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SADDLE POINTS FOR LINEAR DIFFERENTIAL GAMES*

R. J. ELLIOTTf, N. J. KALTON AND L. MARKUS:

Abstract. It is proved that there is a saddle point over the relaxed controls, and so over the strategies
defined on the relaxed controls, for differential games in which the trajectory variable appears linearly
in the dynamical equation and payoff. This is a strong saddle point property, but the example of
Berkovitz [1], of a game that does not have a saddle point in pure strategies, does have a saddle point
in this sense. Saddle points over the chattering controls are obtained for linear games in which the
opposing control variables appear separated. The introduction of relaxed controls into differential
games is analogous to the introduction by von Neumann of mixed strategies into two person, zero
sum games.

1.1. Introduction. Motivated by work in the calculus of variations and control
theory (see [63, [12, [13] and [14), we introduce relaxed controls to study two
person, zero sum differential games. For differential games which possess a certain
linearity property in the trajectory variable (in the differential equation describing
the game and in the payoff function), we prove there is a saddle point over the
relaxed controls, and so over the strategies defined on the relaxed controls. As
pointed out below this concept of a saddle point over the (relaxed) controls is a
strong property because a player can use his saddle point control, and, indepen-
dently of what the other player does, not loose in comparison with the saddle
point payoff.

1.2. Outline. We first define a two person, zero sum differential game and
describe the notions of strategy and saddle point. In 3 and 4 we introduce relaxed
controls in a rigorous manner as elements of the dual of a Banach space of
integrable vector-valued functions. The presentation follows Warga [13]. The
relaxed controls are shown to be a compact convex set and we prove that the
"piecewise constant" relaxed controls are dense.

The games considered have a payoff which, though bilinear, is only separately
continuous on the product space of relaxed controls for the two players. However,
a general theorem of Sion [103 then states there is a saddle point, so our principal
result concerns the existence of a saddle point among the relaxed controls, for
linear differential games. We observe that the well-known example of Berkovitz [1]
(see also [3]) of a differential game that does not have a saddle point in pure
strategies does have a saddle point in our sense in the form of constant strategies
on the relaxed controls.

Finally, for linear games in which the control variables appear separated,
saddle points are obtained over the particularly simple relaxed controls known as
chattering controls.
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2. Differential games. The situation to be discussed is a two person, zero sum
differential game described as follows.

Notation 2.1. We have a dynamical system

(2.1) (t) f(t, x, u, v),

where the trajectory x(t)e R’, an initial position x(0)= (xl(0),-.., xm(O))= Xo
is given, and the time belongs to some closed bounded interval of T of R--say
T [0, 1]. There are two sets of control variables: {u} Y, a compact subset of
Rp, and {v} Z, a compact subset of Rq.

To ensure integrability of the differential equation we shall assume that the
vector function

f(t, x, u, v) (f(t, x, u, v), fro(t, X, U, V))

is continuous in t, x, u and v and satisfies a Lipschitz condition in x of the form"

If(t, x, u, v) f (t, x’, u, v)l W(t)lx x’l for X, X’ e R

(or at least for x, x’ in some compact subset of R wherein all trajectories x(t) are
known to lie), e T, u e Y and v Z. Here q(t) is an integrable real-valued function
of and l. denotes the usual distance in Rm.

Together with the above dynamical system we have a payoff of the form:

(2.2) P(u, v) l(X(t)) + h(t, x, u, v) dr.

Here / is a (not necessarily linear) real-valued function on the Banach space
C([0, 1]) of curves in R over [0, 1], and h is a continuous real-valued function on
TxRmx YxZ.

DEFINITION 2.2. A two player, zero sum differential game is a dynamical system
described by differential equations of the above form, together with the compact
sets Y and Z and the payoff P.

The first player chooses u e Y at each time e T in a measurable way, thus
generating a function u(t), so that the final payoff P(u(t), v(t)) is as large as possible.
At the same time the second player chooses v at each time e T so that P(u(t), v(t))
is as small as possible.

Remark 2.3. Denote by U (resp. V) the set of measurable functions from T
to Y (resp. Z).

A (pure) strategy for the first player would ideally be defined as some rule
which, for each time e T, determines for him his choice of u(t) on the basis of
what has happened in the game so far, that is, from the knowledge of x(r), u(r)
and v(z) for 0 _<_ z < t. Similarly, there would be a notion of strategy for the
second player.

On the grounds that a player knows his own previous choice of controls,
Roxin [5] has defined a strategy for the first player as a function e from V to U
which is nonanticipatory in the sense that"

if v(t), v2(t e V and v(z) =/)2(’17) for 0 __< z =< to, then ct(v)(z) ((/)2)(’17) for
O-<-<to.

The difficulty with this definition is that, in general, given a strategy for
the first player and a strategy fl for the second player we do not know that there
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is an "outcome" for a and fl, that is, a pair of control functions u(t) and v(t) such
that

av= u and flu v.

(We are looking for a fixed point of 0 fl:V V, but 0 and fl are not necessarily
continuous.)

If a pair of strategies a, fl do have an outcome u(t), v(t), we can write P(a, fl)
for the resulting payoff P(u, v). A solution to the game is a pair of strategies a*, fl*,
which have an outcome which is "simultaneously best" for both players. This
means that if a, fl are other strategies such that a*, fl and a, fl* both have outcomes,
then

(2.3) P(a*, fl)_>_ P(a*, fl*) > P(a, fl*).

DEFINITION 2.4. A pair of strategies a*, fl* which satisfy (2.3) are said to form
a saddle point for the differential game (over the pure strategies).

A much stronger notion of saddle point is now described.
DEFINITION 2.5. A pair of control functions u*(t) U, v*(t) V are said to

form a saddle point (over the controls) if for any other controls u(t) U, v(t) V,

P(u*, v) >= P(u*, v*) >= P(u, v*).

LZMMA 2.6. If (U*, V*) are a saddle point over the controls, then there are
identically constant strategies (a*, fl*) which are a saddle point in the sense of
Definition 2.4.

Proof. For any v(t) V and u(t) U we define a*v u*, fl*u v*. That is,
o* is described by saying that, whatever the second player does, the first player
continues to play his control u*(t), fi* is described similarly. If a, fl are any other
strategies, then 0*, fl have an outcome u*, v, say, and 0, fl* have an outcome u, v*.
Thus, P(a*, fl) _>_ P(a*, fl*) >= P(a, fl*).

Remarks 2.7. A saddle point over the controls is, therefore, a strong concept,
because if one player uses his saddle point control then independently of what the
other player does, he cannot lose. However, a saddle point over the strategies does
not give us a saddle point over the controls.

if (u*, v*) form a saddle point over the controls and if u* is played, then v
must play to minimize P(u*, v). Hence v*(t) is an optimal controller subject to
the maximum principle. Similarly, u*(t) is an optimal controller maximizing
P(u, v*).

Also, note that any other saddle point (, 5) over the controls must give the
same payoff, but nonsaddle plays might give the same value of P without satisfying
the saddle point inequalities.

Background 2.8. We have already noted that there are difficulties surrounding
the notion ofa strategy for a player in a differential game. Friedman [3] circumvents
these difficulties by considering "upper" and "lower" approximating games in
which one player or the other has advance information. To obtain the convergence
of the resulting "upper" and "lower" values of the game he requires in effect that
the payoff P(u, v) be jointly continuous in both control functions. This he ensures
by considering only dynamical systems of the form

fl(t, x, u) + f:(t, x, )
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and payoffs of the form

P(u, ) (x(t)) + [
Jo

hi(t, x, u) + hz(t, x, v) dt,

so that u and v are "separated."
Somewhat earlier (cf. [1]), Berkovitz studied differential games by a "varia-

tional approach," introducing related Hamilton-Jacobi equations which are,
unfortunately, hard to analyze.

2.1. A game with no pure strategy solutions. In [1] Berkovitz considers a
differential game described by an equation

(t)= 4(u-v)2 xeR

and with payoff

The control sets are

e [0, 1], x(O) O,

P(u(t), v(t)) x(t) dt.

Y= {u’O<=u<= 1} and Z= {v’O<=v<_ 1}.
In terms of his "variational approach," Berkovitz shows this game has no solution
in pure strategies.

A. Friedman also cites this example in [3] and shows that for this game his
upper value V + 1/2 while his lower value V_ 0. Thus, as V + - V_, this game
does not have a value in his theory.

We shall see below, however, that by introducing the idea of relaxed controls,
this game, for example, does have a saddle point over the relaxed controls.

3. Relaxelt controls. The notion of relaxed, or generalized, curve was
introduced into the calculus of variations by Young [14], and applied to control
theory by Warga [13], McShane [6] and Young [15]. For further introduction of
relaxed controls into differential games see the paper by Smoljakov [11]. The
method and content of Smoljakov’s paper, however, is quite different from the
treatment below. In the discussion of relaxed controls described below we shall
follow the setting described by Warga [13].

Suppose we have a dynamical system and payoff as described in Notation 2.1.
We have already introduced U and V for the spaces of measurable functions from
T to Y and Z respectively. U and V are, of course, just the spaces of (classical)
control functions.

DEFINITION 3.1. Denote by (PY) and (PZ) the space of all regular prob-
ability measures defined on the Borel subsets of Y Rp and Z = Rq, respectively.
A relaxed control for the first player is a function a from T-- [0, 1] to PY. A
relaxed control is continuous (resp. measurable)if y f(u)cr(du;t) is a continuous
(resp. measurable) function of T, for every continuous real-valued function f
on Y. A relaxed control for the second player: :T PZ is defined similarly. We
shall identify relaxed controls which differ only on a set of measure zero.

Remarks 3.2. Here a(A, t) denotes the a(t)-measure of any Borel set A = Y.
By approximating the characteristic function of A with continuous functions on
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Y, for example, it is easy to see that, if r is a measurable relaxed control and A
is a Borel subset of Y, then or(A, t) is measurable and integrable over T.

Notation 3.3. Denote by 5(Y) the set of measurable relaxed controls on Y.
If u(t) U is a classical control, then 6(u(t)) can be thought of as an associated

relaxed control giving, in effect, the same control. (By 6(u(t)) we mean the prob-
ability measure on Y which at time has total unit mass at u(t)that is, a Dirac
f-function at u(t).)

DEFINITION 3.4. Iful(t), ..-, uk(t are classical controls and zl(t) > 0, ..., k(t)
>= 0 are measurable functions on T such that zj(t)= almost everywhere,
then we shall say that = j(t)6(uj(t)) is a chattering control of degree k. Such
controls are special cases of relaxed controls and are discussed in Lee and
Markus [4].

DlqyIa’oys 3.5. C(Y) will denote the Banach space of continuous real-valued
functionsfon g with the usual norm’ fl supply [f(u)l LIo,(c(Y)) will denote
the Lebesgue space of integrable C(Y)-valued functions {0} defined on [0, 1]
with the norm

Ilq0l sup [qo(u, t)[ dt.
uy

For a discussion of Lebesgue spaces of Banach-space-valued functions, see
Dunford and Schwartz [2 and Schwartz [9.

A real-valued function q(u, t) defined on Y x [0, 1] defines a function in

Lo,, 1(C(Y)) if"
(i) q)(u, t) is measurable in for each u e Y;
(ii) o(u, t) is continuous in u for each e [0, 1] and

(iii) there exists an integrable real-valued function (t) on [0, 1 such that
I0(u, t)[ =< *(t) on g x [0, 1].

Conditions (i), (ii) and (iii) ensure that sup,r ]q)(u, t)] is integrable and so ]q[[ is
finite.

Notation 3.6. Write B for the Banach space L[o,a1(C(Y)).
DEFINITION 3.7. Denote by B* the dual of B and by (q,2) the value of

/l B* at q e B. We shall consider B* to have the weak star topology. A sequence
{2i} converges to 2 e B* in this topology if

lim (q, 2i) (q, 2) for all q) B.

Elements of B* are described by the following lemma, which follows from
results in [9, Expos6 4, p. 3].

LENA 3.8. Suppose 2 B*. Then there is a measurable map t from [0, 1] to

the class of regular signed Borel measures on Y such that

(q), 2) q)(u, t)lt(du; t) dt for all q) e B.

Furthermore, I/t] (Y, t)e L([0, 1]).
Note that the norm of 2 e B* is just ess supo,l I/I(K t). Hence the norm

of any relaxed controller a e 5(Y) is just 1. From this lemma we have the following
theorem.
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THEOREM 3.9. The set (Y) of relaxed controls can be considered as a closed
convex subset of the unit ball of B*, and so with the weak star topology 5,(Y) is
compact.

For the proof again see [13].
For simplicity of exposition consider, instead of a differential game, a control

system with just one control variable u Y c RP; that is, a dynamical system

(3.1) 2(t) f(t, x, u), x(t) e Rm,
with initial condition x(0) x0 and f satisfying a Lipschitz condition

If(t, x, u) f(t, x’, u)[ <= (t)[x x’[

with (t)integrable.
Under these hypotheses we quote from [13].
THEOREM 3.10. Suppose a 5(Y) is a measurable relaxed control. Then there

is a unique absolutely continuous solution x(t) of the differential equation

(3.2) (t) Jy f(t, x, u)a(du t)

differentiable and satisfying (3.2) almost everywhere, with initial condition

x(O) XO Rm.
DEFINITION 3.11. Such a solution is called a relaxed trajectory.
From this Warga [13] proves the next result.
THEOREM 3.12. Denote by x(t;tr) the relaxed trajectory solution of (3.2).

Suppose {tri} is a sequence of measurable relaxed controls such that t7 -- (7 in the
weak star topology of 5(Y). Then xi(t;tri) converges to x(t; ty) in the uniform
topology on [0, 1].

A corollary of this result is that the space of relaxed trajectories is compact
in the uniform topology.

In preparation for our discussion of differential games let us return to our
discussion of dynamical systems with two sets of control variables as described
in Notation 2.1.

LEMMA 3.13. If tr is a measurable relaxed control on Y and z is a measurable
relaxed control on Z, then tr z is a measurable relaxed control on Y Z, and
tr z can be considered to belong to the unit sphere of the dual of LI(C(Y Z)).

Proof. The first statement is a simple consequence of results on product
measures.

Given a function f(t,u,v) in LI(C(Y x Z)) we have that for each v’ e Z,
f(t,u,v’)eL(C(Y)). Therefore, fyf(t,u, v)a(du;t) is continuous in v for each
e [0, 1] and is measurable and dominated by an integrable function in (uniformly

for all v e Z). Thus we can consider

fo fyfzf(t,u,v)a(du;t)z(dv;t)dt= (f, a xz).

It is clear that a z is a probability measure on Y Z for each [0, 1] and that
a z has unit norm as a linear functional on LI(C(Y Z)). Thus a z belongs
to (Y Z).
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Remark 3.14. Note that by Fubini’s theorem,

f(t, u, v)(dv t)(du t).

Discussion 3.15. Suppose Y Rp, Z Rq are compact sets as above, and
write

Ba L(C(Y)), B2 Lx(C(Z)), Ba L(C(Y x Z)).

The dual spaces B will as usual be given the weak star topology. Denote by
5(Y), ,9(Z), 5(y Z) the spaces of relaxed controls over [0, 1] on Y, Z and
Y Z respectively, so that we have

S(Y)B, S(Z) B, (r Z) B.
Lemma 3.13 above tells us that we have a natural mapping from 5(Y) 5(Z)
to (Y Z). Of course this map is not surjective, but more surprising this
(bilinear on convex combinations) mapping is not jointly continuous in both
variables, as the following example shows.

Example 3.16. Suppose Y= [0,1] and also Z= [0,1]. Consider a
partition of the time interval T [0, 1] into 2" equal intervals T1 [0, 1/2"],
Tj (j 1)/2", j/2"], j 2, ..., 2". Corresponding to the 2" partition of T con-
sider a relaxed control a, on Y and a relaxed control r, on Z which are piecewise
constant on each T, j 1, ..., 2", and which are such that

,(. ;t) and z,(- ;t)

are the unit mass at the point 1 e Y(resp. 1 e Z) if e T1 U T3 U T5 U U T2._
and a,(. ;t) and :,(.;t) are the unit mass at the point 0e Y (resp. 0eZ) if

teT2 U T4 U T6 U U T2..
Then it is easy to see that both a, and :, converge in B]’ (resp. in B) to the

constant relaxed control a on Y (resp. on Z) which consists of a mass 1/2 at 0
and mass 1/2 at 1.

However, the product relaxed control r, x :. on Y x Z [0, 1] x [0,
converges in B to the constant relaxed control z which consists of a mass 1/2 at
(0, 0)e Y x Z and mass 1/2 at (1, 1)e Y x Z.

Clearly rc 4= z, so the map is not jointly continuous. (To check the above
statements about the weak star convergence of ,, :. and , x :,, it is sufficient
to check how these relaxed controls act on products of functions f(t), q)(u),
wherefis continuous on T, q is continuous on Y and is continuous on Z. This
is because, for example, sums of products of the form f(t)q)(u)/(v) are dense
in B3 .)

DEFINITION 3.17. In Definition 3.1, we introduced the idea of measurable
relaxed controls. Returning to a differential game described as in Notation 2.1,
following Theorem 3.10, if the first player uses a relaxed control (. ;t) and the
second player uses a relaxed control :(. t), then we define the dynamical equations
to be given by the system

f(t, x, u, v)a(du t)z(dv t).
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Furthermore, the payoff corresponding to the relaxed controls a and z is defined
to be

(3.4) P(a, z) #(x(t)) + h(t, x, u, v)a(du t)z(du t) dt.

Remarks 3.18. It is a consequence of Example 3.16 and Definition 3.17 that
P(a, z) is not in general jointly continuous in a and z. However, in special situa-
tions, for example those discussed by Friedman [3] in which the control variables
are separated, the payoff is jointly continuous and the definition of P(a, z) can be
motivated by continuity because (cf. [13, Thm. 2.4]) the classical control functions
are dense in the relaxed controls.

Similar to Definition 2.5 we have the strong concept of a saddle point over
the relaxed controls.

DEFINITION 3.19. A pair of relaxed controls r* e 5(Y), z* e 5e(Z) is said to
form a saddle point over the relaxed controls if for any other relaxed controls
r e 5z(Y), z e 5z(Z),

P(a*, z) >= P(a*, *) >__ P(a, z*).

Remarks 3.20. Having made the above definitions we remark that, as is
easily seen, one reason the Berkovitz game (cf. 2.1) is difficult to analyze is that
having introduced relaxed controls its payoff is not jointly continuous on
5z(y) 5z(Z).

4. Certain linear games. Suppose the system of equations describing the game
has the form

(4.1) (t) A(t)x(t) + f(t, u, v)

with initial condition x(0) Xo R". Here A(t) is a continuous linear function of
[0, 1], that is, A(t) is an m x m matrix whose entries are continuous functions

of time. f(t, u, v) is a continuous function on T Y x Z.
Furthermore, suppose the payoff has the form

(4.2) P(u, v) p(x(t)) + h(t, u, v) dt,

where p is a continuous real-valued linear function on the Banach space C([0, 1])
of continuous R"-valued functions on 0, 1].

We are now in a position to prove our final result.
THEOREM 4.1. Consider the differential game with dynamics and payoff given

by equations of the aboveform (4.1) and (4.2). Then there is a pair ofrelaxed controls
a*(., t), z*(., t) which give a saddle point for the game when each player can play
over his set ofall relaxed controls. That is, ifa(., t) (resp. z(. t)) is any other relaxed
control for the first (resp. second) player,

P(a*, z) >__ P(er*, z*) >__ P(cr, z*).

Proof. Since the system equations are linear in x, it follows that for fixed z
in 5z(Z) the mapping a p(x(. )) from 5z(Y) to the real numbers is continuous
and linear on 5(), where 5z(Y) is a subset of B]’, endowed with the weak star
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topology. Similarly, for fixed a in (Y) the mapping z #(x(. )) from 5(Z) to
the real numbers is continuous and linear. Hence for fixed z in 5(Z) the mapping
a ---, P(, z) is continuous and linear on 5(Y). Similarly for fixed a in 5(Y) the
mapping z P(a, z) is continuous and linear on (Z).

Since 5(Y) and (Z) are convex and compact, the existence of a saddle
point follows from the general theorem of M. Sion [10]. The results in Sion give
infsup supinf, but since we have P continuous in each variable and 5(y)
and (Z) compact, it is easy to see. that we also have max min min max and
the existence of a saddle point, that is, there are relaxed controls a* (Y) and
z* 5(Z) such that (4.3) is satisfied.

Remark 4.2. We note again that the example of Berkovitz [1] described in
2.1 is a differential game described by an equation of the form (4.1) and with

payoff of the form (4.2). This game, therefore, has a saddle point over the relaxed
controls.

In fact, Smoljakov [11] proves by variational methods that a saddle point is
obtained over the relaxed controls in the Berkovitz game if u (trying to maximize
the payoff) "plays" a constant probability measure a* (mass 1/2 at 0 and mass 1/2
at 1) throughout the time interval, while v plays the constant control v(t)- 1/2
throughout the interval.

5. Chattering control saddle points. In this section we examine several special
cases of Theorem 4.1; in particular, we consider when the saddle point (a*, z*)
over the relaxed controls can be reduced to a saddle point over classical controls
or, perhaps, chattering controls (see Definition 3.4) of a specified degree.

THEOREM 5.1. Consider a game with dynamics

c A(t)x + B(u, t)+ C(v, t),

and payoff

where

x(O) xo R",

P(u, v)= la(X(t)) + f] (F(u, t) + G(v, t)) dt,

B’Y [0, 1] R"; C’Z [0 1] -- RF:Yx [O, 1]R, G:Z x [O,1]R

are each continuous, and A and l are as in (4.1). Then iffor each [0, 1] the sets

L
F(u,

u Y M
G(v, t)

v e Z

in R"+1 are convex, there is a saddle point (u(t),v(t)) over the classical controls.
Proof. Let (a*(t), z*(t)) be the saddle point over the relaxed controls obtained

by Theorem 4.2. We determine s(t) R"+ by

s,(t)
r
Bi(u, t) da*(t, u), <= <= m,

fr F(u, t)da*(t, u), m + 1.
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L is by assumption convex, and it is also compact as Y is compact and B and F
are continuous. Hence it follows that s(t) Lt and is a measurable function of

[0, 1]. By the Filippov implicit function theorem (cf. [5]) there is a measurable
function u* :[0, 1] such that

F(u*(t), t) F(u, t)

Similarly we determine v*(t) such that

C(v*(t), t)) fz C(v t)) dz*(t v)"
6(v*(t), t) F(v, t)

It is clear that u*(t) has the same "effect" on the game as the relaxed control
a*(t), and similarly v*(t) has the same effect as z*(t). Hence it follows easily that

P(u*, v) >= P(u*, v*) >= P(u, v*)

for any other pair of control functions u(t), v(t).
COROLLARY 5.2. The above result holds when Y and Z are compact and convex

and

B(t, u) B’(t)u, C(t, v) C’(t)v,

F(t, u) F’(t)u, G(t, v) G’(t)v,

where B’(t), C’(t), F’(t), G’(t) are each matrix-valued.
The assumption that L, and,M, are convex for each may be dropped if we

are only interested in establishing a saddle point over the chattering controls of
suitable degree.

THEOREM 5.3. Consider a game with the same form as in Theorem 5.1 except
that we do not assume that L and Mt are convex. Then there is a saddle point (a,, z,)
over the chattering controls of a degree m + 2. If Y and Z are connected, we may
take (a,, z,) of degree m + 1.

Proof. Let F(Lt) be the closed convex cover of L in R" + then by a theorem
of Carathgodory, if 6 F(L),

m+2

i=1

where ai 1, ai _>_ 0 and e L,. Now consider the set A" + 2 x yrn + 2 )< [0, 1],
where A"+2 c R"+2 is the set of all {}7’=+( such that Z a, and a, > 0. The
map

O:Am+2 x ym+2 [0, 1] Rm+l

given by

0(01’ 0m+ 2, Ul, b/m+ 2, t) i
i= F(ui,

is continuous; hence if (a*, z*) is the saddle point over relaxed controls, we may
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apply Fillipov’s theorem to deduce the existence of measurable functions

i’[0, 1] ---, R, 1,2, ..., m + 2,

vi’[-0,1] Y, i= 1,2,...,m+ 2,

such that ei(t) >_- 0, oq(t) 1, and

i F(uj, t) f(u t)i=1

m+ 2for all t. The chattering control a, = (t)6,,,)has the same ’effect as a*.
A similar argument to that of Theorem 5.1 concludes the proof.

If Y (and then L) is connected, Carath6odory’s result may be improved to
expressing F(L,) as

m+l

i=1

and the proof proceeds as before.
This theorem may be extended to cases in which the u- and v-dependence in

the dynamics does not split entirely, but becomes "polynomial-like" (in the
terminology used in simple game theory). For simplicity we consider only the
case where x is a real variable (i.e., we assume m 1), with the dynamics of the
game given by

p

(5.1) 2 A(t)x + , aij(t)q)i(u, t)Oj(v, t)
i=Oj=O

(where we assume that qg0(u, t) _-- 1, O0(v, t) 1), subject to the initial condition
x(0) 0; the payoff is also "polynomial-like""

(5.2)

We assume that

P 2(x(t)) + bo(t)q)i(u, t)O2(a, t) dt.
i=0j=0

q)’Y x [0, 1] -+ R, =0,1,2,...,p,

j 0,1,2,.-.,q,

i= 0,1,2,...,p,

j-- 0, 1,2, ,p,

q91(U

(u, t)

%(u

t)

2:Z [0, 1] R,

ao [O 1] --+ R

bij’[O 1] R

are all continuous. Then we can state the following theorem.
THEOREM 5.4. The game described by (5.1) and (5.2) has a saddle point in

chattering controls (a*, *) of degree p + 1 and q + 1 respectively. If Y and Z
are connected, a* and * may be taken of degrees p and q.

Proof. Consider the map :Y x [0, 1] Rp,



SADDLE POINTS 111

Let,(Y)=(Yx {t}), 0 =< _<_ 1;then

fr (u t) da*(t, u) e F(,(Y)).

Consider the map

O’Ap+I x YP+I x [0, 1]--+ Rp,
p+l

0(0{1, Op+ 1, bll’ "’’’ Up+ 1’ t) E Oi()(Ui’ t).
i=1

Then by Carath6odory’s result,

O(Ap+l x YP+I X {t}) F((I)t(Y))

and 0 is continuous. Hence by the Filippov theorem we may determine measurable
functions al(t), .", %+ 1(0, v(t),..., Vp+ (t) such that

P+’ Li=1

We show as before that the chattering control
p+l,
i=1

has the same effect as a*. Let z(t) be any relaxed control for the second player.
Then the trajectory described by (r,, ) is given by

2 A(t)x + o o aii(t) qi(u, t)/j(v, t)da,(t, u)dr(t, r)

A(t)x + o o aiJ(t) qh(u, t)j(a, t)da*(t, u)dz(t, a)

and is therefore the same as the trajectory described by (a*, z);a similar argument
may be used on the payoff. We determine z, for the second player and the result
follows. Once again if Y and Z are connected, we may reduce the (p + 1)-degree
to p, as in Theorem 5.3.

A similar theorem may be stated in R", where for each coordinate the
dynamical equation is "polynomial-like." We conclude by observing that the
Berkovitz game (see 2.1) may be analyzed by Theorem 5.4. Thus if

2 (U /3)2 U2 2uv + v2

we may take q)l(U, t)= U, (P2(U, t)-- U2, while 01(/3, t)"-- /3, 02(/3, t)-- /)2. As the
payoff

.1

p j x(t) at
0

does not depend on u and/3, these are the only functions required. Thus p q 2,
and Yand Z are connected. We may therefore expect a saddle point over chattering
controls of order 2 (see Remarks 4.2).
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