so 

00 

Ay = 2 en(Az(n) -A z(n-)) a(o ,). 
n-= 

However, (A z(n))} I superconverges in (aco, c(aco, 1)) so that 

00 

Ay = 2 en(Az(n) -A Az(-)) o(aco 1) 
n=l 

and Ay e aco, i.e., y e (aco)4. Thus {z(n)} I superconverges to x in ((aco)4 n m, 
((aco) n m,l)). 
We now repeat the argument used in the proof of Theorem 3 of [6]. Consider 

the topology X((aco)An ml, ) on (aco)A nm of uniform convergence on the 
c(1, (aco)A m)-compact subsets of 1; by Lemma 4 we have 

z(n) -+ x x((aco)A n m, 1). 

Suppose now that 4 is a linear functional on (ac0)An m whose restrictions to 
X((aco)A n m, I)-precompact sets are X-continuous. Then q/ is X-sequentially 
continuous and since X < p((aco)A n m, 1) < 8(c0, 1), 4 is 11 tI-continuous on co 
so that 

QO 
2 I fi < 00 

where4(e)) = f-1(j= I,2, Now 
00 

O;(Z(n)) = y. Z(n)ft 
1=1 

j 
j 

since zjn) E (, and 
00O co xf 

lim Y, zft< j x. 
since z0() x o(mi, ). Consequently, for each x E (ac0)An m, we have 

00 

) = I xi f> jl1 
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It follows (as in the proof of Theorem 3 of [6]) by Grothendieck's completeness 
theorem that the topology p on 1, of uniform convergence on X-precompact 
subsets of (aco)A n m, must be complete. Furthermore, p defines the same 
convergent and Cauchy sequences as a(l, (aco)A n m) so that I is a(l, (aco) n m)- 
sequentially complete. 

We now come to our first consistency theorem. 

Theorem 7. Let A and B be regular matrices and suppose that acA n m C C,. 
Then limB x = LimA x whenever x E acA n m. 

Proof. Since A is regular, the conditions of Theorem 6 are satisfied. Let 
b(n3 E 1, n = 1, 2, .. ., be defined by 

bi(n= b k (k = 1, 2, ...), 

(so that b(n) is the nth row of B). Since (aco)A n m C cB, we have 

00 

lim 2 bk()xk exists 
no k-I 

whenever x E (aco)A n m. Hence {b(n)}n=j is a(l,(aco)A n m)-Cauchy and so 
converges, say b(n) -> b, by Theorem 6. Clearly 

bk = lim bnk = 0, 

so that b(n) - 0 o(l, (aco)A n m). 

Now, if x E (ac)A n m, then x - (LimA x)e E (aco)A n m, and so 

lim(x - (Lim x)e) = l T.= bn)(xk Limx O, 

i.e. limBx = LimA x. 
When A is the identity matrix, Theorem 7 reduces to the following. 

Corollay. Let B be a regular matrix with ac c cB. Then limBx= Lim x 
whenever x E ac. 

This special result may also be derived from Corollary 2 to Theorem 5 and was 
first obtained by Lorentz [13]. 

Before stating our next result let us recall the following notation. If E is an FK- 
space containing 9p, then we write 

WE = {X E E: Px -x weakly in E) 

and 

SE = {X E E: x -x inE). 

Theorem 8. Let E be an FK-space containing co. Then I is sequentially complete 
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under both the topologies a(l, WE n aco) and a(l, SE n aco). 

Proof. As with Theorem 6, the proof hinges on ideas developed in Theorem 3 
of [6]. 

Let x E WE n acO be fixed: by Theorem 2 of [6] (see also [20]) there is a 
sequence {u(n))}..I of elements of qp with 

- lim U(n) = x 
n-+oo 

and 

sup jjU(n) Il < jjxLo, 
n 

where T denotes the FK-topology on E. By Lemma 6, 

lim u(n) x a(aco,l) 

and so, by Lemma 10, there exists a sequence fv(n)}"?,, of arithmetric means of a 
subsequence of {u(n)}"'=l, such that tv(n))nt, superconverges to x in a(aco,1); 
clearly 

- lim v(n) = x. 
n-+oo 

By using Lemmas 3 and 5 we may select a subsequence {z(n)}nt which 
superconverges to x in both T and ci(aco, 1). Thus every subseries of 
TO (Z()-Z(n-1)) convergesin Er,acO; i.e.,if en =0 or 1 forall n and 

00 

y = a El(Z() -Z(n-1)) (where z(?) - 0), 
n=l 

then y E E n acO. Since this series converges in a(m, 1), we have 

sup | En((Z(n) - Z(n') < oo, 

and since the series converges in T we have y E WE by Theorem 2 of [6]. Thus 
{z(n))nLi superconverges to x in (WE n aco, 1), and the remaining details follow 
those of Theorem 6 (or Theorem 3 of [6]). 

For the second half of the theorem we observe that [10, pp. 1015-1016] 
SE = WF, where F is the FK-space defined as follows. 

F = {X E E: {Pnx)}1 is T-bounded) 

with the topology given by the seminorms 

v(x) = sup v(Inx) (x E F) 
n 

for each T-continuous seminorm v. 
Our next result may be thought of as a generalized consistency theorem. 
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Theorem 9. Let E be an FK-space containing co and let F be an FK-space 
containing no (closed) subspace isomorphic to m. If WE n acO C F, then WE n acO 
C WF. 

Proof. As in the proof of Theorem 8 we can show that each x E WE n acO can 
be written in the form x = ' I x(n) where x(n) e p, n = 1, 2, ..., and the 
convergence is a(wE n aco, I)-subseries. This observation enables us to replace 
WE n m in the statement of Proposition 1 of [8] by WE n acO; but then the 
present result follows just as in the proof of Theorem 2 of [8]. 

In particular, it should be noted that Theorem 9 remains valid when F is a 
separable FK-space. 

Theorem 10. Let A and B be regular matrices and suppose that ac n CA C, cB. 
Then there exists a constant a such that 

lim x = a lim x + (1 -a)Lim x 
B A 

whenever x E ac n cA. 

Proof. Since A is regular we have, by Theorem 3.6 of [25], (co)A n aco 
= fn aco. Now cB is separable ([14], [4D so that 

(co)A n aco C WCB n aco= (co)B n aco 
by Theorem 9. Hence limA x = Lim x = 0 implies that limB x = 0, and so 

lim x = a lim x + 1 Lim x 

whenever x E ac n cA. However 1 = limB e = a + 18 and the desired conclu- 
sion follows. 

Theorem 11. Let A and B be conservative matrices and suppose that ac n cA 
5 cB. Then there exist constants a, 13 such that 

(i) limBx - lJ$I bjxj = a(limAx - Ej ajxj) + 1 Lim x whenever x E ac 
n cA, and 

(ii) X(B) = aX(A) +1. 
Proof. This is a simple extension of Theorem 10; we observe that 

WA n aco{x: limX= ajxj} n aco 

and apply the same method. 

Corollary 1. Let A be conull and B be regular and suppose that ac n cA C cB. 

Then there exists a constant a such that 

limx = Limx+a(limx- ajxj) 
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whenever x E ac n CA. 

Corollary 2. Let A be regular and B be conull and suppose that ac n CA C CB. 
Then there exists a constant a such that 

lim x = (aim x-Umx) + I bjxj 

whenever x e ac n CA. 
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