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INTERPOLATION OF SUBSPACES AND
APPLICATIONS TO EXPONENTIAL BASES

S. IVANOV AND N. KALTON

Abstract. Precise conditions are given under which the real interpolation space
[Y0, X1]θ,p coincides with a closed subspace of [X0,X1]θ,p when Y0 is a closed sub-
space of codimension one. This result is applied to the study of nonharmonic Fourier
series in the Sobolev spaces Hs(−π, π) with 0 < s < 1. The main result looks like
this: if {eiλnt} is an unconditional basis in L2(−π, π), then there exist two num-
bers s0, s1 such that for s < s0 the family {eiλnt} forms an unconditional basis
in Hs(−π, π), and for s1 < s this family forms an unconditional basis of a closed
subspace in Hs(−π, π) of codimension one. If s0 ≤ s ≤ s1, then the family {eiλnt}
is not an unconditional basis in its span in Hs(−π, π).

§1. Introduction

In this paper we shall apply a result on interpolation of subspaces to the study of
exponential Riesz bases in Sobolev spaces.

In §2 we consider the comparison of the interpolation spaces Xθ := [X0, X1]θ,p and
Yθ := [Y0, X1]θ,p for 1 ≤ p < ∞, where Y0 is a codimension one subspace of X0, say,
Y0 = ker ψ with ψ ∈ X∗

0 . As far as we know, this problem was first formulated in [16,
Vol. 1, Chapter 1, Section 18] in 1968. As we show in Theorem 2.1, there are two indices
0 ≤ σ0 ≤ σ1 ≤ 1 that may be explicitly evaluated in terms of the K-functional of ψ and
such that:

1. if 0 < θ < σ0, then Yθ is a closed subspace of codimension one in Xθ;
2. if σ1 < θ < 1, then Yθ = Xθ with equivalence of norms;
3. if σ0 ≤ θ ≤ σ1, then the norm on Yθ is not equivalent to the norm on Xθ.
Let us discuss the history of this theorem. The special case of a Hilbert space of

Sobolev type connected with elliptic boundary data was considered in [16], and in this
case the critical indices σ0 and σ1 coincide. In the well-known case (see [16]) where
X1 = L2(0,∞), X0 = W 1

2 (0,∞), and Y0 ⊂ W 1
2 is the subspace of functions vanishing

at the origin, this critical value is σ0 = σ1 = 1/2. Later, R. Wallsten [26] gave an
example where the critical indices satisfy σ0 < σ1. The general problem was considered
by J. Löfström in the paper [17], where some special cases of Theorem 2.1 were obtained.
Later, in an unpublished (but web-posted) preprint from 1997, Löfström obtained most
of the conclusion of Theorem 2.1; specifically, he obtained the same result except he did
not treat the critical values θ = σ0, σ1. The authors were not aware of Löfström’s earlier
work during the initial preparation of this article and our approach is rather different. A
more general but closely related problem on interpolating subspaces of codimension one
was considered recently in [12] and [10]. For general results on subcouples we refer to [9].
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Next, we recall that a sequence (en)n∈Z in a Hilbert space H is called a Riesz basic
sequence if there is a constant C such that for any finitely nonzero sequence (an)n∈Z we
have

1

C

(∑
n∈Z

|an|2
) 1

2

≤ ‖
∑
n∈Z

anen‖ ≤ C

(∑
n∈Z

|an|2
) 1

2

.

A Riesz basis for H is a Riesz basic sequence whose closed linear span [en]n∈Z is H. A
sequence (en) is an unconditional basis (respectively, an unconditional basic sequence) if
(en/‖en‖)n∈Z is a Riesz basis (respectively, a Riesz basic sequence).

In the second part of the paper we apply our interpolation result to study the basis
properties of exponential families {eiλnt} in Sobolev spaces. These families appear in
such fields of mathematics as the theory of dissipative operators (the Sz.-Nagy–Foias
model), the Regge problem for resonance scattering, the theory of initial boundary value
problems, control theory for distributed parameter systems, and signal processing; see,
e.g., [22, 8, 13, 2, 25]. One of the most important problems arising in all of these
applications is the question of the Riesz basis property of these families. In the space
L2(−π, π) this problem was studied for the first time in the classical work of Paley and
Wiener [23]. Now the problem has a complete solution [11, 20] on the basis of an approach
suggested by B. S. Pavlov.

The principal result for Riesz bases can be formulated as follows [11].

Proposition 1.1. The sequence (eiλnt)n∈Z is a Riesz basis for L2(−π, π) if and only if
sup |�λn| < ∞,

(1.1) inf
k �=j

|λk − λj | > 0,

and there is an entire function F of exponential type π (the generating function) with

simple zeros at (λn)n∈Z and such that for some y the weight x �→ |F (x+ iy)|2 satisfies
the Muckenhoupt condition (A2) (we shall write this as |F |2 ∈ (A2)):

sup
I∈J

{
1

|I|

∫
I

|F (x+ iy)|2 dx
1

|I|

∫
I

|F (x+ iy)|−2
dx

}
< ∞,

where J is the set of all intervals of the real axis.

In [20], a corresponding characterization was given for the exponential families that
form an unconditional basis of L2(−π, π) when �λn can be unbounded both from above
and below.

Let us describe known results concerning exponential bases in Sobolev spaces. The
first result in this direction was obtained by D. L. Russell in [24]. Russell studied the
unconditional basis property for exponential families in the Sobolev spaces Hm(−π, π)
with m ∈ Z.

Proposition 1.2 (see [24]). Suppose (eiλnt)n∈Z is a Riesz basis for L2(−π, π). Suppose
m ∈ N, and suppose μ1, . . . , μm ∈ C \ {λn : n ∈ Z } are distinct. Then (eiλnt)n∈Z ∪
(eiμkt)mk=1 is an unconditional basis of Hm(−π, π). In particular , (eiλnt)n∈Z is an uncon-
ditional basic sequence whose closed linear span has codimension m in Hm(−π, π).

In [21] the unconditional basis property for an exponential family was studied in
Hs(−π, π) for nonintegral s in the case where the λn are the eigenvalues of a Sturm–
Liouville operator with a smooth potential.

Note that the generalization of the Levin–Golovin theorem for Sobolev spaces was
obtained [3] by using “classical methods” of the entire function theory. Suppose {λn}n∈Z
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are the zeros of an entire function F of exponential type π, (λn) is separated as in (1.1),
and on some line {x+ iy}x∈R we have

C−1(1 + |x|)s ≤ |F (x+ iy)| ≤ C(1 + |x|)s.

Then the family {eiλkt/(1 + |λk|)s} forms a Riesz basis in Hs(−π, π). Notice that this
result was applied to several controllability problems for the wave type equation (see [4]).

Recently Yu. Lyubarskii and K. Seip [19] established a necessary and sufficient criterion
for the sampling/interpolation problem for weighted Paley–Wiener spaces, which gives a
criterion for a sequence to be an unconditional basis inHs. For the case where sup |�λn| <
∞, the main result is the following.

Theorem 1.3. (eiλnt)n∈Z forms an unconditional basis in Hs(−π, π) if and only if
(λn) is separated (i.e., (1.1) is fulfilled) and for the generating function F we have
|F (x+ iy)|2/(1 + |x|2s) ∈ (A2) for some y.

The main idea of the present paper is that if (eiλnt)n∈Z forms a Riesz basis in
L2(−π, π), then it also forms an unconditional basis of a subspace Y0 in H1(−π, π)
of codimension one. Then, by interpolation, we obtain the fact that (eiλnt)n∈Z is an
unconditional basis of the intermediate spaces [Y0, L

2]θ,2 for 0 < θ < 1. This approach
was suggested in [7] by the first author. The main result of [7] is incorrect in the general
case because of a mistake related to interpolation of subspaces. Here we correct this
mistake.

We describe the results concerning unconditional bases in Sobolev spaces. One of our
main results for Riesz bases is as follows.

Theorem 1.4. Suppose (eiλnt)n∈Z forms a Riesz basis of L2(−π, π). Suppose (λn−n)n∈Z

is bounded , and let δn = �λn −n. Then there exist critical indices 0 < s0 ≤ s1 < 1 given
by

s1 =
1

2
− lim

τ→∞
inf
t≥1

1

log τ

∑
t<|n|≤τt

δn
n

and

s0 =
1

2
− lim

τ→∞
sup
t≥1

1

log τ

∑
t<|n|≤τt

δn
n

such that :
(1) (eλn

)n∈Z is an unconditional basis of the Sobolev space Hs if and only if 0 ≤ s < s0;
(2) (eλn

)n∈Z is an unconditional basis of a closed subspace of Hs of codimension one
if and only if s1 < s ≤ 1;

(3) If s0 ≤ s ≤ s1, then (eλn
) is not an unconditional basic sequence.

This theorem is deduced from results of §§3 and 4. In §4 we in fact consider the more
general situation for unconditional bases and give rather more technical results. The
above Theorem 1.4 is the simplest case and follows by combining Theorem 4.2, Theorem
4.9 and Theorem 4.10. Our approach is based on estimates of the K-functional for the
continuous linear functional on H1(−π, π) that annihilates each eiλnx; the existence of
such a functional is guaranteed by the result of Russell (Proposition 1.2). The estimates
are in terms of the generating function F.

Once we have Theorem 1.4, it is easy to construct real sequences (λn) to show that
s0, s1 can take any values in (0, 1) such that s0 ≤ s1. In the case of regular power behavior
of F , i.e., if |F (x+ iy)| ∼ (1 + |x|)s for some y ≥ 0, we have s1 = s0 = s+ 1

2 .
The results for the entire scale Hs(−π, π) can then be obtained by “shift”, using

the fact that the differentiation operator with appropriate conditions is an isomorphism
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between a one-codimensional subspace of Hm and Hm−1; we shall not pursue this ex-
tension.

The first author is grateful to S. Avdonin for fruitful discussions.

§2. Interpolation of subspaces

Let (X0, X1) be a Banach couple with X0 ∩ X1 dense in X0, X1. If 0 < θ < 1 and
1 ≤ p < ∞, the real interpolation space Xθ = [X0, X1]θ,p is defined (see, e.g., [5]) to be
the set of all x ∈ X0 +X1 such that

‖x‖Xθ
=

(∫ ∞

0

tθp−1K(t, x)pdt

) 1
p

< ∞,

where K(t, x) is the K-functional. An equivalent definition [5, p. 314] (yielding an
equivalent norm) can be given by using the J-method:

‖x‖Xθ
= inf

{(∑
k∈Z

max{‖xk‖0, 2k‖xk‖1}p
) 1

p

: x =
∑
k∈Z

2θkxk

}
,

where the series converges in X0 +X1.
Now suppose 0 �= ψ ∈ X∗

0 , and let Y0 be the kernel of ψ. We suppose also (only this
case is interesting) that Y0 ∩X1 is dense in X1, i.e., ψ is not bounded in X1.

Let Yθ be the corresponding spaces obtained by interpolating Y0 and X1. Clearly
Yθ ⊂ Xθ and the inclusion has norm one. It is easy to show that the closure of Yθ in Xθ

is either a subspace of codimension one when ψ is continuous on Xθ, or the whole of Xθ

when ψ is not continuous.
Now, we introduce two important indices:

σ1 = lim
τ→∞

sup
0<τt≤1

1

log τ
log

K(τt, ψ)

K(t, ψ)

and

σ0 = lim
τ→∞

inf
0<τt≤1

1

log τ
log

K(τt, ψ)

K(t, ψ)
,

where K(t, ψ) = K(t, ψ;X∗
0 , X

∗
1 ). From the multiplicative properties of the function

K(τt, ψ)/K(t, ψ) it is clear that these limits exist and 0 ≤ σ0 ≤ σ1 ≤ 1. Since K(t, ψ) is
bounded as t → ∞, we can also write

σ1 = lim
τ→∞

sup
0<t<∞

1

log τ
log

K(τt, ψ)

K(t, ψ)
.

We observe that

sup{ |ψ(x)| : max{‖x‖0, t‖x‖1} ≤ 1 } = K(t−1, ψ).

We define a sequence (wn)n∈Z by

wn = K(2−n, ψ)−1.

Notice that infn∈Z wn ≥ ‖ψ‖−1
X∗

0
> 0 and that in general wn ≤ wn+1 ≤ 2wn. Now it is

easy to see that

σ1 = lim
k→∞

sup
n

1

k
log2

wn+k

wn
,

σ0 = lim
k→∞

inf
n≥0

1

k
log2

wn+k

wn
.

As mentioned in the Introduction, the following result is a slight improvement of a
result of Löfström [18], who obtained the same statement by quite different arguments
except for the critical indices θ = σ0, σ1.
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Theorem 2.1. 1. Yθ = Xθ (with equivalence of the norms) if and only if θ > σ1.
2. Yθ is a closed subspace of codimension one in Xθ if and only if θ < σ0.
3. If σ0 ≤ θ ≤ σ1, then Yθ is not closed in Xθ.

We shall consider the weighted 	p space 	p(w) of all sequences (αn)n∈Z such that

‖α‖ =

(∑
k∈Z

wp
n|αn|p

) 1
p

.

We shall use ζn for the standard basis vectors. On 	p(w) we consider the shift operator
S((αn)) = (αn−1). From the above remarks it is clear that S, S−1 are both bounded
and ‖S‖ ≤ 2, ‖S−1‖ = 1. Furthermore, the spectral radius formula shows that 2σ1 is the
spectral radius r(S) of S. Now let P+ be the projection P+(α) = (δnαn), where δn = 1
if n ≥ 0 and δn = 0 otherwise. It is easy to calculate

‖P+S
−n‖ = sup

k≥0

wk

wn+k
,

and this implies that r(P+S
−1) = 2−σ0 .

We need the following key lemma.

Lemma 2.2. Let 0 < θ < 1 and let Tθ = S − 2θI. Then:
1. Tθ is an isomorphism onto 	p(w) if and only if σ1 < θ;
2. Tθ is an isomorphism onto a proper closed subspace if and only if θ < σ0. In this

case the range of Tθ is the subspace of codimension one consisting of all α such
that

∑
n∈Z

2nθαn = 0.

Proof. First, observe that if θ > σ1, then Tθ must be an isomorphism onto 	p(w) since
2θ exceeds the spectral radius of S. Furthermore, since the spectrum of S is rotation
invariant, it is clear that Tσ1

cannot be an isomorphism onto 	p(w). Also, we note that
Tθ is always injective, and that if fθ is a linear functional annihilating its range, then
fθ(ζn) = c2nθ for some constant c, i.e., fθ(α) =

∑
n∈Z

2nθαn = 0. This implies that the
closure of the range is either the entire space or the subspace of codimension one when∑

n∈Z
2nθqw−q

n < ∞. Here 1
p + 1

q = 1 and the formula must be modified if p = 1.

Next, we show that if θ < σ0, then Tθ is an isomorphism onto a closed subspace of
codimension one.

Let E = [{ ζn : n ≤ −1 }] and F = [{ ζn : n ≥ 1 }]. We remark that Tθ(E) is easily
seen to be closed, because Tθ is an isomorphism on the unweighted 	p and wn is bounded
for n ≤ −1. If we show Tθ(F ) is closed, then we are done, because, clearly, this will imply
that Tθ(E+F ) is closed and this is a subspace of codimension one in the range. However,
we have 2−θ > r(P+S

−1), so that 2−θ − P+S
−1 is an isomorphism. After restricting to

F , this implies that (2−θ − S−1)F is closed; consequently Tθ(F ) is closed.
The proof is completed by showing that if θ ≤ σ1 then, if Tθ has closed range, nec-

essarily θ < σ0. Note first that it suffices to establish this for θ < σ1 since the set of
operators with Fredholm index one is open. Suppose σ0 < θ < σ1 and Tθ is closed. Then
Tθ has a lower estimate ‖Tθα‖ ≥ c‖α‖ for all α, where c > 0. Assume wn+k > 2nθwk for
some n ∈ N and k ∈ Z. Let α = (I + 2−θS + · · ·+ 2−nθSn)2ζk; then ‖α‖ ≥ n2−nθwn+k.
However,

‖T 2
θ α‖ = 22θwk + 2 · 2(−n+1)θwn+k+1 + 2−2nθw2n+k+2

≤ 8max{wk, 2
−nθwn+k, 2

−2nθw2n+k}.
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Let vn = 2−nθwn. Then, if nc
2 > 8, we have

(nc2 − 8)vk+n ≤ 8max{vk, vk+2n}.

In particular, if nc2 > 16, then

vk+n < max{vk, vk+2n}.

Now, since θ < σ1, we can find k ∈ Z and n > 16c−2 so that wn+k < 2nθwk or
vn+k < vk. Iterating shows that (vk+rn)

∞
r=0 is monotone increasing. Now for any large

N and any j ≥ 0 we have

wj+N

wj
≥ wk+r2n

wk+r1n
≥ 2n(r2−r1)θ,

where r1, r2 are such that k+(r1−1)n ≤ j ≤ k+r1n and k+r2n ≤ j+N ≤ k+(r2+1)n.
This yields

wj+N

wj
≥ 2(N−2n)θ.

Hence,

inf
j≥0

1

N
log2

wj+N

wj
≥ (1− 2n/N)θ.

Letting N → ∞ gives σ0 ≥ θ. To show that in fact θ < σ0, again it suffices to observe
that the set of θ for which Tθ has Fredholm index one is open. �

Now we use Lemma 2.2 to establish our main result (see Theorem 2.1) on interpolating
subspaces.

Proof. Suppose next that either (a) θ < σ0 or (b) θ > σ1. This implies the existence
of a constant D such that ‖α‖ ≤ D‖Tθα‖ for all α ∈ 	p(w); in case (a) Tθ maps onto
the subspace of 	p(w) defined by fθ(α) =

∑
n∈Z

2nθαn = 0, while in case (b) Tθ is an
isomorphism onto the entire space (see Lemma 2.2). We observe that in case (a) the
linear functional ψ extends to a continuous linear functional on Xθ because

∑
n∈Z

2nθK(2n, ψ) < ∞.

Now suppose that x ∈ Xθ with ‖x‖Xθ
= 1 and with the additional assumption in case

(a) that ψ(x) = 0. Then we may find (xn)n∈Z such that
∑

n∈Z
2θnxn = x and

(∑
k∈Z

max{‖xk‖0, 2k‖xk‖1}p
) 1

p

≤ 2.

Then (∑
n∈Z

|ψ(xn)|pwp
n

) 1
p

≤ 2,

since
|ψ(x)| ≤ w−1

n max{‖x‖0, 2n‖x‖1}.
In case (a) we additionally have

∑
n∈Z

2nθψ(xn) = 0.
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Thus, we can find α ∈ 	p(w) with Tθ(α) = (ψ(xn)) and ‖α‖ ≤ 2D. Then we can
find un ∈ X0 ∩ X1 such that max{‖un‖0, 2n‖un‖1} ≤ 2|αn|wn and ψ(un) = αn. Let
vn = un−1 − 2θun. Then(∑

k∈Z

max{‖vk‖, 2k‖vk‖1}p
) 1

p

≤ 16D‖x‖Xθ
.

Now, ψ(vn) = αn−1 − 2θαn = ψ(xn) and
∑

n∈Z
2nθvn = 0. Consequently,

x =
∑
n∈Z

2θn(xn − vn),

and so x ∈ Yθ with ‖x‖Yθ
≤ (16D + 2)‖x‖Xθ

. This implies that in case (a) we have
Yθ = {x : ψ(x) = 0, x ∈ Xθ } and in case (b) Yθ = Xθ.

Next we consider the converse directions. Assume either (aa) ψ is continuous on Xθ

and Yθ = {x : ψ(x) = 0, x ∈ Xθ } or (bb) Yθ = Xθ. In either case there is a constant D
such that if x ∈ Yθ then ‖x‖Yθ

≤ D‖x‖Xθ
. Observe that in case (aa) the linear functional

fθ is continuous on 	p(w), so that the range of Tθ is contained in the kernel of fθ; in case
(bb) its range is dense.

Assume α = (αn)n∈Z ∈ 	p(w) with ‖α‖ = 1; in case (aa) we also assume fθ(α) = 0.
First we find xn ∈ X0 ∩X1 such that ψ(xn) = αn and max{‖xn‖0, 2n‖xn‖} ≤ 2|αn|wn

for n ∈ Z. Let x =
∑

n∈Z
2nθxn; then x ∈ Xθ with ‖x‖Xθ

≤ 2. In case (aa) we addi-
tionally have the relation ψ(x) = fθ(α) = 0. Now we can find yn ∈ Y0 ∩ X1 satisfying∑

n∈Z
2nθyn = x and (∑

k∈Z

max{‖yk‖, 2k‖yk‖1}p
) 1

p

≤ 4D.

Putting un = xn − yn and vn =
∑∞

k=n+1 2
(k−n−1)θuk, we obtain

(∑
k∈Z

max{‖uk‖, 2k‖uk‖1}p
) 1

p

≤ 4D + 2.

We claim that

(2.1)

(∑
k∈Z

max{‖vk‖0, 2k‖vk‖1}p
) 1

p

≤ Cθ(4D + 2),

where

Cθ =

(∑
k<0

2kθ +
∑
k≥0

2k(θ−1)

)
.

To show (2.1) we note that

2n‖vn‖1 ≤
∞∑

k=n+1

2(k−n−1)(θ−1)2k‖uk‖1

and (since
∑

2nθun = 0)

‖vn‖0 ≤
n∑

k=−∞
2(k−n−1)θ‖uk‖0.

Let βn = ψ(vn). Then β ∈ 	p(w) and ‖β‖ ≤ Cθ(4D+2). But now (Tθ(β))n = ψ(un) =
ψ(xn) = αn, so that Tθ is an isomorphism onto the kernel of fθ in case (aa) or onto
	p(w) in case (bb). These two cases combined with the observation that Yθ can only
be a proper closed subspace of Xθ if ψ is continuous on Xθ complete the proof of the
theorem. �
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§3. Sobolev spaces

In this section we investigate a special case of the results of the preceding section for
Sobolev spaces. These results are preparatory for §4 where we apply them to exponential
bases. Let L2 = L2(−π, π); the standard inner product on L2(−π, π) will be denoted by

(f, g) =

∫ π

−π

f(x)g(x)dx,

and the standard norm on L2 by ‖f‖.
For s > 0 we define the Sobolev space Hs(R) to be the space of all f ∈ L2(R) so that

‖f‖2Hs :=

∫ ∞

−∞
|f̂(ξ)|2(1 + |ξ|2s)dξ < ∞

(f̂ is the Fourier transform). We then define the Sobolev space Hs = Hs(−π, π) to be the
space of restrictions of Hs(R)-functions to the interval (−π, π) (with the obvious induced
quotient norm). When s = 1, the space H1 reduces to the space of all f ∈ L2(−π, π)
such that f ′ ∈ L2 under the (equivalent) norm:

‖f‖21 =

∫ π

−π

(|f(t)|2 + |f ′(t)|2)dt < ∞.

Then, if 0 < s < 1, we have Hs = [H1, L2]1−s = [H1, L2]1−s,2 (see [16]).
For z ∈ C we define ez(x) = eizx ∈ L2(−π, π). Now suppose ψ ∈ (H1)∗; we define its

Fourier transform F = ψ̂ to be the entire function F (z) := ψ(ez) for z ∈ C. Let us first
identify (H1)∗ via its Fourier transform.

Proposition 3.1. Let F be an entire function. In order that there exist ψ ∈ (H1)∗ with

F = ψ̂, it is necessary and sufficient that

(3.1) F be of exponential type ≤ π

and

(3.2)

∫ ∞

−∞

|F (x)|2
1 + x2

dx < ∞.

These conditions imply the estimate

(3.3) sup
z∈C

|F (z)|
(1 + |z|)eπ|
z| < ∞.

Proof. These results follow immediately from the Paley–Wiener theorem once we observe
that ψ ∈ (H1)∗ if and only if ψ is of the form

ψ(f) = αf(0) + ϕ(f ′)

where ϕ ∈ (L2)∗. �
Consider H1 with the inner product

〈f, g〉t = (f ′, g′) + t2(f, g),

where t > 0. We denote by ‖ψ‖t the norm of ψ with respect to ‖·‖t where ‖f‖2t = 〈f, f〉t,
i.e., ‖ψ‖t := sup{ |ψ(f)| : ‖f‖t ≤ 1 }. Set

(3.4) s0 = 1− lim
τ→∞

sup
t≥1

1

log τ
log

‖ψ‖t
‖ψ‖τt

and

(3.5) s1 = 1− lim
τ→∞

inf
t≥1

1

log τ
log

‖ψ‖t
‖ψ‖τt

.

We can specialize Theorem 2.1 to the particular case of interpolating between L2 and
H1.
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Proposition 3.2. Suppose ψ ∈ (H1)∗ and Y0 = { f ∈ H1 : ψ(f) = 0 }. Then:
(1) (L2, Y0)s,2 = Hs if and only if 0 ≤ s < s0;
(2) (L2, Y0)s,2 is a closed subspace of codimension one in Hs if and only if s1 < s ≤ 1.

Proof. We can apply Theorem 2.1 with X0 = H1 and X1 = L2. To estimate K(t, ψ), we
note that if f ∈ H1 and t ≥ 1, then

max(‖f‖1, t‖f‖) ≤ ‖f‖t ≤
√
2max(‖f‖1, t‖f‖),

and so
‖ψ‖t ≤ K(t−1, ψ) ≤

√
2‖ψ‖t

for t ≥ 1. Hence, we can describe the numbers σ0, σ1 of Theorem 2.1 by

σ1 = lim
τ→∞

sup
t≥1

1

log τ
log

‖ψ‖t
‖ψ‖τt

and

σ0 = lim
τ→∞

inf
t≥1

1

log τ
log

‖ψ‖t
‖ψ‖τt

.

Since σ1 = 1− s0 and σ0 = 1− s1, this proves the proposition. �
Next, we turn to the problem of estimating ‖ψ‖t. The following lemma will be useful.

Lemma 3.3. Suppose F satisfies (3.1) and (3.2). Then for any real t we have

(3.6) |F (it)| ≤ |t| 12 eπ|t|
(
1

π

∫ ∞

−∞

|F (x)|2
t2 + x2

dx

) 1
2

.

Proof. It suffices to consider t > 0. Then, by (3.3), F (z)eiπz(z + it)−1 is bounded and
analytic in the upper half-plane, and so we have

F (it) =
teπt

π

∫ ∞

−∞

F (x)

x+ it

eiπx

x− it
dx.

Applying the Cauchy–Bunyakovskii inequality we prove the lemma. �
Now we can give an estimate for ‖ψ‖t which essentially solves the problem of deter-

mining s0 and s1.

Theorem 3.4. There exists a constant C so that for t ≥ 2 we have

(3.7)
1

C

(∫ ∞

−∞

|F (x)|2
x2 + t2

dx

) 1
2

≤ ‖ψ‖t ≤ C

(∫ ∞

−∞

|F (x)|2
x2 + t2

dx

) 1
2

.

Proof. We start with the remark that the functions { (2π)− 1
2 (n2 + t2)−

1
2 en : n ∈ Z }

together with ( 12 (t sinh 2πt)
− 1

2 (eit + e−it)) form an orthonormal basis of H1 for ‖ · ‖t.
Hence,

(3.8) ‖ψ‖2t =
1

2π

∑
n∈Z

|F (n)|2
n2 + t2

+ 4
|F (it) + F (−it)|2

t sinh 2πt
.
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By (3.6), the last term in (3.8) can be estimated by

(3.9)
|F (it) + F (−it)|2

t sinh 2πt
≤ C2

∫ ∞

−∞

|F (x)|2
t2 + x2

dx

for t ≥ 1.
Now, if −1 ≤ τ ≤ 1, then the map Tτ : H1 → H1 defined by Tτf = eτf satisfies

‖Tτ‖t ≤ 2 provided t ≤ 1. Hence, if ψτ = T ∗
τ ψ, we have 1

2‖ψτ‖t ≤ ‖ψ‖t ≤ 2‖ψτ‖t.
However, using (3.8) and (3.9) gives

1

2π

∑
n∈Z

|F (n+ τ )|2
n2 + t2

≤ ‖ψτ‖2t ≤ 1

2π

∑
n∈Z

|F (n+ τ )|2
n2 + t2

+ C2

∫ ∞

−∞

|F (x+ τ )|2
t2 + x2

dx.

Now by integrating for 0 ≤ τ ≤ 1 we obtain (3.7). �

§4. Application to nonharmonic Fourier series

At this point we turn our attention to exponential Riesz bases. Let Λ = (λn)n∈Z be a
sequence of complex numbers. For convenience we shall write σn = �λn and τn = �λn.

We suppose that (eλn
)n∈Z is an unconditional basis of L2, or equivalently, that

((1 + |τn|)
1
2 e−π|τn|eλn

)n∈Z is a Riesz basis of L2. Then this family is a complete interpo-
lating set [25]. In particular, we have the sampling condition: there exists a constant D
so that if f ∈ L2, then

(4.1) D−1‖f‖ ≤
(∑

n∈Z

(1 + |τn|)e−2π|τn||f̂(λn)|2
) 1

2

≤ D‖f‖

(i.e., the latter family is a frame). We also note that it must satisfy a separation condition,
i.e., for some 0 < δ < 1 we have

(4.2)
|λm − λn|

1 + |λm − λn|
≥ δ, m �= n.

Then we can define an entire function F by

(4.3) F (z) = lim
R→∞

∏
|λk|≤R

(1− zk/λk).

The term (1 − λ−1
k z) is replaced by z if λk = 0. We call F the generating function for

the unconditional basis (eλn
).

Proposition 4.1 [23, 14, 7]. The product (4.3) converges to an entire function of expo-
nential type π and satisfies the integrability conditions (3.2), and

(4.4)

∫ ∞

−∞
|F (x)|2dx = ∞.

We note that the inequality in (3.2) is necessary for the minimality of the family, and
(4.4) for the completeness of (eλn

). Also, since F satisfies (3.1) and (3.2), there exists

ψ ∈ (H1)∗ with ψ̂ = F. We remark that F is a Cartwright class function; then (see [14])
we have the Blaschke condition

∑
λn �=0

|τn|
|λn|2

< ∞.
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This implies that the families (eλn
)
λn>0 and (eλn

)
λn<0 are minimal in L2(0,∞) and
L2(−∞, 0), respectively. Also we have

∑
λn �=0

1
|λn|2 < ∞ (this follows from [15, p. 127]).

Thus, we have a strong Blaschke condition

(4.5)
∑
λn �=0

1 + |τn|
|λn|2

< ∞.

Now by the result of Russell, Proposition 1.2, the functions (eλn
) form an unconditional

basis of a closed subspace Y0 of H1 of codimension one. Clearly, the kernel of ψ coincides
with Y0. Hence, our above results (Proposition 3.2 and Theorem 3.4) apply to this case.

Theorem 4.2. Suppose (eλn
)n∈Z is an unconditional basis of L2. Then:

(1) (eλn
)n∈Z is an unconditional basis of the Sobolev space Hs if and only if 0 ≤ s < s0;

(2) (eλn
)n∈Z is an unconditional basis of a closed subspace of Hs of codimension one

if and only if s1 < s ≤ 1;
(3) If s0 ≤ s ≤ s1, then (eλn

) is not an unconditional basic sequence.

Proof. By Russell’s theorem and Proposition 1.2 above, (eλn
)n∈Z is an unconditional

basis for the closed subspace Y0 of codimension one that is the kernel of the linear

functional ψ. Let vn be the weight sequence vn = sinh(2πτn)
τn

= ‖eλn
‖2L2 , and let hn =

(1+ |λn|2)vn = ‖eλn
‖2H1 . From the basis property it follows that the map V : 	2(h) → Y0

defined by

V (α) =
∑
n∈Z

αneλn

is an isomorphism (onto). Clearly, V is an isomorphism of 	2(v) onto L2(−π, π) = Y1.
Hence by interpolation V is an isomorphism of 	2(v

1−shs) onto Y1−s = [Y0, L
2]1−s,2. In

other words, setting qn = v1−s
n hs

n = vn(1 + |λn|2)s, we obtain

C−1
∑

|αn|2qn ≤
∥∥∥∑αneλn

∥∥∥2
Y1−s

≤ C
∑

|αn|2qn,

and the almost normalized family (eλn
/q

1/2
n )n∈Z forms a Riesz basis in Y1−s. Thus, if

Y1−s is a closed subspace in Hs, then (eλn
) forms an unconditional basic sequence in Hs

also.
Next, we estimate ‖eλn

‖Hs to have the inverse implication. In fact from interpolation
between L2 and H1 we have

‖eλn
‖Hs ≤ C‖eλn

‖1−s‖eλn
‖s1 = C(v1−s

n hs
n)

1
2 ,

where C depends only on s. Similarly, if we define φn(f) = (f, eλn
), then the norm of φn

in (Hs)∗ can be estimated by

‖φn‖(Hs)∗ ≤ C1‖φn‖1−s‖φn‖s(H1)∗ = C1(v
1−s
n )1/2(v2n/hn)

s/2 = C1(v
1+s
n h−s

n )
1
2 .

On the other hand, ‖eλn
‖Hs ≥ |φn(eλn

)|/‖φn‖Hs , which gives

‖eλn
‖Hs ≥ C−1

1 (v1−s
n hs

n)
1/2.

Therefore, the norms ‖eλn
‖Hs and ‖eλn

‖Y1−s
are both equivalent to

√
qn. Consequently,

the assumption that (eλn
) is an unconditional basic sequence leads to the equivalence of

the metrics in Hs and Y1−s. �
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Remark. It is easy to obtain a necessary and sufficient condition for an exponential family
(eλn

)n∈Z that is complete and minimal in L2 to be complete and/or minimal in Hs; see
[3]. To do this we relate the generating function F to the critical exponent sΛ,

sΛ := inf
{
s :

∫ ∞

−∞

|F (x)|2
1 + |x|2s dx < ∞

}
= inf{ s : ψ ∈ (Hs)∗ }.

Now (eiλnt) is complete in Hs(−π, π) for s < sΛ and is minimal for s > sΛ − 1. The
situation for s = sΛ or s = sΛ − 1 depends on whether ψ is bounded in HsΛ . Note that
s0 ≤ sΛ ≤ s1 in general.

Thus, the family (eλn
) is minimal in Hs for 0 < s < 1, and for any (αn) ∈ l2, α �= 0,

we have

0 <
∥∥∥∑αneλn

/
√
qn

∥∥∥2
Hs

≤
∥∥∥∑αneλn

/
√
qn

∥∥∥2
Y1−s

≤ C
∑

|αn|2.

We do not know whether (eλn
)n∈Z can be a conditional basis of Hs, for some appropriate

ordering, when s0 ≤ s ≤ sΛ.
To get precise estimates of s0 and s1 we need an alternative formula for ‖ψ‖t in this

special case.
We introduce the function Φ(z) defined by Φ(z) = |F (z)|d(z,Λ)−1 for z /∈ Λ and

Φ(λn) = |F ′(λn)| for n ∈ Z. The function Φ plays an important role in the known
conditions for (eλn

) to be an unconditional basis [20, 19]. We call Φ the carrier function
for (eλn

).
The following lemma lists some useful properties.

Lemma 4.3. Suppose −∞ < t < ∞. Then:
(i) there is at most one n ∈ Z so that |it − λn| < 1

2δ|t|, where δ is the separation

constant in (4.2). There is also at most one n ∈ Z so that |it− λn| < 1
4δ|λn|;

(ii) |F (it)| ≤ (|λ0|+ |t|)Φ(it);
(iii) there is a constant C independent of t, n so that for every n ∈ Z we have

|F (it)| ≤ C(|λ0|+ |t|) |it− λn|
(|λn|2 + t2)

1
2

Φ(it);

(iv) for t �= 0, we have

Φ(it) ≤ |t|− 1
2 eπ|t|

(
1

π

∫ ∞

−∞

|F (x)|2
t2 + x2

dx

) 1
2

.

Proof. (i) Suppose m,n are distinct and |it−λn|, |it−λm| < 1
2δ|t|. Then |λm−λn| < δt,

while
|λm − λn| ≥ |(λm − it)− (λn − it) + 2it| ≥ (2− δ)|t| > |t|.

Hence,
|λm − λn|

1 + |λm − λn|
< δ,

which contradicts (4.2).
For the second part note that if |it−λn| < 1

4δ|λn|, then |λn| < 2|t|, so that |it−λn| <
1
2δ|t|.

(ii) is immediate from the fact that d(it,Λ) ≤ |λ0|+ t.
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(iii) If |it − λn| < 1
2δt then, by (i), |it − λn|Φ(it) = |F (it)| and t2 + |λn|2 ≤ 5t2. Let

|it− λn| ≥ 1
2δt. Then

|it− λn|
(|λn|2 + t2)1/2

≥ |it− λn|
|λn|+ |t| ≥

|it− λn|
|it− λn|+ 2|t| ≥ c > 0.

Since |λn|+ |t| ≥ d(it,Λ), we have (iii).
(iv) Let λn satisfy |it − λn| = d(it,Λ). If t and τn have opposite signs or if τn = 0,

then d(it,Λ) ≥ t, and so Φ(it) ≤ t−1|F (it)|. If they have the same sign, define G(z) =
(z − λn)(z − λn)

−1F (z) and note that

Φ(it) =
|G(it)|
|it− λn|

≤ t−1|G(it)|.

Since |G(x)| = |F (x)| for x real, we deduce (iv) from (3.6). �
Next, we show that the Blaschke condition (4.5) can be improved for Riesz bases.

Proposition 4.4. If (eλn
)n∈Z is an unconditional basis of L2, then there is a constant

C so that for any 0 < t < ∞ we have

(4.6)
∑
λn �=0

t(1 + |τn|)
|λn|2 + t2

≤ C.

Proof. We apply (4.1) to e±it. Then

(4.7)
∑
n∈Z

(1 + |τn|)e−2π|τn|
∣∣∣∣ sin(π(λn ± it))

λn ± it

∣∣∣∣
2

≤ 4D2‖e±it‖2 = 4D2 sinh 2πt

t
.

Now for each n there is a choice of sign so that
∣∣∣∣ sin(π(λn ± it))

λn ± it

∣∣∣∣ ≥ | sinh(π(|τn|+ t))|
|λn|+ t

,

whence ∑
n∈Z

(1 + |τn|)e−2π|τn| sinh
2(π(t+ |τn|))
|λn|2 + t2

≤ 4D2 sinh 2πt

t
.

This yields (4.6) for t ≥ 1, and this extends to t ≥ 0 in view of (4.5) and the fact that∑
n�=0 |λn|−2 < ∞. �
We shall also need a perturbation lemma.

Lemma 4.5. Let (eλn
) and (eμn

)n∈Z be two unconditional bases of L2. Suppose further
that there is a constant C so that

∑
n∈Z

t|μn − λn|
|μn||λn|+ t2

≤ C, 1 < t < ∞.

Suppose Φ and Ψ are the carrier functions for (eλn
) and (eμn

). Then there exist constants
B, T > 0 so that if t ≥ T , then

1

B

Ψ(it)

Φ(it)
≤

∏
0<|λn|≤t
|μn|�=0

|λn|
|μn|

≤ B
Ψ(it)

Φ(it)
.
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Proof. Taking t = max(1, |μn|
1
2 |λn|

1
2 ), we observe that

|λn − μn| ≤ Cmax(1, 2|μn|
1
2 |λn|

1
2 )

for each n. Hence,

|λn| ≤ |μn|+ 2C|λn|1/2|μn|1/2 + C ≤ |μn|+
1

2
|λn|+ 2C2|μn|+ C.

Writing a similar estimate for |μn| and setting C1 = 2 + 4C2 > 1, we get

(4.8) |λn| ≤ C1(|μn|+ 1), |μn| ≤ C1(|λn|+ 1).

Now let c = 1
4 min(δ, δ′), where δ, δ′ are the separation constants of (λn)n∈Z and

(μn)n∈Z, respectively.
Next, we make the remark that there is a constant M so that if |w|, |z| ≤ 2C1 +1 and

|1− w|, |1− z| ≥ c, then

(4.9) | log |1− w| − log |1− z|| ≤ M |w − z|.

We fix T = |μ0| + |λ0| + 2C1. Suppose that t ≥ T, and let p = p(t), q = q(t) ∈ Z be
chosen so that |it− λp| = min{ |it− λn| : n ∈ Z } and |it− μq| = min{ |it− μn| : n ∈ Z }.
It may happen that p = q. Note that, automatically,

(4.10) |it− λp| ≤ |t|+ |λ0| ≤ 2t, |it− μq| ≤ |t|+ |μ0| ≤ 2t.

Then if n �= p, q and |λn| > t, we have |μn| > 1
2C

−1
1 |λn|, so that |it− μn| ≤ |t| + |μn| ≤

(2C1 + 1)|μn|. By Lemma 4.3 (i), we have |it− λn| ≥ c|λn| and |it− μn| ≥ c|μn|. Hence,

| log |it− μn| − log |it− λn| − log |μn|+ log |λn|| ≤ M
t|λn − μn|
|λn||μn|

≤ (2C1 + 1)M
t|λn − μn|

|λn||μn|+ t2

by (4.9). Next, suppose n �= p, q and |λn| ≤ t. Then |μn| ≤ C1(t + 1) ≤ 2C1t. We also
have |it− λn|, |it− μn| ≥ c|t| and so

| log |it− μn| − log |it− λn|| ≤ M
|λn − μn|

t

≤ (2C1 + 1)M
t|λn − μn|
|λn||μn|+ t2

by (4.9). Combining and summing over all n �= p, q, we obtain

log
Ψ(it)

Φ(it)
= δ(t) log

∣∣∣∣ it− μp

it− λq

∣∣∣∣+
∑

0<|λn|≤t

log |λn| −
∑

0<|λn|≤t
|μn|�=0

log |μn|+ γ(t),

where |γ(t)| ≤ C(2C1 + 1)M and δ(t) is 1 if p �= q and 0 if p = q.
To conclude we need only consider the case where p �= q. In this case |it−μp|, |it−λq| ≥

ct. We also have |λp|, |μq| ≤ 3t by (4.10); hence, by (4.8), |λq|, |μp| ≤ C1(3t+ 1) ≤ 4C1t.
Thus, |it− μp|, |it− λq| ≤ 5C1t. This concludes the proof. �
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Lemma 4.6. Suppose (eλn
) is an unconditional basis of L2. Then there exist constants

B, T so that if t ≥ T , then

1

B
Φ(it) ≤ Φ(−it) ≤ BΦ(it).

Proof. This follows from Lemma 4.5 by taking μn = λn in view of Lemma 4.4. �
The next theorem is the key step in the proof of our main result.

Theorem 4.7. Suppose (eλn
)n∈Z is an unconditional basis of L2. Then there exist

constants C and T > 0 so that if t ≥ T , then

(4.11) C−1t
1
2 e−πtΦ(it) ≤ ‖ψ‖t ≤ Ct

1
2 e−πtΦ(it).

Proof. The left-hand inequality in (4.11) is an immediate consequence of Lemma 4.3 (iv)
and (3.7). We turn to the right-hand inequality.

First, we use Lemma 4.3(ii), (iii) and Lemma 4.6. There are constants C, T > 1 so
that if |t| ≥ T , then Φ(−it) ≤ CΦ(it), |F (it)| ≤ CtΦ(it), and

(4.12) |F (it)| ≤ Ct
|λn − it|

(|λn|2 + t2)
1
2

Φ(it)

for every n.
Choose g ∈ H1 so that ψ(f) = 〈f, g〉t for f ∈ H1. Let h be the orthogonal projection

with respect to 〈·〉t of g onto the subspace H1
0 of all f so that f(−π) = f(π) = 0, and

let k = g − h. Then ‖ψ‖2t = ‖k‖2t + ‖h‖2t .
The orthogonal complement of H1

0 (with respect to 〈·〉t) is the 2-dimensional space
with the orthonormal basis {e±it/‖e±it‖t}. Hence,

k = ‖eit‖−2
t (F (it)eit + F (−it)e−it)

and
‖k‖2t = ‖eit‖−2

t (|F (it)|2 + |F (−it)|2).
Since ‖eit‖2t = 2t sinh 2πt, we deduce that

‖k‖t ≤ C1t
1
2Φ(it)e−πt, t ≥ T,

with a suitable constant C1. Therefore, it only remains to estimate ‖h‖t.
We first argue that

〈ez, k〉t = (2t sinh 2πt)−1(F (it)〈ez, eit〉t + F (−it)〈ez, e−it〉t)

=
i

sinh 2πt
(F (−it) sinπ(z − it)− F (it) sinπ(z + it)).

Since ψ(eλn
) = F (λn) = 0 for n ∈ Z, we obtain

〈eλn
, h〉t =

i

sinh 2πt
(F (it) sinπ(λn + it)− F (−it) sinπ(λn − it)).

Now, if we use (4.12), we get an estimate valid for t ≥ T :

|〈eλn
, h〉t| ≤ CΦ(it)

t|λn + it||λn − it|
(|λn|2 + t2)

1
2 sinh 2πt

(∣∣∣∣ sin(π(λn − it))

λn − it

∣∣∣∣+
∣∣∣∣ sin(π(λn + it))

λn + it

∣∣∣∣
)
.
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Since h ∈ H1
0 , we then have

〈eλn
, h〉t = (λ2

n + t2)(eλn
, h),

and we can rewrite the above estimate as

|(eλn
, h)| ≤ C

Φ(it)

sinh 2πt

1

(|λn|2 + t2)1/2

(∣∣∣∣ sin(π(λn − it))

λn − it

∣∣∣∣+
∣∣∣∣ sin(π(λn + it))

λn + it

∣∣∣∣
)
.

Now
(eλn

, th+ h′) = (t− iλn)(eλn
, h).

Next, we use the sampling inequality (4.1):

‖h‖2t = ‖th+ h′‖2L2 ≤ D2
∑
n∈Z

(1 + |τn|)e−2π|τn||t− iλn||(eλn
, h)|2.

However, we can combine with (4.7) to deduce that

‖th+ h′‖L2 ≤ 4C2D2t
1
2Φ(it)(sinh 2πt)−

1
2

for t ≥ T , which gives the conclusion. �
Now, we consider the case where (λn) is a small perturbation of the sequence μn = n.

For convenience we shall assume that λn = 0 can only occur when n = 0.

Theorem 4.8. Suppose (eλn
)n∈Z is an unconditional basis of L2, and

(4.13)
∑
n�=0

t|λn − n|
n2 + t2

< C

for some constant C and all t ≥ 1. Then

s1 =
1

2
+ lim

τ→∞
sup
t≥1

1

log τ

∑
t<|n|≤τt

log
|n|
|λn|

and

s0 =
1

2
+ lim

τ→∞
inf
t≥1

1

log τ

∑
t<|n|≤τt

log
|n|
|λn|

.

Proof. In this case we compare the carrier function Φ for the basis (eλn
) with the carrier

function Ψ for the basis (en). Clearly, Ψ(it) = | sin πit|/πt. We can next use Lemma 4.5
to estimate Φ(it), and then the theorem follows directly from Theorem 4.7 together with
(3.5) and (3.4). �

Let us specialize to some important cases. Let δn = �λn − n = σn − n.

Theorem 4.9. Suppose (eλn
)n∈Z is an unconditional basis of L2 such that sup |δn| < ∞

and
∑

n�=0 τ
2
nn

−2 < ∞. Then

(4.14) s1 =
1

2
− lim

τ→∞
inf
t≥1

1

log τ

∑
t<|n|≤τt

δn
n
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and

(4.15) s0 =
1

2
− lim

τ→∞
sup
t≥1

1

log τ

∑
t<|n|≤τt

δn
n
.

Remark. In particular, relations (4.14) and (4.15) are true if |λn − n| is bounded.
Proof. Combining Proposition 4.4 and the boundedness of (δn) gives us (4.13). Note
that if n �= 0, then

log
|n|
|λn|

= − log

(
1 +

|λn| − |n|
|n|

)
.

Now, we have

|λn| − |n|
|n| =

(
1 +

2δn
n

+
δ2n + τ2n

n2

) 1
2

=
δn
n

+ αn,

where

|αn| ≤ C
1 + τ2n
n2

for a suitable constant C. By (4.5) and the assumption of the theorem, this implies that∑
n�=0 |αn| < ∞ and yields the theorem. �
Before discussing examples, we observe one more property of s0 and s1 in this case,

which uses recent results of [19] and the theory of A2-weights.

Theorem 4.10. If (eλn
)n∈Z is an unconditional basis of L2, then s0 > 0 and s1 < 1.

Proof. We shall use the relationship between the Riesz basis property and sampling/
interpolation in the spaces of entire functions of exponential type. In the case of L2 and
the Paley–Wiener space, this relationship may be found in [25].

Consider the space L2
π,s of all entire functions having exponential type at most π and

satisfying ∫ ∞

−∞

|f(ξ)|2
(1 + |ξ|)2s dξ < ∞.

(Note that the Fourier transform of L2
π,s is the set of all distributions in H−s(R) sup-

ported on [−π, π].) Now the formal adjoint of the map from 	2(Z) to Hs defined by

(αn) �→
∑

n∈Z
αn(1 + |τn|)−

1
2 (1 + |λn|)−seλn

is the map from L2
π,s to 	2(Z) given by

f �→
(
f(λn)(1 + |τn|)1/2(1 + |λn|)se−πτn

)
n∈Z

. Hence, (eλn
)n∈Z is an unconditional basic

sequence (respectively, unconditional basis) if and only if (λn)n∈Z is an interpolating
sequence (respectively, complete interpolating sequence) in L2

π,s.

Note that if (λn) is interpolating for L2
π,s−1, then it is interpolating for L2

π,s by the
simple device of considering functions of the form f(z) = (z − μ)g(z), where μ /∈ Λ =
{λn}n∈Z and g ∈ L2

π,s−1.
It follows that our result can be proved by showing that (λn)n∈Z is a complete inter-

polating sequence for L2
π,s for all |s| < ε for some ε > 0. To do this, we note that, by

the results of [19], this is equivalent to requiring that (1 + |ξ|)2sΦ(ξ)2 be an A2-weight
for |s| < ε. Now Φ2 is an A2-weight ([19] or [20]); hence, there exists η > 0 so that
Φ2(1+η) is an A2-weight (cf. [6, p. 262, Corollary 6.10]). Thus, the Hilbert transforma-
tion is bounded on both L2(R,Φ

2(1+η)) and L2(R, (1 + |ξ|)2θ) for 0 < θ < 1
2 . It then

follows by complex interpolation that Φ(ξ)2(1 + |ξ|)2s is an A2-weight provided |s| <
η(1 + η)−1. �

Observe that these results imply Theorem 1.4.
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Examples. We recall the classical theorem of Kadets (see, e.g., [11] or [15]) saying that if
(λn) are real, then supn |δn| < 1

4 is a sufficient condition for (eλn
)n∈Z to be a Riesz basis.

First, we consider the case of regular behavior. For example, we can set δn = − 1
2q sgnn

(see [1]). Then we obtain s1 = s0 = 1
2 + q. More generally, if for some y > 0 we have

C−1(1 + |x|)2q ≤ |F (x + iy)| ≤ C(1 + |x|)2q, we obtain s1 = s0 = 1
2 + q (if we use the

integral estimates of ‖ψ‖t, i.e., Theorem 3.4).
We can easily make sequences (δn) with sup |δn| < 1

4 to exhibit any required behavior.
In fact, if we put

bn =
1

log 2

∑
2n<|k|≤2n+1

δk
k
,

then

s0 =
1

2
− lim

N→∞

1

N
inf
n≥1

n+N∑
k=n+1

bk

and

s1 =
1

2
− lim

N→∞

1

N
sup
n≥1

n+N∑
k=n+1

bk.

To be more specific, if − 1
2 < p ≤ q < 1

2 , set

δn =
1

2
q sgnn for 2(2

2k) < |n| ≤ 2(2
2k+1),

δn =
1

2
p sgnn for 2(2

2k−1) < |n| ≤ 2(2
2k).

Then

bm =
q

log 2

2m+1∑
k=2m+1

1

k
= q + o(1)

for 22k < m ≤ 22k+1, and
bm = p+ o(1)

for 22k−1 < m ≤ 22k. Thus,

s0 =
1

2
− q, s1 =

1

2
− p

(note that an example of irregular behavior was given in [1]).
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22. N. K. Nikol′skĭı, A treatise on the shift operator. Spectral function theory, “Nauka”, Moscow, 1980;

English transl., Grundlehren Math. Wiss., Bd. 273, Springer-Verlag, Berlin–New York, 1986.
23. R. E. A. C. Paley and N. Wiener, Fourier transforms in the complex domain, Amer. Math. Soc.

Colloq. Publ., vol. 19, Amer. Math. Soc., Providence, RI, 1934 (reprinted in 1987).
24. D. L. Russell, On exponential bases for the Sobolev spaces over an interval, J. Math. Anal. Appl.

87 (1982), 528–550.
25. K. Seip, On the connection between exponential bases and certain related sequences in L2(−π, π),

J. Funct. Anal. 130 (1995), 131–160.
26. R. Wallsten, Remarks on interpolation of subspaces, Function Spaces and Applications (Lund,

1986), Lecture Notes in Math., vol. 1302, Springer, Berlin–New York, 1988, pp. 410–419.

Russian Center of Laser Physics, St. Petersburg State University, Ul
′
yanovskaya 1,

1198904 St. Petersburg, Russia

E-mail address: Sergei.Ivanov@pobox.spbu.ru

Department of Mathematics, University of Missouri, Columbia, MO 65211

E-mail address: nigel@math.missouri.edu

Received 10/SEP/2000

Originally published in English


