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CONSISTENCY THEOREMS FOR ALMOST CONVERGENCE

BY
G. BENNETT(!) AND N. J. KALTON

ABSTRACT. The concept of almost convergence of a sequence of real or complex
numbers was introduced by Lorentz, who developed a very elegant theory. The purpose of
the present paper is to continue Lorentz’s investigations and obtain consistency theorems
for almost convergence; this is achieved by studying certain locally convex topological
vector spaces.

1. Introduction The concept of almost convergence of a sequence of real or
complex numbers was introduced, after an idea of Banach, by Lorentz [13] who
developed a very elegant theory. Further studies of almost convergence and its
relationship with general summability methods have since been carried out in
[12], [17] and [19]. The purpose of the present paper is to obtain consistency
theorems for almost convergence by studying certain locally convex topological
vector spaces.

We adopt the following notation:

w denotes the space of all scalar (real or complex) sequences;

e, ¢®) € w are given by

e=(,1,...),
e® =(0,...,0,1,0,...) with the one in the kth position;

@ is the linear span of {e®: k = 1,2,...};

m={x € a: llxlb = sup,|x| < oo);

¢ = {x € w: lim x = lim;,, x; exists};

¢ = {x € w: lini x = 0};

l={x € wllxlh = 22 |x] < o0};

b = {x € w: |Ixllp = Z2; % = x| + lim, | x;] < o0};

bvy = bv N ¢y;

bs = {x € w: [|xps = sup,|Zj-; x| < o0}.

A vector subspace of w is called a sequence space. If E is a sequence space with
a locally convex topology 7 then (E, 7) is a K-space provided that the linear
functionals
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x=x  (=12...)

are continuous on E. If, in addition, (E, ) is complete and metrizable (respec-
tively normable) then (E, 7) is called an FK-space (respectively BK-space). For
X € w we write

le = (xlaxZa---,xn,o,-..).

(E, 1) is an AK-space if B x converges to x for every x € E.

If E and F are sequence spaces containing ¢ such that the bilinear form
{x,y) = 221 x;y; converges whenever x € E and y € F, then topologies of the
dual pairing <{E, F) provide examples of K-space topologies. In particular, we
shall be interested in the weak topology o(E, F), the Mackey topology 7(E, F) and
the strong topology S(E, F) (following the notation of Schaefer [18]).

We shall also consider matrix maps and matrix methods of limitation. Let
A= (aij),-",'},,l be an infinite matrix with scalar entries; we denote by w, the set of
X € w such that 372, a;;x; converges for each i. For x € w, we write

o0
(4x), = jgl @y Xj
so that 4: wy — w is a linear map. If E is a sequence space,
E,={x € w:Ax € E}.

If E is an FK-space then Zeller [24, Theorem 4.10(a)] has shown that E, is also
an FK-space when topologized by means of the seminorms:

x> X (G=12...)

E aijxj (i= 1’ 25~--)’
Jj=1

X = sup
n

and

x = q(dx),

where ¢ runs through the continuous seminorms on E. A matrix A defines a
method of limitation, viz: if x € c,, we write lim,x = lim(4x). 4 is called
conservative if ¢ C ¢, or, equivalently (see [26]),

o) sup _El lay| < oo,
1 J=
) }Lrg a;=a; exists (j=12...),
and
o0
(3) lim 2 a; exists.
ey |
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We then write

. 0 o0
x4) = ,11}2 jgl a; — j§l a;,

and say that A is conull when x(4) = 0. A4 is called regular if lim,x = lim x
whenever x € c; for regularity it is necessary and sufficient (see [26]) to have (1),
(2) and (3) withg; = 0(j = 1,2,...) and x(4) = 1.

2. Properties of almost convergence. In this section we develop the theory of
almost convergence, deriving the original characterization of almost convergent
sequences given by Lorentz [13], as well as several other useful properties of the
space acy (to be defined below). Since our approach is from the viewpoint of
functional analysis, and therefore differs slightly from Lorentz’s, we shall give a
complete development of the subject.

The linear functional lim on ¢ has norm one, i.e.

limx| < lIxl,  (x €¢)

and so by the Hahn-Banach theorem possesses extensions L, of norm one,
defined on all of m. We call such a functional L an extended limit. If x € w, we
write

Tx = {Xpt1}net
and say that an extended limit L is a Banach limit if
L(Tx) = L(x) (x € m).

(Some authors insist that a Banach limit should also satisfy L(x) > 0 whenever
x, >0 foral n, oreven lim, . sup x, > L(x) > lim,,qinf x,. It is clear,
however, that any extended limit has these properties.)

The existence of Banach limits was proved by Banach [2]; another proof can
be found in Theorem 1 below. If x € m is such that for every Banach limit L,
L(x) assumes a common value, then we write Lim x for this value, and say that
x is almost convergent to Lim x. The set of almost convergent sequences is
denoted by ac, and the subset {x € ac: lim x = 0} is denoted by ac,. acy is a
hyperplane in ac and ac = ac, + {e}; it is also easy to show that ac and ac, are
closed supspaces of m. Our first result (Theorem 1) characterizes these spaces.

Lemma 1. If L is a continuous linear functional on m with
@Izl =1,
(i) L(e) = 1, and
(iii) L(bs) = 0,
then L is a Banach limit.

Proof. Since ¢ C bs, it follows from (iii) that L(p) = 0, and by continuity that
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L(cy) = 0; therefore L is an extended limit. Moreover, for x € m, x — Tx € bs
and so L(x) = L(Tx).

Lemma 2. If x € mi\c,, then there exists an extended limit L with L(x) # 0.

Proof. Since x € m\c,, we may choose an increasing sequence {m}y=; of
positive integers such that

klgg X,, = a # 0.
Define L by
Ly = lim y,
where this limit exists, and extend L to m by the Hahn-Banach theorem.

Theorem 1 (Lorentz) [13]. x € w is almost convergent (to a) if and only if

@ I}gg%(x,,+ st Xpype1) = @
uniformly in n.

Proof. Without loss of generality we may assume that & = 0. Let {n,},2, be
any increasing sequence of positive integers, and define the matrix map 4: m
— mby

1
(Ax)p = ;(xn, doree ot xn,+p—1) (x (S m)

Then we have de = e, A(bs) C c;, 4|, = 1.
If L is an extended limit, then, by Lemma 1,

5) LA is a Banach limit
and so, for x € ac,, we have
L4x) = 0.

By Lemma 2 we have Ax € ¢ so that
.1
‘}Ln;l’ ;(xn, +oe-t xn,+p—l) =0.
Since this is true for any sequence {n,},—,, we conclude that
. 1
Jim sup ;(xn ot X)) = 0,

which is (4).
Conversely, (4) implies that
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lim
oo

= 0.

-]

I%(Tx + oo+ TPx)

Thus, for any Banach limit L, we have L(x) = 0, so that x € ac,.

We remark that (5) gives what is perhaps the easiest proof of the existence of
Banach limits. Banach’s original proof [2] also uses the Hahn-Banach theorem,
but involves a rather sophisticated sublinear functional; Day’s elegant proof [9,
p-83], using fixed point theory, requires considerably more machinery.

Our next result, which follows at once from Theorem 1, shows that ac, and ac
are “large” subspaces of m.

Corollary. (acy, lI*ll..) is a nonseparable BK-space.

We now come to a series of results which relate various properties of acy to
those of more familiar sequence spaces.

Theorem 2. If {x"},"_, is a sequence of points in I, and x €I, then the following
conditions are equivalent:

@) {x"3,2,is 0@, acy)convergent to x:

(i) {x@}, is o(/, bs + cq)-convergent to x;

(iif) sup, [|x® || < o0 and lim,_,, [|lx® — x|}, = 0.

Proof. Without loss of generality we may assume that x = 0.
(i) = (ii) follows since bs + ¢; C acy.
(i) => (iii). If x® — 0 o(/, b5 + cp), then x® — 0 o(/, ¢p) so that

sup [[x® | < oo.
n

Also, x® — 0 o(/, bs) so that x( — 0 o(bvy, bs); this is the weak topology on by,
and, since by, is isomorphic to /, we may use Schur’s theorem [2, p. 137] to deduce
that

lim @[3, = 0.

(iii) = (i). Let f € acy and & > 0 be fixed. By Theorem 1 we may choose a
positive integer p so that

”;l;(Tf'l' oo+ TPf) . < 8/2(1 + sl:p”x(")“l)

We then have, for every n,

él :;(ﬁm + oo ferp)

< @

@+ )

€
-7

Furthermore, fixing p,we may choose a positive integer N so that
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[l oy <

€
20p + DA + [Iflks)

whenever n > N.
Now

§ (fI.<+: - ﬁc)xin)
k=1

' 2 S — Xy (putting x = 0 if m < 0)

2 |ﬁ<| 2 |xk—r+l "‘xk—r|

< sl ko (lx@ 1l + 1x71)
< 2511k 16 [l

Therefore

él %(fm F oo fop) X 2 fox| < 1 p(p 2+ l)2|| @y

<

<7
% whenever n > N.

Thus, for n > N, we have

00
| S fixd?
k=1

<e

i.e., x®— 0 o(/, acy).

We remark that condition (iii) of Theorem 2 identifies sequential convergence
in o(l,ac,) with a two-norm topology. For details concerning this type of
topology we refer the reader to [1], [6], [22] and [23].

Corollary 1.  is sequentially complete under both the topologies o(l,ac,) and
o(l,bs + cp).

Proof. If {x®}>", is a o(/,bs + cy)-Cauchy sequence, the proof of Theorem 2
shows that {x®};>, is a Cauchy sequence in by, and bounded in /. Since by, is
complete, there exists x € by, such that

1 (n) — =
}112 (| x|l = 0.
But this implies that

x = limxP  *k=12...)

n—>o0

so that

00 00
S |l <sup 3 x| < oo,
k=1 n k=1
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and x € [ It then follows from Theorem 2, (iii) = (i), that x® — 0 o(/,ac,),
giving the desired result.

Corollary 2. For a subset C of I, the following conditions are equivalent:
(@) C is o(l, acy)-relatively compact;

(ii) C is o(l, bs + cy)-relatively compact;

(iii) C is |lll,-bounded and lim, _,, sup,cc lIx — P,x|l,, = 0.

Proof. A subset of a K-space is relatively compact if and only if it is relatively
sequentially compact (see [10]) and hence Theorem 2 shows that (i) and (ii) are
equivalent. Using the sequential completeness of / in the two-norm convergence
defined in (iii) of Theorem 2, it is clear that (i) and (ii) are equivalent to “C is
[I-ll-bounded and [|-||,,,-relatively compact.” However, by a general theorem on
bases (see [16]) this is equivalent to (iii).

We note from Corollary 2 that the closed convex hull of a o(/, acy)-compact set
is also o(/, acy)-compact (using (iii)); hence the Mackey topology, 7(acy, /), is the
topology of uniform convergence on a(/, acy)-compact sets.

We now turn to the relationship between acy and bs.

Theorem 3. (i) acy = bs, the closure of bs in m.
(ii) If x € bs + co, then sUpP,lim SUP,yoo | Xpiy + *++ F Xpyp| < 0.
(iii) acy # bs + cq.

Proof. (i) Clearly bs C ac,. Conversely, if x € ac, and & > 0 are given, we
may choose a positive integer p so that

|xn+l+"'+xn+p|<pe (n=1,2,---)'
In particular,
(6) Xmp+1 + -+ Xm+1)p = p8m (m =012,.. .)

where [6,,| < e. Letting y be defined by

Ymprk = Xmpik = Om k=12...,p0, m=0,12,...),

it is clear that ||x — y|l, < e; we complete the proof of (i) by showing that
y € bs.
Now

mp+k m-1 p k
‘El Yi = 20 21 (xnp+j - 811) + El Xmp+i — kb,
i= n=0 j= i=

k
= igl Xmp+i — k8m by (6)'

Consequently
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Ié yil < plxlks + 2

for every ¢, and y € bs.
@) If x € bs + ¢y, then x = y + z for some y € bs and z € ¢, Then

|xn+l +oeee+ xn+p| < |yn+l + o +yn+p| + |zn+l R zn+p|

so that

hm Suplx,,+1 +oeee+ xn+p| = hm SuPlJ’n+1 + .- +yn+p| —<- 2||y”bs’
n—0 n—w

giving the desired result.
(iii) By (ii) we may construct x € acy\(bs + c;) directly; let

x, =1 fk=2"+2"forn>m2>1,
=0 otherwise .

Then x does not satisfy (ii), yet it is easy to check that x € ac,,.
It is interesting to note that bs + ¢, is a BK-space which is B-invariant in the
sense of Garling [10], and ¢, C bs + ¢ C m, yet bs + ¢, is not closed in m.

Theorem 4. (i) (acy, 7(acy,!)) is a complete AK-space.
(i) 7(bs + cg,1) is the restriction of 1(acy,!) to bs + ¢, [so that (acy, 1(acy,!)) is
the completion of (bs + ¢y, 1(bs + ¢y,1))].

Proof. (i) If C is o(/,acy)-relatively compact, then by (iii) of Corollary 2 to
Theorem 2, the set P(C) = {Bf: f € C}is o(l, acy)-relatively compact. It follows
that the operators {B: n = 1,2,...} are (acy, !)— 1(acy, ! )-equicontinuous, so
that the set

S = {x € acy: Bx — x 1(acy,!)}

is 7(acy,!)-closed. However, S D ¢ and ¢ is 7(acy,/)-dense in ac, (since ¢ is
a(acy, /)-dense); hence S = ac,, showing that (ac,, 7(acy,/)) is an AK-space.

To show that (acy,7(acy,!)) is complete we use Grothendieck’s criterion [6,
Proposition 1]. Let # be a linear functional on / which is a(/, acy)-continuous on
each o(/,ac,)-compact set. Then 8(x®) — 0 whenever x® — 0 o(/,ac,). Conse-
quently, from Theorem 2, § is continuous in the two-norm topology. Using the
standard characterization of the dual of a two-norm space [1, Theorem 4.2], it
follows that @ lies in the closure of bs (the dual of (/,|-|l;,)) in m (the dual of
(Il )- Hence, by Theorem 3(i), 8 takes the form

o) = 5 fixe

where f is a fixed element from ac,. It follows from Grothendieck’s criterion that
(acq, 1{acy, 1)) is complete,



CONSISTENCY THEOREMS FOR ALMOST CONVERGENCE 31
(ii) This follows from Corollary 2 to Theorem 2.

Theorem 5. Let E be a separable FK-space containing cq and bs. Then
(i) E contains acy;

(i) x € acy implies that Bx — x in E;

(iii) e —> 0 in E.

Proof. (i) and (ii). The space (bs + c,, 7(bs + c;,1)) is a Mackey space whose
dual, J, is o(/, bs + cp)-sequentially complete by Corollary 1 to Theorem 2. Thus,
by the main result of [11] (see also [7, Theorem 5]), the natural inclusion mapping:
bs + ¢y = E, which clearly has closed graph, must be continuous. If x € ac,
then by Theorem 4, {B x},, is Cauchy in (bs + ¢, 7(bs + co,/)) and hence in E.
Since E is complete, {Bx},-., converges in E, and its limit must be x since E is a
K-space. This completes the proof of (i) and (ii).

For (iii), we note that if C is a o(l, bs + co)-compact subset of I, then

sup|f,| < supllf— B_iflby >0 asn—> o
fec fec

by Corollary 2 to Theorem 2. Consequently e® — 0 7(bs + ¢¢,/) and hence in
E.

We note that (iii) is true if we only assume that E contains bs (see [5, Theorem
5]).

Our next result answers a question left open in [6].

Corollary 1. There exists a BK-space E which is not the intersection of the
separable FK-spaces containing it.

Proof. Using Theorems 3 and 5 we may take E to be bs + c,.

Corollary 2. If A is a conservative matrix such that bs C c,4, then

(i) ac C cy;

(ii) lim,, o SUPy |@ms| = O;

(iii) lim,,,_, ., sup,|a,.| = 0;

(iv) for x € ac, we have limyx = 372, a;x; + x(A)Lim x.

Proof. (i) ¢, is a separable FK-space ([14, 1.4.1]; [4, Corollary 1 to Theorem 4])
and so, by Theorem 5(i), acy C c4. Since e € ¢, it follows that ac C c,.

(ii) e — 0 in ¢, by Theorem 5(iii), so that Ae® — 0 in ¢ by Theorem 4.4(c)
of [24]. It follows that

lim sup |@a| = O.

(iii) follows from (ii) as in the proof of Proposition 8 of [5].
(iv) If x € ac, then x — (Lim x)e € ac, and, by Theorem 5(ii),

x — (Lim x)e = kE (xx — Lim x)e® inc,.
=1

Now lim, is continuous on ¢, so that
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. . *
h}n x — (Lim x)h}n e = 3 (x, — Lim x)a,.
k=1

Since x € m, 2=, ax x; converges and so
0 00
limx = 3 a,x; + Lim x(lim e— ak)
A k=1 A k=1
had .
= 3 apx; + x(4)Lim x.
k=1

3. Consistency theorems. In [6] we used a technique involving the Orlicz-Pettis
theorem on unconditional convergence of series to obtain a new proof of the
Mazur-Orlicz-Brudno consistency theorem. In this section we apply the same
basic technique to derive similar consistency theorems for almost convergence;
the details, however, are much more difficult than those in [6] and we shall need
considerable preparation before coming to our main results (Theorems 6 and 8).

We begin by introducing an idea which may be of some interest in a more
general setting; we say that a sequence {x®}.2, is superconvergent to x (in a
locally convex space E) if {x®}_, converges to x and

o0
kgl (x’lk - xllk"l)

converges in E for every increasing sequence {1 }y=; of positive integers.
Our first result is elementary and its proof is omitted.
Lemma 3. Every subsequence of a superconvergent sequence is superconvergent.

The validity of the next result is one of the main reasons for studying
superconvergence.

Lemma 4. Let E be a locally convex space with dual E'. If a sequence {x®};_,
superconverges in the weak topology o(E, E'), then {x™)},_, converges in the topology
ME, E) of uniform convergence on o(E’, E)-compact sets.

Proof. Direct application of the general Orlicz-Pettis theorem (see [6], [15] or

[21).

Lemma 5. Let E be a Fréchet space and suppose that x® — x in E. Then there is

a subsequence {z™},, of {x™},>., that superconverges to x.

Proof. Suppose that { p,};, is an increasing sequence of seminorms defining
the topology on E. Choose an increasing sequence {n; }r=; of positive integers so
that

Pilx — x) < 1/2*

whenever n > n,. Putting %) = x®), k = 1, 2, ..., it is easy to see that

s (z® = z0=-1))
k=1
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converges absolutely, so that {z®};%., superconverges to x in E.
Lemma 6. x® — x o(m, 1) if and only if x® — x a(m,¢) and sup,, x|, <ee,

Proof. A simple compactness argument (cf. [6, Lemma 3]). Alternatively, a neat
proof may be given by using Lebesgue’s dominated convergence theorem.

Lemma 7. If x® — 0 0(co, 1), then there exists a subsequence (™}, of {x™}re.,
such that
1
n

Proof. In view of Lemma 6 the hypotheses are equivalent to

M+ 2D + ... + z0)

]

(n — =
™ 11_1_1310 x"=0 (n=12...),
®) lmx? =0 (G=12..)
and
9) sup| x| = M < 0.

nJj

We choose increasing sequences {s,}m=; and {f,}n=, of positive integers as
follows. Let 5, = 1, t, = 0, and suppose that s, ..., s, and 4, ..., t,-; have
been chosen. Using (7), choose ,, > t,,—; so that

(10) max |x?| < 27"

1<n<Ssm

whenever j > t,,. Next, using (8), choose s,,.; > s, so that
(11) | x| < 277

whenever 1 <j < ¢,
Ift, <j< tygandm > 1, then

[ 4 X + oo+ xf, < n-27" if n < mby (10),

<m -m +‘x("m+|)l+ E 2"‘

=m+1

ifn > m by (10) and (11),
<M+1 by(9).

Consequently, putting z®W = x(), n = 1,2, ..., we have

x}"l) + xl(_Sz) R x](-’n)
= sup Ssup n
0 m tm<j<tpyy

<M+ 1)/n—>0 asn—> oo

20+ 20 + .00 4 20
n
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Lemma 7 says that in the Banach space c, every weakly convergent sequence
has a subsequence whose arithmetic means converge in norm. This property, the
so-called Banach-Saks property, is also known to hold for the spaces /? and
I7(0, 1) (see [3]). We remark here that not every Banach space has this property.

Lemma 8. Let x® € co, n = 1, 2, ..., and suppose that x™ — x a(m,l). Then

there exists a subsequence {z™}._, of {x™}>_, that is superconvergent to x in o(m, I).

Proof. Without loss of generality we may assume that x = 0. The hypotheses
are then the same as in Lemma 7 and we may choose {s, }y=; and {z,},..; as before
so that (9) and (10) are satisfied. It is easily seen that

o0
sup 5, 15 = 39 < 0,
j n=

and so, in view of Lemma 6, we may take z® = x), n = 1,2, ....

Lemma 9. If x € acy and {s,}nw; is a strictly increasing sequence of positive
integers then the sequence

N | —

YW ==-(Bx+Bx+:+Bx)

is superconvergent to x in o(acy,!).

Proof. We define
Q=0 Q=7@+B+-+B), n=12..;
Rn= Qn—Qu—~l-

For any finite subset M of the positive integers Z we write

o0
Sy= 2 Re= 3 8y(k)Rs
kEM k=1
where 8, is the characteristic function of M. We show that the collection
{Sx: M is a finite subset of Z} is t(acy,!) — (acy, )-equicontinuous. Since
[ o0
kgl (Suf Jexs = kgl Se(Sp %)

we must show that if C is 6(/, acy)-compact then S(C) = {Syf: f € C,M C Z}
is o(/, acy)-relatively compact.
For x € I, we have

(Qn_x)p =(1- k/n)xp fs <p<siws 1 k<
=0 if p > s,,

and
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(R,,x),=;(’-l—k:—5xp ifs <p<sgqpy 1 <k<n—-1,
=0 if p > s,
so that
o
Suny = { 5 oot s <p <.

Now if C is o(/, acy)-relatively compact, then by Corollary 2 to Theorem 2, we
have

sup|lxll = K < oo,
xeC

and
sup 2 |x, = Xp41| = & = 0.
x€C p=n
Now
< k
< —
l(sMx)pl - prl n;ﬂ n(n _ 1) = |xpl

so that "SMx”l S K. If Sk < ¥4 < Sk+1s

(Suy = S = (D 229w = 5y0)

so that

I(SMx)p - (SMx)pHI < lxp = Xp+1l5

while, if p = s,

(SM x)p (SM x)p+l {n‘k n(n 1) ‘SM(")} {n=k+| n(n k_ 1) 6M (n)}xp-H

{"-k n(n = 1)(SM(H)}(xp Xp41) = {"-Hl n(nl— l)8M(n)}x1,+1

+ ESM(k)po’

so that

1
IS4 x)p = (SurX)pir| < 1%, = X | + Elxﬁll'

Consequently, if s; < n < 5441,
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0 K o0
p=§+l ’(SMx)p - (SMx)pH' .<_ E + p=§+l pr = Xp+1

S%‘FE’.—’O as h — oo.

It follows from Corollary 2 to Theorem 2 that S(C) is indeed o(/, acy)-compact
and so the collection {Sy: M C Z} is equicontinuous on (acy,7(acy,!)). In
particular, if N is an infinite subset of Z, the operators

él Sy(R, (n=1,2...)

are equicontinuous, and so, since ac, is t(acy, /)-complete (Theorem 4(i)) the set
of x € ac, for which 2;>; 8y (k) R, x converges is closed. However if x € ¢ this
is clearly so, and so we conclude for all x € acp and all N C Z that
2., 8y(k)Ryx converges. Hence the sequence {Q,x},—, superconverges in
(acq, m(acy,1)).

Lemma 10, Let x® € ¢y, n = 1,2, ..., and suppose that x™ — x o(acy,!).
Then there exists a subsequence {z™}, of {x™}, such that some subsequence
WY of (D + z® + -« + 2) 0} | superconverges to x in o(acy,!).

Proof. Since Bx — x o(acy,!), we have

x® — Px — 0 o(co,!).

By Lemma 7 we may take a subsequence {z®} | = {x®}", of {x®};>, such

that

;11-(2(‘) Foeee g Z0) — %(I;‘Ix +eee I:nx)l

- 0.
00

Taking a subsequence again, we may suppose that, for each integer n,

mi(z(l).q.....+z(mn))_;nl_(1-;lx+...+1_.;ﬂ X)
n n

My

<
o 21
so that the sequence

1 1 ®
—-—-—z(l)+...+z(Mrn) ————Ex-{-...-{-g x}
{mn( ) mn( ! i ) n=1

is superconvergent to 0 in ¢;,. However, by Lemmas 3 and 9, the sequence

l 0

is superconvergent to x in a(acy, /). Hence, with
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w =L o
win =;n——(z( + o oo zm) (n=12...),
n

{w®}>, is superconvergent to x in a(ac,,!).
Before stating our next result we recall the following notation. For an infinite
matrix 4, ac4 denotes the set

acy = {x € w: Ax € ac).

If x € ac,, we write Lim,x in place of Lim(4x), and denote by (ac,), the
subspace of (ac)4 on which Lim ,vanishes.

Theorem 6. Let A be a matrix such that

(l) sup; 2;—°=l Ial:jl < oo, and

(i) limi,ga; =0 for j=1,2,.... Then I is o(l,(aco)y N m)-sequentially
complete.

Proof. Let x € (acy), N m be fixed. We construct a sequence {z®}, of
elements of @ such that {®};> | superconverges to x in a((acy), N m,!). To do
this, we first observe that

ABx > Ax  o(w, ).
Condition (i) ensures that A: m — m is continuous and hence
4B xlle < 1141 llx]k.
Lemma 6 gives
ABx > Ax  o(m,l).

Now condition (ii) implies that A Bx € A(p) C ¢, so we may apply Lemma 10
to deduce the existence of a sequence {v®)},;2, such that {4v®)},;>, superconverg-
es to Ax in a(acy,!) and {v®)};2_, takes the form

y(k) = L(u(l) 4 e 4 u(mk))
my
where {u®)};>_, is some subsequence of {B x}.,. Clearly we have

suplb©lL, < liels

and v®) — x o(w, ) so that v®) — x o(m,/) by Lemma 6.
Furthermore, since Av®) - 4x in w, we have

) > x inw,.

We now apply Lemmas 3, 5 and 8 to obtain a subsequence {z®};2, of {v®@};o,

such that {®};2_, superconverges to x in both w, and o(m, J); it is also clear that
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{4z™}_, superconverges in (acy,0(acy,/)). Now suppose that {e,}rn; is a
sequence taking only the values 1 and 0; for each & let

o©0
W= &z = V) (where z® = 0).
n=1

Since {z™};>., superconverges in both w, and (m, o(m, 1)), the series

©
3 6(c® — 2-0)
n=1

converges to y in both w,; and (m, o(m, 0); therefore y € m N w,. Now
A: w4 — w is continuous [24, Theorem 4.4(c)] and so

o0
Ay = 21 g,(4zM - 4207D)  ow, ).

n=

However, {4z"};> | superconverges in (acy, o(acy,!)) so that

Ay = 3 g,(A4200 — 420-D)  olaco,!),

n=1
and Ay € acy, i,y € (acy),. Thus {®};~, superconverges to x in ((acy), N m,
o((aco)s N m,1)).
We now repeat the argument used in the proof of Theorem 3 of [6]. Consider
the topology A((acy)s N m,!) on (acy), N m of uniform convergence on the
o(, (aco)4 N m)-compact subsets of /; by Lemma 4 we have

2™ > x  Mlacg)y N m,1).

Suppose now that ¢ is a linear functional on (acy), N m whose restrictions to
A(acy)s N m,1)-precompact sets are A-continuous. Then ¢ is A-sequentially
continuous and since A < B((acy)y N m, 1) < Blco,1), ¥ is ||+|ko-continuous on ¢y
so that

S i<
where Y(el)) = f; (j = 1,2,...). Now

00

Y) = 3 2,

=1
since z® € ¢, and

lim X z/f = 3 xf;
s jgl 18/ jgl 2/
since z® — x o(m, ). Consequently, for each x € (acy), N m, we have

Ux) = § xf;
j=1
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It follows (as in the proof of Theorem 3 of [6]) by Grothendieck’s completeness
theorem that the topology p on /, of uniform convergence on A-precompact
subsets of (acy)y N m, must be complete. Furthermore, p defines the same
convergent and Cauchy sequences as o(/, (acy), N m) so that /is o{/,(acy)4 N m)-
sequentially complete.

We now come to our first consistency theorem.

Theorem 7. Let A and B be regular matrices and suppose that ac, N m C cg.
Then limgx = Lim, x whenever x € ac, N0 m.

Proof. Since A4 is regular, the conditions of Theorem 6 are satisfied. Let
bm el n=12,...,bedefined by
B =b, (k=12...),

(so that b® is the nth row of B). Since (acy), N m C cg, we have

o0
lim 3 bMx, exists

=

whenever x € (acy), N m. Hence (™}, is o(/, (acy), N m)-Cauchy and so
converges, say b® — b, by Theorem 6. Clearly

bk = leI'l; bnk = 0,

so that b® — 0 o(/, (ace), N m).
Now, if x € (ac), N m, then x — (Lim, x)e € (acy), N m, and so

0
lign(x - (Lj‘m x)e) = lim X 5" (x,, - L4i4m x) =0,

n—0 =]

ie. limzx = Lim,x.
When A4 is the identity matrix, Theorem 7 reduces to the following.

Corollary. Let B be a regular matrix with ac C cg. Then limgx = Lim x
whenever x € ac.

This special result may also be derived from Corollary 2 to Theorem 5 and was
first obtained by Lorentz [13].

Before stating our next result let us recall the following notation. If E is an FK-
space containing ¢, then we write

Wy ={x € E: Bx > x weakly in E}

and

Sg={x €E€EE:Bx—>xinE}.

Theorem 8. Let E be an FK-space containing cy. Then [ is sequentially complete



40 G. BENNETT AND N. J. KALTON

under both the topologies o(l, Wz N acy) and o(l, Sk N acy).

Proof. As with Theorem 6, the proof hinges on ideas developed in Theorem 3
of [6}.

Let x € W N ac, be fixed: by Theorem 2 of [6] (see also [20]) there is a
sequence {u®}>, of elements of ¢ with

T — lim 4™ = x
n—o0
and
sup [[u® [, < {lx[l,

n

where r denotes the FK-topology on E. By Lemma 6,
1 ( ) =
}ng U =x  olacy,l)

and so, by Lemma 10, there exists a sequence {v®}2_,, of arithmetric means of a
subsequence of {u®};_,, such that {¥®)};>, superconverges to x in a(acy,/);
clearly
T — lim v® = x,
n—o

By using Lemmas 3 and 5 we may select a subsequence {z®};>, which
superconverges to x in both 7 and o(acy, I).  Thus every subseries of
2:___1 @™ —z*=1)) converges in EnNagcy; ie.,if €,=0 or 1 forall # and

00
y =3 g™ — z-D) (where z® = 0),
n=1

then y € E N ac,. Since this series converges in a(m, /), we have

k
S 6,z — 20-D)
1

n=

< o,

sup
k ©

and since the series converges in 7 we have y € W by Theorem 2 of [6]. Thus
{z®}2., superconverges to x in a(W; N acy,l), and the remaining details follow
those of Theorem 6 (or Theorem 3 of [6]).

For the second half of the theorem we observe that [10, pp. 1015-1016]
Sz = Wy, where F is the FK-space defined as follows.

F = {x € E: {Bx};-, is -bounded}
with the topology given by the seminorms
ix) =supr(Bx) (x €F)

for each r-continuous seminorm ».
Our next result may be thought of as a generalized consistency theorem.
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Theorem 9. Let E be an FK-space containing c, and let F be an FK-space

containing no (closed) subspace isomorphic to m. If Wg N acy C F, then W N acy
C W

Proof. As in the proof of Theorem 8 we can show that each x € Wz N acy can
be written in the form x = 32, x® where x®» € ¢, n = 1,2, ..., and the
convergence is o(Wg N acy,!)-subseries. This observation enables us to replace
Wg N m in the statement of Proposition 1 of [8] by Wz N acy; but then the
present result follows just as in the proof of Theorem 2 of [8].

In particular, it should be noted that Theorem 9 remains valid when F is a
separable FK-space.

Theorem 10. Let A and B be regular matrices and suppose that ac N ¢4 € cp.
Then there exists a constant a such that

li{‘nx = ali;nx+(l — a)Lim x
whenever x € ac N ¢,

Proof. Since A4 is regular we have, by Theorem 3.6 of [25], (cy)4 N acy
= W, N acy. Now cy is separable ([14], [4]) so that

(co)a N acy C W,

, N acy = (co)p N acy

by Theorem 9. Hence lim,x = Lim x = 0 implies that limzx = 0, and so
limx = alim x + 8 Lim x
B 4

whenever x € ac N ¢, . However 1 =1limz e = a + B and the desired conclu-
sion follows.

Theorem 11. Let A and B be conservative matrices and suppose that ac N ¢,
C cg. Then there exist constanis a, 3 such that

(@) limpx — 32 bjx; = a(limyx — 32, a;x;) + B Lim x whenever x € ac
N ¢4, and

(i) x(B) = ax(4) + B.

Proof. This is a simple extension of Theorem 10; we observe that

o0
W, N acg = §x: h}nx =;§1 ajxj} N acy

and apply the same method.
Corollary 1. Let A be conull and B be regular and suppose that ac N ¢4 C cp.

Then there exists a constant a such that

-]
ll‘I’n x = Limx+ a(hAm x —jgl ajxj)
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whenever x € ac N ¢,

Corollary 2. Let A be regular and B be conull and suppose that ac N ¢, C cp.
Then there exists a constant o such that

0
lim x = a(limx—Limx) + 3 bx;
B 4 J=1

whenever x € ac N ¢,.
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