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1. Introduction. The Maharam problem for submeasures is a classical problem in
measure ‘theory dating from 1947, which has a very simple and natural formulation
but seems: curiously elusive: The problemt is quite fascinating in its own right- but has
achieved some special significance in functional analysis since its reappearance as the
Control Measure Problem. .In fact it is related to a number of fundamental questions
in the theory of F-spaces (general non-locally convex complete metric linear spaces)
. In this survey, we will give a somewhat: personalxzed view ‘of ‘the evolution of the
~ problem and its ramifications. As the readér wxll see, these sometlmes wander a httle
‘distance from the original formiilation. =~ v o AR
We would'like to take this opportunity to- acknowledge our debt in understandmg
the history of the Maharam problem to the review of [29] by Z. Lipecki [33]. Another
valuable reference is the Commentary by Maharam. on the orlgxnal von Neumann prob-
lem in the recent edltlon of the Scottish Book [37] p 242 . T

2. The Maharam problem for Boolean’ algebras ‘Suppose A isa Boolean algebra
The A is called a measure algebra if it is complete and there is a stnctly posxtave measure
¢0nﬂ1e ama.p¢ A — R such that:~ .- - L :

(Ml) ( ) >0ifand only if a £ 0.

(M2) $(a+b) = $(a) + $(0) if ab = 0.

(M3) ¢(an) l 0 whenever a, | 0. .

On 4 July, 1937 von Neumann asked in the Scottash Book ({41] Problem 163) for
an internal characterization of measure algebras He noted that any measure algebra
has the Countable Charn Condltlon ' ' : : :

(CCC) If (a, iel ) is a dlSJomt fa.mlly of non-zero elements then I is countable

, A first guess might be that a complete Boolean algebra w1th (CCC) is;a. measure
algebra But this is.false: as von Neumann notes the algebra of regular open. subsets
of [0,1] is a counterexa,mple This example may also be descubed as the o~algebra of
Borel sets in [0,1] reduced modulo the idéal of sets of first (BaLre) category. Thus von
Neumann suggested adding another condition, the weak dlstrlbutlwty law: "

(WDL) If (@nn)m nent is-such that for each m the sequence (@mn)S2., is increasing
_then . y

<L

mf sup amn = Sup mf am n(m)
n(m) ™

where the second sup is taken over all maps m — n(m)". o
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Shortly after this (in 1941-2) these problems were studied by Maliaram who pub-
lished her work in 1947 ([36]). Her viewpoint was topological. Given a complete Boolean
algebra, order-convergence of sequences induces a convergence structure on A. This
structure is given by a topology precisely when (WDL) holds. For a measure algebra it
is given by a (complete) metric: d{a,b) = ¢(a + b).

These considerations lead her to consider what we might now call submeasure al-
gebras. £:is a-submeasure algebra if it is complete and thereis amap ¢: A - R (a
Maharam submeasure) satisfying (M1), (M3) and' (M4):

- (M4) ¢(a) < ¢(a+b) < ¢(a) + ¢(b) whenever ab =0

Then A is a complete metrizable topological group under the metric d{a,b) =

¢(a + b). Further 4 has both (CCC) and (WDL). Further Maharam shows that if
. (CCC) and (WDL) imply that 4 is a submeasure algebra then the Souslin. ‘hypothesis
holds. Since the Souslin hypothesis is independent of (ZFC) ([16], 55]) this, in a certain
sense, resolves the quest;on of von Neumann. It also leads to: . o
THE MAHARAM PROBLEM Is every submeasure algebra a mcasurc a]gebra
; The von Neuma,nn problem of 1dentxfymg measure algebras mternally was aiga.m
’studxed by Kelley ([31]) Using the Hahn-Banach theorem he was able to esta,bhsh

' criteria for a complete Boolean algebra to be a measure algebra However, these results
B do not provxde a.ny immediate information on the Maharam problem.”~ =

'3 The C"o'ri'tro"l' Measure Problem. Let us now change viewpoint slightly from
Boolean algebras to set funictions. let ¥ be an ‘algebra of subsets of some set 1. We say
;that a map % : E —+Ris.a submcasure 1f : : -
- (51) #(#) =0 |
(S2) ¢(4) < ¢(AUB) <¢(A)+¢( ) forA BEE
If, additionally, ¥ is a o—algebra we say that <,z5 is continuous or a Maharam sub-
measure if: : o
(83) ¢(An) | 0 whenever 4, | 0. ' '
_ If ¢ is a Maharam submeasure, then 5o = {A ¢v( ) = 0} is a o—ideal and E/ 2o
7 isa submeasure algebra Thub Mahram s problem may be reformulated as:

THE MAHARAM PROBLEM (II) IF$isa Maharam submeasure on a o— algebra X,
does there exist a (countably additive, positive finite) measure X on ¥ equivalent to ¢,
~i.e. such that AMA) = 0 if and only if $(A) =

- In-this for'mulatlon, it is possible to see connections with functional analysis. Ma-
'haram submeasures arise naturally in Banach space theory without perhaps being so
ideritified: Let us suppose X is a Banachspaceand F: ¥ — X is a (countably add1t1ve)
“vector measure The semi-variation of F is defined by

- 1F([(A4) = sup(|F(B)|| : B C 4, B €X).

R

The seml-varlatxon ”F” is then a Maharam submeasure. The Maharam probleém for
this submeasure is answered by a classical early result on vector measures, the Bartle-
- Dunford-Schwartz theorem ([7], p. 14 or [3]). This asserts that ||F|| is equivalent to
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a meastire A. This was' taken further by Rybakov [54] who shows’ tlrat We can’ actua.lly
pick z* € X* so that |z* o F| is equivaleént to || F|[: BTN
.‘Thus; the:Bartle-Dunford-Schwartz. theorem is a partial answer to the Maharam
: problem for certaiii spécial submeasures.- Rybakov s.theorem: hmts at. the 1mportance
of the local convexity of X, so that we can use the Hahn-Banach theorem to obtam a
- very rich dual space.. If we ms_tead assume that X is merely an F-space (a complete
mnetric linear space) and that z — =l is ‘an F-norri (see [27]) then'we can still define
the seml-varxatron of an X-valued measure F- as above and the valrdlty of the Bartle—
- Dunford Schwartz theorem becomes a.n open problem ' R

THE CONTROL MEASURE PROBLEM let X be an F-space and suppose F E — X
is a vector measure. Does there ¢ exrst a measure A on E whrch controls F Le. A(A) =0

implies F(A) =

, The’ Control Mea,sure Problem is completely equlvalent to ‘the: Maharam Problem.
"This requrres two elementary observations. First, if a Maharam submeasure ‘¢ has a
‘ control measure X (i.e /\CA)‘_** 0 implies’ ¢( ) = 0} ‘then"it also has’an “equivalent
" measure I ' To see” thls let ‘B be a ‘set of maxitnal X~ measureiso that ¢( 3) =0 and
""'set u(A) = /\(a \ B). Secondly if ‘¢ is'd Maharam measire on L wé can topologize the
~ space Lo (¢) of all ‘D measura.ble functions: (modulo sets’of ¢~ measure zero) wrth the
"“topology of convergence in ¢—~measure. Theti Lo(é)i is an F- space W1th F-norrn :

. lfl=inf{e: ¢(|f] > ¢) < 6}

. The vector mea‘sure‘F (A) = xa then has a control measure if and only 1f ¢ has a control
measure.. -. - : S ‘i '
Durmg the late 51xt1es and early seventles there was a tremendous surge of mterest
in the theory of vector measures in Banach spaces (see Diestel-Uhl [7]). Quite naturally,
""‘there was'a’ correspondmg move to eéstablish the foundations of a; theory in-more general
" spaces (F-spates or’even topologxcal groups); see (9], 10],-{11], {17}, or {59)] for example.
‘Strong motivation for such a theory is prowded by the'work of Metivier and Pellaumail
' "'[40] relatmg stochastic integrals to’ vector measures’ valued ini” the ‘space of measurable
functions, Lo (0, 1). In fact the' deVelopment of vector measure’ theory in this framework
has proved richly rewarding for the study of general F-spaces: Prior to 1970, very little
had been done in this:area but questions related.to,vector measures proved a valuable
_stimulus. In_this context we mention generalrzatrons of the Orlxcz—Pettls theorem ([21))

o the question of boundedness of the range of a general vector measure ([26] [58] or-

[60]).
. Thus-the equivalence of the Maharam: and Centrol Measure problems resulted in a

‘ =resurgence of interest in this question:. .Submeasures: were, studled in several papers in
the early seventies both from the viewpoint of Boolean; a,lgebra,s and; in more dxsgursed
form, from the vector measure angle (see e.g: [5] [6] [8] [9] [10] [11] [15] [46] (47],
h [48] and (56])
Let us now turn to a drscussron of the Control Mea,sure problem It 1s easy to

of contmuous lmear functronals, thrs essentlally ‘reduces the - problem to the Bittle-
" Dunford-Schwartz theorem. Thus, in the quest for a counterexample, we are naturally
led to the classical examples of spaces with trivial dual, the spaces L,(0,1) where
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0 < p < 1. However, even. here the answer is positive although it lies much deeper The
key is a factorization theorem of Maurey [38]. '

'THEOREM 1. Let 1 ‘be a compact’ Hausdorff space and Jet T C(ﬂ) — L, be a
bounded linear operator. Then there exists g € Lo wzth g( ) > 0 a. e so that To maps

c{f) mto L2 whereTof—ng = SR

..+ . Now if F Y- Llp is a vector measure, we may- take ﬂ to be the Stone space
of T and define the operator T : C(R) — L so that if A € ¥ then T(x4) = F(A).
(Here we 1dent1fy ¥ with the algebra of clopen sets of (1. ) Now ‘applymg the Bartle—
Dunford-Schwartz theorem to the vector measure’ FO(A) To (x A) nges the result So
‘wehave ‘ R

.....

A key step in the above proof is that T can be well—deﬁned this depends on the
- ea.sdy verified fact that the convex hull of the range of F, co F(X) is bounded in.L,.
- H:ave try to extend the result to Lo thls is more dlfﬁcult In fact Maurey and szler

,,,,,

,Turpln E60] showed that there are vector measures whose range F (E) is unbounded
-Whether this could happen in Lo remamed open until Talagrand [58] and the a,uthor,

::Peck-and, Roberts [26] estabhshed that every Lo—valued Vcctor measure is bounded.
This then enables us to, state P C

THEOREM 3. IfFF:% >'Loisa vector measure,then F has a control measure.' -
o The'::c'origcl'deion”of this discussion is that if theControl Measure Problem-has a
ne'gati\'ie »sol'u't'ion, it will require a new space outside the most obvious examples. B
i, Pathologlcal submeasures and pathological spaces. Let us. suppose that ¢ is
.a-submeasure defined on some. algebra of sets L. We may; by a standard 1dent1ﬁcat10n
. ~regard’l -as consnstmg of the algebra of clopen subséts of some totally d:sconnectod
. ' compact:Hausdorff :space . It.is then posqlble t& describe’ precisely the conditions
“i+ ynder which .6 may be. extended to a Maharam submeasure on the o—algebra of Borel

«:*subsets of 3. We require that: -
'_(S4) If A,, €Tisa disjoint sequence then limy,—c0 $(An) = 0.
| A submeasure satlsfymg (S4) is called an exhaustive submeasure We can now

reformula.te the Maharam problem in yet another way:

"THE 'MAHARAM PROBLEM (IIl). If ¢ is an exhaustive submeasure on an algebra
' Y'does there: ex:st a finitely-additive measure A on L equivalent to ¢ in the sense that

-l @(An) = Oif and only if lim A(4s) = 0.

]

Let us remark here that a finitely additive vector measure induces an exhaustive

. submeasure if and.only if it is strongly bounded ([7]) or exhaustive.
- .In: [6 ] Chrlstensen and Herer went on to reformulate the problem in terms of

pathalogzcal submeasures They defined ¢ to be pathological if for every finitely-additive

measure A on X w1th 0 <A< ¢ we have A = 0. They then showed that the éxistence
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~ of a Maharam submeasure non-equivalent to measure implies the existence of.a non-
. trivial pathologlcal Maharam submeasure, or equivalently the existence of a pathological
exhaustive subincasure defined on some algebra. Since the converse statements are

:esqentla,lly anxal ‘we can rephrase the questxon

THE MAHARAM PROBLEM (IV). Does there exxst a non tnwa] exhaustwe patho-
logical submeasure? - »

So we may ask the simpler question of whether pathologlcal submea.sures exist at
all. Several authors (Popov [46], [47], Christensen-Herer (6] and Talagrand [567]) showed
that there are nontrivial pathological submeasures The problem is to buxld in the extra
condltlon of exhaustivity. RN ; :

“Let us now describe an example (essentially that of Talagrand [57} although-it was
mdependently discovered by Roberts). We start by making.a.finite algebra X =:2% and
~ a'normalized submeasure ¢ so that if ) is a measure on'f): w1th 0.<‘A <.¢ then A(Q)
_-is small. Let n € N and let (1 consists of all'subsets of {1,2;. 2n} of cardinality n.
" Thus o] = ( ) For 1 <1< 2nsetC;= {w i € w}Then: {Cl, v5Can} is a family
of subsets of {1 with the property that any covering of {} by a subcollectlon uses at: least
n+1sets. If A C (1 weset ¢(A4) = +1 where k is the cardinality of a minimal covering
of A by sets C;. In the space of functxons on {1 we have

1 2n
Xn = ;{ Z XCjy
J=1

and hence if X is a measure with 0 < A < ¢ ‘we have

1 2n 2
AQ) < = ) S
(ﬂ) > n§¢(cj) “n+1

Now using this we construct a sequence of finite sets (1,, and normalized submea-
sures ¢, on 27" such that if 0 < X < ¢, then A(Q,) < €, where lime, = 0. Consider
the product space @ = [] o Q and let T be the algebra generated by all cylinder sets,
ie. sets of the form A X H#n ﬂ,, where A C Q,,. We define

o(A X Hn

j#n I AN

and fhen, if B €L we aéﬁne | o
N . '{“;
B) =inf > _ ¢o(Ck)
,_ it

“where the -inﬁmum is taken over all finite coverings {Cy,....,Cn} of B by cylinder sets.
We.can check that ¢(f1) =1 andif 0< A< disa ﬁnitely additive measure then

MAx [ 95) < éa(4)..
-JFEn TS
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for all A C Q.. Hence A() < ¢, for all n and the result follows.
As can be seen, thé above construction is quite elementary but closer:inspection
suggests that it is too’ snmple to work to construct an exhaustlve pat.hologxca,l submea—

sure. : . o
In their paper [6] Christensen a’nd' Hérer used a dlfferent r’nore‘mVolVed existence

. proof, and then went on to use pathological submeasures to build some examples of

- F-spaces (or, more prec1sely, topological groups). If ¢ is a pathologlcal submeasure on

. +the quasi-norm: ' ..

some algebra T then the space Lo(¢) can be defined as the completion of the simple

L functions with respect to the F-norm ||f|| = inf{e : #(|f] > €¢) < €}. The basic idea of
“Christensen and Herer is that if ¢ is pathological then any continuous linear: operator
T : Lo(d))' = Lo(u) where p is a measure, vanishes. Motivated by these ldeas, the

author and Roberts [28] defined a point z in an F-space X to be pdthological if wheriever
T: X — Lg( ) is contmuous and pisa measure, then Tz = 0. A'space X is pathological
if every z € X is pathologlcal ‘Thus the Chrlstensen—Herer result shows that from

. pathologlcal submeasures we can build pathologlcal F-spaces. The convérsé foute can

also be followed. Indeed, suppose = € X is patholigical and non-zero. Let X*#: ‘be the

« algebraic dual and set._ﬂ ={f € X' f(z) = 1}. Let £ = 2 and deﬁne for A E Z}

A)=inf 3 o]
i=1

" where the infimum is taken over all finite sets z1,...,zn such that

EDT(C R

whener f € A. Then it may be shown that ¢ is pathological.
There are more elementary examples of pathological spaces, however. For0 < p < 1
consider the space L,(T) of all complex—valued Borel functions on the unit circle T with

21r ) do
i6\Ip
1l = (/ 1£(e) 2,,)
Let H, be the closed subspa.ce generated by the functions {e"¥ : n > 0}. Then the
quotient space Ly/H), is pathological. The author showed this in [20] via a represen-
tation theorem for operators on L,, but an alternative neat proof has been given by
Aleksandrov [1]. We begin with the observation that by virtue of a celebrated theo-
rem of Nikishin [42], it will suffice to show that if 0 < ¢ < pand T : L, Ly is a
bounded operator with T(H,) = {0} then T = 0. Define a map h on the umt disk A

with h : A — L, by _ o
' hiz) = (1 - ze )71,

.. Then h is analytic-on A (cf. [1]) in the sense that it has a power-series expansion.
Further it- extends contmuously to T and h(z} € Hp if |z = 1. Thus T o'k is also

analytic and T o k(z) = 0if |z| = 1. Using the fact that the standard quasi-norm on L,
is plurisubharmonic this implies that T o h{z) = 0 for all 2z € A. It can then easily be
argued (for example by considering the power series for T o k) that this forces T' = 0.
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Let us remark that although the example given is complex there is no problem in: then
showing that the underlying real space is also pathological. S

This is a suitable moment to mention another very fundamental problem for F-
spaces which seems to have some connection with the Maharam problem.

THE ATOMIC SPACE PROBLEM. Does every mﬁmte—dlmenszonal F -space have a proper
* closed infinite-dimensional subspace?- o Lo S

It is remarkable that this simply stated problem, which has ‘been around for a
number of years in some form or other (cf. [32]), should.be apparently so difficult. We
call a space atomic if it has no proper closed infinite-dimensional subspace. It seems
that the problem should be split into two cases, dependmg on whether we requlre the
space to be locally bounded (a quasx -Banach space) or not. o :

It X'is a quasx-Banach space whlch is atomic then it is pathologrcal "To see this we
first observe that L, has no atomic subspaces In fact the recently developed theory of
stable Banach s spaces has been extended by Bastero [4] to show that every subspace of
.. L, contains a subspace 1somorph1c to £, for some p <'¢ < 2. Then lelshm s ‘theorem
. allows us to show that if X is not pathologlcal then there exists 0 < p ‘< 1 and a non-
: Zero operator T: X — L,. We may assume T is not of finite rank and then show’that
,there is a proper closed subspace Y ~ €4 of the closure of T(X) which intetsedts’ T(X)
in an infinite-dimensional subspace. Then T-1(Y)is a proper closed subspace of X.

. In the. non—locally bounded case we do not know ‘if Ly has any atomlc subspaces
Rocently, Reese [49] has constructed an F-space whlch is very’ nearly atomic. * More

'preCISely she constructs a space X with a sequence V,. of finite-dimensional subspaces
such that dim V,, — oo and whenever we pick z,, € V,, such that an infinite nuniber of
' the .z, ’s are.non=zero then {x,} spans a dense subspace of X. It is unknown whether a
" similar example can be made which is-also locally bounded.. :

It seems to the author that there is some underlying relatlonshlp between the
Maharam Problem and the Atomic Space Problem, although apart frorn the above
_,drscussron of pathologlcal spaces there is no really concrete evidence. ’ '

_ We also note_ here that most’ of the quasx-Banach 'spaces that arise naturally in
,_analysm are very . far from bemg pathologlcal The author has mtroduced the class of
natural spaces which have “sufficiently many” operators into'some Lo(#) space, and
most of the spaces of functions.commonly studied are natural (see {23],[24]).: A closely
related concept for complex spaces is that of A-convexxty, a quasi-Banach space is
A—convex 1f it has an equxvalent plunsubharmomc quasi-norm. Natural spaces are A-
_convex but the converse is false [24]; the argument used by Aleksandrov above for
, ,the pathology of Lp / ,H,, essentlally proves that this space admits no non-zero bounded
B 'operators into an A—con\fex space. It may be shown by using a tecent argument due to
‘ Ghoussoub and Mau y'[13] that A-conv ex spaces cannot be atomxc and must contaln

.. basrc sequences.

5 'Uﬁifbrrhlf)”-éxhati’stive su'b'measures_. If a’submeasure is to be ‘equivalent. to a
‘finitely-additive measure then it must satisfy a uniform version of exhaustivitiy. We say
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that a submeasure ¢ is umformly exhaustive if, given €> O there exrsts N N ( ) so
that for any N disjoint sets Al, AN € 2 o SR oo

lér:1<nN¢( i) <e oo

Uniformly exhaustlve submea.sures appear to have been mtroduced in [56] and have been

“studied in [35], [48] and [57)]. In this section, we consxder a reduced form of Ma,hararn 5

Problem (see Talagrand [57]).

B REDUCED MAHARAM PROBLEM. Is every uniformly exhaustrve submeasure equxva.—

lent to a measure

From the point of view of vector measures thls is an entlrely natural restrrctlon
In fact if F : ¥ — X is a vector measure: with relatively compact range then its

" semiivariation || F|| is uniformly exhausitive. In the late seventies'the author had become
- "interested. in precisely. this situation. It will perhaps be of some mterest to describe:the

s -chain of ideas in some detail.

An rmportant open question in the early. seventles was to. resolve whether every

~compact convex subset of an F-space has extreme points; clearly, a closely -related
.- problem was whether the set has a locally convex topology. The author achieved certain

positive results by cotisidering the following question: if X is a Banach space and Y is
an F-space and T': X — Y is a compact operator, under what assumptions on X can

- one conclude that the closure of the set T'(Bx) is locally convex. In fact it was shown in
~:f18] that it is sufficient that X be reflexive; for more recent rcsults see Godefroy—Kalton

[14]. The same techmques then yielded:

THEOREM 4 [18].. Let X be an F-space and Iet F r—X be a countably addrtzve

‘vector measure such that co F(E) is relatively compact ;Then coF () is locally . convex
- if and only if F has a control measure.

We may remark further that a version of Liapunoff’s theorem is true here, namely

that if F' is nonatomic and F(XI) is relatively compact then co F(E) C F(X). If T is any
:i algebra.and F : & — X is an additive map we shall say that a set of the form co F(Z)
“is a zonozd The author was then led to the followmg version of Maharam’s problem

ZONOID PROBLEM Is every compact zonoid locally convex"

“ At the time [18] was submitted I learned of the work of James Roberts [52] who

. had resolved the extreme point problem for compact convex sets negatively. In fact,

“Roberts [51] showed that when 0 < p < 1 L, contains a compact convex set wh1ch

has no extreme points and is of course not locally convex. The naive hope that these
techniques ‘would immediately yield a non-locally convex compact zonoid (and hence a
counterexample. to the Maharam problem) is quickly destroyed by our observations in
the previous section that every vector measure valued in L, has a control measure, from
which it follows that every compact zonoid in L, is locally convex. Nevertheless I was
optimistic that somethmg along these lines might work; I explained my ideas to Roberts

__'_1n 1977 and durrng the years 1980-2 (when he was vmtmg Mlssourx) we contrmied our
““investigations. o
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I should say immediately-that Roberts was not so optimistic about my approach
and preferred a more direct assault-on the problem. Events were to prove: him right,
but nonetheless 1 will describe how'I hoped the argument would go. . :

Tn order to constract a compact convex set without extreme points, Roberts had
introduce the key idea of a needle-point. A point z € X is called a needle-peint if
for every € > 0 there exist zy,...,7, € X so that z € co{zi,...,z,} and so that if
y € co{zy,...,T,} then for some 0 < ¢ < 1 we have [ly — tz]| < e. In [51] he shows
that every pomt of LyforO0<p<lisa needle—pomt Once this is established then a
compact convex set WIthout extreme’ pomts can be built by an inductive procedure:..

In retrospect needle-pomts ¢an best be understood from the: point:of wiew: of the
three-épace problem for local convexity. Tn-{19];:{50] and {53}; independently, were
produced three examples of a non-locally convex quasi-Banach space:X: and a non-zero
vector'e € X so that-X/[e] is isomorphic to a Banach space (in’[19] and {50] this:space is
E;) Such a point ¢ is actually a very strong form of needle-point. Let s now describe
the argument ‘useéd in-both [19] and [50]. One first makes a real-valued functional F
- defined on a dense subspace E of £; whlch is homogeneous and satlsﬁes an approxamate

addltxvmy condition: o

P A

SR 6) < Fle) - Fl'< Ollsl + [ol):
~Then consider £ @ R quasi-normed by .. e
H(z a)ll = [zl + IF (z) =al

The completlon of thls space is X ife= (0 1) X/le)is 1somorph1c to 81 Fmally X is
locally convex. if and only if there exxsts a linear map G deﬁned on _E so that for some
_-constant K we have IF( ) —G(z)] < K||z|. In order to give an. exa fe,such a
" linear approximation is 1mp0551ble Ribe [50] defined LU e

F(:c an log lxnl - SIogS
- p=1 T e S T e i
where § = 3% 7, and E is the subspace of £; of :‘ail:l'ﬁniﬁel"y' Tlon-zerosequénces.”
 3.Jf we wish'to:build a‘non-locally convex.compact zonoid; the:only:change in the
“-above réasoning is that we must- insist that X/[e] is-isomotphic to ¢o instead of £y, The
construction of the nearly additive F' can then bereduced to.a problem.onset functxons
Let X.be an algebra of sets. We say f 2 — R is approxxmately addltlve 1f whenever
A BEszthAﬂB @then B

If(AUB) f(A) 1<1

(AASF) [ ] Does there exzst an. abso]ute constant K sc tha.t for every approx—
--imately additive set functlon f. there is am addttlve set functlon,.; :
o|f(A)— g(A} < K? R R L e baeenne

Thus if problem (AASF) has a negatxve solution then one could budd a non-loca.lly
convex compact zonoid and hence a vector measure with compact range and no control
measure. Thus one would have a counterexample to the Maharam problem which is
uniformly exhaustive.




18 - 10

Unfortunately, this does not work In fact, the approach preferred by Roberts was

more direct and was also ultimately successful. His idea was to relate the exxstence of

pathologlcal uniformly exhaustive submeasures to the non-existence of certain bipartite
graphs called linear concentrators. If m € N we write [m] = {1,2,...,m}. If m > p > q
and if r € N then a map R :[m] — 2Pl is a (m,p,q,7 r)— concentrator if

m
Y IR(j
j=1

and if R[E] = U{R(e) : ¢ € E} then |R[E|]| > |E| whenever |E| > g. Such a map R may
be considered to induce a bipartite graph by defining connections between [m] and [p] It
turns out that concentrators have received considerable attention in the llterature owing
to potential applications in telecommunications (see [12], [44] and [45]). The object here
is to make concentrators when r is ﬁxed and small, p/m is small and ¢/p is relatively
big. In fact if r = 3 and 2e?mgq < p? then there do exist (m,p.q,7)— coricentrators {29]
The existence of such concentrators leads, somewhat surprisingly, to the non-existence
of uniformly exhaustive pathological submeasures Thus we have a resolutron of the
Reduced Maharam Problem (see also Louveau [34]):

THEOREM 5. An exhaustive submeasure is equivalent to a measure 1f and only if 1t is
uniformly exhaustive. 7

COROLLARY 6. Let F be a vector measure valued in an F-space X with relatively
compact range Then F }ras a control measure. » -

There are COIldlthI‘lS on X which allow one to obtain this conclusion WLthout réqulr-
ing relatively compact range. For example, if X is a-quasi-Banach space and fo is. not
finitely representable in X then every vector measure F has a control measure [29]. It
also follows that if X i 1s a quasi-Banach lattice in whlch ¢ is not finitely representable

then X is natural [23].

COROLLARY 7. Every compact zonoid is locally ‘convex.

We may now retrace our steps and deduce also ﬁiat‘ Problem (AASF) has an affir-
‘mative answer. Fortunately, more direct reasoning is also available.

THEOREM 8 [29]. There exists an absolute constant K so that for every approx-
imately additive set function f defined on an algebra T there exists an additive set

function g with |f(A) —g(A)| < K forall A€ £.

What is the best choice of K here? We seem to be some way from this. The
-methods of [29] depend on the existence of certain concentrators. A result of Pippenger
- [45] that for every m there is a (6m,4m,3m,6)— concentrator gives the estimate K <45

but there’s is no reason to believe this is close to the best possible. The natural try
that K = 1 is false, however, by a result of Pawlik [43] that K > 3/2. The immediate
corollary of Theorem 8 is, of course, that if X is a quasi-Banach space with a one-
- dimensional subspace L so that X/L is isomorphic to ¢ then X is locally convex (i.e.
" a Banach space).
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At this point we may raise the question of classifying Banach spaces Y. with the
above property. We say that a Banach space Y is a K —space if, whenever X is.a quasi-
Banach space and L is a one-dimensional subspace with X/L isomorphic to Y then X is
a Banach space. This can be interpreted in terms of the ability to'approximate a nearly
linear functional on'Y by a linear functional. We know that'¢; is not a K —spacé’but ¢o
is a K —space. It is also known that if ¥ is a K —space then ¢, is finitely representable
in Y [19] but of course the converse is false. It seems quite likely that Y is a:K —space
if and only if £o, is finitely representable in Yy*. S

The results mentioned in this section now reduce the Maharam Problem ‘to: one

raised by Dobrakov 8]:

THE MAHARAM PROBLEM (V) Is every exhaustrve submeasure umformly exhaus-
tive? : . ,

I'have no real idea about this, but I would rather like there to be dcounterexample!
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