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Convexity, type and the three space problem

by
N. J. KALTON (Columbia, Mo.)*

Abstract. A twisted sum of two quasi-Banach spaces X and ¥ is a quasi-Banach
space Z with a closed subspace X, ~ X such that Z/X; ~ Y.

Wo show that if X is p-convex and ¥ is ¢-convex where p # ¢, then Zismin(p ¢)
convex. Similarly, if X is a type p Banach space and ¥ is a type ¢ Banach space where
p 5 q then Z is type min(p, q).

If X and ¥ are Banach spaces, we show that Z is log conves, i.e., for some 0 < oo

P ()

Iy + oo 250l < 0(
k=1

where |lz,/|+ ... + [l¢,]l = 1. Conversely, every log convex space is the quotient of a
gsubspace of a twisted sum of two Banach spaces.

If X and ¥ are type p Banach spaces (1 < p < 2) and one is the quotient of
a gubspace of some ILy-space, then Z is log type p, i.e.,

1
1 1p
! af e+ oo +enloapdt)? < “{2 lewl (” (l"g W)p)} '

where |i;|P+ ... + llgz P = 1. Thig result is best possible in a certain sense.

We also show that if p < 1 type p implies p-convexity, but if p = 1 a type I
space need not be comvex. )

. We investigate which Orlicz sequence spaces and Kothe sequence spaces are
A -spaces, i.e., such that every twisted sum with R is a direct sum.

1. Inmtroduction. A quasi-Banach space Z is a twisted sum of X
and Y if it has a subspace X, == X suchthat Z/X, == Y. The so-called three
space problem is to study the properties of Z in terms of those of X and ¥.

In [1], Enflo, Lindenstrauss and Pisier showed that a Banach space
whieh is a twisted sum of two Hilbert spaces need not be a Hilbert space.
Independently, the author [6], Ribe [15] and Roberts [16] showed that
a twisted sum of a line and a Banach space need not be locally convex.
In [9] the anthor and Peck showed that these results are related by deseri-
bing 2 general construction which shows that for every p, 0 < p < oo,
there is a twisted sum of 1, with I, which is not a direct sum. In particular,
for 0<< p < 1, there is a non p-convex space which is a twisted sum of
two p-convex spaces.

* University of Missouri. Research done while the author held visiting positions
at Michigan State University and the University of Illinois.
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" In contirast to these.negative results there are a number of theorems
which say that a twisted sum cannot be too bad. In [1] the twisted sum
of two type 2 Banach spaces i3 shown to be type p for all p < 2. In [6]
it is shown that if X ig a Banach space and Y is a type p Banach space
for some p > 1, then a twisted sum of X and ¥ (in that order) is convex
(i.c., & Banach gpace). Also if X is p-convex (0 < p < 1) and Y is ¢-convex
(0 < g< p), then any twisted sum of X and Y (in that order) is again
g-CONVEX. )

These snggest a general prineiple, if we regard p-convexity (0 < p < 1)
or type p (0< p<2) asg an index of “roundness”. The twisted sun of
two spaces of differing degrees of roundness will retain the properties of
the legs round space; the twisted sum of two spaces of equal roundness
may however be less round than either. The main aim of this paper is to
egtablish such & pattern, and fo exainine more precisely the case of equal
Toundness.

First in Section 3, we introduce a new class of quasi-Banach spaces
whieh we name logeonvers. A space X is logeonvex if either of the following
two cquivalent conditions holds for some ¢, 0% < o

n

) 1
1.0.1 e+ ... 43, <O [l (1+lo —)
(.01) : I < é 1+ tog
wherever (o4 + ... +|lw,l =1, @,...,2, e X or
: n
(1.0.2) oy + - 4,1l < €% 3 layl (141ogy).
- 4

Logeonvex spaces play an important role in this paper; they are, in a
sense, the next best thing to being Banach spaces. An example is the space
L(1, o) (i.c., weak L,). '

In Section 4 we show that if p < 1, type p is equivalent to p-convexity,
go that we reduce the study of type to the case 1< p < 2.

Section 5 containg some initial technical results in twisted sums
whicl contain very little that is new. Lemma 5.2 esgentially reproduces
a result of [1] in rather morc generality.

In Section 6 we show that if X and Y arc p-convex and g-convox,
respeetively, where p < ¢, then any twisted sum of X and ¥ or of ¥
and X ig p-convex. (One half of this result is in [6], see above). In & gimilar
vein, if X and Y are type p and type g, respectively, where 1< p < ¢< 2,
then any twisted sum Z of X and ¥ or ¥ and X is type p. Let us remark here
that the methods of {1] (cf. also [13]) show that in either case if 2, ..., 2,
eZ

(1.0.3) { ofl | 3 el

n

zdt}xlz < On"”‘l"’(z Hz«;H2)1/2,

i=l
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The main step in the argument here is to pass from this inequality to
establishing type p (but only for twisted sums where the other space
is type ¢ > p). As shown in [13] (1.0.3) implies type » for r < p. We note
that a type 1 space need not be convex.

In Section 7 we study the case p = ¢. We show that any twisted
sum of two Banach spaces is logeonvex, and this result is best possible.
In fact, a space is logconvex if and only if it is a quotient of some subspace
of a twisted sum of two Banach spaces. The corresponding results for type p
are right if we assume that one of the spaces X and ¥ is a quotient of
a subspace of a space L, (u). In that case any twisted sum Z is log type p,

ie.,
» _Ylp -l 1 \»\Ue
dt} <0 (1 + Z el (log W) )

(1.0.4) {le Zsi z!

whenever |z5]?+ ... + ||z, = 1, or equivalently

(1.0.5) [j”é’a 2

for 2, ..., 2, € Z. Furthermore this is best possible for the twisted sum of
I, and I, (1< p<2) constructed in [9] contains a copy of the Orlicz

space I, where
1\?
p(t) =7 [1 +(Iog 7) ]

near zero, and for this space (1.0.4) cannot be improved.

In Scection 8 we examine twisted sums of R and I, more closely,
showing in particular that the cxamples in {6] and {15] are non-equivalent
but both are best possible in a certain sense.

In Section 9 we classify those non-locally convex Orlicz spaces I, = I,
which are £ -spaces, i.e., for which every twisted sum of R and I, is a direct
sum. In particular, this applied to examining “galb” conditions of the
type | Sf(lzl) < oo = Y converges) which are preserved under
twisted sums with R. It is shown that if f is submultiplicative, this condi-
tion will be preserved if and only if f(z) > ¢2? for some p < 1.

In Section 10, we examine those locally convex F-spaces X which
are not locally bounded, but are '-spaces, so that they have the property
that if Y is locally convex any twisted sum of ¥ and X is locally convex.
It is shown that every nuclear space is a 2'-space, and Kothe spaces
which are o -spaces are characterized exactly.

P < 0 3 Il (1 +logkr) "
=1

2. Quasi-Banach spaces. Throughout this paper all vector spaces
will be real, although most arguments may be modified without difficulty
to the complex case. :
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A quasi-norm on a real vector space X is a map z — |lz| (X — R)
such that for some K < oo,

(2.0.1) o)l >0, «=z%0, xeX,
(2.0.2) il =[] loll, teR, veX,
(2.0.3) le+yl < K(llell + llyl), @=,yeX.

A quagi-norm induces a locally bounded topology on X and conversely
any locally bounded topology is given by a quasi-norm. A complete quasi-
normed space is called a quasi-Banach space. If in addition we have for
gome 0 < p<1

(2.0.4) lo+y? < |2 + I°, 2,yeX,

then X is called a p-Bamach space (or if p =1 a Banach space).
A quasi-Banach space X is said to be p-convew for some 0 < p <1
if there is a constant 4 such that

(2.0.5) o+ @5+ ... F@,ll < A (leglP+ .00 + lo, Py

for @4, ..., ¢, € X. If X is p-convex, it may be equivalently quasi-normed
to be a p-Banach space. A theorem of Aoki and Rolewicz (see [17]) states
that every quasi-Banach space is p-convex for some p > 0. We ghall
repeatedly exploit this by assuming the quasi-nmorm on a given space
satisfies (2.0.4) for some p >0.

We denote by (g,: n € N)a sequence of independent random variables
(or measurable functions) on [0, 1] such that A(s, = +1) = A(e, = —1)
= } where A is Lebesguc measure. We then say that a quasi-Banach space
X is type p (0 < p < 2) ([12], [13]) if for some constant K < co we have

(2.0.6) (j“ja«(t)wi Pdg]1/p<K(§ ||ak||p)1/p.

If X is p-convex, then X is certainly type p.
We remark here that Kahane [4] shows that for a Banach space X
and 0 < p < g < oo there is a constant K = K(p, q) such that

(2.0.7) { jl ” Slea|Pat)"” < { f | 3 e, |* e}

<E{[| 3 o] 2.
0

This means that we can change the exponent on the left of (2.0.6) without
altering the definition.

In fact, (2.0.7) holds for quasi-Banach spaces; the modifications is
Kahane’s argument are minor but we include a proof for completeness.
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TomoreM 2.1. Let X be a guasi-Banach space. Then (2.0.7) holds.

Proof. Let L,(X) be the space of X-valued simple functions on
[0, 1] equipped with the topology of convergence in measure. Let Rad (X)
be the subspace of functions of the form s, 4 ... +e,a, for 2,,..., z,e X
and n € N. We show that on Rad(X), the Ly-topology coincides with the
stronger topology induced by any quasi-norm

1
([ irwead.
0
‘We see this, we need only show that the set of f € Rad (X) with Al Il = 1)

< 5 i5 bounded in each I,-norm.
Suppose f = s@y+ ... + ¢,3, and

A(lfil > 1) = a.
Let
k
M(f) = max HZe_-(t)a;,— , 0<t<1,
Isksn ' ;TY
n
N(t) = max ”25{(»:)0;‘ , 0<i<1.

A<k U Sy

Let 4, (1< k< n)be the set of ¢ such that
!
“Ee;(t)m{H<Kr, 1<I<k~1,
{m=l

| Zk] ai(t)a

(where K is the modulus of concavity of the quasi-norm given by (2.0.3)).
" Since f has the same distribution as

> Kr

Y =@+ oo gy — B — - —EaT,
and ’
A (If 771 = 2En) < A (A n(If I = 1))+ A (e (I1F*1 = 7)
=22 (4, n(If I = 1)
and hence

A4y <24 {4 (IfIl = 1),

80 that, summing over k,
A(M > Kr) < 2a.

Similarly, A/(¥ > Kr) < 2a.
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Now if te 4, and |f]> 2K,

| 3w >
&
and
Hg;:sfmi > Kr (since“éj s; || < I).
Hence

AAn(lifl = 26%) < }.(A.kn( NZ el = Krj) < Zal(d,)
{==le

since these sets are independent. Summing over %,
2SN == 2K r) << da?.
Thus if
Mifl= 1) <4,
AIFI = @IC)) < 477G < (3

and

Jifpa <1+ 3 @EHE" = 8, < co.

n=0
The gald G(X) of a quasi-Banach space is the space of all sequences
. .
{a,} such that if |lo,/|< 1, then { 3 a@,} is bounded. G(X) is a quasi-
k=1

Banach space when quasi-normed by

o
\

(@, @z, )l = sup sup| 3 asa -
k=1

ligell=sl n
X is said tobe galbed by a space of sequences F if, given |o,| < 1, and

k3

{a,} € B, then > ax; is bounded (sce Turpin [17] for a more dctailed
P .

study of these notioms). ‘

An F-gpace is a complete metric topological vector gpace. A twistied
sum of two F-gpaces X and Y is a space Z which hag a cloged subspace
Xy = X such that Z/X, > ¥. Thus there iy a short exact sequence
0—+X —>Z ¥ 0. If overy twisted sum of X and Y ig a direct sum
(le. Z =~ X @Y in the natural way) then we say that (X, ¥) spliis (the
order is important here). If (R, X) splits, then X iy a 2 -spaco ([8]).

If X is a locally convex #-space, then every twisted sum of ¥ and
X with ¥ locally convex is also locally convex ([6], Theorem 4.10) and this
property characterizes locally convex i -spaces.
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3. Logeonvex spaces and related classes. Lt ¢ denote the Orlicz
funection ‘

' 1
t[14log —
ot =l ( +log t), 1<,
2 t=1

(where 0 log co = 01log0 = 0 by convention). Then I, is a locally bounded
but non-locally econvex Orlicz sequence space. The quasi-norm induecing
the topology on I, may be given by

llell, = sup{f: Zutp(f‘llw,-l) < 1}.

Our first result gives an equivalent quasi-norm.
THEOREM 3.1. An equivalent quasi-norm on 1, is given by

Il = iy + > allog 'l";“ll
i=1 (3

where lall, = 3 |ay.
i=1

u 17Proof. Since ||-||‘,:, is easily seen to be homogeneous, it suffices to show
ha

0< iD—‘f(HiEH;: feell, = 1) << sup (Jlzfiy: llell, = 1)< co.
I fjefl, = 1, then 3 o(|n;]) = 1 and hence

Sia (1+10g ! ) ~ 1

;]

Hence jzjl; < 1 and

= llell, = 1.

. E” 1
el < felly + |;}log I
=1

12}
Conversely,

1
ety = lell, — |zl log el = 1 —jzllog 2], > 1— ”

sinee 0< wfl, < 1.
D]:]FINITION 3.2. A quasi-Banach space X is logeonvez if it is galbed
by 1, i.c., whenever z, € X and
2 ol ll) < oo

then 3, converges.
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Examrerm. The space I, itself is logconvex; this follows easily from
the fact that ¢ is submultiplicative at © (cf. Turpin [19], p. 79).

THEOREM 3.3. A quasi-Banach space X is logconvexr if amd only if
for some constant C and any ®y,...,w,€ X

(3.3.1) oy + 23+ ... +2,ll < [Z llae | (1+ 08 m)]

f=l
7
where 8 = ) ||
Tl

Remark. (3.3.1) is cquivalent to

nj 1
(3.3.2) ot +%H<0(1 Fé leditog Hw,-l\)

whenever ([z,[|+ ... [z, ll<1

Proof. Let I be an infinite set with |I| = |X| and let (v;: iel)
be the unit ball of X. If X is logconvex the map T': 1,(I) - X (where I,(I)
is the generalized sequence space ‘of all (&: i eI) such that Yo (|&]) < o

defined by
T(§) = ) b

el

i8 well-defined and continuous. Hence for some O < oo

“‘5“1)

log

() (nﬂHZ |&illog <

and (3.3.1) follows easily. ’
Conversely, if (3.3.1) holds and

]

Dotz <1
el
then
&,
Nz, (1 +log—- —)
2 et oy
and hence
1 4 1
2,10 2, 1-[————-—) -0 as k,l—> o
Hn;—l ng;&l ” H ( log”wn” ’

8o that > @, converges.
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L(1, oo) denotes the space of measurable functions on [0,1] such
that

Ifll = supad(|f| > &) < oo.

TErEOREM 3.4. The space L (1, oo)is logeonvew. [Added in proof: see [20].]
Proof. Suppose z,,...,u, e L(1, o) and let

f=o+... +a,.

Suppose also [z, + ... + |o,| = 1.

Fix 7,0 <7< 1 and let 4 c (0, 1) be a set of measure 7. For each
i=1,2,...,n let

By = (lz| >277Y).

The A(E;) < vliz,ll; hence if B = E,u ... VUE,., then A(E) < }r. Now

. - 2
int|f)|< it [fl<= [ I7m)a

ted\E

ANE
2
\TZA\LM Jat< = %A\L.lwi(z)gm
<%§JMn(Imi(t)I,21"’ Z:uf (”” P _.) du

b

el

Y © 2 O
<2 D= 'HIMIMTM)_? > (nm I+l log ")

¢=1 i=1

ell}—‘

(210u2 +249 Z’ ;| log —)

= 21

Hence

I << zlog2+2>+22nw,ulog o
2y

and so L(1, ) is logeonvex.

Exavmere. Let (g,: n =1,2,...) be a sequenée of independent
random variables each with the Cauchy distribution (i.e., with probability
density function

—o0 < o< 0.

5 — sStudia Math, 69, 3
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Then (|g,|: # € N) is bounded in L(L, o) und so if a, > 0, 3 a,lg,| con-
verges in L(1, co) if

1 1
P log ——
(3.4.1) ‘2} a, (1+ og - ) <
and then
(3.4.2) D 4,09, (1) < oo e
ne:l

L. Schwartz [18] shows that (3.4.1) is cquivalent to (3.4.2). See Ka-
hane [4] p. 97 for a similar example.

We now give anothaer characterization of logconvex spaces; for this
wo require the following lemma.

Lovma 3.5. Suppose ¢ >0 and

d 148
0. —log [2 (%) ] ( = logl(l+e)).

k=1
U 6> 6>..56>0 md
E]+£a+--- +£/n=1

then

n
(3.5.1) 2 £ logk < 2 E,clog <(1+e) 2 £logh+ C,.

k=1 k=1

Proof. Since £,<1/k the first inequality is clear. To prove the
second, fix » and let €, be the maximum of

F(&y, &ayeny &n kalog—— 1+e) kalogk

k=1 s k=1

subject to &> ...= £, 20 and £,+ ... +£&, = 1. Then for some (v, ...
y F{Uyyeniyuy,) =G,

We claim first that wu, > wy > ug > ... > 4, > 0. For if I < » in the

first index such that %, = 0 then a snmll increase in 4, and deermsu in

u,_, increases F'; a similar argument shows that w, s u; if ¢ 5= j. It follows

that (%, ..., %,) is a local maximum of I subject to the single condition
& ... +&, = 1. Hence there is a Lagrange multiplier 2 such that
or

a—gk—(ul,...,un)=}., h=1,2,...,n,
ie., :

1
log — —(1+¢)logh = A-+1.
k
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1\ 1+e
Here w,, = ¢ % (f) and so

n 1 14e R \

(2 (I) ) =&y Fluy,.., Uy) = (A—1) = C,,
k=1

and hence C, < C, and the result is proved.

THEOREM 3.6, A quasi-Banach space X is logconven if and only if
Jor some €< oo, whenever @y, ...,x, € X '

n
(3.6.1) ley+ -oe + ol < C D fimel (1 +logh).

froms

Proof. This follows immediately from the preceding lemma and
Theorem 3.3. .

Remark. This theorem essentially means that the Orliez space I,
is identical to the Lorentz space of all sequences (a,) such that Yai(1+
+logn) < co where (a)) is decreasing re-arrangement of (|a,]). See [11]
for similar results for convexr Orlicz spaces and Lorentz spaces.

4. Type in quasi-Banach spaces.

TurorEM 4.1. Suppose 1< p<2; then a quasi-Banach space of
type p is convex.

Prooi. Clearly if

b, = sup inf |oyw;+oa2e+ ... + a3,
lzgll<l op=c1

then b, = o(n), and the result follows from Theorem 2.5 of [6].
THEOREM 4.2. Suppose 0 < p < 1; then a quasi-Banach space X of
type p is p-convem.
Proof. We can and do suppose X is an r-Banach space where 0 < r
< p. For each m €N, let d, be the least constant such that

o+ oo A 2| < B (P + - A o [P

for @y, ..., %, € X. Suppose for any =

{13 oalr < o3 e
0 i=l i=1

Then for any @y, ..., @, € X there exists o; = £1 (1 <i< n) such that

.

0@, o 4ol < C {Zn' Ila:fl]p)llp, |

qm]1
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3
We may suppose that if F = {z o; = —1} then 2, llos | << & ) |laffP.
el Pl

Then

| >
er

n

O 1/p

o ( ) )
=l

and hence
n n n
[ gmf <| gaiw,- e 2;“’ "< (07 27U Py {’ ‘g, L2 -
Thus
@, < (- 2rt-ungr
80 that

[
d‘" S fl__ (%)r(llp—lw; *

As {d,} is bounded, X is p-convex.
Remark. As is easily seen the hypothesis actually used in the proof
is that X satisfies
min [joy; + ... + 0,2, < Ol 4 ... 4 [15,[P)7.
oyml .
The same argument shows that if 5,(X) = O(n'®) (p < 1) then
a,(X) = O(n') where

b,(X) = sup min jloyz,+ ... + 0,2,l,
gl ap=s1 .

a,(X) = sup |loy+ ... +a,.
llz;ll<1
We do not know, however, if a, = O(n'?) implies X is p-convex when
p<l.

When p = 1 the above proof breaks down and we shall see later
that a type 1 space need not be convex. It is tempting to conjecture that
a type 1 space must at least be logeonvex in view. of the following theorem
(the converse is clearly false-consider i,).

TeEOREM 4.3. Let X be g lype 1 quasi-Banach space isomorphic to
a subspace of Ly. Then X is log conves.

Proof. By Nikisin’s theorem (|7], [14]), X embeds in L(L, oo).
Now apply Theorem 3.5.

We have not been able to substantiate this conjecture amd have
only the following, whose proof wo omit. It depends on rather more delicate
bandling of the argument in Theorem 4.2, ‘
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TemoREM 4.4. Suppose X is a type 1 quasi-Banach space; then for
some C < oo and any @,...,0, X
los4 ... +oll < OL+logn)(llm]l+ ... +lz,l).
In view of the above results we shall only consider type when 1 < p < 2.
5. Twisted sums. Suppose X and Y are quasi-Banach spaces and Z

is a twisted sum of ¥ and X, so that Z has a subspace isomorphic to ¥
such that Z/Y == X . Then (cf. [6], [8]) there isa map F'; X > ¥ saytlsfymg

(6.0.1) Ptw) =itF(x), teR,zelX,
(5.02) 1B (@, @) — F(2)) — F ()|l < K (@l + lwal}), @1, 72 € X,
where IC is independent of 2, @, such that Z is igomorphic to the space
Y @p X, Le., the Cartesion sum ¥ @X quasinormed by

(5 @)l = lly — F ()| + llel]-

Conversely, given any such quasilinear map F satisfying (5.0.1) and
(5.0.2), then Y @xX is a twisted sum of ¥ and X.

Suppose then F: X ~» ¥ is a fixed quasilinear map. We define for
a finite subset {,..., x,} of X

7
A@yyey @) = F(@y+ .. @) — D) Flay).

. dml
We now state the properties of 4.

LeMMA 5.1. (1) If 44, A,,..., A, are disjoint subsets of {1,2,...,n}
such that A L ... VA, = {1,2,.. ,n} and

shen

AWy ooy ity ) == dlaty, “2""’“m)+2 A(w;:§ e 4,).
{ml

(2) d(») =0.
(8) 14wy, ma)l} < K (ool [lzal) .
(4) For some 8, 0 << s <L and M < o
N4 (@5 ey @) < M (g + oo -+ o))

for ay,..., 2, e X.
" Proof. (1)-(8) are obvious and (4) is shown in [6].
Now suppose that W is any guasi-Banach space. We define d, = &, (W)
to be a least oongtant such that

oy ... 1w,ll < dy(losll+ .. +lowal))
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whenever w,, ..., w, € W. We also define §, == §,(W) to be the least
constant such that

13 ond i < 0,5 o
0 i=1 =1

The sequence {J,} has been studied for Banach space in [1], [2] and [13].
It is casy enough to see that both sequences {d,} and {4,} are submulti-

pliG(LtIVG (dnm < d de 6mn = 5m6n)
Tor a quasilinear map F: X -» ¥ we define ¢, = e, (F) to be the loagt

consbant suach that

Ay, g ol e, (el - vn F iyl Byy oory &y € X,

and y, = y,(I) to be the least constant such that
1

{f A (&ss 5 esBay -- -y EFy
0

Our first result is simply a generalization of a result of Bnflo, Linden-
strauss and Pisier.

THEOREM 5.2. Suppose 0 < << 1 and Y 48 an r-Banach space. For
m,neN
(5.2.1) O < i (X)) -+ ehdn (YY),
(56.2.2) Yin S Vin 67 (X) 4 v 00, (X).

Proof. (5.2.1). Suppose @, @y, ..., Ty, € X. Let
in
U = 2 o, 1 =1,2,...,m.
(i—)n+1

mn

Then [|4(w,, ..., u ||\c,nz el < € (X) D flogll amd

1=l

‘Izmj My F—L)n < j<in H S ZHZ](’I‘ (1 —L)m < § < in)||
= =

mn

¥)e, D) Il
i=1

and (5.2.1) follows from Lemma 5.1.
(5.2.2). Let
Uy ()= V' PAVES

P
(t-1)n+41

12 . o -
WPt} <yl + .l ), @y ey @, e X

Convewily, lype and the three space problem 261
Then
11 .
f“ /] u‘l M'n([ .y "’m(t)] ll2dt i f fH A 1”1 LEN} Em(s) “"m(t)} HZ dsdt
[

(by symumnetry)

mn mn

% Tt o ah B2 2
f Vi Sl (D)1 < 85 (X) N P
L“] il
Also, by w similar wrgument,
t . mn

(s (G Vym - i) | @b < 8, (W97, 2 " e

LR
anl (55.2.2) now follows from Lemma 5.1 and the convexity of the Ly,-norm.
Lemma 5.3, If p == 0, there ewisls o = a(p) 20 and ¢ = O(p) such
that for @y, ...,%, € X

(5.3.1) 1A @, - ..y ) < ,(,Zlcﬂur,,up)
fo=1
Proof. By Lemmy 5.1 we can find s> 0 and M < oo such that
4G, -y m)l < M ,~\1 )™
Thus for 0<Ip s, a - 0 will suffice. Now suppose §<< p << oo, and

choose 0> 1. Leb ¢ == ( 3 %~)7". Then Sek~" =1 and hence

=1 A=l
& in ”‘,‘1 s ’":1 o opls\ 1P
(DMilt) = () el e 8) " < X g P01 17%)
Tomal ko=l Jom=1

and hence a = 0(p/s~1) will sutficc.

6. Twisted swuns with unequal convexity.
LmMMA 6.1, Suppose p o> » 520, and ¥ is on r-Banach space.

(61.0)  If 4, (V) O and di(X) - O, then ¢, - O(n").
(6.1.8)  If 8,(¥) - O(n) and 8,(X) - - O(ny), then p, = O(n).

Remark. The voles of X and Y way be interchanged in this lemma.
< an® and d,(X)<bn’. Sclect N so thab
47, Then -

o 15 g @y (X) 4 Oy @n (X)

Proot. Suppose d, (Y
BN < L Tk 0 (0,3 N P
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g0 that
< (BN"H) 0,1+ aby
and hence {f,} is bounded. Hence ¢, = 0{(n").
(6.1.2) has a similar proof.

TaEoREM 6.2. Suppose that 0 < p,q<1 and p # q, and that X
8 a p-convexr quasi-Banach space and Y is a g-convew quasi-Bamach space.
Then any twisted sum ¥ @pX of ¥ and X is min(p, q)-convex.

Proof. The case ¢ > p is proved in [6]. We therefore agssume that
¢ < p and that ¥ is a ¢-Banach space and X is a p-Banach space. Then

G (Y)<nle, a4, (X) < nte
and hence for any quasilinear map F: X > ¥
0, (F) < Ontle?

for some C.
Now suppose @y, ..., &, € X is non-zero and

2ol ...+l ) = 1.

Let 4, ={i: 27" <|zli<2-27™}, m =1,2,3,... Then for some N,
44, ..., Ay partitions {1,2,...,#n}. Let

Sa,

€y,

Then, if we make the convention 4(@) =0 and Da; =0,
(2]

N
4@y, oy @) < BB, .y )+ Y 4y § € A

i=1
Now
422 § €A <Ol 3 oyl < 201 4,117 27,
so that i
14(z;: j e A< (20)714,279< (2010 D oy .
Hence‘s .

n

N
D) 1852 j e 4ir < (2002 3 it = (20)2.

t=1 tel

Now by Lemma 5.3 there is a constant M and a > 0 so that

]
4@y, .y w)P < M Y Klpol?,  wy, ..., me X

Feml

CUonvewity, type and the three space problem . 1263

Hence

14 (1., u)P < MZk ol < Z D) ol

Jewsl Jor=1 fedy,

2 a
< MY gl (lo )
< ; & Tl

where M* == M [log2. '

Now sup & “(log(2/8)" = 0 < oo and hence if M* = 6M*

(o208

k2
14 (g 2oy up) [P B D] gl = M
{=1
Hence
14 (@5, @)1 < (M) (20)
where both M** and ¢ are independent of @y,...,%,. We conclude that.
for any ®y,..., o,

. n
14(@1ye.y B0 <D D I

1=l

Now suppose (¥, #;) € ¥ @pX. Then

[[ v Zalf = (| Sv-F(Za] +] Za ]
<(|Zu-2 (e[ +] Z=)

(IS e pia |+ e 0+ Sl
<2D( Yot + 3 lni— T F)

<2971 3@, vl

and so Y @4 is g-convex.

Tanorsm 6.4. Suppose that X is a quasi-Banach space of type p (1< p
< 9) and Y is a quasi-Banaoh space of type ¢ (1< ¢<2). Then if ¢<p,
any twisted sum Y @, A7 8 of type q.

Proof. This proof mimics Theorem 6.2. Wo assume that ¥ is an
r-Banach spuce where rgl1; of course, if ¢ > 1, we may take r = 1.
We suppose that if @y, ..., %, € X and ¥, ..., y, € ¥, then

' Ul H 2“41 Ea'.(t)au”p dt}m’ <o (Z |(m{\\mv)1ffl"
T
1

(| Sretm o < o 3 v
D

0
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and that
14(@y0, @ M( Z T )

a8 in Lemma 5.8.
We have 6,(¥) = O(®Y"¥) and §,(X) = O(®"Y?"") and honeo

Yo (I) < Onte= . peN,
Sappose #4,..., 2, € X are non-zero and

o f?F oo+l = 1.

Let A4, = {i: 27" < |lz;| < 227"} and wsupposc Ai,..., A, positions

{1,2,..., N}. As before we make the convention 4(@) = 0 and D @; =

Then if tep
w(t) = Y eMe, 0<i<1, '
jedy
N
Ao (W) D1y 8, () = Aur(B),. ., uy () + ) Ae5(0)a;: § € 4).
1wl

Now by symmetry

1.5 et

? dsdt

11
ffH ﬁ.e, ) dle; (8 ;-
oo

A
Q
L\/‘<'

> 0114, a8 3 oy )

i €A,

1
-

K
< 292 o200 | 4,121 & 92 g1 o a3
= P = Oa V] il T L.
. ' '1221 g
Also \

1 1 N N
[} * ﬁ o 2 14 - J N Itz \ y.
Df“d(ul(t), ooy un (D) |7 dt < j Z 6%l (8) P << .Mﬂon/a Enmjn"

0 k=1 k=1 J'eAk

< 2 eyl (10g —) < M+
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ag in Theorem 6.2, where M* is independent of y,...,m,. Henee

1
{f (A ey by, "u)”th]ﬁq . {f”/l {ua(t) yeoes uy(t )qut}ﬂq +
b

- {J .‘Zw Aemy: j e A,) th}r/q
D i=1
< (MY LT
16 follows casily Ghat fov any @,..., @,
) -
{ [ 1A @ ey 80 dt"”" <p{} nw,.ufl}”".
]
Now suppose (U, #) ¢ Y pX (1:0d:5n). Then
; L”"1 0o W
{fH Z e ()W ) d"}
0 Tamal
ALY s #(3 ol

"dt}lm S0 3 ),

Sl 1 H \1 Yy: —F(a |

] f | > euttyye = (3 estiys)

N+ (@15 -5 @)

“ Ve ?Ii“-[”( e 2 (1 )"”:)

50

1.2 st s
P 21/1«—-1(;(2qu *—_F a )1/11 - (91/7,_411_) +6) (2 Hmiu’l)l/q
£ (21 a1 1) «)( )W (ol -+ ly — 7 (=, ”)a)
e (3 2019,

ie, Y@pd is typoe q.
We now show that o tiype L spacoe need not be convex.
Tu [6], [L6] and [167 it is shown that one can constiruet & non-convex

twisted sum of 2 and a Banach gpace. This is type 1 by the next t theorem.
TaworzM 6.5, Suppose X is a type p quasi- -Banach space and Y is
a type q Banach space where q > p. Then any twisted sum Y @pX is type p.
Prook Iere our techniques are rather different. We use a result
of Kahane [4] that thoere is a congtant K == K(p, q) such that for any

s
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elements w,,...,%, of X

I Zelrape< xlf1 S

[For the ecase p =1, we apply Theorem 2.1.]

Suppose ¢ hag the same meaning as in Theorem 6.4. Let 0, be the
least constant such that

{f 14 (esyy -2y 8y, w?l)”” dt}]/q < Bu{i‘ llmi“ﬁ}llp '
=1

4

”dt}””.

Suppose @, - ... + |z, =1 and |z,|? > 1/N. Then

A(eyyy. .., &,,) = A(u (), 57.(t)mn) + A (e, gouy St Tpmt)
n—1

where u(t) = 3 &(t)z. Now

=1

4@, sma.fad™ < o { [ (|w@]?+ o) oat™

0

by the usual symmetrization argument.
Hence

i/ ||A(f?(t), ()2} [de)™" < 02 [ f e (@Iag™ + o, 7]
[ 0

n-1
< Of [K26? 3 [myfP + llo, P < K067
=1 :

Hence if ||lz)”+ ... 4|, |® =1 and max |a|? = ¥N~*

7

1
{[ 14w .., eum) 02" < 0, (L—1/NY" + Koo.
[

Now suppose [+ ... +|g, P =1 and max|lz|" < N~'. Then it is
possible to subdivide {1,2,...,n} into N sets A4;,..., 4, such that

DleP<2/N, j=1,2,...,N.

edy

Then let
’“’j(t) = 254“)‘31; .

ied;

, N
A(e®syee ey 8,8,) = Ay (1),..., nN(t))-|-2 Alggm;: i€ 4y),

=1
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and by symmotrization

.
Iz

{f\lﬂ(ul (8),0vr w0 )" < 0% {

[

(

g (87 e}

{

< 0% SHP6 3l < ORE7S,
oy

M=
-

< 0% [ o0y imat) ™

i

T ¥
1 N A

2

1
. u
th}wso{ ”fu/J(eimi: zeA,)n«dt} ‘
3

dan

1 N
{fnZA(e,m,.: i)
0 o]

(by symmetrization)

-

< oﬂn{j (> foute)"}

deal {EAj
< 00»{ (—) ”wi”}
] N tsAj
9 \Up-lig
<('j\'7-:) 007“
Hence
! g 2 1/p~1ja
{fl]/](slwl,...,enwn)H"dt} <0K0N+(7v— 06,.
0
Thus

1 \W 2 1p—1jg
0, < max {0,,,(1 - T\T_) + K 0,05 KOy + (”L?) 06,._} :

It wo choose N go that
9 \lp—1la
o5 <»

this imphes a bound on 0,. ' _
The fact that 0, i8 b10u,nd0d implies that Y @,X is type p in the
usual way, a8 in Theorem 6.4.

7. Twisted sums with equal convexity. Since the twigted gum of two
Banach. spaces may not be convex we may agk what clas_xs it does bel.ong'to.
Tt turns out that we can give a complete answer 1:0' this. We require first
the following lemma. We usc the notation of Section 6.
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LeMMA 7.1. Suppose u >0 and Y 18 a Banach space.
(7.1  If ¢(X) =1 and 4,(Y) =1, then ¢, = O(logn).
(7.0.2)  If 8,(X) < n* and 8,(X) = O(n") (or §,(X) = O(n")
and 6,(Y) < n#), thefn, . = 0(n*logn).
Proof. We prove only (7.1.2) (a8 the same argument then proves
(7.1.1). It 8,(X)< n* and 6,(¥) < On®, then by Theoremr 5.2

‘ Vmn_ o Ym g P

m n*

and hence y",cn‘k"g Cley,n™* and the result follows easily.

TrEOREM 7.1. Suppose X and Y are Banacl spaces. Then amy twisted
sum Y @pX is logconvew.

Proof. Here we have d,(X) = d,(Y) =1 for all » and hence ¢,
< O(logn+1). Induction on » as in Lemma 3.2 of [6] shows that

k3
4@,y @) <M D Elwgl,  @,-..p 9, € X,

in this case, for some M independent of a,,...,m,.
Suppose [yl + sl + ... + ko, =1 and suppose |y = |zl 2 ...
- []m,,n > 0. Let N, be the greatest suffix such that llwx, Il > 27% (%
=1, ..) and let
Ng
w= Y @, k=1,2,..
i=Np_1+1

(where N, = 0). Suppose N, = n. Then

!
A(@y,..., @) =A(un’--s“’l)‘)'zA("”Nk_l»kl;'"’m}vk)y

k=1
1 1 Ng
HZ A(@x,_y515--+1 By) 2, 1+log(N;, — Ny_y)) Z lle;
k=1 k= Nyl
N
) d
<C+C ZlogNh > -
Je=1 NI:-«I'H

Clearly, ¥,27%<1 so that N, < 2/l|z;| for N _,+1< 1< Nk Hence

1
Ay, 1yeens @ })“<C’+Olog2+(}’ 3 a;llog —— .
Hk;: ‘Ng_ 1417 LTRSS % ll;l|log ”w‘"
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Also
uo\
AL b
14 (s eey ) MZI | < @Z I log
S M Zu nlgH
Thus

u .
; y Toe i
1A @y ey W)= Mo|-C)-Clog2 -1 (6 |- To 1) z [l l|log — ” $”

whenever L\,‘llm,ll =+ 1. 1Lenee for gcnmru.l Wyyeeny By

where § = )‘ Il |-

Now it m.uly follows that Y @,X is logeonvex for

“2 Yy, @) || = “Z Y —F (2 f”i) H + ‘ 2 "
HZ (=T (@y)) H I A (@, -y @) “ 2‘”
< 2“: Iy 5 )l +B, Z =] +B22 lle;|| log Tl

{=1

and the result folows from the fact that the funection

B(Ery..ny &) = Z & rz tlog 255, £y 8230

Tl Gl
is monotone in cach &, and [oll < (v, @)l

Remark. If wo take X = Y :»1, and F: I, -1, iz given on the
finitely non-zero sequences by

[l
T (x) = (m,,,locr )

2,
then 1, @yl, contains I, (where as usual ¢ (@) == @ (1 -+log( 1/w)) near zero).
(See [8].) This shows thu‘t the result of Theorem 7.1 is best possible.

TewowuM 7.2. A quasi-Banach space is logoonver if and only if it
i8 the quotient of a subspace of a twisted sum of two Banaoh spaces.
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Proof. By Theorem 7.1 such a space must be logeconvex. The above
example generalized to I, (I) for arbitrary index scts I enables one to obtain
1,(I) as & subspace of a twisted sum of Banach spaces and hence every
logconvex space as a quotient (ef. [19] or the method of Theorem 3.3).

DEFINITION 7.3. We say a quasi-Banach space X is of logtypep (1< p
< 2) if for some congtant ¢ < oo we have

! Up \' 1
w3 {[] Y awa| e <0(1+Z o (1og”7m) )
. 0

whenever |,|P+ ... + |z, = 1.
Remark. In order that X is of logtype p it is sufficient that

(7.3.2) {j“Zei‘(t)mf

To see this arrange #, so that |i,]l decreases. Then if 3 [lw,l? = 1, [l |®
< k7! and hence

{1’ dt}””< O 3 It +10g,70)”}”p.

1 1.
log —— = —logk.
T~ p ¢

We will see later that (7.3.1) and (7.3.2) are equivalent; of course, for
p =1 this is immediate from Section 3, and for 1 < p < 2 could be estab-
lished directly in a similar manner. However our indirect methods also
egtablish this result without difficulty.

DEFRINITION 7.4, A Banach space X is of exact type p if
lley — 22” + oy + @al® < 2(Ma | + lla[P), 3, 05 € X

Remarks. If p =1, this is automatic. If p = 2, it implies that X
is a Hilbert space, for in this case

112 + 112" < 2 (llory — 2] + [l + @)

and hence the parallelogram law holds; then apply a result of Jordan
and von Neumann [3]. For 1< p << 2 it is sufficient that X is a quotient
of a subspace of an I,-space.

THEOREM 7.5. Suppose X and Y are Banach spaces of type p where
1< p < 2. Suppose that either X or Y is of exact type p. Then any twisted
sum Z = Y ®pX satisfies

1 n . n
U1 Y etz af” <o Yiair+ 3 ia/rtogre)™
0 =1 k=1

and hence is of logtype p.
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Proof. If X is of cxact type p, then

{13 ewa ae < (3 o)
for @y,...,®, 80 that é,(w) < n"**~"*, Hence Lemma 7.1 implies that
¥, < BroMe= 2 (log 1),

By Lemma b.3 thore exists a > 0 and M < oo such that

n
14 @1y, @)l < M ) ol 2)
kel
for 2y,..., 2, € X.
Now sappose [[oy* - ... - [lo,[|! = 1 and [loy)} > ... 2 |l4,/| > 0. Let Ny,
be the greatest suffix such that |y, | >27* and lot
Ne
w(t) = D' alt)ay, k=1,2,..

Nyy+l

Suppose N; = «. Then

Aleryy ..., 8,8,) = AUs(2); ... “l(t))"‘
Ny

+ Z Aley, 1% _ 4110+ 88 On,) -
=

Now let

1
a = {3{ H kz‘ A(st-erNk—H'l’ ey aNka;Nh)“”dt}"’"
=1

11 .
~ . Yp
SB[ D 14ew, sy yiso-es o @) P )

0 kw1

by the symmetrization argament, where B, is the type p constant of ¥.
Honeo

! Vg _
a< BBy { 3 (M= Mo} 2" [log (M= Ny )17 3 )™
Jem imNy—1+1

l_ N,fy 1p
< BB, {3 log (N~ M) #1173 P}
=1 tm Ny 41

4 — Studia Math, 69, 3
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Now observe

n n

2> P,
2 -+logh)? > J (1 +logw)Pd

mt1 m

= (n—m)( —l—logfn)”—pf 7—

= (w—m)(L-+logn)? —p (n—m) (1 +logn)?*
= f(n—m)(1 +logn)?
provided = > n, where »n, depends on p.
Henee there is & constant ¢ such that ¢ > 0 and

n

2 (1+4+1ogk)? = e(n—m)(1+logn)"

L=m-1
for all », m. Thus we have
N N
D (Hlogi)lar =27 3! (14logj)
N+l Ng—ptl
> 27N~ N,..,)(1+log N,)?
Ny
> 02771 +1og NP D oyl
' Np—yt1 :

Thns

0 < 20 BB, { \" |]mk;1ﬂ(1+1og7c)p}‘/”
o k=1
Now we shall show that if

= {f Hlf(m(t), veey ul(t))”pdt}llﬂ’
then 0

DY 71+ logy)

fe=]

for some D independent of a,,..., ®,. We huve

! N,
(81 b< M| fl D) Wl (9Pas™ < MB, {Z & j g7}
0 k=1

Tml  NpHL
where B, is the type p constant of X. Hence

(7.5.2) { Z |7 (1% _ﬂ_i_)n}l/j,

i (1+1loga)? Yo
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(for .some constant M)

< 34, Il

Fmel

where 4p < g<p. Let 0 = gq/(p—gq)> 1. Then

sal

ka
b < My N T, P
k

(Z Telloy, "zv]ﬂ/v (Z " )1/17 -glp? < -Ma( Sw o, W,)l/p

fim] Joral
Combining
'l.l
a--b< 2, (3 Tllay|7)"
fowm1
so that

14,y am)lPat)’ < 1, 2 Tl )

k=1
and this wust hold for any #4,..., s, € X. Returning to (7.5.1) it is clear
that (after o gymmetrization argument) we may now take a = 1, and in
(7.6.2)
\1/»

z;(|"10
{> lzdog Ty
By Lemma 3.6

< 1, Z oL+ log )}

=1

and combining we now have the egtimate

1 n
([ 14w, ..., eo)Pa)” < 0{ 3] loP(1+1ogk)?} ™.
(] k=l

We omit the verification this implies the desived property of Z = ¥ ©pX.

Romark. We observe that Theorem 7.5 is best possible, in the
sense that each p, 1< p < 2, there is 2 twisted sum Z, of 7, and itself
and o congtant ¢ > 0 such that if &4 ... 4-& =1 there are #,eZ,,
1==1,2,..,n with [z = & and

{ J% ” i’ ey dt}”” > (1 + Dl (log —”—:‘T)p)w.
¢ fom]
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Indeed, consider the spaces Z, of [9]. Then Z, =1 '» Orly where F': I, 1)
is defined by

=l

F(x) = (wlg o)

If ¢, is the nth basis vector of 1,, then

H( TN (Zi £.0,) UJZ +&, enlm
See T (59

n

1 1 \\P\Up
S D il .
>+ 3 ez 1oel )] )
Similarly this implies ‘

e Sl <o (S

80 that (7.3.1) and (7.3.2) are equivalent.

+

8. Twisted sums of 1, and R. We now recall two ways of forming
a twisted sum R @yl,. One method due to the author is by defining F,: 13
- R by

=25nlogn, 23>0, '
n=l
where (@,) is the decreasing rearrangement of «, and
Fy(w) = Fy(a®) - Fy (07)

where # =@t —o~ where v >0, &~ >0 and |o*|A|2o~| = 0; see [6].
The other functional due to Ribe [157 is F I} - R given by

Fy(o) = 2%108 ﬂ

=1 ”l

(Actually Ribe uses the equivalent functional

Fy(w) = 2 @, log L + (E mﬂ) log (Z” mn) J)

Neal

|l Il and || [, denote the 1nduced norms on R@1,. Then if ¢, is the nth
bagis vector of I and 1,20 (n =1,2,..., N)

Ile, é"»"n = Z ltﬂH-Zt logn

neal n=1
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and

H(O, % ,,e) y(t -|-Zt log

Thus we see for both F, and FB we have examples to show
TanopeM 8.1. There is a twisted sum of R and 1, where galb is l.
In view of this we remark that these two twisted sums are not pro;ec-

tively equivalent ([9])inthe sense that there is no isomorphism 8: R@ rh
— R@p,l, such that the diagram

R@p b —> R@ply

: | |

ai

WL —™ 4
commutes where a 3= 0. For (see [9]), projective equivalence implies the
existence of a # 0, ¥ < oo and a linear map ¢: I — R go that
| (az) — Fy(z) —t(@)] < N |ol, wxelf.

Since F,(e,) = F,(6,) = 0 for all n, this would imply (e,) bounded so
that ¢ iy continuous and

'y (am) — Fy(@)] < (N A |iE) loll, @ el

Now by Lemma 3.5 we see the only possible value of a iz a = 1.
Thus
By (@) — Fa()] < (N + i1l llll.
g1
Now let wy == ZW""'

2wl

N
logn
Filog) = D)5,

Neal

N
CY 1
Ty(ay) = D) - (logn-+log Sy}

Nne=l

where S ._Zw— Hence

A1
Fy(ay)—Fy(vy) = SylogSy

while |wyl| = Sy — co and so we have a contradiction.
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To conclude this short section we congider the following:

DuFINITION 8.2. An operator Z': 1, —1, is liftable it for every twisted
sum R @zl there is a map T: I, - R ®yl, such that the diagram

R@FZI
7 |
{
[ '—'1*_> b
commutes.
THEOREM 8.3. Let T': I, -1, be given by Te, = d.c, where ||T|

= gup |dy| < oo. Then the following are equivalent:
(a) T is liftadle.

(b) For some v<< o0, > exp(—r/|d,|) < co.
Nl

(c) [d,]ec, amd if d, s the decreasing re-arrangement of (d,), then
{d:logn} is bounded.

(d) T <.

(e) For any logeonivex space X and quotient map q: X -1, there is
an operator S: 1, - X such that ¢S =T.

Proof. It clearly suffices to congider the case d, > 0. Note first
that if d, + 0, then there is a ‘projection P onto a subspace isomorphic
‘to I, such that P = 87" for some bounded S. Then T is liftable so is P
and this clearly contradicts the fact that (R, 1,) does not split. Here wo
may assume 4, -0 and then we may suppose {d,} decroasing.

(a) = (c). Consider

ROy
b
7y e

L—1
Suppose Te, = (¢,, d,é,). Then
1Zenlls = loq] 14, < 1Tl

and
1B oyt oo eyl = de +| z o — 2 & logh|
Jes=1
Z &t d,,logk— 2 e
Foem1 k=] Jomal
= nd,logn—n||T|.
Hence

d,logn < 2||T.
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(¢) = (b). If 4, <b(logn)™!, n>2, then if 7>d

exp - dl) <,
(b) = (d). Suppose [t;|+ ... + ;] <1. Then
Zdi|tj|
N7 =
17yt .. +taenllly = > ajt »ngmuog T

= 8+ Slog8 — E aft;|logd; —

=1
— D atflogl|

=1

n .
where § = 3 dltl < IT|. Also —d;logd, < e“‘. Hence
fel

1
1T (6614 ..+ bl < I+ |2 log |71]4-¢* +2d|t|10g i
qmal

NOW supposo &;,..., £, 0 are chosen to maximize p(&,..., §,)

= Z d;&,log % subject to &+ ... +&, = 1.
1=l

Then there is a Lagrange multiplier A such that if & 0,
1
dlog— —d; = A,
&
i.e.,

1 .
log — = 1+ —
g £
50 thut
g, = gm0
Lot A == {i: & > 0} Then

Z’ 0-—(144./:!;) =1,

iedd

Plkryeeey £) = ) Ao TR 2J3) < T+ 4.
Ted
Now
L\: MU g

deiel
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Hence
o0
M g,
{=1

26—“‘1‘ < o,

there exigts A, such that 1 > i, implies

Since for some 7 << oo

o0
St <.
il

Thus ¥y < 4, and. 80

W by + - + e )ls < TN (2+1og [T+ 67 4 Ao
Hence T maps I, into I,.
(d) = (e).
X
2t
T, 7

L—1l,—

T factors Z = JT, where J: I, —1, is the inclusion map. The exigtence
of a lift 8 follows from the faet that X ig logconvex.
(¢} = (a). Theorem 7.1.

9, Orlicz sequence spaces. We recall that an F-space X is a o -space
if (R, X) splits ([6], [8]). In this section we classify completely those
locally banded Orlicz sequence gpaces I, = I; which are X'-spaces. It is
known ([6]) that I, is a o -space if 0 << p <1 and fails to be a £ -space
ifp=1

We shall suppose throughout that f is a twice-differentiable strictly
increasing Orlicz function with f(1) = 1 such that #f(«) is convex (cf. [6]);
these assumptions may be made without loss of generality. We also sup-
poge that f satisfies the A,-condition, i.e. for some K

f20) < Kf(x), 0<a2< oo,
‘We define

I

oy = sup{p: M, f(ar) < Ma*f(»), 0 < a, 5 < 1},
By = int{p: AM, flaz) > Ma®f(2), 0 < a,z< 1}.

Since I, is locally bounded, a,> 0, and the A,-condition implies 8, < .
Since I, = I, we shall suppose

fley<s M2, O0<2<l1,

i

for some M.
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Now let k: R — R be defined by
 fit)
k(@) =m;r 2

h(0) =0,
h(z) = —h(—2), a<0.

LemMMA 9.1. b has the following properties:

(i) h is continuous, and twice differentiable for @ % 0.

(i) A" (u) <0, u %0.
(iii) If w+o--w =0,

(9.1.1) h(w) + (o) + h(w) < 2(f(1ul) +f(Jo]) +f(lol)).

iv) If 0<a<1 and veR,

(9.1.2) |h(az) — ah ()| < f().

Proof. (i) For continuity at 0, observe if 0 <z < 1

1
M 1
wf—t Mwlog—a;.

The other assertion is clear.

1
(i) R’ (w) =fi;L) dt— fg:a) w>0,

hll(u) J— f,(u)

U

<0.

279

(iii) Suppose without loss of generality » > 0,» > 0 and w = —(u-+0).

Since k'’ <0,

B(w+v) < h(u) + h(v) < 2h(F(u +v)),

so that
h(w) + h(v)+h(w Zh(} u+v)) —h(u+v),

Utv

f (a:) i

2h(} (w+0)) —h(u+v) = (u+0)

Hutv)

Hence

h(w) +h(v) +h(w) < 2f (Jw]) < 2(F (Jul) +F (lo]) + S (l])).

< 2f(u+0).


GUEST


280 N. J. Xalton

(iv) For # > 0.
x

h(az) — ah(2) = ax fiiz—)dt < awf(w) [ledt = f(#)(1—a) < f(z).

oz

Luvwma 9.2. Suppose for some B << co we hawe for o<1

h(z) < Bf ().
T'hen ﬁf< 1.

Proof. Let ¢, = 0[0, 1] e ‘defined by

O =@{fy: 0< i< 1}

where
)
O =
(ef. [5], [10]). Since & =y, a,<1. It ;> 1, then o € ¢, ([107).
Now

[10 4 1)

# @

and if 0 <1

AN C N s [ fluw)
J —t” al = ! th(s) dt = EJ W}(_s; du < f?.;j-sf‘ __’I,Fﬁ dae
<B-S_ i _ Biw) <1.

flsm) sz z
Hence, if g ¢, o

»

1
4
ILQ) a#<B O ocpen.
1 il )
-4
In particular if 8,> 1, wo may lot g(t) =t

1 .
1
det‘<B’ 0<a<l
@©

and this contradiction shows B < 1.

THEOREM 9.3. Suppose f1s a Orlicz functio
and that 1, is looally bounded and contained in
and only if B, < 1.

n sotisfying the A,-condition
by Then L i a o -gpace if
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Proof. If 8, <1, |, is a #"spaco [6]. Conversely, suppose , is a
A -gpace. We dofine
H:.+R
(where I} iy the finitely non-zero sequences in l)) by

o 0

H) = Yh@) i 3 flol) =1

Tl qem]
and extend so that
i H(aw) == aH(2), ackh.
Wo first assert that H: §§ -» R is quasilinear. To see this we show that
it w,v,wel)
w-v+w =0

and
el -+ oll + o]l < 1,
then
|H () 4- H (v) + H (w)| < 9.
Indeed,
| H ()= 3 hlu)| <1
dea]

and similarly for », w while

| 372+ Bon)

{1

< 6.

Now 1, is a o-gpace so that there & linear map y: 7} — R such that
sup |H (@) —p(z)] < 0.
el
Thus, {p(e,): » =1, 2,...} is bounded since H(c,) = 0 and so p is conti-
nuous. IIenco, ) ‘
IH(w)lnglwll, melf,,
for gome L < eo.
Suppose 0< £<1; choose n go that » e N and §< né < 1. Chooso
7 80 that f(n) = L—né and lot

o = E(el_l' ey -I' 0’1)+770n-|~1’
Then || =1 and
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Henee,

1
f%dt<2L%ﬂ, 0< <1
&
and so by Lemma 9.2, <1
Suppose now f is submultiplicative at 0. Then we say X is f-convex
if ¥ f(llzl) < oo implies 3 #; converges, i.e., X is galbed by .
COROLLARY 9.4. Suppose f is submultiplicative at 0; then every twisted
sum of B and a f-convex space is also f-convew if and only if

ﬂf = lim -li’_g_w

<1.
s logo

Proof. Obsorve that I(I) (for an index set I) is projective among
f-convex, i.e.
X
g"/

7
4

(D) -Z XN

Hence if every twisted sum of R and 1, is f-convex, then I, is & o -space.
Conversely, suppose I, is a o -space and X is any f-convex space and
Y = R®zX is a twisted sum of B and X. Then there is & quotient map
T: 1(I) - X for some index set I. Now I (I) is also a X '-space (this is
easy to show) and so there is a litt 7': l(I) - Y. If T'$ails to be surjoctive ¥
, splits, while if T is surjective, ¥ is f-convex.

Remark. In this case f,< 1 implies f(#) > os® for some p<<1,
and ¢> 0 for all 0 < o< 1.

10. Locally convex -spaces. Let X be a metrizable locally convex

gpace. Let |||, be a sequence of semi-norms on X which define the topology
of X and such that

ol < 1#llpga, ®eN.
Define 4 map F: X — R be quasilinear if for some ne N, K< oo
F(lry =tF(w), teR,wecX,
B (2 +y) —F(@) — F (3)| < E(Ioly -+ 1y,

if F is quasilinear we define R@yX to be the space R@.X equipped Wlth
the quasi-semi-norms

I(t; @) = 1t —F (@) + [0, m > n.
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Then if q: R@®pX - X i8 given by
1(17 ?) = Ty

¢ is a quotient map and ¢~*(0) = {(¢, 0), t € R}. Thus we have a ghort
exact gequence 0 - R -~ R@pX - X —~ 0 and R@pX is a twisted sum
of R and X. It is casy to show that if X is complete, then so is B @pX
{gince it is such a twisted sum).

The twisted sum R}P,X will split if and only if there is a linear
map w: X -» R such that

[F(@)—y(o)| < Hlal, @eX,

for some m e N and M < oo.

TrmoroM 10.1. Let X be o Fréohet space (complete metrizable locally
convex space) and suppose an I-space Y 18 a twisted sum of R and X. Then
there ewists a quasilinear map F: X — R such that X is isomorphic to R ®pX
(a8 a twisted sum).

Proof. It is convenient to write ¥ = R@X algebraically so that
the quotient map ¢: ¥ — X is given by q(t, ) = =.

Let {V,: n € N} be a base of balanced neighborhoods of 0 such that
Vasi+Var = V, for all # and V,nRe is bounded where ¢ = (1, 0).
Let ! -1, be the Minkowski functional of V,. Then we have

(10.1.1) Wt o)< 1t 0) ey, teR, 0&X,
(10.1.2) e+t o+l < 18, 0) o +1(E, D) s
(10.1.3) 1(1,0)!, =a, where ;>0 and a,toco.

Algo since ¢ is open, there exist increasing sequences {m(n)} and {B,}
such that

{10.1.4) TFor x e X therc exists t, e R
! (tni w) !n < ﬂn“w”m(n) .

In view of (10.1,4) thereis » map I, : X — R such that F'(iz) = tF(w),
te R and

LT (@), 2) b < Bl ey -
Now if n>p>1,
1T, (@) — T (2)] .= a2, (B (@) — Fp (@), O) s
< a5ty (1F (@), 9) 1y + U Fp (@), @)1,
(10.L.5) <gh (m—ﬂp)uwumw
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Algo if » >3 and #,y X
(1016) N ( n m _I" 'n y)! & +:'/) !n—l < ﬂn(”m“m(n) ']“ "y”m(n)) .
(10'1‘7) » !(‘Zﬂn-—l(w_}' y)‘,’ m—l—y)!n—l < ‘Bu—-l(“m”m(n) + ”y”m(n))‘
ILence combining (10.1.6) and (10.1.7) with (10.1.2)
an-—-nllﬂn, (w) 'I" Fn (’_1/) [ (m _l" 7/ ﬁn '| ﬂn— ]m]lm(n) + ”y ”1}1(11,) ) .
Thus .
Fn (O&') ’]' Iﬂn (f‘/) - Fn (Z‘ 'F y)l 4 Gn(“w”m(ﬂ) “+ ”@/”m(n)) .

In particulay B = Iy in quasilinear, and for n 2= 3

,Fn (:ﬂ) --.Zﬂ($)| < -Du”m”m(n) .
Thus

! (167 m) !n, < c(n-}-ll“ —T, (/E)| -+ ﬂn I-l”‘/v”m('n*i-l)
< n+1[u -P(w)"‘r( Qe I-Dn'l" ﬂn—}-l)”@”m(ﬂ-}-l)
< n(lu_I’ m)|+Hm"m(n—]-l)' °
Hence the identity ¢: R@®pX — ¥ is continuous. By the closed graph
theorem ¢ is an isomorphism.
ToeorEM 10.2. Any nuclear Fréchet space is a -space.
Proof. If X is a nuclear Fréchet space and F: X — R iy quasilinear,
then there is a Hilbertian semi-norm [j-}, on X guch that
F(z+y)~F(z) — T @)I< gl + lyl,
Since a Hilbert space is a #-gpace ([6]), there is a linear map y: X >R
guch that
B (@) — v (@) < M|,

Let {ay,) be 2 matrix with non-negative entries such that @,y , 2 Gy
for all n and for each n there exists » with a,, > 0. Then the Kothe se-
quence space li[a,,,] i8 the space of sequences (z,) such that

el = 3 lamal |2, < 00,  m =1,2,...

n=1

TasorEM 10.3. L [a,,,] is a % - .space if and rmly if given m e N there
exists << co and r > m with

a,
(10.3.1) exp (-—1 —ll) < oo (0/0 =
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Proof. If (10.3.1) fails, there exists m such that for all » > m and
T 00

. S a
(10.3.2) exp (—1 . ) = oo.
% mn
Define F: B[a,,] R by
) lle)
B () =~ Na w,log ————
7:&.1 mn'n amnlm"|

(for finitely non-zero sequoences). If R @pli[a,,,] splits then there iz a
linear map y: §[a,,] > B such that

|F' (@) — (@) < Klloll,
for some # > m. This implies

y(e,) < Ka

™
and so
(@) < Klel,
g0 that
| ()| < 2K |je],..
Hence

N el <
Nt llog 20 <21 Y,

Nl |2 =1

This means thel diagonal mayp {#,} - {d,2,} maps I, into I, where
o .
(Z” L (= 0 if Gy, = 0)‘
aQ
Hence by Theorem 8.3 we have contradicted (10.3.2).
Conversely if (10.3.1) holds and F is quasilincar, then if

(2 y) =T (@) F(y)| < (el 19 lha)
choose » > m to gatisty (10.3.1). Let

d = ‘“m

"
“1‘1?.

Then D: {w,} —{d,s,} is liftable. If we define G: l, -~ R by
! G(@) = Fl{ame))  (1/0=01).
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@ is quasilinear on I, and hence there is a linear map D

X Do = (y(w), Da), then

(@) —G(Do)]| < Ollall, o el
Henee
i'p{a‘rnwn} ""1’1(”"“ = 0”“’“,‘7 & e Z1 [a’mn]

80 that R @pl,[ay,,] splits.
Romark. Condition (10.3.1) is thus a topologieal invariant of I, [a,,,].
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