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Plurisubharmonic functions on quasi~Banach spaces

by
N, J. KALTON¥ (Columbia, Mo.)

Abstract. We study conditions under which a quasi-Banach space can be equipped with an
equivalent plurisubharmenic quasi-norm, We show this is equivalent to validity of a weak form
of the Muximum Modulus Principle for analytic functions valued in the space. We examine the
relationship between the exisience of a plurisubharmonic quasi-norm and the existence of
“good” tensor products. We also prove that in a quasi-Banach algebra the spectral radius is
plurisubharmonic, cxlending a theorem of Vesentini, and give some applications to the study of
holomorphic functions on non-locally convex spaces,

1. Introduction. In [8] Etler observed that in the spaces L, the natural
quasi-norm

Al = IS @I de}ti

is plurisubharmonic, i.e. for f, gelL,
2n
< @m)™" [lIf+e gl do.
0

Recently several authors have considered this notion. Aleksandrov [1] calls a
complex quasi-Banach space locally holomorphic if it has an equivalent
plurisubharmonic quasi-norm. Peetre [17] calls such a space locally pseudo-
convex and Davis, Garling and Tomczak-Jaegermann [5] call a space
equipped with a plurisubharmonic quasi-norm PL-convex. See also Edgar
[7].

We shall call a space with an equivalent plurisubharmonic quasi-norm
A-convex (for analytically convex). Aleksandrov [1] notes that for p <1,
L,/H, is not A-convex.

e ——
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An A-convex space satisfies the Maximum Modulus Principle. Let 4
denote the open unit disc in € and let T be the unit circle so that A =4 U T,
Suppose X is A-convex and f: 4 — X is a continuous map which is analytic
on 4 (cf [14], [21] or Section 2 for the definition of analytic functions in a
non-locally convex setting). Then we have

IF Ol < CmaTxllf(W)II

where C is a constant independent of f. Peetre [17] asks essentially whether
the converse is true, and one of our first results (Theorem 4.1) shows that this
is the case, ie. if X satisfies the Maximum Modulus Principle then X is
A-convex. We refer to [14] for a general discussion.

We relate A-convex spaces to the so-called natural spaces introduced by
the author in [12]. A quasi-Banach space is natural if and only if it embeds
into an 1 -product of L,-spaces for some fixed p, 0 < p <1 (cf. Theorem 4.2
below). Natural spaces are A-convex and the converse is true for lattices
(Theorem 44; compare the earlier results of Peetre [17]). We give an
example to show that the converse is not true in general.

In Section 5, we first prove an annular version of the Maximum
Modulus Principle which holds for every quasi-Banach space. Using this we
study first quasi-Banach algebras and show that a theorem of Vesentini [23]
can be generalized to this setting, so that the spectral radius is always a
plurisubharmonic function. Thus quasi-Banach algebras have a special struc-
ture amongst general quasi-Banach spaces.

In Section 6, we study conditions on a p-normable space X so that
whenever Yis a p-normable space there exists a p-normed space Z and a
bilinear form B: X x Y— Z so that

kllx([ Iyl < 1B Ge, vl < Iyl x, yeX.

This is related to the existence of a p-normed tensor product. We show that
if X satisfies these conditions for some fixed p,0<p<1, then X is A4-
convex; conversely, if X is natural then it will satisfy these conditions for
small enough p.

In Section 7, we sketch the foundations of a theory of holomorphic
functions on a complex quasi-Banach space, A sample result is that, essen-
tially, every holomorphic function on an A-trivial space is entire. Here an A-
trivial space is a space such as L,/H,(0 <p < 1) which admits no conti-
nuous operators into an A-convex space.

I would like to thank Jean Bourgain for suggesting the example in
Section 4 and Stephen Dilworth for many helpful comments, [

2. Basic definitions. Throughout this paper all vector spaces are assumed

to be complex. If X is a vector space then a map x — ||x|| (X - R,) is called
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a quasi-seminorm if
(@) llaxlt = laillxll, «eC, xeX,
(i) lxg+xall < CUlxy|[+{xal]), X, x2€ X,

where C is a constant independent of x,, x,.
We call ||| a p-seminorm where 0 < p< 1 if in addition

(D) lxg Fxll” < e+ x5l %y, X2 X

If further [|x|| = O implies x = 0 then ||-|| is called a quasi-norm (if (i) and (ii)
are satisfied) or a p-norm (if (i), (ii) and (iii) are satisfied). Since every quasi-
norm is equivalent to a p-norm for some p, 0 < p< 1, we shall always
assume that quasi-norms are p-norms for some p and are, in particular,
continuous. .

If ||| is a quasi-norm on X defining a complete metrizable topology
then X is called a guasi-Banach space.

An upper-semicontinuous function ¢: X — [ — a0, 00) is called plurisub-
harmonic if for every x;, x,e X

@ (%) < [ (x +wxz)dA(w)
T
where 1 denotes the normalized Haar measure on T, ie. di = (2r)~ ' do.

If the quasi-norm ||| on a quasi-Banach space X is plurisubharmonic
then X is called PL-convex by Davis, Garling and Tomezak-Jaegermann [5].
If X can be equivalently normed with a plurisubharimonic quasi-norm then
we shall say that X is A-convex (the term locally pseudo-convex and locally
holomorphic have been used by Peetre [17] and Aleksandrov [1]). We also
say that X is A-trivial if there are no nonzero continuous plurisubharmonic
quasi-seminorms on X. Thus L, (0 <p<1) is A-convex (Etter [8]) and
L,/H, is A-trivial (Aleksandrov [1]). Clearly if X is A-trivial and Y is A-
convex then #(X,Y) = {0} as noted by Aleksandrov [1].

If © is an open subset of C then a map f: @ — X is called analytic if for
every zoe Q therc exists & > 0 so that f can be expanded in a power series for
o=z < 4, ic.

o
J@ = 3 xaz=20)", |z—2zol <3.
ne=
Clearly x,, = (1/n1) /" (zq) (see [14] and [21]). Ao (X) will denote the space of
all functions f': 4 -» X which are continuous on 4 and analytic on 4 where
A= lz1)z] < 1},

lX !m said to satisfy the Maximum Modulus Principle (MMP) if there

exists a constant M > 0 so that for all feA,(X) we have

(%) ILf Ol < Mfrlliv: IS (@Ml

6 - Studin Mathemutics ¢, LXXXIV z 3


GUEST


300 N. J. Kalton

Clearly if this is the case we can show also

If @l € M max IS @l

for any zo, |zo| <. We also noted that it suffices to establish () for
polynomials, since these are dense in A4o(X) with the topology of uniform
convergence on 4. [Then if f;(z) =f(rz) for 0 <r <1 then f, can be ex-

panded uniformly in a power series and max|| f.2)—f(2)|| - 0.] Spaces
=<

satisfying (MMP) are considered by Peetre [17]

The following lemma will be useful later on.

LemMA 2.1. Let X be a quasi-Banach space and let F: X - R, ,G: X — R,
be two functions. Suppose that F is upper-semicontinuous, and satisfies F (ox)
= |a| F(x) for aeC, xeX. Then the following conditions on G are cquivalent:

(i) For every polynomial f: C — X

G(/ (0) < max F(f(@).

(ii) For every feAqy(X)
G(f(0) < max F ((2)).

Jzl=
(iliy For every feAdo(X)
G(fO) < exp{ [log F(f (w))di(w)}.
T
Proof. (i)=>(ii). This is a simple density argument.
(i) = (iii). Suppose that feA,(X) and that K =/ (7). Let H be any
continuous function on K so that H(x) > F(x) for all xeK. Note in

particular H(x) >0 for xeK and hence logH is continuous on K. Thus
log H(f (w)) .is continuous on T, if we define

u(z) = —[Re( —————— )]ogH(f(w))d.l(w)

for 2| < 1 and set u(z) = --log H(f () for |z| = 1, then u is continuous on 4.
Now define he H® by

hz) = exp{-—j :—E logH(f(w))tl}.(w)}.
T

Then |h(z)) = exp(u(z)) for ze 4.
.For r <1 set h.(z) = h(rz). Then h(0)~'h,(z) f(z)e 44(X) and hence

G/ 0) < max (O™ Iy (2) F(f 2).
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Letting r — 1 we obtain
G(f (@) <|h (0" = [log H(f (w)dA(w).
T

As H > F is arbitrary and F is us.c, the lemma follows.

LemMa 2.2. Let X be a quasi-Banach space and suppose F: X — R, is
upper-semicontinuous and satisfies F(ax) = |a| F(x) for ac C, xe X. Then the
following conditions on F are equivalent:

(i) F is plurisubharmonic.
(ii) For every fe Ao(X)

F(f(0) < maXF (f @)
(iii) Log F is plurisubharmonic.
This is immediate from Lemma 2.1,

3. Plurisubharmonic functions on a quasi-Banach space.

LemMma 3.1, Let X be a quasi-Banach space and suppose F: X - C is a
continuous function. Suppose f, g: C — X are polynomials. Then

lim [F(f (w)+w"g (w)}dA(w) = [TF (S (W) +2g () dA(z) di(w)
n—oT rr
Proof, We suppose

N N
= Z X 2", g(2) = kE Yk 2,
=0

k=0

and let X, be a finite-dimensional subspace of X containing f (T) U g(T). Let
K=f(T)+g(T). Then we define linear functionals u,: C(K)— C and
u: C(K)— C by

pn(F) = [ F (£ () +w"g (w))dA(w),
T

p(F)= [[F(f (w)+2g(w))dA(2)dA(w).
byl

Note that p,(1) = p(1) =1 and ||| = |4l = 1. In order to show that
M, — 4 weak™* as required, we need only check on a dense subset of F’s, We
therefore consider F of the form

I mo__
F(>«=)=Jl_[l o) 1 o)

J=i+1

where @, ..., @me X¥. By the Stone-Weierstrass theorem the linear span of
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such F’s, and 1, is dense in C(K). Let
! —

Bt =T1 (p,.(r:,)FI‘}“q:J(:T)

Jj=1
for &, ..., &we Xo. @ is then linear in the first I coordinates and conjugate-
linear in the remaining m—I. Note F(x) = ®(x, ..., x).

For A<{1,2,....,0} and B< {I+1,1+2,..., m} set hy(w)=f(w) if
jéAUB and hy(w) =g(w) if jeA UB. Then

F(f(w)+w"g(w)) = Z W"(IAl—lnl)(p(hl (W), EARE] hm(W))
AB

By the Riemann-Lebesgue lemma,
lim j'F(f(w)+w”g(w))d/1(w) = 3 [P, ... h)dA(w).

n~oT |4 =18 T

Similarly
F(fw+zgw) =Y. z“"’"'”"cp(h,(w), )]
Y

and so

[F(fW+zgw)di@) = Y P(h(W), ..., hn(w))
T 14]= 8|
and the lemma follows.
LemmMa 3.2. Let X be a p-normed quasi-Banach space. Let ¢: T— X be a
bounded Borel function. Suppose & >0 and 0 <r <. Then there exists a
polynomial g: C— X so that

(a) g(@ =0
() g2l <e for lzl<r.
(c) There exists a Borel map v: T— T so that

lllg(W)—v(W) o (W)||PdA(w) < e

Proof. It clearly suffices to consider the case when ¢ is simple, ic.

N
J=1

where x;e X (1 <j < N) and E,, ..., Ey are digjoint Borel sets in T so that
E,u...UEy=T
For each j, there exists a polynomial u;: C— € so that u;(0) =0 and

[l 00— 1, WP d2 ) < N~ o7l 2.
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We let

N
y(2)= z"‘jz u;(z) x;
=1

where m is chosen so large that {lg(z)|| <& for |2] <r.
Let v: T- T be a Borel map salisfying

v(whu(w) = |u;(w)|, wek,.
If we E; then

lhg (W) =0 (W) i I7 < Jo (W) = WP 13l1P + 3 Ly (W) 117
J#k

N

< loll, Zl ||“/(W)'_ 1EI(W)|‘7-
I=

Hence '

illy(W)—v(W)tp(W)ll” di(w) < é".

Clearly g satisfies the lemma.

We now suppose X is p-normed and set Fo(x) = ||x||”. For each ne N
define

Fo(x) = inf _[Fn— ((x+wy)di(w), Gu(x)= igf_[pn— 1 ((p(W)) di(w)
yeXrT T
where the infimum is taken over all polynomials ¢ such that ¢(0) = x.
Note that if x,, x,€X then
[Fo(xy)—Fo(x2) < [Ix; —x,f|”.
LemMa 3.3. For all neN and x,, x,
[Fy(x)=Fy(x2)l < 1% =%a[l",  [Gp(x;)— G2l < JIxy ~xa|%

This is an easy induction proof which we omit. In particular each F,, G,
is continuous. Note also that F, is monotone decreasing and so lim F, = F,

n—eo

exists and further

'Fm(xl)”‘Fw(xZ)I < ”‘xl "XZH"

for x;, x,e X.
" LemMMA 3.4 (Edgar [7]). F is plurisubharmonic.
We remark that this follows from the fact that

Foo (%) € Fpy 1 (%) € [ Fa(x+wy) di(w)
T

for all neN, x, yeX.
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LemMa 3.5. For every neN, G, = Gp4y.
Proof. Suppose xeX and ¢ > 0. Then there is a polynomial f: C— X
so that

[, (f () dA(w) < Gy (M) +2.

Now we can partition Tinto N disjoint Borel sets E,, ..., Ey and find w,eE,
so that

Ifw—=f WP <e, wekE,.
Pick y,e X (1<j< N) so that

[Foc  (f(w)+wy)) dA(w) < F,(f(w))+e.
Thus
EI [ Fac i (f W)+ 2y)) dA(2) dA(w) < (Fo(f (W))+2) A(E))
T .

< [F,(f(w)) di(w)+3eL(E).

Ej
Thas if we let ¢: T— X be defined by ¢(w) =y, wekE;, we have
JJF,_I (f (W) +z(w)) dA(z) dA(w) < jF,,(f(w)) dA(w)+ 3¢,
T

Now use Lemma 3.2 to find a polynomial g: C— X so that g(0) =0
and

£||9(W]—D(W)‘P(W)||" di(w) <

where v: T— Tis a Borel function.
Let f,(z) =f(z)+2z™g(z). Then

im [F,- (fo(9)) dA (W) = [ [ Foey (S (W) +2 (W) dA(2) di(w)
(by Lem”r‘naw';.l).. Now. v
,T[ ;'Fn_ 1 (f (W) +2g(w) dA(z) dA(w)
<e+ ; ; Foe s (S (W)+20(w) 9(W)) d(2) dA(w)
=e+ 5 1{ Foe i (f (W) +200 (W) dA(2) dA(w)

< [F,(f(w)) di(w)+4e.
T
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Hence for large enough m

[Fpe i (fn(W)) di(w) < [Falf (W) dA(w)+46 < Gpyq (X)+ Se.
T T

As ¢ > 0 is arbitrary, G,(x) < G,+(x). As G, > G, trivially the lemma js
proved.

LeMMA 3.6, G (x) = F (%) for xeX.
Proof. Clearly G, < F, so that by Lemma 3.5, G, < F,,. Conversely, if
@ is a polynomial then F_o¢ is subharmonic and so

Fy(p(0) < ;Fw (@) di(w) < [l WIP dA(w).
T

Hence F, < G,.
Tm.ORLM 37. Let X be a p-normed quasi-Banuch space. For xe X define

llxlla = inf max llep (w)li

where the inﬁrﬁum is taken over all peAa(X) so that ¢(0) = x. Then
@) |I'll4 is a p-seminorm on X.
(i) lle (O)l4 < exp [loglleW)ll dA(w) for all polynomiagls ¢: C— X.
T

(iti) ||*[|4 is plurisubharmonic.

(iv) log||“ll4 is plurisubharmonic.

Proof. (i) is trivial, (ii) follows from Lemma 2.[.
{iiiy From (ii) it follows that

lio Ol < III(p(W)II"dl(W)

and hence ||x]|; € G, (x), but G,(x) <||x||; by definition so that ]|, is
plurisubharmonic.

(iv) This follows from Lemma 2.2.

We remark that |||, is a PL-convex quasi-seminorm in the sense of [4].

We note also that ||*||, is the largest plurisubharmonic function domina-
ted by ||*||. X is A-trivial if and only if ||x||, = O for every xeX. X is A-
convex if and only if ||| and |||, are equivalent.

For a general space X, we may form a space X, by quotlentmg by N
= {x:]|x||, = 0} and then completing X/N with respect to |{l,. X, is 4-
convex and it is easy to see that every operator 7' X — Y where Y is A-
convex factors through X . In particular, X is A-trivial il and only if every
operator from X into an A-convex space is zero.

4. Natural spaces and A-convex spaces. Our first result is a very simple
application of Theorem 3.7, which partially answers a question of Peetre

[17].
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TueoreM 4.1. In order that u quasi-Banach space X is A-convex it is
necessary and sufficient that X satisfies the Maximum Modulus Principle
(MMP).

Proof X satisfies (MMP) if and only if ||']l4 is equivalent to ||-||.

Next we turn to quasi-Banach lattices motivated by the results of Peetre
[17]. Here a complex quasi-Banach lattice X is simply the complexification
of a real lattice which we denote ReX. If x,, ..., x, 2 0 then il is possible to
define unambiguously (x, ... x,)'/” as an clement of X wusing the Krivine
calculus (see [16]).

We recall that a quasi-Banach lattice is L-convex [12] if there exists
8 >0 so that if ue X,, |y =1 and 0 < x; < u are such that (I/n)(x, -+ ...
+x,) = (1=3)u then

max (x| = &
1<i<n

A quasi-Banach space is called natural [13] if it is isomorphic to a
subspace of an L-convex quasi-Banach lattice. In [12] it is shown, cssentially,
that a natural quasi-Banach lattice is automatically L-convex so that this
definition is consistent. The following theorem [13] characterizes natural
spaces and can be thought of as supplying an alternative definition.

THeorem 4.2. Let X be a quasi-Banach space. Then X is naturdl if and
only if there is a constant M >0 and q > 0 so that if xe X is nonzero, there
exists a probability space (Q, X, P) and an operator T: X ~ L,(Q, X, P) with
ITI< M|x{|™ and Tx =1,. If X is p-normable, any ¢ <p suffices.

Before our main theorem we prove a simple lemma.

LemMma 4.3, Let (Q, P) be a probability space and suppose f: 2 — R is a
random variable, 6 < f< 1 ae. Then

),

&(lo g,/)?—l'T log 0.

Proof. Let Wc L, () be the set of g 'so that § <y <1 and 4(y)
= 4(f). Note that for any x, ac R, we have

log x < loga+ (x a).
For all ge W,
d(logg) < &(log )+ &(f~* (g~f))
and so there is an extreme point ¢ so that

&(logg) < A(log f).
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4(/)

At an extreme point, g = 0 on a set of measure —--1— and g =1 on a set

é”(/’ )—0
of measure ——:--—

e . Hence

(f)

og f) = og#.

TueorEM 44. Let X be a complex quasi-Banach lattice. Then the
Jollowing conditions are equivalent:
(i) X is A-convex.
(i) There exists u constant C so that if X\, ..., X, =0 in X then
llxy - x) !l < € max (||

(i) X is L-convex.

Proof. We begin with a well-known remark. Suppose ue X and u > 0.
Then the order interval [—u, u] in ReX generates in a natural way an
abstract M-space in the sense of Kakutani and so we can produce a compact
Hausdorff space 2 = 2, and a lattice embedding ¢: C»(2) » ReX so that g1
=u. ¢ extends naturally to a map g: C(Q)— X. We refer to ¢ as the
Kakutani mup associated to u.

(i) = (ii). We suppose X satisfies (MMP) with constant M. Suppose
XL, .. X2 0and u=x; v ... v X, Let g: C(2) —» X be the Kakutani map
associated to u. Suppose & > 0.

Let : T— C(£2) be a C*-map so that 61, < ¢(w) < Ly for all we T We
write @(w, s) for @(w)(s) when weT, seQ. For zed, seQ set

f(z,8)= exp%j%logtp(w, s) dl(w)}.
T

Then z - f(z) is analytic into C(®2) and extends continuously to 4. On T,
[/ (z, ) = @(z, 5). Now
10, 3) = exp {[log p(w, 5) d2(W)} = @ (5)
T
say. By the Maximum Modulus Principle in X,
le (ol < M max|lo (o (W)

Now pick &y, ..., 5eC(@) so that g(§)=xvVv du. Clearly
d1a< & < 1, We may pick C®-functions vy, ..., v,: T—[0, 1] so that

(a) i vywy=1, weT
J=1
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(b) For each we T at most two of v;(w) are nonzero.

© Afoy=1} ;%(1-—5).
Set p(w) = i v;(w) &;. Then
i=1

—5 .
©o(s) = exp (L;’——« 3 logé;(s)+9 log 6)
i=1

=80(E((s) ... E ()M,

Hence p(@o) = u((x v 1) ... (x, v Su))t =g,
Note if |Wl =1

le(ew)] < 2‘/"“m51x||xj v 8u|

and thus

8 || (%1 v Bu) ... (x, v ) =] < 2P~ 4 M maxi|x; v Su.
JS€n

Letting 5 — 0 we obtain the result with C =271 M,
(ii) = (iii). Choose & >0 so that &% < 1/2 and

6P < CTP S

Suppose xJeX 0< x; €u, are such that
;(x1+ vee 2 2 (1-8)u.

We again use a Kakutani map associated to u, say ¢: C(Q)— X. Suppose x,
=¢(f;)- Then by Lemma 4.3 for each seQ

L 2logd 23log §
%, loamax 169, 8%) > 1255 ( -l ); 5 ))> 28log
(it may be useful to note that logd < 0). Hence
(,H (fy v SF L )H/m > 20 =00 5 540
=1
provided 62 < 1/2. Thus
(n (xj v 52 “))l/n > 54'114
J=1

and so by (i)

9% < Cmax ||x; v 82y
Jjsn
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Thus there exists k < n so that CP(||x,||"+627) = 6%, ie
[lxgll? = C= P 5492 — 520 > gv,
Thus X is L-convex. '
(i) =(i). If X is L-convex then there exists ¢ > 0 and a constant M > 0
so that if xe X, with ||x|| = 1, there exists a probability space (@, £, P) and
an operator T.: X - L (Q, X, P) so that T,x =1, and ||T}J| < M.

Note that y » M~ !||T,)|| is a g-seminorm on X dominated by |||
which is plurisubharmonic. Hence

MUTHI < lylles yeX.
In particular, M~' < ||x||, if |Ix| = 1. Thus |||, is equivalent to 1“1

CoroLLarY 4.5. Every natural quasi-Banach space is A-convex.

We conclude this section by giving an example of an A-convex quasi-
Banach space which fails to be natural. The example is the Schatten class S,
where 0 < p <1; that this might provide an example was suggested to the
author by Jean Bourgain.

We shall need first a preparatory theorem which is probably of indepen-
dent interest. Let us recall that a quasi-Banach space X is of type p (0
<p<2) if there is a constant C so that

Lo (| Z ax|)]” < 2. i)/

where &, ..., &, is any sequence of independent Bernoulli random variables
with P(¢g; = 1) = P(g; = ~1)=4. For 0 < p <1, X is of type p if (and only
if) X is p-normable; if p > 1 and X is of type p then X is a Banach space (cf.
[15], p. 99 and p. 107).

THEOREM 4.6. Suppose X and Y are quasi-Banach spaces; suppose X is of
type p and Y is of type q where 0 < p, q < 2. Suppose 0 <r < 1. Then there is
a constant C =C(p, y,t, X, Y) so that if (@, Z, 1} is a probability measure
space and  B: XxY~L(Q,2Z,p) is a bilinear form then for
Xiy evey x,,eX, Yiseves ynEY

HZ B(x;, vy < CIIBI( z [l A1)

where 1/s = 1/p+1/q.

Proof. (In the ensuing argument, C will represent a constant depending
on X, Y and r, which may vary from line to line,) Let e, ..., &y, 1y, ..., 1, be
any sequence of 2n independent Bernoulli random variables defined on some
probability space (€, &', P'). Then for ' e’

||B PJ(U’)’CJ’ Z ny @)yl < 1Bl | Z gy(@) x| Z (@) y-
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Let f; = B(x;, yx). Then

S0 T omsuly <18 815, eoxll |12, ol

=|BIF J'(HE1 & )”(”J;l n )

<C ”B”'(,g Py (ng ly .

Similarly
Ll n
a3, § s <t oS s 5 el
<181 (] 5l 801yl
n n
S CIBIF( X xliPy™ (3 Hlylioy™.
j=1 J=1
Now

IIZ Zcmkf,ku b T &(@) () S (@) dinico).

2 J=1k=1

By a generalization of Khintchine’s mequahty due to Bonami [3] (cf.
also Pisier [19]) we have

(2 T gy
J=lk=1

S CR ()"
Ik
and hence we conclude

II(Z 2 f3el?)4|, < CIBII( z [1x,(1” )""(z lly o),

In particular

I Z )], < ClIBII( Z llx11” )”"(Z llyl1e)

and hence

II(J; et S22l < BN IxAIP) 2 (T Ny f1e) .
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Now
n n n
Y Z Goafu= 2 fut Y e (fxt+hy)-
J=lk=1 k=1 I k
Again by use of Bonami’s theorem

(SUZ, 2 Un Sl < CUZ Lt i)
Thus

[ Z Julle € CIBI T IIxAP) 2 (T [1y19)e.

Now for any a; >0
“kglﬁck”v < CUBNE af lxlIP) e (T oy« lyl) .

Let o) = ||y|I"{|x,]i~*4. The result then follows.

CoroLLARY 4.7, Suppose X is a quasi-Banach space of type p, Yis a quasi-
Banach spuce of type g and Z is a natural quasi-Banach space. Then there is a
constant C = C(X, Y, Z) so that if B: X x Y~ Z is a bilinear form then

n n
”421 B(x;, YI)“ < CJiB| ((Zl "-xl”K”yl”s)i/x

where 1fs = 1/p+1/q.
Proof. This is an immediate consequence of Theorem 4.2 and Theorem
4.6,

Now let H be a separable infinite-dimensional Hilbert space and let S,
denote the Schatten p-class where 0 < p <1. Thus TeS, if and only if
Te ¥ (H) is a compact operator whose singular values s,(7) satisfy

1Ty = (5T < co.

S, is a p-normable operator-ideal (cf. Pietsch [18], pp. 216, 255).

Turorem 4.8, Suppose thut 0 <p <1 and that Z is a natural quasi-
Banach space. Then there is a constant”C so that if T.§,~ Z is a bounded
linear operator then

I (AN < CUTI 1Al

and hence T factors in the form T= TyJ where To: S, — Z is bounded and
Ji8, =8, is the Inclusion map.
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Proof. Consider the bilinear form B: H x H* = Z given by
B(h, h*) = T(h* @ h).
Then ||Bl| <||T||. Hence if AeS, then we can write
A=Y oef B
where ¥1a;l? = 4]y, llexll = 4l = 1. Thus

T() = i 5B (; €f)

i=

and hence
IT(A)l < CIB|l Y. lojl < CINTIAllyy-
=1

CoRroLLARY 49. For 0 <p <1, §, is not natural.

TuroREM 4.10. S, is A-convex for 0 < p <1; in fuct |||l is plurisubhar-
monic.

Proof. It will suffice to show that if A, BeS, are of finite rank and
F(z) = A+zB, then |[F(2)||f, is subharmonic on C.

For any zoe C there is an isometry U of H so that UF(z,) is a positive
hermitian operator. Let Ho= #(UF(z5)) and suppose dimH,=m
= rank F(zq). Let P be the orthogonal projection of H onto H, and define
G: C— % (H,) by

G(z)(hy = PUF(2)(h), heH,.
G (zo) is invertible on Hy and has eigenvalues ¢y > 6, = ... = a,, > 0. There
exists 6 > 0 so that if [z—-zo| < then the spectrum of G(z) is contained in
some compact subset C of {z: Rez > 0}. The function ¢(z) =z can be

defined to be analytic on this half-plane with ¢(x) = x” if x > 0.
Now consider ¢(G(2)) for |z—zo| <&. Precisely,

?(G@) = ()™ fo W) (w—G(2)~" dw
13

where y is any contour in the right half-plane around C. The map z
— ¢(G(2)) is analytic and hence so is the map z— trp(G(z)). If 0 <r <
then

tr (p(G(zo)) = i[tr @ (G (zo+rw)) di(w).

m

Now tr (G (zo+rw)) = Y, af where ay, ..., a, are the cigenvalues of G(zo
=1
+rw). Now ‘
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Z!\xﬂ"

VAN

lG(zo+rw)llf,, (see Gohberg~Krein [9], p. 41),
IF (zo+rwlify,

and hence
ire (G (zo)) =G (2o}, = IF (zolllfyy < j[]F(:o +rw)|lf,) dA(w)
T

so that ||-||f, is plurisubharmonic.

5. Applications to algebras. We begin with a slight strengthening of a
theorem of Coifman and Rochberg on Bergman spaces. Let us suppose 0

«<g<p a=1/g~1 and v =[g]. B,, is the Bergman space of all analytic
functions ¢ on 4 so that

lelig.r = flo@I"(1~z1*)8~2 dm(z) < oo
4

where m denotes the planar mecasure on 4.

Lemma 5.0 If 0 <r <1 there is a constant C=C(p, q,r) so that if
@eB,, then there exist z, k2 |, with r <|z| <1 and o, so that

oG
00 = 3, a(1 =z 1 (1—wz) ™0+
k=1
and (3|a])"? < Cl@llg,p-
Proof. According to Theorem 2 of [4], there exist (&: k = 1) with |&,]
~+1, and C = C(p, g) so that if peB, , then we can write

o

o) = 3, (1=|&A 1 (1—wg) 02
k=1
with (3. |o/?)"" < Cll@ll,,,. The & are independent of ¢. »
Let I" denote the set of ze 4 with r < |z| < 1. We define a map §: [,(I')}
-+ B, , by

S {a:} = Z tl,(l -—|z|2)"+l_"(1 —WZ)_(H" z)_
zal

Let E be the range of S. Let F be the finite-dimensional space spanned by (1
—w&) D for |E] < r. Then E+F = B,,.

Consider the map S @ 1: 1,(I ®F — B, ,. This map is an open mapping.
Let ¢ be any linear functional on B, so that g¢(E)=0. Then
¢S ®N(fa,), ) = e(f) so that go(S@J) is continuous. Hence g is conti-
nuous on B, ,. Now let

h(z) = g((L—w2)" ).

h is analytic on 4 and vanishes for ¥ <|z| < 1. Then h =0 and so ¢=0.
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Thus E =B,, and § is onto. The lemma follows by the Open Mapping
Theorem.
Our next theorem is an annular maximum modulus principle valid for
all quasi-Banach spaces. '
We recall first that if ¢ > 0 and v = [¢] then A4,(X) is defined to be the
space of analytic functions f: 4 - X satisfying
sup (1—[z?)" 17 If** @) < wo.
21 €1 .
It is shown in [14], Theorem 5.1, that if fed,(X) and X is p-normed the
there exists Te.2(B,,, X) so that T((1—-wz)™') =1 (2).
THEOREM 5.2. Let X be a p-normed gquasi-Banach space, and suppose 0
- <r < 1. Then there exists a constant C = C(r, X) so that if fe Ay(X) then
If Ol < € max [If ).

r<(z( €1

Proof. As above suppose 0 < g < p,o =1/g—1 and v = [o]. For any
e A (X), let

f@@)= i x,z" z€4

h=0
(this is permissible, see [21]), and
el n!
n+v+1.

F@= 3 %G

Then FeA,(X) and so there is a bounded linear operator T: B, ,— X so
that

T(1-wz)" "} =F(z), :zed

(Theorem 5.1 of [14]). X @B, , suppose

oWw) = f a, w",

n=0

Note that T(w*) =0, 0<k<v, and hence To = T(w** 1)) where

Y(w) = i auw"YTL,

LEEEY

Note that (||, , < Cll¢ll,, where C = C(p, g). Now by Lemma 5.1 we can
write

Yw) = f @ (1= |22 179 (1 —wz) =0+

k=1
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where r < |z] < 1 and

(X1} < C el p < C il e
Hence

<“v+ 1

W) = 4+ D) Y ay (1=l 1 o (1= w2)

k=1 2=z

and s0

o
To={((v+DN)" 1Y o (1—|z)Y*+i- Fv+1(z,)

[ LB}

=((v+ 11! 21 % (1=]z)2)" " 177 (z,).

k=
Hence since v+1—¢ 20,

IT¢ll < C( max [|f @l)lloll,,

rglz| <1

where C = C{(p, ¢, r). In particular

O =T+ 1w+ < € max 11 @

r<jz| €0

Now let us suppose that B is a quasi-Banach algebra with identity. We
recall that the spectral radius formula

o(x) = lim [|x"||'/"
L
is valid in B (cf. [24]).
- We now generalize a result of Vesentini [23] (see also [2]).

Tureorem 5.3, If B is « unital quasi-Banach algebra then loge and o are
plurisubharmonic.

Proof. For any r, 0 <r <1, there exists a constant C = C(r) so that if

fedq(B) then

1A )l € C(r) max | f (.
rélzl€!
Hence
.70 < C(r) max ||/ @)
relzi €1

since = - f'(z)" is also in Ag(B), Thus

I/ Ol < Cryhm max ||(F @)
rgz| €1 .

7+ Stadin Mathomation 1 TXNXIV 73
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Letting n— o« we obtain

e(fO) < max ||f (f @Y

for all neN. Hence

e(fO) < max ax|L.f G-

It follows that o(x) < ||x|[4 for all xeB by Theorem 3.7.
Now if fis any polynomial then

loge(f(0) < i log 1f (Wil dA(w)

and hence applying the theorem to f(z)” we obtain

logo(f (0)) < [n™ 'log ||(f (W)Y dA(w).
T

Letting n = 2* and k — oo we use the: Monotone Convergence Theorem to
deduce

logo(f(0) < jlogg(f (w)) dA(w),

i.e. logg is plurisubharmonic. It follows easily that g is also plurisubharmo-
nic.

The main use we make of Theorem 5.3 is to show that on a quasi-
Banach algebra |||, cannot be trivial,

THeoreM 5.4. Let B be a unital quasi-Banach algebra. Then on B

) Nyl < lellalylla, (12, =1

(i) If ||x|l4 =0 then x is in the Jacobson radical of B.

(iii) If B is semisimple then |||, is an algebra quasi-norm on B.

Proof () For ¢ >0 let f, g: C— B be polynomials so that f'(0) = x,

g(0)=y and

If Wil <lixily+e, weT,
lg(ll < Iylla+&,  weT

Then f(z)'g(z) is a polynomial with f(0)¢(0) = xy. Hence
lIxylle < (el +e)(Iylla+e)

and as ¢ > 0 is arbitrary, the first part follows.

Now as ¢(x) <||x|l, we have ||1]|,=1.

(ii) Suppose ||x|]|, =0 and I is a maximal right ideal. If x¢J then there
exist y;, y,el so that

ity =1.
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Hence o(xy) = 1 and ||x||4|ly,ll > 1 so that |ix|, > 0. This contradiction
shows xel.

(iii) is immediate.

Remark. Note in particular that a quasi-Banach algebra with identity
cannot be A-trivial. In fact, if an A-trivial space is embedded in a quasi-
Banach algebra, it embeds into the radical. It is asked in [11] whether a
quasi-Banach algebra with identity can have trivial dual; this question is
related to the question of whether L, is prime for 0 < p < 1.

A quasi-Banach space X is called houndedly transitive ([15], p. 151) if
there exists a constant M so that if x, ye X with ||x]| =|[y|| = 1 then there
exists Te ¥ (X) with Tx =y and ||T)| < M. L, is boundedly transitive if 0
<p<1 ([15], p. 126 or [20], p. 253) and there is a space universal for
separable quasi-Banach spaces which is boundedly transitive ([10], Theorem
43),

THEOREM 5.5. If X is a boundedly tranmsitive quas:—Banach space then
Z(X) is A-convex.

Proof. If Te & (X) there exists xe X with ||x|| = L and ||TX|] = }{7]|. If
T#0 we can find Se.%(X) with ||S|| <M and STx =||Tx| x. Thus o(ST)
2 ||Td| and hence

IS lITla = IST, = 21T

1
) S .
so that ||T]|, > 2M”T”

6. Applications to tensor products. We shall say that two quasi-Banach
spaces X and Y admit a p-normable weak tensor product if there exists a p-
normable space Z and a bilinear form B: X x Y— Z with |B|| < 1 so that for
some k >0

kel IyIF < 1B Ge, p)II < [ixll Iy

for x¢ X, ye Y. B induces a linear map B: X ® Y— Z. If B can be chosen to
be one-one then X and Y admit a p-normable tensor product.

In [22] it is shown that if 0 < p< 1 and 0 < ¢ < 1, X is p-normable and
Yis g-normable then X and Y always admit an r-normable tensor product
where 1/r = 1/p+1/¢g— 1. This is best possible (cf. [14]).

LemMAa 6.1, In order that X and Y admit a weak p-normable tensor
product it is necessary and sufficient that for some k > 0 and every xe X, yeY
there exists a bilinear jorm B: X xY— Z where Z is p-normed with ||B|| =1
and

1B, Y 2 kIl IN-
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Proof. For each xeX, yeY there exists T, ,: X® Y+ Z,, Wwith

1T,y Cx @ Pl 2K 1l 1]
I TeyC @I eI,  EeX,nel.

Quasi-norm X ® Y by
llull = supli T, .

Then the natural bilinear form (x, )= x®y into X ® Y satisfies our
definition.

We shall say that a quasi-Banach space X is p-tensorial if for every p-
normable space Y, X and Y admit a weak p-normable tensor product. We
remark that L,, for 0 < p< 1, is p-tensorial (L,(Y) is & p-normable tensor
product if Y is p-normable) and hence every subspace of L, is p-tensorial.

THEOREM 6.2. Let X be a p-normable quasi-Banuch spuce. Then

() If X is natural then X is g-tensorial for any q, 0 <gq<p.

(i) If X is g-tensorial for some q, 0 <q <p, then X is A-convex.

Proof. (i) There exists M = M (g) so that if xe X with x 5 0 there exists
a probability measure space (22,Z, P) and a linear operator T.: X
- L, (2, Z, P) with | T}l S M||x||”" and T,x =1, (Theorem 4.2).

If Y is g-normable define B,:XxY—L/(Y) by B,(n)
=M™ ||xl|(T.¢ ®n). Then ||BJJ| < 1 and ||B.(x, y)ll = M~ ||x|{[|yl| so that X
and Y are g-tensorial by Lemma 6.1.

(ii) It clearly suffices to show that every separable subspace of X is A-
convex. To do this suppose that X is separable. Let U be a boundedly
transitive g-normed separable universal space ([10]). Then there exists
a bilinear B: X xU — U so that

Kl 1wl < 1B (x, wil < lIxllllull, xeX,ueU,
where k > 0. Now B induces a linear map T* X — % (U) defined by
(T) (W) = B(x, u)
and k||x|| < ||l < {Jx]. Thus X is isomorphic to a subspace of .%(U) which
is A-convex by Theorem 5.5.

7. Towards a theory of holomorphic functions. Throughout this section X
and Y will denote fixed quasi-Banach spaces both of which are p-normed. We
define a bounded homogeneous polynomial of degree n> 1, P: X » Y, tobe a
map of the form

Px)=P(x,..., %

where P: X" Yis a bounded symmetri¢ n-linear form. The identification P
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- P bfetwgf:n ‘boundcd homogeneous polynomials and symmetric n-linear
forms is bijective as shown by the polarization formula ([6], p- 4). We set

1Pl = sup [[P(x)].
l#ll < 1

For convenience a polynomial of degree zero is a constant map.

Lemma 7.1. Let P, be a sequence of homogeneous polynomials and suppose
Jor some open set U we have

sup [P, (x)]| < oo
neN

whenever xe U. Then there exists n>0 so that

sup sup [|P,(x)|] < c0.
neN (x| <y

Proof (cf. [6], p. 9). By the Baire Category Theorem there exists M
<o and xpeU, and v >0 so that if ||x—x,|| <v then

I1P,(x)l <M, neN.

Let n=2""7y and choose ro, 0 <ry <1, so that (1—rg)|xo|l < 1.
By Theorem 5.2 there exists a constant C = C(rg, Y) so that if f & 4, (Y)
then

7 O < C max ||f(2).
roszs1
If £e X with ||£]] <# then for neN

12Ol <€ max ||P,({ +2xo)l|

roSiz| €1
since f(z) = P,(&+2x,) is analytic. Now if z =re® with ro<r<1 and
0<0< 2n, then
1Py + zxo)l| = || Pyle™"E+rxo)ll = [|[Pyfe™" & —(1—r) xo+Xo)| < M.

Hence |[P, ()l < CM for ||Il <7
Now if (P is a sequence of polynomials where deg P, =n, we say
that Y P, is a power series if for every xe X

sup||P, (x)||*" < v
neN

Limma 7.2, If ZP,, is a power series then there exists n > 0 so that the
series ZP,, (x) converges uniformly for ||x|| < n.

Proof. It follows from the Baire Category Theorem that there exists an
open set ¥ and M > 0 so that

1P, < M, xeV, neN.
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Let U =(1/2M) V. For xeU,

1P, ()l < @< 1
By Lemma 7.1 there exists , >0 and C < oo so that

(IPa()ll <C, |Idl <n5, neN.
Hence ||P,)| < Cni™ Let n=4%n,. Then for x| <%
1P, ()l < CH"
and so Y P,(x) converges uniformly.
Now if Uc X is an open set we say that a map F U—=X is

o

holomorphic if for every x,eU, there exists a power series Z P,and 6 >0
n=0

so that if ||£|| <& then xo+£&eU and

Fiso+d) = 3 PO,

In the notation of [6], Po(¢) = F(x,) and

d"F (xo)

Py(§) =——().

We now return to the consideration of power series. If Y P, is a power
series we set
0, (x) = sup | P, (x)]|

kzn

and then let g¥ be the upper-semicontinuous regularization of g,, i.e.

() = lim supg,(y).

Let'o(x) = lim ¢x (x). Then g is upper-semicontinuous and Y P, converges on

n—w
the open set {x: g(x) < 1}. We call this set the domain of convergence of the
series Y P,.
o0
TueorEM 7.3. Let F(x) = Y. P,(x) for g¢(x) < 1. Then F is holomorphic
=0
on {x: g(x) <1). ’
Proof. Let X be a compact subset of V= {x: g(x) < 1}. Then since
2(x) <1 on K, there exists, by Dini's theorem, N so that if xe K then

()< a <.
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Thus
IPy(x)il <o, k=N,

and Y P, converges uniformly on K.
Now suppose xqe V. Pick § > 0 so that if ||£]| <& then xy+&e V. Now
suppose ||€|| < &. Then & = a; where ||€,|| =6 and « = ||£||/5. We define

fi2) = kio‘P. (x0-+2£4)

for zeC. Then f, converges uniformly on |z| <1 to f where f(z) = F(x,
+2E,). Each f, is a polynomial and hence feAy(Y) ([14], Theorem 6.3)..
Furthermore for cach m
lim £, (0) = £ (0)
([12], Theorem 6.1).
Now for fixed m<k, let Q,, be the homogeneous polynomial of
degree m,

’P,‘(xo, ey Xy iy X)

k!
(k—m)!

where x, is repeated k—m times and x is repeated m times. Then

PO= 3 Q)

m<k<n

Qm (%)=

We conclude that

@

2 Om(C1) =1(0).

In particular the sequence of polynomials (each of degree m) 3 Qi m is
<k<n
pointwise convergent, By Lemma 7.1

sup|| 3 Qunl| <o
" m=BkSn

and hence il we set Q,,(&) = Y, Qx,m(£) then Q,, is a (continuous) polynomial
km=m

of degree m. Now

F(xo+&) =/f(a) =

m=o m! m=o m!
2 2.0
- Z m!
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provided ||&|| < . Thus in particular
fimsup |Q,, (&)/m!]| " < 1

m o0

if ||¢]| <8, so that Y (1/m!Q,, is a power series and F is holomorphic on ¥V,
Now we come to our main results.
TueoreM 7.4.(i) There exists y > 0 so that

e < yxllg,  xeX.

(i) o is plurisubharmonic.
Proof. By Lemma 7.2 we have

1Pl < Co?"

for some constants Co and 7.
Now let feAqy(X), and suppose 0 < r < 1. Then

[P @) < €0) max |[Pa(f G
where C = C(r, Y) is determined by Theorem 5.2. Thus
B O < oy mas B @
and hence
a(fO)<COM sup o/
If y, — 0, there exist z;, r < |z < 1,
& (/O +3) SCO'"(en(fla) + ) +27).
If lim g,(f (0)+y,) = ¢} (f(0)) we may pass to a subsequence so that z, —z
an:iﬂgeduce that

(o) <cir max, ex(f(2).
Thus

e(f(0) < C(" max or(f(2)).

&)zl €1
Using the upper semicontinuity of each g} we deduce
o(f(0) < max o(f(2)),
r<|zfg1

and hence letting r — 1

e(/(0) < maxe(f(2)).

|z[=1
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Thus ¢ is plurisubharmonic. Note that g,(x) < C¥"y||x|| and hence
o(x) < y|lxll. Thus

() < ylixll.

CoroLLARY 7.5. Let X be A-trivial and suppose U is a connected open
subset of X. Let F: U — Y be a holomorphic function. Then there is an entire
holomorphic function G: X — Y so that G(x) = F(x) for xeU.

Proof. Fix xoe U. Let P, = (1/n!)d" F(x,) (n = 0). Then the power series
Y. P,(&) converges for all £ X by Theorem 7.4.

Set G(x) = Y P,(x—xo). Then by Theorem 7.3, G is an entire holo-
n=0

morphic function. Let H (x) = F(x)—G(x) for xeU. Let Wbe the set of xeU
so that H(x) =0 on a neighbourhood of x. Then Wis open in U. Let x; be a
boundary point of W. Pick § > 0 so that if [[x—x|| <J then xeU. Pick
ye W with |[x,~)|| <& and define

J(2) = H(x; +z(y—xy)).

Then f is analytic on a disc (z: |z| < 1+¢&). Since f vanishes on an open set,
we conclude /=0 and hence H(x,) =0. Thus Wis open and closed in U.
Since xoeW, W=U.

Remark. If X = L/H, where p< g <1 we can go further. Every
holomorphic function is a polynomial. In fact if 1/p < n/g—n then every
homogeneous polynomial of degree n, P: L/H,— Y is identically zero (see
[14]).

In a similar vein, if T L/H,— A is a bounded linear operator and 4 is

a quasi-Banach algebra then there exists ne N so that if xl, .oy X, € L/H,
then

(Txy) ... (Tx,) = 0.
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