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STUDIA MATHEMATICA 133 (3) (1999)

Uniqueness of unconditional bases in ¢y-products
by
P. G. CASAZZA and N, J. KALTON (Columbia, Mo.)

Abstract. We pive counterexamples to a conjecture of Bourgain, Casazza, Linden-
strauss and Tzafriri that if X has a unique unconditional basis (up to permutaticn) then
g0 does ¢ (X). We also give some positive results including a simpler proof that cg(41) has
a unique unconditional basis and a proof that co(ff};") has a unigue unconditional basis
when pp | 1, Npg1 > 2Nn and (pn — pu--1) log Ny, Temnains bounded.

1. Introduction. A Banach space X is said to have a unique uncondi-
tional basis (or more precisely, a unique unconditional basis up to permu-
tation) if it has an unconditional basis and if whenever (u,) and (v,) are
two normalized unconditional bases of X, then there is a permutation 7 of
N such that {v,) and (ur(ny) are equivalent. Since unconditional bases cor-
respond to discrete or atomic order-continuous lattice structures on X, this
can be reworded as a statement that such a lattice-structure is essentially
unique.

The earliest examples of Banach spaces with unique uncenditional bases
are cg, £1 ([10]) and £y (9)). It was shown by Lindenstrauss and Zippin [12]
that amongst spaces with symmetric bases this is the complete list. Later
Edelstein and Wojtaszczyk showed that direct sums of these spaces also
have unigue unconditional bases. All these results can be found in (11]. In
[3] the authors attempted a complete classification and showed that the
spaces co(f1), co(fa), #1(co) and £1(£) all have unique unconditional bases
while £5(41) does not. They also found an unexpected additional space,
9-convexified Tsirelson (see [5] for the definition), with a unique uncon-
ditional basis. Recently, the authors found a new approach to this type.of
problem and were able to add some more spaces, including Tsirelson space
(see [5]) itself and certain Nakano spaces [4] (as pointed out in [4], some
spaces considered by Gowers [8] provide further examples); we also showed
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276 P. G. Casazza and N. J. Kalton

that uniqueness of the unconditional basis need not be inherited by a com-
plemented subspace.

This note is motivated by a question raised in [3]: does ¢p(X) have a
unique unconditional basis whenever X does? The idea here is that if this
and the corresponding dual result for £;-products holds then one could iter-
ate the results in [3] to produce examples such as cg{#1{cp(€1))) and so on.

Unfortunately, as we show below in Section 4, the answer to this question
is negative and Tsirelson space T" or its 2-convexified version both produce
counterexamples. However, we show how our approach in [4] can be used
for cy-products. We give a much shorter proof (Theorem 3.3) of the fact
that cg(€1) has a unique unconditional basis; the original proof of this result
in [3] is extremely technical. We show by the same techniques (Theorem
3.4) that examples of the type co(fgj) where p, | 1, Ny > 2N, and
(Prn — Pn+1)log N, remains bounded, must also have unique unconditional
bases. .

In Section 4, we also use the same techniques to show that for certain
right-dominant spaces X, as introduced in [4], such as Tsirelson space T, any
unconditional basis of ¢g(X) must be equivalent to a subset of the canonical
basis (Theorem 4.1). Nevertheless we show that the unconditional basis of
co(T) is not unique as already remarked.

We conclude this section with a few remarks on terminology and assump-
tions. We will frequently index unconditional bases and basic sequences by
an unordered countable index set: A" which need not be the natural num-
bers M. We will assume that any unconditional basic sequence (uz)nen 18
semi-normalized, i.e. 0 < infpnen |lunll € sup,ep [lunll < co. We will say
that two unconditional basic sequences (tn)nen and (Vn)nen are equiva-
lent if there is a bijection 7 : A" — N 50 that (un)nen and (Ur(n))nen are
equivalent,

An unconditional basic sequence (uy )ney in X is complemented if there
is a bounded projection P : X — [tg]nen. If (uy)nepn is an unconditional
basis of X and (vp)nen+ 18 an unconditional basic sequence of the form
Un = 3 i, GkUx Where the sets (An)nen are disjoint subsets of A, we say
that (va)nenr i disjoint with respect to (Un)nen- If (vn) is a complemented
disjoint sequence then it may be shown that there is a projection Pz =
2 men Vn(T)vn where each v € X* is of the form vy = 37, byuj and
(uf)ren is the sequence of biorthogonal functions for (ur)ren-

It will be convenient to represent a space X with unconditional ba-
sis (Un)nen as a sequence space modelled on the index set N, identifying
> men Gkte With the function f: A — R given by f(k) = ay. This identi-
fies X as a discrete Banach lattice and allows us to use functional notation.
The cancnical basis of a sequence space X modelled on A is denoted by
(en)nEN .
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If (tn)nen is an unconditional basis for X and N is a natural number,
we denote by (un)Ne - the naturally induced unconditional basis of X% (the
direct sum of N copies of X).

For future reference we note here that our techniques depend critically
on the following result, proved in Theorem 3.5 of 4]

THBOREM 1.1. Suppose X is a Banach space with an unconditional basis
(tin)nen which does not contain uniformly complemented copies of £3 (i.e.
is not sufficiently Buclidean). Suppose (vn)nen 45 o complemented uncondi-
tional basic sequence in X. Then there is o integer N and o complemented
disjoint sequence (Wn)nep in the basis (un)ﬁE w such that (Vn)nes 45 equiv-
alent 1o (W )nes.

2. A criterion for an ;- or cy-product to be sufficiently Eu-
clidean. The aim of this section is to establish criteria for a co~-product to
contain uniformly complemented copies of £§ so that we can apply Theo-
rem 1.1.

If X is a Banach space we say that X has property P(k, M), where k € N
and M > 1, if whenever § : €5 — X and T': X — £ are operators satisfying
TS = Iy then [|S|||IT|| = M. We say that a sequence of Banach spaces
(X324 has property P(k, M) if each X; has property P{k,M). A Banach
space X (respectively a sequence of Banach spaces (X;)%2,) is sufficiently
Euclidean if there exists M so that X (respectively (X;)2,) fails P(k, M)
for every k € N.

We recall that if H is a finite-dimensional Hilbert space and A: H — X
is any linear map then the é-norm of A4 is given by

) =] Y gt )
im=1

where (€1,...,em) is any orthonormal basis of H and (g1,--.,gm) is a se-
quence of independent normalized Gaussian random variables. See [15]. If
S is an operator on a Banach space X and F is a closed subspace of X we
denate by Sg the restriction of S to E.

LeMMA 2.1. There exists o universal constant ¢ > 0 with the following
property: Suppose H is an n-dimensional Hilbert space and X is any Banach
space. Suppose S : H — X is any operator with {|S] < 1. Then there is a
subspace E of H with dim E > cf(5)? so thot ||| < 36(S)n/2,

Proof. It will suffice to prove this for S one-to-one, since the result then
follows by a simple perturbation argument. Let u be a normalized invariant
measure on the surface of the sphere in £5. Consider the norm § ~ ||S¢lf;
this satisfies | SE|| < ||¢]| for all £&. We use Theorem 4.2 of [13] (p. 12}. If M,
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is a median value of the norm || 8¢|| then

Mo < Va([Isean)” = Vamus).

LEMMA 2.2. Suppose X is o Banach space with property P(k, M). Sup-
pose H is an n-dimensional Hilbert spece and S H — X ond T : X — H
are bounded operators with |T|| <1, Then

[tr{T8)| < Cn'/? max(M ~14(S), k2/2||S|)
for some universal constant C.

Proof. Suppose that 1 < j < n and s; is the jth singular value of T'S.
We can restrict to a subspace H; of dimension j so that ||T'S¢|| > s;]¢|| for
all f S Hj.

Assume 5; > 0. Then by Lemma 2.1 there is a subspace B of H; so that
dim E > c#(Sg,)? and ||Sg|| < 34(Sg)j /2.

Suppose dimE > k. Then we must have |T|j||Sg| > Ms; so that
#(Sg) = 1Ms;3V/2. This implies that s; < 3M{(S)j Y2 If dimE < k
then

USm,)*|15m,117% < ¢
and so £(TSy,) < ¢ V/2k/2|3]. From this we deduce that j%/2s; <
211 2||8) or 85 < cmH21/25-1/2|| 8] Combining we obtain
s; < max(3M~1(S), e 2EM?| S5 L2
Now
{r(T8)] <Y s; < CnM2max(M12(S), K% S|))
i=1

for some universal constant C. =

LeMmMa 2.3. There 43 o universal constant C so that if X is o Banach
space with property P(k, M) then whenever H is ¢ Hilbert space of dimension
n,and S H — X and T : X — H are bounded operators with ||T|| < 1, we
have

[te(T'S)| < CE(S)(1/M + k2 (logn) "/ 2)n1/2,

Proof. We first choose an orthonormal basis {(e;)}; of H so that [[Se;|
= ||Sw,|| where H; = [e;, €141, .., €. Pick m = [n*/?]. Then if g1, ..., n
are normalized independent Gaussians,

£(3) > E(” igiTei
=1

Now {cf. [13], p. 23) this implies that
| Seml < Cllogm)~/24(8)

2, 1/2
)" = [1Seml B max |gi).
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for some universal constant C. Our choice of m implies that we can replace
this estimate by

|Sem|| < Cllogn)~'/%4(S)
for some universal constant C.
If E =le1,...,em] then

(te(TSg)| < m2(8g) < nt/*(3).
On the other hand,
[tr(T S, ., )| < Cmax(M ™t kY2 (logn)~12)g(S)n1/?
by Lemma 2.2. Combining these results gives us our estimate. m

PROPOSITION 2.4. Suppose {X;)52, is not sufficiently Buclidean. Then

£1(X;) is not sufficiently Buclidean.

Proof. Suppose {X;) satisfles property P(k, M). Suppose n € N and
588 — £1(X;) and T : £3(X;) ~ £3 are any operators satisfying I'S = Ign;
we assume that |||} = 1. We write S¢€ = (5;£)52, and T'(z;)2, = 300, Tizi.

Now n = tr(T'S) = 3.2, tr(T;S;). On the other hand, by Lemma 2.3 we
have
(2.1) [tr(T38:)] < Cnt/2(1/M + kY2 (log n) ~1/24(S,)).

Let (e1,...,en) be any orthonormal basis. Then by the Kahane-Khin-
chin inequality we have

(2.2) £(5:) < OoE(“ igj&'egf”)
j=1

where the (g;)., are normalized independent Gaussians, and Cp is a uni-
versal constant. Hence

(2.3) iE(Si) < CgE(H i gjse,-H) < CH(S).
i=1 Fe=1

Combining (2.1)—(2.3), and taking into account n = 3,2, tr(T;5;), we
get
R < Cont/2(1/M + K"/ (log n)~Y/2)£(S) < Cin|| S| (L/M + kM2 (logm) /)
for some universal constant Cy. We thus obtain an estimate
1S]| = ¢ min(M, k™ *(logn)*/?)
for some absolute constant C. =

REMARK. In the case when X = ¢y we see that X satisfies P(ck'/?, k)
for ¢ > 0 and all k. Thus £1{X) satisfies P(c(log k)*/%, k) for some ¢ > 0 and
all k. On the other hand, Figiel, Lindenstrauss and Milman [7] established
the upper estimate that £1(co) contains a subspace 2-isomorphic to £5 which
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is (log k)*/-complemented; this estimate is best possible (see [2]}. This sug-
gests that our method, while not optimal, cannot be improved significantly.

COROLLARY 2.5. Suppose (X321 is not sufficiently Buclidean. Then
co(X;) 1s not sufficiently Buclidean.

Proof. This follows by simple duality.

3. Unconditional bases in ¢g-products. For convenience we define a
sequence space X as a Kthe space of real-valued functions on a countable
set I (with counting measure) so that the canonical basis vectors (e;)ier
form a l-unconditional basis. Usually, of course, we take I = N, but for
our purposes it is convenient also to allow I = N x N and certain other
alternatives. A typical element z of X is of the form z = (2{4))ies-

Let (un)nen be a set of disjointly supported vectors in X. Then (tun )nepr
is an unconditional basic sequence which is complemented if and only if there
exists a biorthogonal sequence (uf)neny € X* with suppu’ C suppu,,
Uy, > 0, (g, ul) =1 and such that the projection

Pz = Z {3, U My,
neN
is well-defined and bounded. If we define fr, = unu}, then f, >0, f,, € £,(I)
and ||fn|1 = 1 for all n € N. Under these circumstances we say that (i)
is a complemented disjoint sequence and we assume that (u%) and (f,) are
associated with (u,). Note that we can always replace u, and % by |u,|
and juy | and hence also assume them positive.
We start with an observation which we will use repeatedly.

LeMmMa 3.1, Suppose X is a sequence space (modelled on an index set T ]
and (Un)nen 15 a complemented disjoint sequence. Let (Ap)nen be any se-
quence of disjoint sets such that for some § > 0 we have || faxa, |1 = 6> 0
for all n € N. Let v, = unxa,. Then (Un)nen 18 a complemented disjoint
sequence equivalent to (un)nen. Furthermore, the biorthogonal vectors v
may be chosen so that vpul < 871f,.

Proof. Let P be the projection onto [wuy|nep as defined above. Let

vn = [ faxa, T uhxa,
and define
Qz = Z (2, Ul Y.
neN
Then it is easy to verify that @ is a bounded projection, Qu, = v, and

P(un) = | faxan |1tn- This quickly establishes the equivalence of (u,)nep
and (vn)near. Furthermore, viv, < §~tf,. u
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Next suppose (X;)52; is a sequence of sequence spaces modelled on index
sets J; (either finite sets or N). We suppose that for some ¢ < co the spaces
(X;) satisfy a lower g-estimate uniformly, i.e. there exists ¢ > 0 so that if
i & Nand z1...,2, are digjoint in X; then

IS 2 Bz

Let Y = cp(X;) be the sequence space on J = {(3,5) : j € J;, i € N}
of all z = (x[i])$2,, where z[i] € X; are so that lim;_, ||z[i]jx;, = 0. We
define

lzlty = max o[z

Now suppose (un )nen I8 & complemented disjoint sequence in Y, with
hiorthogonal sequence (1 ). As above let f, = uuy,. Then define Fy, € £1(N)
by

Fo() =Y fali, ).
JeJi
We will say that (u,) is C-tempered if

o3
z sup F. (1) < C.
neN

THEOREM 3.2. Suppose (X;)52, is a sequence of sequence spoces sa.tz's-
fying o uniform lower g-estimate for some q < 0. Suppose (un),?eN s o
normalized complemented disjoint sequence in co(X;). Then there is a com-
plemented disjoint sequence (Vp)nen equimlen? to (Un)nen and a partition
N =UpeaBn of N with the following properties:

(1) For each i € N we have cither |[ve[i]||x, =0 or 1.

(2) For some C each (ug)res, i C-tempered.

(3) There emists an integer N and subsets (Sninca of N such that
E'H.E.Axsk < N -1 and vg[i] = 0 whenever k € Bn and i & Sy. Hence
for any finitely non-zero sequence (Gn)nen

ma.x“ akka < “ LV ‘ < (N - 1)1nax” Z akvkl
nG:/'iI k%;,, ) Y kez.;f N Y ) neA P

Proof. As usual, we let P be the induced projecti.on on [te]nenr
First let Ap = {(i,7) : ||unld)llx; = (2 P|)~*}. Notice that

i & 1 1
; 1Y < —— Un i :'ﬂ"-——”tu~S-.
iggd, i=1

Hence {unXA,)nen is a complemented disjoint sequence equivalent to
(U )nenr. It follows after some appropriate renormalization that we can

i=1

YI
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replace (un)near by an equivalent sequence with the additional property
that |lunlilflx, = 1 or wnfi] = O for every i € N. For each n € A let
Sn={i Junfillx, = 1).

Next fix any N € N so that N > 1 + ¢72(1 + IlP]1)¢, where ¢ is the
constant of the uniform lower g-estimate. Let § = N 1. We pick a maximal

subset A of A" with the property that if F is a subset of A with Fl < N
then B

>_maxFald) 2 (1-8)7)
(Here Fr(i) = Zje.]i fn(%:.?) = (un[z]su;m) a3 usual-)
Now let 7 be any subset of A with [F| = N. We can partition N into
N disjoint sets (A,)2 | so that if i € A, then Foli) = maxmer Fr, (). Let
U= ) crUnXar Where A = {(i,7) : i € A,, j € J;}. Clearly, lvlly < 1.

However,
Pu=3"%" Fuliun.

neEFicd,
Since
DY R =N(1-8)=N-1
NEF €A,
we conclude that

IS | <ipy+1
neF ¥
On the other hand,
1/q
| 2w, = emax (3 xs,0) ™"
neF Y Ha (nEF )
Hence
(3.1) max ngn(i) <P+ 1)? < N

Now suppose for some ¢ we have > nea X5, (1) > N. Then we can find
a subset F of A with |F| = N so that xs, (i) = 1 for n € F, contradicting
(3.1). We therefore conclude that

%}%CZXS”@ <N -1
nEA
Let now k € A\ A. There exists a subset F of A with 1 < IFl€s N —1
and such that - -

2 max(Fy(i), max Fu(i)) < (7] +1)(1 - ).
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Hence
o0 oQ
> min (i) max Faf) = D (F() + mame o)
1= =

> Y R —1+6>8.
i==]
Thus there exists n € F so that

gmin(Fk(i),Fn(i)) > jg,r" — 5

Now put Tk = {i: Fi(i) < 2N?F,(i)}. Then 3, Fr(i) > 142, In the case
when k € A we will take 73, = S;.

We now can partition AV into disjoint sets (B, )nea so that n € B,, and
if k € By, then ), .p Fi(2) > 36% and Fy(i) < 2N2F,(4) for ¢ € Ty C Sy
Ifwelet T = {(4,7):1 €Ty, j€ J;} and v, = upXx7: then by Lemma 3.1
we find that (v;)ken s a complemented disjoint sequernce in ¥ equivalent
30 (up)kes- Furthermore, if (uf) is the biorthogonal sequence then we have
an estimate vyvf < M fy for a suitable constant M. It follows that for each
n € A we have

(vlil o1li]) < 2MN?FL ()
whenever k € B,. Thus the sets (vi)ren, are each C-tempered where C is
a constant depending only on ¢,q and || P||.
Finally suppose (@n)nen i finitely non-zero. Then

| X e, =max | et —max| XX awldl],
keN LA ey ve Lo eN I es. keB, X
< (N - >
<OV -1mex| 3 ano,- =
kEB,

Let us first use this theorem to give a simpler proof of the result of [3]
that ¢p(€y) has a unigue unconditional basis (up to permutation).

THEOREM 3.3. The space cg(fy) has o unique unconditional basis.

Proof Westart with the remark that cg(#€y) is not sufficiently Fuclidean
(cf. Bourgain [2] or Corollary 2.5 above). Hence any complemented uncon-
ditional basic sequence is equivalent to a complemented positive disjoint
sequence in co(€1)™ for some m. We can clearly suppose m=1.

We next show that any C-tempered C-complemented disjoint sequence
(Un)nen is K-equivalent to the standard fi-basis where K depends only



284 P. G. Casazza and N. J. Kalton

on C. Indeed, we may suppose |lun[i]ly = 1 or u,[i] = 0 for each 3, n. Let
G(i) = maxy, (un[i], up[i]). Then |G| < C.
Now

| 3 e, 2530660 3 lal=5 Y el T 6@

neN i=1 U [4]£0 neN ug [i]5£0
1 - 0 wr 1
z = § , |an) E (un[z]:un['bn == E (@ .
C . C
neN i=1 neN

It follows that any unconditional basis of eo{f1) is equivalent to the
canonical unconditional basis of cy(X,,) where each X, is either £; or " for
some 7n = m(n). However, there must be infinitely many indices n for which
Xp = £y (since co(£;) cannot be decomposed as £ ® Z where Z contains
no copy of £1.} It then easily follows that cg(£1) has a unique unconditional
basis. »

THEOREM 3.4. Suppose 1 < p, < oo and p, | 1. Let (Ny) be an increas-
wng sequence of noaturel numbers such that (P — Pni1) log Ny, is bounded and
Noy1 2 2Ny, Then co(€)™) has a unique unconditional basis.

Proof. We suppose the sequence (p,) fixed and first consider co (Eﬂ") for
any sequence of integers (M, ). It is easy to see by considering the ultraprod-
uct [T, £}~ (which is an I.;-space) that the sequence (€)=} is not sufficientty
Euclidean. By Corollary 2.5 also the space ¥ = o (Eg_{") is not sufficiently
Euclidean and tberefore every complemented unconditional basic sequence
in Y is equivalent to a complemented disjoint sequence in Y7 = co (E;HM“)
for some r € M.

In this case our spaces X, are modelled on the sets In={L,2,...,M,}.
Thus co(£)%) is modelled on the set {(n,k):meN, 1<k <M}

Now suppose (un)nenr is a C-tempered C-complemented disjoint se-
quence in ca(!:’gfn) with the property that |u,[¢]) o= 1 or 0 for each 1,
and let A= {i:3n, u,[i] # 0}. ’

CLAIM. There ezists a constant K = K {C), an integer r depending only
onC, a subset B of A with |B| < r and P; < rM; fori €' B so that (Un)nen
is K-equivalent to the canonical basis of (Xiem ®L5)

i Jeo
To show this let G(i) = sup{u.[d], us[i]) as usual. We have Yo  GE) <
C. We first consider the case when G(i) < 1/20 for every 7. Then it is possible
to find a finite increasing sequence of integers (]Cj)f;o where N = [10C]
depends on € such that

3 ) 5{5 md 366z L

i<y i<k;
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Notice that
1
DG <
) 10
i>ky
Tt follows that for each n there exist at least three values of 1 <ji<Nso
that

5 0 e 1
i=1§+1(un[ﬂ,un[1]) >IN

We can then assign to each n a value of j which is neither the largest
nor smallest with this property. In this way we partition A" into sets
(Ni)agjen—1-

Consider (un)ney;. We note that this is equivalent (with constants -de-
pending only on C) to each of (vn)nen; and (wn)nen;, Where vn[i] = uy 4]
if i < kj—1 and 0 otherwise while wp[i] = u,[i] if 7 > k; and 0 otherwise.

Now for any finitely non-zero sequence (an)nen; We have

1/g5-1
H > ants| < ( >, Ianl"j‘l)
neEN; ¥ nEN;

where g; = pg,;. On the other hand,

Ny
“ Z Oy Wi, Z;nax( Z {an|q1) .
Y ik
TLENj

un—[i]#ﬂ
Thus .

a5 X ;
| Y e, 253 > Glillenl®.

neNy 1>k wn [0

Now for fixed n,
. ; 1

Y66 Y bl = o

>Ry, un[i]5£0 >k
It follows that (un)nen; satisfles an upper gj_i-estimate a1'1d a lower g;-
estimate with constants depending only on C. We next estimate [Aj|. In
fact,

by fez
1 o L
Ligis T Y wiluis Y com
'nENj i=k;..1+1 i=kj_1-+1
<(C max M.
T ke <ishy

Hence if we select k;—y < ¢ < k; appropriately we have (tn)nen; equiva-
lent to a subset of the standard basis of E;f""* where r and the constant of

~ equivalence depend only on C.
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We must now treat the case when G(¢) > 1/20 for some i. In this case
we split A into two groups A’ and N where N = {n : 3, {(u,[i],u%[i]) >
1/20} and A is the remainder. Then A" can be treated as before. For
N' we note that (un)nepr is equivalent to a sequence (u),) where u/[i] =
un[i] for precisely one index i = i, such that (un[is), u?[is]) > 1/20 and is
zero elsewhere, The appropriate representation of (uy, )nep follows once we
observe that the set {i, : n € AN’} is bounded in cardinality with a bound
depending only on C. But this is clear since G(i,) > 1/20 but 3 G{%) < C.

Thus the claim is established.

Returning to our original hypotheses we see that if (u,) is any uncon-
ditional basis of co(¢)~) then (u,) is equivalent to the canonical basis of
€n (fﬂfﬂ) where M,, < rN, for all n and some fixed r. By the same token the
canonical basis of co(£)"} is equivalent to a subset of (uy,)* for some s € N.

Now the additional hypotheses on N, ensure that the original basis is
equivalent to its square. Hence the s-fold product (u,)® is equivalent to a
subset of the canonical basis and so it follows from the Cantor—Bernstein
principle (apparently first noticed by Mityagin, {14], [16] and [17]) that (u,)®
and the original basis are equivalent.

Thus the canonical bases of co(¢5M~) and ¢o(£%+) are equivalent. Let
M= {(i,5): 1 <5 < M} and N = {(i,5) : 1 < j < N;}. Suppose the
former basis is indexed by M® = {(i,7) : 1 < j < sM;} and the latter by
N*={(i,4) :1<j < sN;}. Let o : M® — N® be a bijection implementing
the claimed equivalence of bases. By elementary considerations concerning
co-sums it is clear that for each fixed i the set {yp(i,7) : 1 < j < M;}
can have at most ¢ distinct first coordinates where # depends only on the
constant of equivalence; similarly, for each fixed ¢ the set of possible first
coordinates of ¢ 71{4, j) can be bounded by the same . For each (a,b) € N2,
let Eqp be the set of (4, /) so that i = a and the first coordinate of (i, 5) is b.
Then let Fy;, be a subset of Eyy of size [|Eys|/s]. Restricting ¢ to U(a.,b) Fou
produces an equivalence between the bases of co{¢2 =) and ¢, (b =Bn)
where 0 < an, fn < (s — 1)t for each n. This clearly implies the equivalence
of (4r) and the original basis. m

4. Uniqueness of unconditional bases in cg-products of right-
dominant spaces. We first introduce some standard notation. Let A, B be
subsets of N. We write A < B to indicate that max{a : a € A} < min{b :
be B}

Let X be a sequence space modelled on N. We say that X is right-
dominant if there is a constant & = k(X) so that whenever w, ..., u, and
D1,...,Un are disjointly supported sequences satisfying suppuy < supp vy
and Jjux |x = oxflx for 1 < & < n then [0, wnlix < w520 vellx. We
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say that X is left-dominant if there is a constant ¢ = g(X) so that when-
ever ui,...,Un and vy, ..., v, are disjointly supported sequences satisfying
supp ux < suppvg and |lug|x = ||ullx for 1 < k < n then 13y vellx <
ol e willx

Left- and right-dominant spaces were studied in [4]. It is established
(Lemma 5.2 of [4]) that in these spaces there is exactly one r = r(X) (the
indez of X) so that £, is disjointly finitely representable in X. If X is right-
dominant then X satisfies an upper r-estimate and a lower s-estimate for
any s > r; the corresponding dual statements hold for left-dominant spaces.
Clearly, if a space X is both left- and right-dominant then X = #,.

THEOREM 4.1. Let X be a right-dominant sequence space with (X)) = 1.
Then every complemented unconditional basic sequence in cp(X) is equiva-
lent to a subsequence of the canonical basis,

REMARK. In particular, this applies when X is a Nakano space Lipn)
where p,, | 1, or when X is Tsirelson space T' (see [4]).

Proof (of Theorem 4.1). In this case we note that in the notation of
Section 3, J; = N for all 1 € N. We first note that by Corollary 2.5, cy(X) is
not sufficiently Euclidean. Hence by [4], Theorem 3.5, every complemented
unconditional basic sequence is equivalent to a complemented positive dis-
joint sequence in ¢g(X )" for some N and hence also to a complemented
disjoint sequence in cg{X).

Now by Theorem 3.2 it will suffice to show that if (up)nen is a C-tem-
pered C-complemented unconditional basic sequence then (uy,)nen is K-
equivalent to a subsequence of the canonical basis of ¢o(X) where K depends
only on €. In fact we will show that it is K-equivalent to a subsequence of
the canonical basis of £ (X) where N depends only on C. o

We may suppose that, as before, ||unZ]llx = 1 or un[i] = 0. Let
fn = tpup and Fo(i) = (un[i),un[i]). Let G(4) = max, F,(i) so that
Gl < C.

Pick any integer N > 2C. For each n € N we pick natural numbers
Tpn < 8p such that

oo Pe—1 1 o0 Tn 1
da=] j=1’ i=1 j=1
00 Syl . oo &y
DI IO REND 9D JFACH) B3
i=1 j=1 i=1j=1

We will argue by Hall’s Marriage Lemma (see Bollobas [1]) that it is possible
to find a map ¢ : A~ — N such that ¢(n) € rn, s,), with [~ (k)] < N for all
k € N. Indeed, if not, the Marriage Lemnma implies there is a minimal finite
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subset M of N such that N, e pqlrn, 8a]] < [M]. Tt follows easily from the
mininality that |, \s[rs, sn] is an interval [a,b]. From the disjointness of
the (f,,) we get

b
;félﬁt fu(i,5) £ (b~ a+1)G()

so that

oo b
2. )< -a+1)0

i=1 3
However,

oo b
. 1
ZZfﬂ(zaj) = _IM’
i=1 j=a
so that (M| < 2(b—a+1)C < N(b—a+ 1), which is a contradiction.
o We can now split A into at most N digjoint subsets (Ax)peas so that 7
is injective on each Afj.

For each n € N let A, = {(i,5) : j < ¢(n)} and B, = {(i,5) : 5 >
@(n)}. Then, by Lemma 3.1, we find that (Un}nen is equivalent to both
(un();c' AnJnen and (upXg, Jnen with constants of equivalence depending only
on C.

Now Suppose k € M, and let (a,)nen, be a finitely non-zero sequence.
Then, by the right-dominance property, for each 4 we have

| 3 onmxanfil], <o 3 anlismas ilencn)|
U nEN X REZJ\fk e wp(n) x
Hence
(4.1) H Z anunx,ln[i]“}’ < H” Z UnCoim)|| -

neNy, neN X

In the opposite direction, again by the right-dominance property, we have

0| T el o] <o 3 ontixan ]

Combining (4.1) and (4.2) gives

(4.3) ” Z O Z G(i)l|lunx s, [";]”Xer.a(ﬂ)

o] 5 oo
nEN i=1 X ng;fk . ¥

For each n let I, = {i: 8CG(3) > ||uzli] lx+}. Then

360 < g5 Y- luafillx- < &

igl, ~ 8
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Hence
. . 1
S {unfibes, gl < <.
il
However, by choice of ¢(n) we have
= 1
> lunlilxs,, wili) 2 <.
— 4
i=1
Thus
1 ; , . )
g < > lunlilxza iz <80 Y GE)lunlilxs, lIx
i€l i€l,
o
< 8C ) Gi)|ualilxs, |l x.
i=1

The estimate above combined with (4£.3) yields the inequality
H Z n€un)l| = 640’21{,” Z Gp iy
nEN X neEN;

Thus each (un)nen; is equivalent to (ey(n))nen; in X with constant of
equivalence depending only on C. Since |[M] £ N where N depends only on
C, the result is proved. u

v

Let us say that an unconditional basis (un)nep is moleculor if there ex-
ists a constant ¢ and a natural number N so that if A is partitioned into
N disjoint sets (M%), then there exists a proper subset M of {1,...,N}
such that (un)nen is C-equivalent to a subset of [y o4 (%n)nen;, . Otherwise
we will say that (un)nen 18 non-moleculer. It follows from the quantitative
form of the Cantor-Bernstein principle [14, 16, 17] that {4y )pen is molec-
ular if and only if there is a constant C so that if A is partitioned into N
disjoint sets (M%), then there is a proper subset M of {1,..., N'} so that
(Un)nens kem is C-equivalent to (un)nep. Let us note that any subsym-
metric basis is molecular with N = 2 as is the usual basis of (3.7, £7)e,
when 1 < p,q < oo. The cancnical basis of £, @ £, for p # ¢ is molecular
with N = 3.

LEMMA 4.2, Suppose (un)%, 15 a non-molecular unconditional basis.
Then for any € > 0, N € N and constant C there exists M > N and subsets
(A)¥L, of N so that:

(1) if M is a subset of {1,..., M} with |[M| < N then (u,)52, is not
C-equivalent to any subset of {un : 1 € Uperr Ar}, and

(2) M1 Zijclil Xax 2 (1~ &)xn.
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Proof It suffices to consider the case when £ = /3 is rational. We then
may pick an integer m so large that mr > N, and so that if L = (%) then
we can partition N into L sets so that (uy) is not G-equivalent to a subset
of (un)neny where A is the union of any L — 1 sets.

Let {2 be the collection of all m(s — r) subsets of {1,...,ms}. We can
partition N = [ ., B. 50 that (uy}nen is not C-equivalent to a subset of
(vn)nen where N = J, . B. for some proper subset D of 2.

Now let Ag = Uw:kEw B, for L <& £ M = ms. It is clear that
ms
> x4, =ms —r)xn
k=1

so that (2) holds. Suppose (up)ney is C-equivalent to a subset of (U, e
where A = |, ¢ o4 Ax. Then we have Jpgpq Ar = 2 whence |[M| > mr. u

THEOREM 4.3. Let X be a space with non-trivial cotype and an uncon-

ditional basis {un). If co(X) has a unigue unconditional basis then (uy,) is
molecular.

Proof. We will assume, on the contrary, that the basis (u,,) is not molec-
ular. Let us regard X as a sequence space so that the given unconditional
basis is identified with (en)nen. We start by using Lemma 4.2 repeatedly to
generate, for each r € N, subsets (Ark)kM__Tl of N so that:

(1) for any subset M of {1,...,M,} with |M| < r the basis (e,)%2, is
not r-equivalent to any subset of {e, : 7 € |Jygpq Ank}, and

(2) Mty xan, 2 (1 — 270 )y

Now for each s € N let Py = []_, M, and let (B )l®, be a listing of
all sets of the form (N)_; A%, . We observe that

F2A 1
PIYY X8 2 S
k=1

Consider the index set I = {(s,k): 1 < k < P,, s € N}. We will treat the
space co(X) as a sequence space modelled on I x N.
Consider now the block basic sequence

P,
Ugn = E Eglon.
k=1

If we define the hiorthogonal functionals

P
* L Es:
Usn = F Eskn
& =1
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then it i8 clear that (Usn)s,n i8 a complemented disjoint sequence equivalent
to the canonical basis of ¢g{X).

Now let D = {(s,k,n) : n € Bg}. Then |u uixplli > 1/2. It follows
from Lemma 3.1 that (UsnXD)}sr is also a complemented disjoint sequence
equivalent to the canonical basis of cp(X).

The basis vectors (esrn) for (s,k,n) € D span a complemented sub-
space Y of ¢g{X} which by the above remark contains a complemented copy
of ¢o(X). By the Pelczyiski decomposition argument, ¥ is isomorphic to
cg(X). If we assume that ¢o(X) has a unique unconditional basis then it
will follow that the whole basis (€skn)(s,x)ez,nen i8 C-equivalent, for some
C, to its subset (€gin)(s,k,n)eD

Thus we can partition D into subsets (D;)$2, so that each subset (es;m)'
for (s,k,n) € Dy is C-equivalent to the cancnical basis (e,) of X while any
subset obtained by picking one element from each D is C-equivalent to the
standard cg-basis. From this and the fact that X has a lower estimate it is
clear that for fixed (s, k) at most finitely many D, can intersect the set of
all (s,k,n) for n € N. Note also that the set of (s, k) such that (s, k,n) € D;
for some 7 must alse be uniformly bounded by some constant K again by
the lower estimate on X.

In particular, for any sq there exists ¢ so that if (s, k,n) € D; then s > so.
Hence, the canonical basis of X is C-equivalent to a subset of | J (5.k)EM B,
where (s,k) € M implies s > sp and [M| < K. Now each B;y is contained
in some A,  and so we must have K > so. By choosing sg large enough we
get a contradiction. m

‘We now state a general theorem which can be proved by exactly the
same argument.

THEOREM 4.4. Suppose 1 < p < oo and suppose X is ¢ Banach space
with a non-molecular unconditional basis (un)oo, with the property that it
does not contain subsets uniformly equivalent to the unit vector bases of £3°
form=1,2,... Let (Umn) 3 ney be the induced basis of £,(X). Then there is
o subset A C N x N 50 that (Wmn)(m,n)ea 9 not equivalent to the full basis
(timn) and spans a subspace isomorphic to £y(X).

We conclude with a theorem which gives us a large number of examples
of right-dominant spaces with non-molecular unconditional bases.

THEOREM 4.5. Suppose X is a right-dominant sequence space with r{X)
= . Suppose the canonical basis is moleculor. Then X =£,.

Proof. It is enough to show that X is left-dominant. Let us assume the
contrary. Then: :
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Cram. Given any a € N and C > 0 there ezists b > a so that (er)acr<s
is not C-equivalent to any subset of (ex)r<a U (€k)b<k- -

. "To prove the claim let C; > C?%k +a. Since X is not left-dominant there
exist disjoint sequences (un)2.; and (v,)Y_; with finite supports so that
@ < SUpp Up < SUPP Yy, for each n, [lu.||x = ||Jva|x and

N N
IS, > 6] 3w

Pick b so large that supp v, < b for all n. Suppose (ek)a<k<p is C-equivalent
to some subset of {ex)r<s U (ex)r>p- Then there exist (w_n)gzl, each with
finite disjoint support not intersecting (a,b], so that ||wn|x = [jun|x for
1< n< N and

X.

[, <] Lo

Let M = {n : suppw, N[1,a] # 0}. Then |M| < a. Thus

| el <o X

X

X

On the other hand,
P> 3
Un, < C’%H U
ngEM X ngl "

I’; f‘ollows that Cy < C2%k + a, contrary to assumption. This establishes the
claim.

xS K'“ n;/t Wn

%

To prove the theorem we use the claim to find an increasing sequence
{an)22 so that (ek)an<h<anyq I8 DOt n-equivalent to any subset of (er)k<a, U
(€k)k>apsr- Then fix any s € N and consider the sets Ay = | H{(an, a.n__,_:] :
n = Jmod s} for 0 < j < s — 1. Now the sets (én)nea,; partition the basis
into s sets in such a way that no s — 1 sets contain a subset equivalent to

tl;.e original basis. This contradicts our assumption that the basis is molec-
ular. =

EXA?I\CIPLES. We can now give many examples of spaces X with a unique
unconditional basis but such that the ¢g-product cg (X) fails to have unique
unconditional basis. This will answer negatively a question raised in [3].

In fact, if X is right-dominant and ¢, (X') has unique unconditional hasis
then X must be one of the three spaces cg, £1 or £;. This follows by observing
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that if it is not in this list then r{X) < oo and hence X has cotype. Then
Theorems 4.3 and 4.5 show that X = £, for some finite r. The uniqueness
then forces either r =1 or r =2,

On the other hand, there are many known examples of right-dominant
spaces with unique unconditional bases. In [3], 2-convexified Tsirelson space
is shown to have unicque unconditional basis. In [4], Tsirelson space itself
and certain Nakano spaces £, are shown to have unique unconditional
bases. These latter examples satisfy »(X) = 1 so that we can apply The-
orem 4.1. The gecond non-equivalent basis constructed in Theorem 4.3 is
indeed equivalent to a subset of the original basis. =
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