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Lipschitz-free Banach spaces

by

G. Godefroy (Paris) and N. J. Kalton (Columbia, MO)

Abstract. We show that when a linear quotient map to a separable Banach space
X has a Lipschitz right inverse, then it has a linear right inverse. If a separable space X
embeds isometrically into a Banach space Y , then Y contains an isometric linear copy
of X. This is false for every nonseparable weakly compactly generated Banach space X.
Canonical examples of nonseparable Banach spaces which are Lipschitz isomorphic but not
linearly isomorphic are constructed. If a Banach space X has the bounded approximation
property and Y is Lipschitz isomorphic to X, then Y has the bounded approximation
property.

1. Introduction. A (real) Banach space X is in particular a metric
space, equipped with the distinguished point {0}, and to such a pointed
metric space we can associate the space Lip0(X) of all real-valued Lipschitz
functions which vanish at 0. We refer to [29] for basic facts on this space
and some of its uses. It is clear that Lip0(X) is a Banach space when it is
equipped with the Lipschitz norm, defined by

‖f‖Lip = sup

{ |f(x)− f(y)|
‖x− y‖ : x, y ∈ X, x 6= y

}
.

This space is denoted by X] in [5, Chapter 7], where it is called the Lipschitz
dual of X. The closed unit ball of the space Lip0(X) is compact for the
topology of pointwise convergence on X, and therefore this space has a
canonical predual, namely the closed linear span of the linear forms δ(x) such
that δ(x)(f) = f(x), where x runs through X. We refer to [3] for uses of the
map δ in a Fenchel duality context. This predual is defined and analysed in
[29, Chapter 2] where it is called the Arens–Eells space. It turns out that this
space enjoys remarkable functorial properties (see Section 2 below), quite
reminiscent of those of free groups, which motivate the following definition.

Definition 1.1. Let X be a Banach space, and let Lip0(X) be the
Banach space of real-valued Lipschitz functions on X which vanish at 0.
The Lipschitz-free space over X, denoted by F(X), is the canonical predual
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of Lip0(X), that is, the norm closed linear subspace of Lip0(X)∗ spanned
by the evaluation functionals δ(x) with x ∈ X.

We shall refer to F(X) as the free space over X. We note that such a
notion has been investigated before in the frame of topological vector spaces
[11]. Our purpose in considering the free spaces is to investigate the following
general problem: if X and Y are Lipschitz isomorphic Banach spaces, that
is, if there exists a bijective and bi-Lipschitz map F : X → Y , are X and Y
linearly isomorphic? It is known that the answer to this question is negative
in full generality, but it remains an important open problem in the separable
case. We refer to the authoritative book [5] for this topic and related matters.

Free spaces are naturally relevant to this problem. Indeed, it is clear
that the spaces Lip0(X) and F(X) are Lipschitz invariants. Moreover, the
map δ defines a nonlinear isometric embedding from X into F(X), with
a linear left inverse. Finally, moving to free spaces allows linearization of
Lipschitz maps and this opens the way for applications of the linear theory
to nonlinear problems.

We now describe the contents of this paper. Section 2 gathers general
results about free spaces. These results and their proofs are essentially alge-
braic. The crucial lifting property is introduced in Definition 2.7. Section 3
addresses the separable theory. It is shown there that every separable space
has the lifting property. The main consequence of this result is that when
a separable space X embeds isometrically into a Banach space Y , then Y
contains a linear subspace isometric to X (although a Lipschitz embedding
does not provide in general a linear one, see [1]). Section 4 investigates the
nonseparable theory. It turns out that the nonseparable case is completely
different from the separable case, since for instance every nonseparable WCG
space fails the lifting property. This provides many canonical examples of
pairs of nonseparable spaces which are Lipschitz but not linearly isomorphic.

The standard examples of Banach spaces which are Lipschitz isomorphic
but not linearly isomorphic were constructed by finding a Lipschitz section
of a quotient map ([2], [9], [10], [5]). The results of Sections 3 and 4 together
show that this method is simply not available for separable spaces, but
provide a plethora of nonseparable examples. We refer to [8] and references
therein for twisted sums and nonlinear methods.

It is shown in Section 5 that X has the metric (respectively bounded)
approximation property if and only if its free space F(X) has the met-
ric (respectively, bounded) approximation property. An application is that
the bounded approximation property is invariant under Lipschitz isomor-
phisms.

This work contributes to support the feeling that the separable spaces
“behave well” with respect to Lipschitz isomorphisms, and that very subtle
differentiabilty statements could provide in many (in all?) separable cases
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the identification of the Lipschitz isomorphism class with the linear one,
already shown for most of the classical spaces (see [18], [16]). We refer to
[17] and [23] for recent and deep differentiability theorems.

The methods used here can also be applied to study uniform homeo-
morphisms and even isomorphisms of nets. This theory is a little different
because infinitesimal arguments are not available any more in this context.
We refer to the forthcoming paper [21].

2. Free spaces and diagrams. This section contains the basic facts
concerning the behavior of free spaces with respect to commutative dia-
grams. Some of these facts are well known (see [20], [29]) but we recall the
simple proofs and fix the notation.

Let X be a real Banach space (all Banach spaces will be assumed real).
First we observe that F(X) has the same density character as X; in partic-
ular if X is separable then so is F(X).

We denote by δ = δX : X → F(X) the canonical embedding so that
〈δ(x), f〉 = f(x) for f ∈ Lip0(X). It is sometimes convenient to think of
F(X) as the completion of the set of Borel measures µ on X with finite
support under the norm

‖µ‖F = sup
‖f‖Lip≤1

�
f dµ.

The following proposition states some obvious properties of δ.

Proposition 2.1. The map δ : X → F(X) is a nonlinear isometry and
is nowhere Gateaux differentiable.

Proof. We only need to remark that if t 7→ δ(u + tv) has any point
of differentiability at 0 then it would follow that for every f ∈ Lip0(X)
we would have differentiability of t 7→ f(u + tv) at 0. Consider the map
f(x) = ‖x− u‖ − ‖u‖.

It now follows that any finite Borel measure µ supported on a compact
subset K of X can be identified with a member of F(X). Indeed,

µ =
�

K

δ(x) dµ(x)

as a Bochner integral.

Lemma 2.2. Let X and Y be Banach spaces and suppose L : X → Y
is a Lipschitz map such that L(0) = 0. There exists a unique linear map

L̂ : F(X) → F(Y ) such that L̂δX = δY L, i.e. the following diagram com-
mutes:
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X
L−→ Y

δX

y
yδY

F(X)
L̂−→ F(Y )

and ‖L̂‖ = ‖L‖Lip where ‖ · ‖Lip denotes the Lipschitz norm of L.

Proof. The linear map L# : Lip0(Y ) → Lip0(X) defined by L#(F ) =

F ◦ L is pointwise-to-pointwise continuous, hence there is a linear map L̂

between the preduals such that L̂∗ = L#. It is clear that ‖L#‖ = Lip(L),

and ‖L̂‖ = ‖L̂∗‖ = ‖L#‖. The other assertions are clear.

Note that it is straightforward to check that ŜT = ŜT̂ in full generality.
One special case should be singled out.

Lemma 2.3. If X is a subspace of Y and ι : X → Y is the canonical
embedding then ι̂ : F(X)→ F(Y ) is an isometric embedding.

Proof. Suppose µ is a finitely supported measure on X. Choose f ∈
Lip0(X) with � f dµ = ‖µ‖F(X) and ‖f‖Lip = 1. Then f has an extension to
g ∈ Lip0(Y ) with ‖g‖Lip = 1. It follows that ‖ι̂µ‖F(Y ) = ‖µ‖F(X).

Lemma 2.3 allows one to consider F(X) as a subspace of F(Y ) whenever
X is a subspace of Y.

Let us make a remark on typical applications of Lemmas 2.2 and 2.3.
Suppose X and Y are Banach spaces. Suppose there are Lipschitz maps
L : X → Y and F : Y → X such that FL = IdX (equivalentlyX is Lipschitz
isomorphic to a subset of Y onto which there is a Lipschitz retraction). Then

F(X) is isomorphic to a complemented subspace of F(Y ) by considering F̂

and L̂. In the case when X is simply a subspace of Y and there is a Lipschitz
retraction of Y onto X then F(X) is a complemented subspace of F(Y ).

If µ is a measure of finite support on X we can define its barycenter
β(µ) = βX(µ) ∈ X by

β(µ) =
�
x dµ.

Note that if x∗ ∈ X∗ we have

|〈β(µ), x∗〉| ≤ ‖x∗‖‖µ‖F
and so β extends to a bounded linear operator β : F(X)→ X. The following
lemma is clear.

Lemma 2.4. Let X be a Banach space. Then β is a linear quotient map
F(X)→ X and is a left inverse of δ, i.e. βδ = IdX .

If we define L = βY L̂, we deduce from Lemma 2.2 the following
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Lemma 2.5. Let L be a Lipschitz map from a Banach space X to a
Banach space Y such that L(0) = 0. There exists a unique linear map L :
F(X)→ Y such that LδX = L, and ‖L‖ = ‖L‖Lip.

Now suppose

0→ Z
R→ Y

S→ X → 0

is a short exact sequence. We recall that this sequence splits if there is a
bounded linear map V : X → Y so that SV = IdX , or equivalently there is
a bounded linear map W : Y → Z so that WR = IdZ . We shall say that the
sequence Lipschitz splits if there is a Lipschitz, but not necessarily linear,
map L : X → Y so that SL = IdX . We can always assume that L(0) = 0.

Let ZX = β−1
X (0) be the kernel of βX . Then Lemma 2.4 can be inter-

preted as saying that the short exact sequence of Banach spaces

0→ ZX → F(X)
β→ X → 0

Lipschitz splits. In fact δ is an isometric Lipschitz lifting for β. Our next
statement goes back to the seminal paper [22].

Proposition 2.6. If the short exact sequence

0→ Z
R→ Y

S→ X → 0

Lipschitz splits then the dual sequence

0→ X∗ S
∗
→ Y ∗ R

∗
→ Z∗ → 0

splits (linearly). Moreover in the isometric case, if R is a linear isometry ,
S is a linear quotient map and there is an isometric Lipschitz section L :
X → Y , then there is a linear isometry V : Y ∗ → X∗ with ‖V ‖ = 1 and
V S∗ = IdX∗ .

Proof. Let L : X → Y be a Lipschitz section. We recall that by [5,
Proposition 7.5] there is a contractive linear projection P : Lip0(X)→ X∗.
Let L# : Lip0(Y ) → Lip0(X) be defined by L#f = f ◦ L. Then PL# :
Y ∗ ⊂ Lip0(Y ) → X∗ is a linear map and PL#S∗ = IdX∗ . The remaining
statements are clear.

Proposition 2.6 implies that if a short exact sequence Lipschitz splits,
then its bidual sequence splits. In particular, when the spaces involved are
reflexive, Lipschitz splitting and linear splitting are equivalent. Also, a Lip-
schitz splitting implies that X is isomorphic to a subspace of Y ∗∗. This
last statement follows, when X is separable, from [5, Corollary 7.10], which
follows by a Gateaux differentiation technique. We will see below that in
the separable case one can do better and X actually embeds into Y in this
setting.
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We now define a new concept which turns out to be crucially important
for our purpose.

Definition 2.7. A Banach space X has the (isometric) Lipschitz-lifting
property if there exists a (norm one) continuous linear map T : X → F(X)
such that βT = IdX .

We shall refer to the Lipschitz-lifting property as the lifting property.

Proposition 2.8. Let X be a Banach space. Then X has the lifting
property if and only if every short exact sequence

0→ Z → Y → X → 0

which Lipschitz splits also linearly splits.

Proof. We show that a short exact sequence

0→ Z
R→ Y

S→ X → 0

which Lipschitz splits is a pushout of the short exact sequence

0→ ZX → F(X)→ X → 0.

Indeed, let L : X → Y be a Lipschitz section. By Lemma 2.5 we can find a
linear map L : F(X)→ Y with LδX = L. Hence SLδX = IdX from which it
follows that SL = βX . Hence SL(ZX) = {0} so that we can find an operator
V : ZX → Z so that the following diagram commutes:

0 −→ ZX −→ F(X)
β−→ X −→ 0

V

y L

y
∥∥∥

0 −→ Z
R−→ Y

S−→ X −→ 0.

Now it is clear that if T : X → F(X) is a linear lifting of β then LT is a
linear lifting of S.

The reasoning of Proposition 2.8 gives the following isometric version.

Proposition 2.9. Suppose X is a Banach space with the isometric lift-
ing property. Suppose Y is a Banach space and Q : Y → X is a quotient
map. Then if there exists a (not necessarily linear) isometry L : X → Y with
QL = IdX then there is also a linear isometry V : X → Y with QV = IdX .

The first examples of spaces which have the lifting property are provided
by our next lemma.

Lemma 2.10. Let X be an arbitrary Banach space. Then the free space
F(X) over X has the isometric lifting property.

Proof. Consider the isometry δF(X)δX : X → F(F(X)) = F2(X). By

Lemma 2.5 there is a linear map T : F(X) → F2(X) with ‖T‖ = 1 and
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such that TδX(x) = δF(X)δX(x). Thus βF(X)TδX(x) = δX(x), from which
it follows that βF(X)T = IdF(X) .

Diagram chasing also provides the following fact.

Lemma 2.11. If X has the lifting property and Y is a subspace of X
onto which there is a continuous linear projection π, then Y has the lifting
property. If X has the isometric lifting property and ‖π‖ = 1 then Y has the
isometric lifting property.

Proof. If π̂ : F(X)→ F(Y ) is the corresponding free extension, we have
βY π̂δX = π and it follows since π is linear that βY π̂ = πβX . If T is a linear
lifting of X, then βY π̂T = π and thus the restriction of π̂T to Y is a linear
lifting from Y to F(Y ). The second part is clear.

We are now ready to state the two main results of this section.

Theorem 2.12. Let X be a Banach space. Then F(X) is Lipschitz iso-
morphic to the space G(X) = ZX ⊕ X. Moreover , these two spaces are
linearly isomorphic if and only if the space X has the lifting property.

Proof. The map L : F(X)→ G(X) defined by

L(µ) = (µ− δXβX(µ), βX(µ))

is easily seen to be a Lipschitz isomorphism between F(X) and G(X). If
T is a linear lifting of X, then we may replace δX by T above to show
that the spaces are linearly isomorphic. Conversely, if F(X) and G(X) are
isomorphic, then X is isomorphic to a complemented subspace of F(X), and
thus by Lemmas 2.10 and 2.11 the space X has the lifting property.

Proposition 2.8 already provides us with examples of spaces which fail
the lifting property: indeed, it implies by [2] that for any uncountable set Γ ,
the space c0(Γ ) fails the lifting property. We will see in Theorem 4.3 below
that a much more general statement holds true.

Theorem 2.13. Suppose X is a Banach space. Then X has the isometric
lifting property if and only if whenever Y is a Banach space such that there
exists a (not necessarily linear) isometry L : X → Y with L(0) = 0 and
Y = span(L(X)) then Y contains a contractively complemented subspace
linearly isometric to X.

Proof. If X has the isometric lifting property and L : X → Y is an
isometry with the linear span of L(X) dense, then a theorem of Figiel [13]
asserts the existence of a quotient map Q : Y → X so that QL = IdX . The
conclusion then follows from Proposition 2.9. On the other hand if X has
the latter property we take Y = F(X) and deduce that X is contractively
complemented in F(X) and hence has the isometric lifting property.
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3. Liftings of separable spaces. The main result of this section is
Theorem 3.1 below. Its proof should be compared with the proof of [5,
Proposition 7.5] as it in some sense consists in localizing the invariant means
on a compact subset of X. Theorem 3.1 can also be viewed as a weak dif-
ferentiability result. We have seen, however, that the natural Lipschitz map
δ : X → F(X) is nowhere Gateaux differentiable, and that F(X) contains
an isometric copy of the space L1 = F(R) and thus fails in particular the
Radon–Nikodym property.

We now state and prove

Theorem 3.1. Every separable Banach space has the isometric lifting
property.

Proof. Let {xn} be a linearly independent sequence in X which spans a
dense linear subspace D of X, and such that the set

K =
{ ∞∑

n=1

tnxn : 0 ≤ tn ≤ 1
}

is a norm compact subset of X. We denote by H = [0, 1]N the Hilbert cube,
and by λ the product of the Lebesgue measures on every factor. Similarly,
we let Nn = N \ {n}, Hn = [0, 1]Nn, and πn be the natural restriction map
from H onto Hn. We let λn = πn(λ). For t = (tn) ∈ H, we let

L(t) =
∞∑

k=1

tkxk

and we define Sn : Hn → X by

Sn(t) =
∑

k 6=n
tkxk.

With this notation, we now define φn ∈ F(X) by the Bochner integral

(3.1) φn =
�

Hn

(δ(xn + Sn(t))− δ(Sn(t))) dλn(t)

and we denote by RD the linear map from D to F(X) which satisfies
RD(xn) = φn. Since λn is a probability measure, we clearly have β(φn) = xn
and thus βRD = IdD. If f is a Lipschitz Gateaux differentiable function
on X, we have

f(xn + Sn(t))− f(Sn(t)) =

1�

0

〈∇f(uxn + Sn(t)), xn〉 du

and it follows from (3.1) and Fubini’s theorem that for such functions

〈f, φn〉 =
�

H

〈∇f(L(t)), xn〉 dλ(t),
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and thus for all x ∈ D we have

(3.2) 〈f,RD(x)〉 =
�

H

〈∇f(L(t)), x〉 dλ(t).

Note we have the estimate ‖∇f(y)‖X∗ ≤ ‖f‖Lip and so

|〈f,RD(x)〉| ≤ ‖f‖Lip‖x‖.
By [5, Cor. 6.43], the subset of the unit ball of Lip0(X) consisting of the
Gateaux differentiable functions is uniformly dense in this unit ball, and in
particular weak∗ dense. It follows that (3.2) implies that

‖RD(x)‖F ≤ ‖x‖
for every x ∈ D, and thus the linear map RD extends to a linear map R of
norm 1 from X to F(X) which clearly satisfies βR = IdX .

What we do in the above proof is differentiate the convolution of the
Dirac lifting δ with a cube measure. Differentiable measures can also be
used for this purpose: indeed, if F : X → Y is a Lipschitz map from a
separable Banach space X to a Banach space Y and if γ is a nondegenerate
Gaussian probability measure on X with mean 0 (see [5, Chapter 6]), then
for every y∗ ∈ Y ∗, the real-valued map

(y∗ ◦ F ) ∗ γ(x) =
�

X

y∗ ◦ F (x+ t) dγ(t)

is Gateaux differentiable everywhere on X (see e.g. the proof of Theorem 7
in [7]). If G(y∗) ∈ X∗ denotes the Gateaux derivative of this map at x = 0, it
is clear that G is linear in y∗ and has norm less than the Lipschitz constant
of F . By [6, Theorem 5.1.8], for all h in the dense subspace H(γ) of X we
have

G(y∗)(h) =
�

X

y∗ ◦ F (t) dνh(t)

for some measure νh on X, and Lebesgue’s dominated convergence theorem
shows that G is weak∗-to-weak∗ continuous. Hence there is a bounded linear
operator R from X to Y with G = R∗. This linear operator R is the weak
Gateaux derivative of F ∗ γ at x = 0. If T : Y → X is a bounded linear
left inverse to F , a straightforward computation shows that TR = IdX .
This applies in particular to F = δ and provides an alternative proof of
Theorem 3.1.

Corollary 3.2. Let Y be a Banach space, and Q : Y → X be a
quotient map from Y onto a separable Banach space X. If Q has a Lipschitz
right inverse L, then Q has a linear right inverse V with ‖V ‖ = ‖L‖Lip.

Proof. This follows immediately from Theorem 3.1 and Proposition 2.8.
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Theorem 3.1 has an application to the results of Figiel on isometric
embeddings. The following corollary combined with Corollary 4.4 below an-
swers a problem from [12] (see [14, Question 1.6.2]).

Corollary 3.3. Let X be a separable Banach space. If there exists an
isometric embedding from X into a Banach space Y , then Y contains a
linear subspace which is isometric to X.

Proof. We may and do assume that L(0) = 0, and then the result follows
from Theorem 2.13.

We refer to [25] for an explicit linear embedding when the spaces X and
Y are C(K) spaces. Note that we cannot replace “isometric embedding”
by “Lipschitz embedding” in Corollary 3.3. Indeed, any separable Banach
space can be Lipschitz embedded into c0(N) ([1]; see [26] for a quantitative
improvement) but few of them are isomorphic to subspaces of c0(N). The
proof of Corollary 3.3 relies heavily on Figiel’s theorem [13]. We will see
in Proposition 4.5 below that this theorem admits a converse, and thus
Corollary 3.3 requires the existence of some isometric embedding, and is
truly separable as well (see the comments after Corollary 4.4).

We recall that for every closed subspace F of a Banach space Y , the
quotient map Q : Y → Y/F admits a continuous positive homogeneous
lifting (see [5, Proposition 1.19]). However we have:

Corollary 3.4. Let Y be a Banach space, and let F be a closed sub-
space such that Y/F is separable. If there exists a uniformly continuous
positive homogeneous right inverse to the quotient map Q : Y → Y/F , then
F is linearly complemented in Y .

Proof. It is easily checked that a positive homogeneous map is Lipschitz
as soon as it is uniformly continuous. The result then follows from Corol-
lary 3.2.

Note that the above statement fails in general when the right inverse is
not homogeneous. Indeed, [21] provides canonical examples of linear quotient
maps between separable Banach spaces with a uniformly continuous right
inverse but no linear continuous right inverse.

4. Nonseparable spaces. We will show in this section that the non-
separable theory is completely different from the separable one. This will
in particular provide us with canonical examples of nonseparable Banach
spaces which are Lipschitz but not linearly isomorphic.

The following technical result will easily imply the main result of this
section.

Proposition 4.1. Let X be a weakly compactly generated Banach space.
Then every weakly compact subset of F(X) is separable.
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Proof. We first note that if V is a separable Banach space, the subset
of Lip(V ) consisting of all weakly continuous functions is norming (to check
this, use Lemma 2.3 and embed V in C[0, 1], which has a monotone basis,
and consider functions F ◦ Pn where Pn is the nth basis projection).

Lemma 4.2. Let W be a weakly compact subset of X and suppose (µn)
is a sequence of measures of finite support in W with sup |µn|(W ) = K
< ∞. Suppose infm6=n ‖µn − µm‖F > ε. Then there exists f ∈ Lip(X) with
‖f‖Lip ≤ 1 and an infinite subset M of N so that

∣∣∣
�
f dµn

∣∣∣ ≥ 1

8
ε, n ∈M.

Proof. By using Lemma 2.3 we may and do assume that X is separable.
We may assume that sup{‖x‖ : x ∈ W} = A < ∞. Then we also have
sup{‖µn‖F} ≤ AK.

We first pick a subsequence (νn) of (µn) inductively. Let Sn be the closed
convex hull of the union of the supports of ν1, . . . , νn−1. Let En be the closed
absolutely convex hull of the set {δ(x) : x ∈ Sn}. Then En is compact in
F(X). It is clear that we can pick a subsequence so that

(4.1) dF(νn, b2
nEn−1) > c > 1

2ε

where b = 16K2Aε−1. By a Hahn–Banach argument we may find a Lipschitz
function fn with constant one so that

(4.2)
�
fn dµn > c+ b2n

�
fn dγ

for γ ∈ En−1. This implies that

(4.3)
∣∣∣

�
fn dγ

∣∣∣ ≤ KAb−12−n, γ ∈ En−1.

Next we use the fact that the set of weakly continuous functions in
Lip0(X) is norming. It follows that we may replace each fn by a weakly
continuous function with ‖fn‖Lip ≤ 1 and have the same inequalities valid.
Hence we assume each fn is weakly continuous.

We can further assume, by passing to a subsequence, that |νn| is weak∗

convergent to some ν ∈ C(W )∗, where W is equipped with the weak topol-
ogy. If k < n,

�
|fn| d|νk| =

�

fn>0

fn d|νk| −
�

fn<0

fn d|νk|.

Observe that both χfn>0|νk| and χfn<0|νk| belong to KEn−1 and so by (4.3)
we have an estimate

(4.4)
�
|fn| d|νk| ≤ 2K2Ab−12−n, k < n.
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From (4.2) we also have

(4.5)
�
fn dνn > c, n ∈ N.

Let S be the norm closure of
⋃∞
n=1 Sn ⊂ X. Note that S contains the

support of ν by Mazur’s theorem. Furthermore limn→∞ fn(x) = 0 for x ∈ S.
Hence fn(x)→ 0 on the support of ν. Thus

lim
n→∞

�
|fn| dν = 0.

Now since each fn is weakly continuous,

lim
k→∞

�
|fn| d|νk| =

�
|fn| dν.

Thus passing to a subsequence we can suppose that

(4.6)
�
|fn| |dνk| < 2K2Ab−12−k for k 6= n.

Now for each n let hn = max(fn, 0) or hn = max(−fn, 0) in such a way
that ∣∣∣

�
hn dµn

∣∣∣ ≥ 1

2
c.

Finally, let f = supn hn. Then ‖f‖Lip ≤ 1 and

0 ≤ f − hn ≤
∑

k 6=n
hk.

Thus from (4.6),
∣∣∣

�
f dµn −

�
hn dνn

∣∣∣ ≤ 2K2Ab−1 =
1

8
ε.

The result follows.

We return to the proof of Proposition 4.1. Suppose that X is an arbitrary
WCG space. Assume that there exists ε > 0 and an uncountable relatively
weakly compact subset (νi) in F(X) with ‖νi− νj‖ > ε if i 6= j. Let W be a
weakly compact subset of X such that

⋃
nW is dense in X. For each m ∈ N

let Cm ⊂ F(X) be the set of all µ with finite support in mW and with
|µ|(mW ) ≤ m. Then for each i, limm→∞ d(νi, Cm) → 0. It follows that we
can find an infinite countable set M and a fixed m so that d(νi, Cm) < ε/26
for i ∈ M. Pick µi ∈ Cm so that ‖νi − µi‖F < ε/26. Note that ‖µi − µj‖ >
12ε/13 when i 6= j.

We can suppose, by passing to a subsequence, that (νi) converges weakly
to some ν ∈ F(X) and hence find m1 and µ ∈ Cm1 so that ‖ν−µ‖F < ε/26.
Then by Lemma 4.2 we can find an infinite subset M0 of M and a function
f with Lipschitz constant one so that

∣∣∣
�
f d(µi − µ)

∣∣∣ ≥ 3

26
ε, i ∈M0.
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However, since νi → ν weakly in F(X), we have

lim〈νi − ν, f〉 = 0

and hence for some i we have∣∣∣
�
f d(µi − µ)

∣∣∣ < 1

13
ε.

This contradiction gives the result.

We can now prove the main result of this section.

Theorem 4.3. A weakly compactly generated Banach space has the lift-
ing property if and only if it is separable.

Proof. LetX be a nonseparable WCG space. LetW be a weakly compact
subset which spans a dense linear subspace of X. If T is a linear right inverse
to the map BX , then T (W ) is a weakly compact nonseparable subset of
F(X), and this contradicts Proposition 4.1.

The following consequence provides us with a wealth of Lipschitz but
not linearly isomorphic Banach spaces.

Corollary 4.4. Let X be a nonseparable weakly compactly generated
Banach space. The space F(X) is Lipschitz isomorphic to the space G(X) =
ZX ×X, but F(X) does not contain a subspace isomorphic to X. In partic-
ular , F(X) and G(X) are not linearly isomorphic.

Proof. The first assertion was shown in Theorem 2.12. Since every weakly
compact subset of F(X) is separable, this space does not contain a subspace
isomorphic to X and in particular F(X) and G(X) are not linearly isomor-
phic. Note that this last assertion also follows from Theorems 2.12 and 4.3.

Corollary 4.4 shows in particular that Corollary 3.3 fails in the non-
separable case: if X is any nonseparable WCG space, then the map δX is
an isometric embedding from X into F(X), but F(X) does not contain a
subspace isomorphic to X.

Note that it follows from Lemma 2.10 and Theorem 4.3 that if X is
not separable, then the space F(X) is not WCG. However, there exist two
Lipschitz isomorphic but not linearly isomorphic WCG Banach spaces. This
follows from a recent work of M. Bell and W. Marciszewski ([4]; see also [15]).
The density character of these spaces is ℵω0 .

The space F(X) is a twisted sum of the two components of the space
G(X). The first examples of Lipschitz isomorphic but not linearly isomorphic
spaces have been constructed in this manner ([2]; see [9] for a generalization),
which is natural in view of Figiel’s theorem [13]. We now show that this
theorem admits a converse.
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Proposition 4.5. Let X and Y be Banach spaces such that there exists
a Lipschitz embedding L : X → Y such that L(0) = 0 and span(L(X)) = Y .
Then L admits a continuous linear left inverse Q if and only if there exists
an equivalent norm on Y for which L becomes an isometric embedding.

Proof. If there is such a norm, the existence of Q follows from Figiel’s
theorem (see [5, Theorem 14.2]). Conversely, we assume that there is a con-
tinuous linear map Q such that QL = IdX . Using a first renorming of Y , we
may and do assume that ‖Q‖ = 1. Let L : F(X)→ Y be the linear map ob-
tained from Lemma 2.5. We denote the closed unit ball of a Banach space Z
by BZ . We define an equivalent norm on Y through its unit ball B ′ such that

B′ = conv(L(BF(X)) ∪BY ).

It is clear that with this new norm one has ‖L‖ = 1 and thus L be-
comes 1-Lipschitz. On the other hand, since BF(X) is the convex hull of the

“molecules” (δ(x)− δ(y))/‖x− y‖ (see [29, p. 38]) and QLδ = IdX , we still
have Q(B′) = BX and thus the new norm of Q is still 1 and it follows that
L is an isometric embedding from X to Y equipped with the new norm.

Proposition 4.5 allows us to find more examples of pairs of spaces X
and Y such that X can be isometrically embedded into a space Y with-
out being isomorphic to a subspace of Y : using for instance [10, Lemma
VI.8.10], we see that the C(K0) space from [10, Example VI.8.7] is an As-
plund space which can be renormed to contain an isometric copy of c0(Γ )
with Card(Γ ) = c although it does not contain an isomorphic linear copy of
that space.

It is a natural question to ask which nonseparable spaces have the lifting
property. We note that for any set Γ , the space `1(Γ ) trivially has the lifting
property since in fact any quotient map onto `1(Γ ) has a linear right inverse.
This can be generalized easily to uncountable `1-sums of separable spaces.
Moreover, by Lemma 2.10 the space F(X) has the lifting property for every
Banach space X. On the other hand, we have:

Proposition 4.6. The space `∞(N) fails the lifting property.

Proof. For j ∈ N, let ej ∈ `∞(N) be such that ej(j) = 1 and ej(k) = 0
if k 6= j. Assume that there is a linear lifting T of β = β`∞ . Then there
exists a subspace X of `∞(N) such that T (ej) ∈ F(X) for all j and X is
isometric to a separable C(K) space. By [5, Theorem 1.6], X is an absolute
Lipschitz retract and thus by Lemma 2.2 the space F(X) is linearly com-
plemented in F(`∞(N)) by a projection P . Since `∞(N) is a Grothendieck
space, the operator PT is weakly compact, but this contradicts the fact that
βPT (ej) = ej.
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Proposition 4.6 and Lemma 2.11 imply that all the spaces which con-
tain `∞(N) fail the lifting property. In particular, although `∞(N) embeds
isometrically into F(`∞(N)), it does not embed as a linear subspace.

We note that when a quotient map Q : Y → X between nonseparable
spaces has a Lipschitz right inverse, then Lemma 2.3 and Theorem 3.1 show
that every separable subspace of X can be lifted to Y . The above results
show that these partial liftings cannot usually be organized into a global
lifting of X. However, there is a weaker statement which we will use later.

Proposition 4.7. Let X be a Banach space and suppose E is a finite-
dimensional subspace of X. Then there is a linear operator W : X → F(X)∗∗

such that ‖W‖ = 1, β∗∗Wx = x for x ∈ X and W (E) ⊂ F(X).

Proof. Let e1, . . . , en be a basis of E. As in the proof of Theorem 3.1
there is a linear map U : E → F(E) ⊂ F(X) with ‖U‖ = 1 and βUe = e
for e ∈ E given by

Uek =

1�

0

. . .

1�

0

(
δ
(∑

j 6=k
tjej + ek

)
− δ
(∑

j 6=k
tjej

))∏

j 6=k
dtj .

Now for every finite-dimensional subspace G of X containing E and every
ε > 0 we will define a linear lifting VG,ε : G → F(G) with ‖VG,ε‖ = 1 and
βVG,εg = g for g ∈ G. We do this by defining a basis g1, . . . , gm of G so that
gj = ej for 1 ≤ j ≤ n and

∑m
j=n+1 ‖gj‖ < ε. Then VG,ε is defined by the

same procedure, i.e.

VG,εgk =

1�

0

. . .

1�

0

(
δ
(∑

j 6=k
tjgj + gk

)
− δ
(∑

j 6=k
tjgj

))∏

j 6=k
dtj.

Then for 1 ≤ j ≤ n we have

‖VG,εej − Uej‖F ≤ 2ε.

Extend VG,ε to a nonlinear map ṼG,ε : X → F(X) by setting VG,εx = 0 if
x /∈ G. By a standard compactness argument we may find a subnet of the
net {VG,ε : G ⊃ F, ε > 0} which converges pointwise weak∗ to some W :
X → F(X)∗∗. Then W is clearly a linear operator of norm one, β∗∗Wx = x
for x ∈ X and We = Ue for e ∈ E.

5. Approximation properties. We recall that a Banach space X has
the λ-bounded approximation property (λ-(BAP)) if for every compact set
K ⊂ X and every ε > 0 there exists a finite-rank operator T : X → X with
‖T‖ ≤ λ and ‖Tx − x‖ < ε for x ∈ K. The 1-(BAP) is called the metric
approximation property (MAP). If X has λ-(BAP) for some λ we say that
X has (BAP).
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Proposition 5.1. Let E be a finite-dimensional Banach space. Then
F(E) has the metric approximation property (MAP).

Proof. We will show that given ε > 0 there is a sequence Ln of Lipschitz
maps Ln : E → F(E) with finite-dimensional range and L(0) = 0 such that
limn→∞〈Ln(x), f〉 = f(x) for x ∈ BE and lim supn→∞ ‖Ln‖Lip < 1 + ε. Let
us first observe that this will suffice to show the result. First we note that Lnx
converges weakly to δ(x) and so by a convex combination argument we can
suppose we actually have strong convergence. Once this is done we can find
a sequence Hn of Lipschitz maps Hn : E → F(E) with finite-dimensional
range such that H(0) = 0, ‖Hn‖Lip < 1 + 1/n and ‖Hnx− δ(x)‖ < 1/n2 for
x ∈ BE . Let Fn(x) = ΛnHn(x/n) where Λn : F(E) → F(E) is the linear
map induced by the Lipschitz map δ(x) 7→ δ(nx). Observe that ‖Fn‖Lip <
1 + 1/n and ‖Fn(x) − δ(x)‖ < 1/n for x ∈ nBE . Now it easy to see that
Fn : F(E) → F(E) provide a sequence of finite-rank operators such that
Fnν → ν for ν ∈ F(E) and ‖F n‖ < 1 + 1/n.

In order to construct Ln, we use convolutions with Fejér kernels on cubes.
We identify E with RN in such a way that ‖x‖∞ ≤ ‖x‖ ≤M‖x‖∞ for some
M where ‖·‖∞ is the standard `∞-norm on RN . Let B∞ denote the unit ball
of `∞. Suppose a is chosen so large that log a > Mε−1. We write a typical
element of RN as x = (x1, . . . , xN ) or t = (t1, . . . , tN ); let dt = dt1 . . . dtN .
Define

ϕ(x) = max

(
1− log+ ‖x‖∞

log a
, 0

)
, x ∈ RN .

For n ∈ N define %n : RN → F(E) by

d%n(x) =
1

23NaNnN

( N∏

k=1

sin2 nπ(xk−tk)
8a

sin2 π(xk−tk)
8a

−
N∏

k=1

sin2 nπtk
8a

sin2 πtk
8a

)
χ4aB∞(t)dt.

(Thus %n(x) is a compactly supported measure which is identified as an
element of F(E).)

It is clear that %n maps RN into a finite-dimensional subspace of F(E).
We next estimate the Lipschitz constant of %n on the set aB∞. Suppose
‖x‖∞, ‖y‖∞ ≤ a. Since we estimate a Lipschitz constant on a convex set, we
may and do assume that ‖x− y‖ ≤ 2. Let u = 1

2(x− y) and v = 1
2(x+ y),

dµ =
1

23NaNnN

( N∏

k=1

sin2 nπ(xk−tk)
8a

sin2 π(xk−tk)
8a

χu+4aB∞(t)−
N∏

k=1

sin2 nπtk
8a

sin2 πtk
8a

χ4aB∞(t)

)
dt

and

dν =
1

23NaNnN

( N∏

k=1

sin2 nπ(yk−tk)
8a

sin2 π(yk−tk)
8a

χ−u+4aB∞(t)−
N∏

k=1

sin2 nπtk
8a

sin2 πtk
8a

χ4aB∞(t)

)
dt.

Then if f ∈ Lip0(E) and ‖f‖Lip ≤ 1 we have
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�
f dµ−

�
f dν =

1

23NaNnN

�

4aB∞

(f(t+ u)− f(t− u))

N∏

k=1

sin2 nπ(vk−tk)
8a

sin2 π(vk−tk)
8a

dt.

Hence ∣∣∣
�
f dµ−

�
f dν

∣∣∣ ≤ ‖x− y‖
and so

(5.1) ‖µ− ν‖F ≤ ‖x− y‖.
Next we estimate ‖%n(x) − µ‖F . Suppose f ∈ Lip0(E) and ‖f‖Lip ≤ 1.

Then, since ‖u‖∞ ≤ ‖u‖,

(5.2)
∣∣∣

�
f d%n(x)−

�
f dµ

∣∣∣

≤ 1

23NaNnN

�

(4a+‖u‖)B∞\4aB∞
|f(t)|

N∏

k=1

sin2 nπ(xk−tk)
8a

sin2 π(xk−tk)
8a

dt.

Now

�

(4a+‖u‖)B∞\4aB∞
|f(t)|

N∏

k=1

sin2 nπ(xk−tk)
8a

sin2 π(xk−tk)
8a

dt

≤ 5a

( N∏

k=1

4a+‖u‖�

−(4a+‖u‖)

sin2 nπ(xk−tk)
8a

sin2 π(xk−tk)
8a

dtk −
N∏

k=1

4a�

−4a

sin2 nπ(xk−tk)
8a

sin2 π(xk−tk)
8a

dtk

)

≤ 5 · 23NaN+1

( N∏

k=1

(4a+‖u‖)π/(4a)�

−(4a+‖u‖)π/(4a)

sin2
(
n
(
πxk
8a −

θk
2

))

sin2
(
πxk
8a −

θk
2

) dθk
2π

−
N∏

k=1

π�

−π

sin2
(
n
(
πxk
8a −

θk
2

))

sin2
(
πxk
8a −

θk
2

) dθk
2π

)

≤ 5 · 23NaN+1

( N∏

k=1

[xk/(4a)+(4a+‖u‖)/(4a)]π�

[xk/(4a)−(4a+‖u‖)/(4a)]π

sin2
(
nθk

2

)

sin2
(
θk
2

) dθk
2π

−
N∏

k=1

π�

−π

sin2
(
nθk
2

)

sin2
(
θk
2

) dθk
2π

)

≤ 5 · 23NaN+1

((
n+
‖u‖
2a

)N
− nN

)
.

Here the last estimate follows from the fact that if π ≤ |θ| ≤ π + 1
4‖u‖a−1π

then sin2
(
πxk
8a −

θk
2

)
≥ 1

2 .
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Returning to (5.2) we have

∣∣∣
�
f d%n(x)−

�
f dµ(x)

∣∣∣ ≤ 5

((
1 +
‖u‖
2an

)N
− 1

)
a.

Thus as ‖u‖ ≤ 1,

(5.3) ‖%n(x)− µ‖F ≤ 5n−1N2N−2‖u‖.
We have a similar estimate on ‖%n(y)− ν‖F and so

(5.4) ‖%n(x)− %n(y)‖ ≤ cn‖x− y‖
where cn = 1 + 5n−1N2N−2.

Next let Ln(x) = ϕ(x)%n(x). Again suppose ‖x‖∞, ‖y‖∞ ≤ a and sup-
pose ‖x‖∞ ≤ ‖y‖∞. Then

‖Ln(x)− Ln(y)‖F ≤ |ϕ(y)| · ‖%n(y)− %n(x)‖F + |ϕ(y)− ϕ(x)| · ‖%n(x)‖

≤ cn‖x− y‖+ (log a)−1 log
‖y‖∞
‖x‖∞

cn‖x‖

≤ cn
(
‖x− y‖+

(‖y‖∞ − ‖x‖∞)‖x‖
‖x‖∞ log a

)

≤ cn(‖x− y‖+M(log a)−1‖x− y‖∞)

≤ cn(1 +M(log a)−1)‖x− y‖.
It is then easy to see that this estimate applies to all x, y, i.e.

‖Ln‖Lip ≤ cn(1 +M(log a)−1).

Hence lim supn→∞ ‖Ln‖Lip < 1 + ε. It is clear that if x ∈ BE then x ∈ B∞
and so ϕ(x) = 1. Hence by standard Fourier series arguments

lim
n→∞

〈f, Ln(x)〉 = f(x), f ∈ Lip0(X).

This shows that Ln satisfies our requirements and the proof is complete.

Definition 5.2. Let X be a Banach space and λ ≥ 1. Then we say that
X has the λ-Lipschitz bounded approximation property if for every compact
set K ⊂ X and ε > 0 there exists a Lipschitz map F : X → X with
finite-dimensional range such that ‖F‖Lip ≤ λ and ‖F (x) − x‖ ≤ ε for
x ∈ K.

We remark that it is easy to see that we can assume F (0) = 0 in the
above definition.

Theorem 5.3. Let X be an arbitrary Banach space. Then the following
conditions are equivalent :
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(1) X has the λ-(BAP).
(2) F(X) has the λ-(BAP).
(3) X has the λ-Lipschitz bounded approximation property.

Proof. It is trivial that (1) implies (3). Let us prove that (3) implies (2).
To show F(X) has the λ-(BAP) it suffices by a density argument to show
that if ε > 0 and x1, . . . , xn ∈ X then there exists a finite rank linear map
T : F(X) → F(X) such that ‖T (δ(xj)) − δ(xj)‖ < ε for 1 ≤ j ≤ n and
‖T‖ ≤ λ. To do this, note there is a finite-rank Lipschitz map F : X → X

with F (0) = 0, ‖F‖Lip ≤ λ and ‖F (xj)−xj‖ < ε for 1 ≤ j ≤ n. Let F̂ be the

induced linear map as in Lemma 2.2. Then F̂ has range included in F(E)
for some finite-dimensional subspace E of X. By Proposition 5.1 this space
has (MAP) and we can find a finite-rank linear operator S : F(E)→ F(E)

so that ‖S‖ ≤ 1 and ‖SF̂ (δ(xj)) − δ(xj)‖ < ε for 1 ≤ j ≤ n. Let T = SF̂
and we are done.

That (2) implies (1) is trivial if X is separable by Theorem 3.1, which
asserts that X is isometric to a contractively complemented subspace of
F(X). In the nonseparable case we use Proposition 4.7. Suppose x1, . . . , xn
∈ X and ε > 0. Let E = [x1, . . . , xn] be their linear span. Then we can
find a linear operator W : X → F(X)∗∗ with ‖W‖ = 1 so that β∗∗Wx = x
for x ∈ X and W (E) ⊂ F(X). Let T : F(X) → F(X) be a finite-rank
operator with ‖T‖ ≤ λ and ‖TWxj − Wxj‖ ≤ ε for 1 ≤ j ≤ n. Then
let S = β∗∗T ∗∗W. Since T ∗∗ maps into F(X) we see that S : X → X is
finite-rank and ‖Sxj − xj‖ ≤ ε for j = 1, . . . , n.

Remark. Suppose U is Pełczyński’s universal basis space [27]. Then
F(U) has (BAP) and hence ([19], [28]) embeds complementably into U .
However, by Theorem 3.1, U embeds complementably into F(U). Hence
F(U) is isomorphic to U by the standard Pełczyński decomposition tech-
nique.

Theorem 5.4. Let X be a Banach space with (BAP) and suppose Y is
a Banach space which is Lipschitz isomorphic to X. Then Y has (BAP).

Proof. The Lipschitz isomorphism induces a linear isomorphism between
F(X) and F(Y ). The conclusion follows from Theorem 5.3.

Theorem 5.5. Let X be a Banach space which is an absolute Lipschitz
retract. Then X has the bounded approximation property.

Proof. The space X is a Lipschitz retract of G = `∞(BX∗). The space
G has (MAP), and thus F(G) has (MAP) by Theorem 5.3. By applying
Lemma 2.2 to the retract of G onto X, the space F(X) is complemented in
F(G) and thus it has (BAP). By Theorem 5.3, X also has (BAP).
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Berlin, 1996, 129–141.

[13] T. Figiel, On nonlinear isometric embeddings of normed linear spaces, Bull. Acad.
Polon. Sci. Sér. Sci. Math. Astronom. Phys. 16 (1968), 185–188.

[14] R. J. Fleming and J. E. Jamison, Isometries on Banach Spaces. Function Spaces,
Monogr. Surveys Pure Appl. Math. 129, Chapman and Hall, Boca Raton, 2003.

[15] G. Godefroy, Banach spaces of continuous functions on compact spaces, in: Recent
Progress in General Topology (Prague, 2001), M. Hušek (ed.), North-Holland, to
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[22] J. Lindenstrauss, On nonlinear projections in Banach spaces, Michigan Math. J. 11
(1964), 263–287.



Lipschitz-free Banach spaces 141
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