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ABSTRACT. In this paper we prove that the /2 -cube can be (1 +g)}-embedded into any 1-subsym-
metric C(g)n-dimensional normed space.

Marcus and Pisier in [5] iniciated the study of the geometry of finite met-
ric spaces. Bourgain, Milman and Wolfson introduced a new notion of met-
ric type and developed the non-linear theory of Banach spaces (see [2] and
[7]). All these themes have been studied more intensively over the last years.

Johnson and Lindenstrauss proved that, given N points in the Euclidean
space, they can be (1 +g)-embedded into a subspace of dimension K(g) log N
(see lemma 1 in [3]). The method they use is based in the isoperimetric in-
equality of P. Levy. Another proof of the same fact was given by Pisier, using
Gaussian processes ([8]). Bourgain, Milman and Wolfson, in the paper before
mentioned, studied the /-cubes and their (1 +€)-embeddings in finite metric
spaces. More recently, Schechtman obtained estimates for (1 + £)-embeddings
of finite subsets of L' into /-spaces (see [9]).

In this paper we will study (1 +¢)-embeddings of the /*-cube in finite-di-
mensional subsymmetric spaces. The result we prove for the [-case 1 <p<
2, can be deduced from Johnson and Lindenstrauss’s lemma plus a refinement
of Dvoretzky’s theorem (see for instance [7], Theorem 3.9), but, as far as we
know, it is new in other cases. The method we use is in essence of probabilis-
tic nature and the main tool is a well known deviation inequality.
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We begin by recalling some definitions. Given two metric spaces (M,d) and
(M".d"), we say that (M.d) (1 +&)-embeds into (M'd") if there is a one-to-one
map f from M into M’ such that ||f |, IlFll,, S1+&, where

1., = sup.., dAEAN
d(x.y)

The [-cube is the metric space (C%, p,) where C3 = {—~1, +1} and

p (e,£)= max g,—¢’), for any par of elements ¢.€” belonging to C:.
1=i<na

Since p_(g,6’)=2, whenever e+¢’, the problem we are considering may be re-
lated with the sphere-packing problem, i.e., how many balls, with radius
—l—i, can be packed into the unit ball of a finite dimensional Banach
space, in an asymptotic way? (See the paper by Ball [1] for infinite dimen-
sional sphere-packing problem)

In the sequel E, will denote a finite-dimensional Banach space with a
1-subsymmetric normalized basis {e,....e,]. We use standard Banach space
theory notation as may be found in [4].

The theorem we will prove here is the following

Theorem.—There exists a numerical constant C> 0 such that, for any >0
we can find a subset of N points | x,,...,.x,} in E, verifying

l—e<|lx,—x|<1+¢, i %)
provided that

n> < log N
El

Proof.- Let £ a given positive number verifying O <e<1. Let # be a natu-
ral number to be determined after. Consider the function y defined by

[ >ell
v (5o =—>7— if0smsn,

n
| Zel

and by a nondecreasing continuous extension in the other points of the unit
interval [0,1]. The function y depends on #, but in some particular cases we
can choose the same fixed function for all #. This happens, for instance, in
the F-spaces where we may define y(¢) = 17, 0 <t < 1,
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We note that function y verifies y (0} = 0, y(1) = 1 and

y@2) 22700, j =01, *)

Indeed, if m_ < 1 Sm+1 we have
4] H

2

n Zim+ D m+l m
||; el <l ; ell=2 ; el 2+ ;e,ll

In general we don’t know the behaviour of the derivative of y in [(,1], but,
by averaging in the interval [1/4, 1/2], given & = &/128
172 1/2+8 1/2-8 /243
[W(t+8)—y(t—8))dt = [ WO ] GES [ y<28
1/4 1/440 1/4-8 1/2-8

and then, we can pick 2 number a in the interval (1/4, 1/2) such that
y(a+8)—wyla—y) < 85. Hence, for every x.y e [a—38,a+3], we have

w(x)—y(y)<85=g/16. (**)
Let k be the integer part of 2an, (k <2an< k+1). Then, by (*)

k 1
W5 )=

)2

3 L 2]
3 16 ifn =24 (***)

k
We now define X a random E,— valued vector by X(w) = 3 g(w)e, where
I

{€ ¢ is an i.i.d. sequence of symmetric { + 1,— 1 | — valued random variables de-
fined in some probality space. If Y is another i.1.d. copy of X, it is

k
clear that the two random variables || X — Y| and 2|l §nie, | (where

{n.} is an i.i.d. sequence of random variables uniformly distributed on the set

{0,1}) have the same distribution. Then, if we denote A(n) =| Sell, the
1

l-subsymmetry of the norm implies that the distribution of the random

k
variabies v ( —:!—g n) and || ﬁlﬁ (X = Y)l also coincides.
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k
Since E (%2 n)= —2%— we will compute the probability of
deviation of || m (X — Nl fromy (——)
A=Plofl L (X= Dli—y( L) oy e
21( n) 2n 2n

k
<Pl mw( Loe L | oy o

i k k 8 o ..
n o o Sl eIl
128 k ] .
—.T
n> . hus, | Zn, 2n implies
__]_k _ L _L£ dok
hwr( S M) - <€ ]6 by (**).
Since |k . D o
n ;ﬂr n 2n ‘?8'
we have
=Pl Iw(—zm w(——)l>s———}s
<Plw, — <2 I - <
fooy| — " Zs(w)|>e } exp (= —5—)
<2 _ _&n
exp ( C )

where € is a numerical constant. In this last step we have used the well known
probabilistic deviation inequality,

P{w; % g (w)>AJm}<exp(— %) A>0mel

(see, for instance, [6] Theorem IIIL.15).

Consider now a natural number A such that n> logN. If { X}Y is an
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i.i.d. sequence of copies of X, then

Aoyl —— ;X X)[I—w(—-— )< ey( —) forall i +j}2

21—(2)29xp(— 1>0

Hence, there exists ® in the probability space, such that the corresponding
points

x= —2O_ygien

()

satisfy the conclusion of the theorem.

Corollary.- The [»—cube is (1 +€)—embedded in any finite-dimensional

1-subsymmetric space E, provided that dim E> < n. (C is an absolute cons-
tant) e

Remarks.-
i) Since
k f&/2}
I ;Q"SZH ; e 1+1
it is easy to prove that HX,HS-%— I<i<N.

ii) The asymptotic estimate n> K log N is essentially best possible. In-
deed, in a ball of radius r of E, the number N of balls of radius r/2 we can
pack into (with disjoint interior) is given by

rvol (B)y= M yvol (B)

(vol (B,) is the n-dimensional volume of the unit ball)

iii) When E=/, I <p<oo, we can improve slightly the numerical con-
stant. Indeed, by taking a== 1/2 and using the mean value theorem we obtain
the following:
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a) Ife< then n> log N

p2r ep

1
p2'#

b) Ife> then n>Clog. N

(C is a numerical constant). These expressions say that p = oo is the best poss-
ible situation, because, an isometric embedding (=) is possible in this case.
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