COARSE AND UNIFORM EMBEDDINGS INTO REFLEXIVE SPACES

by N. J. KALTON[†]

(Department of Mathematics, University of Missouri-Columbia, Columbia, MO 65211, USA)

[Received 8 December 2006. Revised 20 February 2007]

Abstract

Answering an old problem in nonlinear theory, we show that c_0 cannot be coarsely or uniformly embedded into a reflexive Banach space, but that any stable metric space can be coarsely and uniformly embedded into a reflexive space. We also show that certain quasi-reflexive spaces (such as the James space) also cannot be coarsely embedded into a reflexive space and that the unit ball of these spaces cannot be uniformly embedded into a reflexive space. We give a necessary condition for a metric space to be coarsely or uniformly embeddable in a uniformly convex space.

1. Introduction

Let M_1, M_2 be metric spaces. Suppose that $f: M_1 \to M_2$ is any map and let

$$\varphi_f(t) = \inf\{d(f(x), f(y)) : d(x, y) \ge t\}, \quad t > 0,$$

and

$$\omega_f(t) = \sup\{d(f(x), f(y)) : d(x, y) \le t\}, \quad t > 0,$$

so that

$$\rho_f(d(x, y)) \le d(f(x), f(y)) \le \omega_f(d(x, y)), \quad x, y \in M_1.$$
(1)

Then we say that f is a coarse embedding and M_1 coarsely embeds into M_2 if $\omega_f(t) < \infty$ for all t and $\lim_{t\to\infty} \varphi_f(t) = \infty$. On the other hand, f is a uniform embedding and M_1 uniformly embeds into M_2 if $\varphi_f(t) > 0$ for all t > 0 and $\lim_{t\to 0} \omega_f(t) = 0$. We shall refer to f as a strong uniform embedding if it is both a coarse embedding and a uniform embedding. It is worth mentioning that in the literature this terminology is not yet standardized; coarse embeddings are often called uniform embeddings following the terminology of Gromov [12, p. 211] (for example, [7]). However, we prefer the term coarse embedding since uniform embedding already has a well-established meaning as above.

A metric space *M* is called *uniformly discrete* if $\inf_{x \neq y} d(x, y) > 0$. Let us define a *skeleton M'* of a metric space *M* as a subset such that for suitable constants $0 < a, b < \infty$ we have

$$d(x, y) \ge a, \quad x \neq y, \ x, y \in M',$$

and

$$d(x, M') \le b, \quad x \in M.$$

[†]E-mail: nigel@math.missouri.edu

Then *M* always coarsely embeds into any of its skeletons and so coarse embedding problems reduce to the consideration of uniformly discrete spaces.

A metric space M is called *locally finite* if any set of finite diameter is finite and has bounded geometry if there is a function $\psi : (0, \infty) \to \mathbb{N}$ so that every set of diameter r contains at most $\psi(r)$ points. Recently, in connection with the Novikov conjecture, there has been some considerable interest in the problem whether every metric space with bounded geometry can be coarsely embedded into a uniformly convex Banach space. This results from the work of Yu [28] and Kasparov and Yu [18] who show that such metric spaces with bounded geometry which coarsely embed into a uniformly convex space satisfy the coarse Novikov conjecture. It is known from results of Johnson and Randrianarivony [16] and Randrianarivony [25] that there are uniformly convex Banach spaces which do not coarsely embed into a Hilbert space.

Recently Brown and Guentner [7] proved that a metric space with bounded geometry coarsely embeds into a reflexive Banach space. However, it was apparently unknown whether there was *any* metric space which did not coarsely embed into a reflexive space. Since every separable metric space Lipschitz embeds into c_0 [1] it is natural to ask whether c_0 (or one of its skeletons) coarsely embeds into a reflexive space. In fact a similar problem was open for uniform embeddings. Does c_0 uniformly embed into a reflexive Banach space? This question has been a problem in the area for at least 30 years. It is explicitly raised in the recent book of Benyamini and Lindenstrauss [6, p. 184] (in the form of the question whether every separable metric space can be uniformly embedded into a reflexive space). We note that the recent paper of Mendel and Naor [20] shows that c_0 cannot be coarsely embedded into a super-reflexive Banach space. However, it is known that c_0 can be uniformly embedded into a Banach space with the Schur property [17] and in fact this embedding is also a strong uniform embedding, and hence a coarse embedding. Thus c_0 can be coarsely and uniformly embedded into a Banach space that does not contain c_0 (as a closed linear subspace). One of our main results in this paper shows that c_0 cannot be uniformly or coarsely embedded into a reflexive Banach space.

Let us recall that a metric space *M* is called *stable* if for any pair of sequences $(x_n)_{n=1}^{\infty}$, $(y_n)_{n=1}^{\infty}$ such that both iterated limits exist we have

$$\lim_{m \to \infty} \lim_{n \to \infty} d(x_m, y_n) = \lim_{n \to \infty} \lim_{m \to \infty} d(x_m, y_n).$$

It is well known that c_0 cannot be uniformly embedded into a stable metric space [6, pp. 213, 214, **26**] and the same argument works for coarse embeddings. An example of a non-reflexive stable Banach space is L_1 which coarsely and uniformly embeds into a Hilbert space [2, 25].

We now describe our main results. First we prove that a stable metric space can always be coarsely embedded into a reflexive Banach space. We then show that c_0 cannot be coarsely or uniformly embedded into a reflexive space, or more generally into any Banach space all of whose duals are separable (for example, a quasi-reflexive space). We next develop a criterion which enables us to identify a property inherited by metric spaces which can be either uniformly or coarsely embedded into a reflexive space. This reduces to a single property for Banach spaces, the Q-property, which is inherited by all spaces X such that either X coarsely embeds into a reflexive space or B_X uniformly embeds into a reflexive space. Examples of spaces failing the Q-property include the James quasi-reflexive space and any non-reflexive space with non-trivial type. In some cases analogous results for embeddings into stable metric spaces are already known from work of Raynaud [26], and our methods are based on some of his ideas.

2. Coarse embeddings of stable metric spaces

Let *M* be a metric space. We distinguish a point 0 in *M* and define the Banach space $\text{Lip}_0(M, d)$ of all Lipschitz $f : M \to \mathbb{R}$ such that f(0) = 0 with the norm

$$\|f\|_{\operatorname{Lip}_{0}(M,d)} = \sup_{x \neq y} \left\{ \frac{|f(x) - f(y)|}{d(x, y)} \right\}.$$

We write d(x) = d(x, 0).

THEOREM 2.1 Let M be stable metric space. Then M strongly uniformly embeds into a reflexive Banach space.

Proof. Fix 0 < a < 1. We will consider a second metric on M given by

$$d_a(x, y) = \begin{cases} d(x, y)^a & \text{if } d(x, y) \le 1, \\ d(x, y) & \text{if } d(x, y) > 1. \end{cases}$$

Let $\tilde{M} = \{(p,q): p, q \in M, p \neq q\}$. For $(p,q) \in \tilde{M}$ we define a function

$$g_{p,q}(x) = \max(d(p,q) - d(q,x), 0) - \max(d(p,q) - d(q), 0).$$

Let us observe that

$$|g_{p,q}(x) - g_{p,q}(y)| \le \min(d(x, y), d(p, q)), \quad x, y \in M.$$

Now let

$$f_{p,q} = \min(1, d(p,q)^{a-1})g_{p,q}, \quad (p,q) \in \tilde{M}.$$

We clearly have $f_{p,q} \in \operatorname{Lip}_0(M, d) \subset \operatorname{Lip}_0(M, d_a)$.

Note that

$$\frac{f_{p,q}(x) - f_{p,q}(y)|}{d_a(x, y)} \le \begin{cases} d(p, q)^{1-a}, & d(p, q) \le 1, \\ d(p, q)^{a-1}, & d(p, q) > 1, \end{cases}$$
(2)

and

$$\frac{|f_{p,q}(x) - f_{p,q}(y)|}{d_a(x, y)} \le \begin{cases} d(x, y)^{1-a}, & d(x, y) \le 1, \\ d(p, q)d(x, y)^{-1}, & d(x, y) > 1. \end{cases}$$
(3)

Let $W \subset \text{Lip}_0(M, d_a)$ be the set $W = \{f_{p,q} : (p,q) \in \tilde{M}\}$. We will show that W is relatively weakly compact. Note first that our assumptions give that $||f_{p,q}||_{\text{Lip}_0(M,d_a)} \leq 1$ for all $(p,q) \in \tilde{M}$.

N. J. KALTON

To prove weak compactness it suffices, by the Eberlein–Smulian theorem, to show that any sequence $(f_n = f_{p_n,q_n})_{n=1}^{\infty}$ has a weakly convergent subsequence. Let *E* be the subspace of Lip₀(*M*) generated by the functions $\{f_n : n = 1, 2, ...\}$; then *E* is separable and so we can find a countable subset M_0 of *M* containing 0 and all $\{p_n, q_n : n = 1, 2, ...\}$ so that

$$||f||_{\operatorname{Lip}_0(M)} = ||f||_{\operatorname{Lip}_0(M_0)}, \quad f \in E.$$

Without loss of generality we may assume that $(f_n)_{n=1}^{\infty}$ converges pointwise on M_0 to some function f. We may also assume that $\lim_{n\to\infty} d(p_n, q_n) = r$ where $0 \le r \le \infty$ and that all the limits $\lim_{n\to\infty} d(x, q_n)$ exist in $[0, \infty]$ for $x \in M_0$. Let $s = \lim_{n\to\infty} d(q_n)$ (so that $0 \le s \le \infty$).

Let $\tilde{M}_0 = \tilde{M} \cap (M_0 \times M_0)$. We consider a map $V : \operatorname{Lip}_0(M, d_a) \to \ell_\infty(\tilde{M}_0)$ defined by

$$Vh(x, y) = \frac{h(x) - h(y)}{d_a(x, y)}$$

Then $||V|| \le 1$ but $V|_E$ is an isometry. We shall show that $(Vf_n)_{n=1}^{\infty}$ is weakly convergent to Vf.

Let \mathcal{A} be the real subalgebra of $\ell_{\infty}(\tilde{M}_0)$ generated by the constants and the functions

$$(x, y) \rightarrow \frac{f(x) - f(y)}{d_a(x, y)},$$

$$(x, y) \rightarrow \arctan(d(x, u)), \quad u \in M_0,$$

$$(x, y) \rightarrow \arctan(d(y, u)), \quad u \in M_0,$$

$$(x, y) \rightarrow \arctan(d(x, y)).$$

Let *K* be the associated compactification of \tilde{M}_0 so each $h \in \mathcal{A}$ continuously extends to *K*; *K* is then a compact metric space. Note that Vf_n , Vf belong to $\mathcal{C}(K)$ and so it will suffice to show that $\lim_{n\to\infty} Vf_n(\xi) = Vf(\xi)$ for every $\xi \in K$.

First observe that by (2) $||Vf_n|| \le \min(d(p,q)^{a-1}, d(p,q)^{1-a})$ so that if r = 0 or $r = \infty$ the sequence $(Vf_n)_{n=1}^{\infty}$ is norm convergent to zero. Therefore we can suppose that $0 < r < \infty$.

If $\xi \in K$ we may pick a sequence $(x_m, y_m) \in \tilde{M}_0$ with $(x_m, y_m) \to \xi$. Note that $\lim_{m\to\infty} d(x_m, y_m) = t$ for some t with $0 \le t \le \infty$. Observe that if t = 0 or $t = \infty$, we have $Vf(\xi) = 0 = Vf_n(\xi)$ for all n by (3). We therefore reduce to the case $0 < t < \infty$.

We need the remark that if $(u_n)_{n=1}^{\infty}$, $(v_n)_{n=1}^{\infty}$ are two sequences in M such that

$$\lim_{n\to\infty}d(u_n)=\infty$$

and $\lim_{m\to\infty} d(u_n, v_m)$ exists in $[0, \infty]$ for all *m* then

$$\lim_{n\to\infty}\lim_{m\to\infty}d(u_n,v_m)=\lim_{m\to\infty}\lim_{n\to\infty}d(u_n,v_m)=\infty.$$

Indeed, $\lim_{n\to\infty} d(u_n, v_m) = \infty$ for all *m*. If for some *k* we have $\lim_{m\to\infty} d(u_k, v_m) < \infty$ we note that

$$d(u_n, v_m) \ge d(u_n, u_k) - d(u_k, v_m)$$

and so that

$$\lim_{m\to\infty} d(u_n, v_m) \ge d(u_n, u_k) - \lim_{m\to\infty} d(u_k, v_m),$$

which converges to ∞ as $n \to \infty$. Thus the stability of (M, d) applies even to extended valued limits. Now

$$\lim_{n \to \infty} f_n(x_m) = f(x_m) = \min(1, r^{a-1}) \left(\max\left(r - \lim_{n \to \infty} d(q_n, x_m), 0 \right) - \max(r - s, 0) \right)$$

while

$$\lim_{m \to \infty} f_n(x_m) = \min(1, d(p_n, q_n)^{a-1}) (\max(d(p_n, q_n) - \lim_{m \to \infty} d(q_n, x_m), 0) - \max(d(p_n, q_n) - d(q_n), 0)$$

and so

$$\lim_{m \to \infty} f(x_m) = \lim_{n \to \infty} \lim_{m \to \infty} f_n(x_m)$$

Similarly,

$$\lim_{m\to\infty} f(y_m) = \lim_{n\to\infty} \lim_{m\to\infty} f_n(y_m)$$

Thus

$$Vf(\xi) = \lim_{m \to \infty} Vf(x_m, y_m)$$

= min(t^{-a}, t⁻¹) $\lim_{m \to \infty} (f(x_m) - f(y_m))$
= $\lim_{n \to \infty} \lim_{m \to \infty} \min(d(x_m, y_m)^{-a}, d(x_m, y_m)^{-1})(f_n(x_m) - f_n(y_m))$
= $\lim_{n \to \infty} Vf_n(\xi).$

Thus $(Vf_n)_{n=1}^{\infty}$ is weakly convergent and therefore so is $(f_n)_{n=1}^{\infty}$.

We conclude that *W* is weakly compact. This implies that the map $S : \ell_1(\tilde{M}) \to \operatorname{Lip}_0(M)$ defined by

$$S(\xi) = \sum_{p,q \in \tilde{M}} \xi_{p,q} f_{p,q}$$

is weakly compact. If we let $e_{x,y}$ be the canonical basis vectors we have $Se_{x,y} = f_{x,y}$ for $(x, y) \in \tilde{M}$. Clearly $||S|| \le 1$. Consider the adjoint $S^* : \operatorname{Lip}_0(M)^* \to \ell_\infty(\tilde{M})$ which is also weakly compact by Gantmacher's theorem. By the factorization theorem of Davis *et al.* [10] there is a reflexive space Z and maps $T : \operatorname{Lip}_0(M)^* \to Z$ and $U : Z \to \ell_\infty(\tilde{M})$ so that $||U||, ||T|| \le 1$ and $S^* = UT$. Let us define a map $\delta : (M, d_a) \to \operatorname{Lip}_0(M, d_a)^*$ by

$$\delta(x)(f) = f(x).$$

Then δ is an isometric embedding. Now, if $x \neq y \in M$

$$||T\delta(x) - T\delta(y)|| \le ||\delta(x) - \delta(y)|| \le d_a(x, y)$$

while

$$\|T\delta(x) - T\delta(y)\| \ge \|S^*\delta(x) - S^*(\delta(y))\|$$
$$\ge |(\delta(x) - \delta(y))(Se_{x,y})|$$
$$= |f_{x,y}(x) - f_{x,y}(y)|$$
$$= \min(d(x, y), d(x, y)^a).$$

This shows that $T \circ \delta$ is a strong uniform embedding of M into Z with

$$\min(d(x, y), d(x, y)^a) \le \|T \circ \delta(x) - T \circ \delta(y)\| \le \max(d(x, y), d(x, y)^a), \quad x, y \in M.$$

Brown and Guentner [7] showed that every metric space with bounded geometry coarsely embeds into a reflexive space; our original motivation for the above result was that any locally compact metric space is automatically stable, so that we have a corollary.

COROLLARY 2.2 If M is a locally compact metric space then M strongly uniformly embeds into a reflexive space.

However, the author has learned of a more recent result of Baudier and Lancien [3] that every locally finite metric space Lipschitz embeds into any Banach space failing cotype (and in particular into a reflexive space). This is, of course, a much stronger conclusion for this class of spaces.

3. Embeddings of infinite graphs

Let G be a connected graph. Then G has an associated metric space structure given by setting d(u, v) to be the length of the shortest path from u to v.

Let \mathbb{M} be any subset of \mathbb{N} . For $r \in \mathbb{N}$ we define $\mathcal{P}_r(\mathbb{M})$ to be the set of all subsets of \mathbb{M} of size r. For r = 0 we define $\mathcal{P}_0(\mathbb{M})$ to be the singleton $\{\emptyset\}$. We make $\mathcal{P}_r(\mathbb{M})$ into a graph by declaring two distinct subsets $\sigma = \{m_1, m_2, \ldots, m_r\}$ and $\tau = \{n_1, n_2, \ldots, n_r\}$ (written in increasing order) if they *interlace* so that either

$$m_1 \leq n_1 \leq m_2 \leq \cdots \leq m_r \leq n_r$$
 or $n_1 \leq m_1 \leq n_2 \leq \cdots \leq n_r \leq m_r$.

We write $\sigma < \tau$ if $m_r < n_1$. It is clear that as long as $|\mathbb{M}| \ge 2r$, the diameter of this graph (and of its associated metric space) is *r*. It is also easy to verify that

$$d(\sigma,\tau)=r$$

if and only if either $\sigma < \tau$ or $\tau < \sigma$.

398

For r = 0 we define $\mathcal{P}_0(\mathbb{M})$ to be the singleton $\{\emptyset\}$, and thus a function on $\mathcal{P}_0(\mathbb{M})$ is a constant. The following proposition is elementary.

PROPOSITION 3.1 Suppose M is a stable metric space and $f : \mathcal{P}_r(\mathbb{N}) \to M$ is a bounded map, where $r \geq 1$. Then, for any $\epsilon > 0$, there is an infinite subset \mathbb{M} of \mathbb{N} such that for any $\sigma, \tau \in \mathcal{P}_r(\mathbb{M})$ with $\sigma < \tau$ we have $d(f(\sigma), f(\tau)) < \omega_f(1) + \epsilon$.

Proof. By a standard application of Ramsey theory we can pass to an infinite subset \mathbb{M} of \mathbb{N} so that for some constant *a* and every $\sigma, \tau \in \mathcal{P}_r(\mathbb{M})$ with $\sigma < \tau$ we have $|d(f(\sigma), f(\tau)) - a| < \epsilon/2$. Now let \mathcal{U} be any non-principal ultrafilter on \mathbb{N} containing \mathbb{M} . Then

 $\lim_{m_1\in\mathcal{U}}\lim_{n_1\in\mathcal{U}}\cdots\lim_{m_r\in\mathcal{U}}\lim_{n_r\in\mathcal{U}}d(f(m_1,\ldots,m_r),f(n_1,\ldots,n_r))\leq\omega_f(1).$

Thus using stability [6, p. 213] we also have

$$\lim_{m_1\in\mathcal{U}}\cdots\lim_{m_r\in\mathcal{U}}\lim_{n_1\in\mathcal{U}}\cdots\lim_{n_r\in\mathcal{U}}d(f(m_1,\ldots,m_r),f(n_1,\ldots,n_r))\leq\omega_f(1).$$

Hence for some $\sigma, \tau \in \mathcal{P}_r(\mathbb{A})$ with $\sigma < \tau$ we have

$$d(f(\sigma), f(\tau)) < \omega_f(1) + \frac{\epsilon}{2}$$

and so

$$a < \omega_f(1) + \epsilon$$

and the result follows.

Now suppose X is a Banach space and $f : \mathcal{P}_r(\mathbb{N}) \to X$ is a bounded map, where $r \ge 1$. Fix some non-principal ultrafilter \mathcal{U} on \mathbb{N} . Then we can define a bounded map $\partial_{\mathcal{U}} f : \mathcal{P}_{r-1}(\mathbb{N}) \to X^{**}$ by setting

$$\partial_{\mathcal{U}} f(m_1,\ldots,m_{r-1}) = w^* - \lim_{m_r \in \mathcal{U}} f(m_1,\ldots,m_r).$$

In the case r = 1 we can regard $\partial_{\mathcal{U}} f$ as an element of X^{**} . We can then iterate this procedure and define bounded maps $\partial_{\mathcal{U}}^k f : \mathcal{P}_{r-k}(\mathbb{N}) \to X^{(2k)}$ for $1 \le k \le r$, where $X^{(k)}$ denotes the *k*th dual of *X*. We consider $\partial_{\mathcal{U}}^r f$ as an element of $X^{(2r)}$.

Of course if X is reflexive each $\partial_{\mathcal{U}}^k f$ maps $\mathcal{P}_{r-k}(\mathbb{N})$ into X. We shall also use this notation when $X = \mathbb{R}$.

LEMMA 3.2 Let $h : \mathcal{P}_r(\mathbb{N}) \to \mathbb{R}$ be a bounded map. Then, given $\epsilon > 0$, there is an infinite subset \mathbb{M} of \mathbb{N} so that

$$|h(\sigma) - \partial_{\mathcal{U}}^r h| < \epsilon, \quad \sigma \in \mathcal{P}_r(\mathbb{M}).$$

Proof. We select $\mathbb{M} = \{m_1, m_2, ...\}$ inductively so that for each k if $\sigma \subset \{m_1, ..., m_k\}$ and $1 \leq |\sigma| = s \leq \min(k, r)$ then $|\partial_{\mathcal{U}}^{r-s}h(\sigma) - \partial h_{\mathcal{U}}^r| < \epsilon$. To start the induction select m_1 so that $|\partial_{\mathcal{U}}^{r-1}h(m_1) - \partial_{\mathcal{U}}^rh| < \epsilon$.

N. J. KALTON

Assume $m_1 < m_2 < \cdots < m_k$ have been chosen. For each subset σ of $\{m_1, \ldots, m_k\}$ with $s = |\sigma| \le r - 1$ there is a set $\mathbb{A}_{\sigma} \in \mathcal{U}$ so that if $m \in \mathbb{A}_{\sigma}$ we have $m > m_k$ and $|\partial_{\mathcal{U}}^{r-s-1}h(\sigma \cup \{m\}) - \partial_{\mathcal{U}}^r h| < \epsilon$. The intersection \mathbb{A} of all such \mathbb{A}_{σ} also belongs to \mathcal{U} . Hence we may pick $m_{k+1} \in \mathbb{A}$ and complete the inductive step.

Suppose X is a Banach space and that $f : \mathcal{P}_r(\mathbb{N}) \to X$ and $g : \mathcal{P}_r(\mathbb{N}) \to X^*$ are bounded maps. Define $f \otimes g : \mathcal{F}_{2r}(\mathbb{N}) \to \mathbb{R}$ by

$$f \otimes g(m_1, m_2, \ldots, m_{2r}) = \langle f(m_2, m_4, \ldots, m_{2r}), g(m_1, m_3, \ldots, m_{2r-1}) \rangle.$$

LEMMA 3.3 Under the above hypotheses,

$$\partial_{\mathcal{U}}^2(f\otimes g)=\partial_{\mathcal{U}}f\otimes\partial_{\mathcal{U}}g.$$

Proof. We have

$$\partial_{\mathcal{U}}(f \otimes g)(m_1, \dots, m_{2r-1}) = \lim_{m_{2r} \in \mathcal{U}} \langle f(m_2, \dots, m_{2r}), g(m_1, m_3, \dots, m_{2r-1}) \rangle$$
$$= \langle \partial_{\mathcal{U}} f(m_2, \dots, m_{2r-2}), g(m_1, m_3, \dots, m_{2r-1}) \rangle.$$

Now letting $m_{2r-1} \to \infty$ through \mathcal{U} gives the conclusion.

LEMMA 3.4 Suppose $f : \mathcal{P}_r(\mathbb{N}) \to X$ is a bounded map. Then for any $\epsilon > 0$ there exists an infinite subset \mathbb{M} of \mathbb{N} so that

$$||f(\sigma)|| < ||\partial_{\mathcal{U}}^r f|| + \omega_f(1) + \epsilon, \quad \sigma \in \mathcal{P}_r(\mathbb{M}).$$

Proof. Using the Hahn–Banach theorem, we define $g: \mathcal{F}_r(\mathbb{N}) \to X^*$ so that $||g(\sigma)|| = 1$ and

$$\langle f(\sigma), g(\sigma) \rangle = ||f(\sigma)||, \quad \sigma \in \mathcal{P}_r(\mathbb{N}).$$

Now by Lemma 3.3 and induction we have

$$\partial_{\mathcal{U}}^{2r}(f \otimes g) = \partial_{\mathcal{U}}^{r} f \otimes \partial_{\mathcal{U}}^{r} g = \langle \partial_{\mathcal{U}}^{r} f, \partial_{\mathcal{U}}^{r} g \rangle \le \|\partial_{\mathcal{U}}^{r} f\|.$$

By Lemma 3.2, we can find an infinite set $\mathbb{A} \subset \mathbb{N}$ so that

$$|f \otimes g(\sigma)| < \|\partial_{\mathcal{U}}^r f\| + \epsilon, \quad \sigma \in \mathcal{P}_{2r}(\mathbb{A}).$$

Let $\mathbb{A} = \{m_1, n_1, m_2, n_2, ...\}$, where $m_1 < n_1 < m_2 < \cdots$. Let $\mathbb{M} = \{m_1, m_2, ...\}$. Suppose $\sigma = \{m_{u_1}, m_{u_2}, ..., m_{u_r}\}$, where $u_1 < u_2 < \cdots < u_r$. Then

$$\begin{split} \|f(\sigma)\| &= \langle f(\sigma), g(\sigma) \rangle \\ &\leq \omega_f(1) + \langle f(n_{u_1}, n_{u_2}, \dots, n_{u_r}), g(m_{u_1}, m_{u_2}, \dots, m_{u_r}) \rangle \\ &\leq \|\partial_{\mathcal{U}}^r f\| + \omega_f(1) + \epsilon. \end{split}$$

400

THEOREM 3.5 Suppose $r \in \mathbb{N}$. Let X be a Banach space such that $X^{(2k)}$ is separable. Then given any uncountable family of bounded maps $f_i : \mathcal{P}_r(\mathbb{N}) \to X$ for $i \in I$ and $\epsilon > 0$, there exist $i \neq j$ and an infinite subset \mathbb{M} of \mathbb{N} so that

$$||f_i(\sigma) - f_j(\sigma)|| < \omega_{f_i}(1) + \omega_{f_j}(1) + \epsilon, \quad \sigma \in \mathbb{M}.$$

Proof. Since $X^{(2r)}$ is separable we may find $i \neq j$ so that $\|\partial_{\mathcal{U}}^r f_i - \partial_{\mathcal{U}}^r f_j\| < \epsilon/2$. Now $\|\partial_{\mathcal{U}}^r (f_i - f_j)\| < \epsilon/2$ and so using Lemma 3.4 gives the conclusion.

THEOREM 3.6 c_0 cannot be uniformly or coarsely embedded into a Banach space X such that every dual space $X^{(r)}$ is separable. In particular, c_0 cannot be uniformly or coarsely embedded into a reflexive Banach space.

Proof. Suppose $h : c_0 \to X$ is any map. Let $(e_k)_{k=1}^{\infty}$ be the canonical basis of c_0 . For any r > 0 and $0 < \theta < \infty$ and any infinite subset A of \mathbb{N} we define

$$s_n(A) = \sum_{\substack{k \le n \\ k \in A}} e_k$$

and then

$$f_{A,\theta,r}(n_1,\ldots,n_r)=\theta\sum_{j=1}^r s_{n_j}(A).$$

We then consider $h \circ f : \mathcal{P}_r(\mathbb{N}) \to X$. Fix θ, r . By Theorem 3.5 we can find $A \neq B$ and an infinite subset \mathbb{M} of \mathbb{N} so that

$$\|hf_{A,\theta,r}(\sigma) - hf_{B,\theta,r}(\sigma)\| < \omega_{hf}(1) + \epsilon, \quad \sigma \in \mathbb{M}$$

Since $A \neq B$ there exists σ so that

$$||f_{A,\theta,r}(\sigma) - f_{A,\theta,r}(\sigma)|| = r\theta.$$

Thus

 $\varphi_h(r\theta) \le \omega_{hf}(1) + \epsilon \le \omega_h(\theta) + \epsilon.$

It follows that

 $\varphi_h(r\theta) \leq \omega_h(\theta), \quad 0 < \theta < \infty.$

If $\omega_h(\theta) < \infty$ for some θ this implies $\lim_{\theta \to \infty} \varphi_h(\theta) < \infty$. If $\lim_{\theta \to 0} \omega_h(\theta) = 0$ this implies that $\varphi_h(\theta) = 0$ for all $\theta > 0$.

COROLLARY 3.7 There is a separable Schur space X such that B_X cannot be uniformly embedded into a Banach space Z such that every dual of Z is separable.

Proof. By [17, Proposition 5.2] there is a Schur space X which is uniformly homeomorphic to $Y \oplus c_0$ for some Banach space Y. In particular B_{c_0} is uniformly homeomorphic to a subset of B_X . Since c_0 is uniformly into B_{c_0} by [1], the result follows from Theorem 3.6.

Odell and Schlumprecht [21] showed that if X has an unconditional basis, then B_X is uniformly homeomorphic to B_{ℓ_2} if and only if X has non-trivial cotype; the corresponding result for Banach lattices is due to Chaatit [8]; see also [9]. We now present a simple generalization of this result.

THEOREM 3.8 Let X be a separable Banach lattice. Then the following are equivalent:

- (i) B_X is uniformly homeomorphic to a subset of a reflexive Banach space;
- (ii) B_X is uniformly homeomorphic to B_Y for some reflexive Banach lattice;
- (iii) X contains no subspace isomorphic to c_0 .

Proof. (iii) \Rightarrow (ii) *X* can be represented as an order-continuous Banach function space on some probability space (Ω, μ) (which may contain atoms). For 1 we define*Y*to be the*p*-concavification of*X*[19, pp. 53, 54]. Thus*Y* $is the space of measurable functions <math>y : \Omega \to \mathbb{R}$ such that $|y|^p \in X$ with the norm $||y||_Y = |||y|^p ||_X^{1/p}$. This space is *p*-convex and hence contains no copy of ℓ_1 . On the other hand, if *Y* contains a copy of c_0 then it contains a disjoint sequence $(y_n)_{n=1}^{\infty}$ equivalent to the c_0 -basis [19, p. 35]; but then $(|y_n|^p)_{n=1}^{\infty}$ would be equivalent to the c_0 -basis in *X*, which yields a contradiction. Thus *Y* is reflexive [19, Theorem 1.c.5, p. 35]. Define $f : B_X \to B_Y$ by $f(x) = |x|^{1/p} \operatorname{sgn} x$. Then *f* is onto.

If $x_1, x_2 \in B_X$ with $||x_1 - x_2||_X = \theta$. Let $u = |x_1| + |x_2|$ and $v = |x_1 - x_2|$. Define a measurable function *a* with $0 \le a \le 1$ so that v = au.

If a(s) = 1 then $x_1(s), x_2(s)$ have opposite signs and so

$$|f(x_1(s)) - f(x_2(s))|^p = (|x_1(s)|^{1/p} + |x_2(s)|^{1/p})^p.$$

Thus

$$u(s) \le |f(x_1(s)) - f(x_2(s))|^p \le 2^{p-1}u(s)$$

If a(s) < 1 then $x_1(s), x_2(s)$ have the same signs and

$$|f(x_1(s)) - f(x_2(s))|^p = \left(\left(\frac{1}{2}(1+a)\right)^{1/p} - \left(\frac{1}{2}(1-a)\right)^{1/p}\right)^p u(s).$$

Note that $\varphi(t) = ((1/2)(1+t))^{1/p} - ((1/2)(1-t))^{1/p}$ is a convex function of t on [0, 1] and so $\varphi(t) \ge \varphi'(0)t$. However, $\varphi'(0) = 2^{1-1/p}p^{-1}$.

Thus

$$2^{p-1}p^{-p}a^{p}u(s) \le |f(x_{1}(s)) - f(x_{2}(s))|^{p} \le au(s).$$

Thus in general we conclude

$$2^{p-1}p^{-p}a^{p}u \le |f(x_1) - f(x_2)|^p \le 2^{p-1}au.$$

The right-hand inequality gives

$$||f(x_1) - f(x_2)||_Y \le 2^{1-1/p} ||au||^{1/p} = 2^{1-1/p} \theta^{1/p}.$$

We also note that $||u|| \le 2$ so that if $A = \{s : a < (\theta/4)\}$ then $||au\chi_A||_X \le \theta/2$. Hence if B is the complement of A we have $||au\chi_B||_X \ge \theta/2$. Now

$$\|f(x_1) - f(x_2)\|_{Y} \ge 2^{1-1/p} p^{-1} \|a^p u \chi_B\|_{X}^{1/p} \ge 2^{1-1/p} p^{-1} \left(\frac{\theta}{4}\right)^{1-1/p} \left(\frac{\theta}{2}\right)^{1/p} \ge \frac{\theta}{2p}$$

Now (ii) \Rightarrow (i) is trivial and (i) \Rightarrow (iii) follows from Theorem 3.5.

4. Embeddings of metric spaces into reflexive spaces

We now consider the problem of embedding a metric space coarsely or uniformly into a reflexive Banach space. We will use the following theorem to develop necessary conditions for the existence of such embeddings.

THEOREM 4.1 Suppose $r \in \mathbb{N}$. Let X be a reflexive Banach space and suppose $f : \mathcal{P}_r(\mathbb{N}) \to X$ is a bounded map. Then, given $\epsilon > 0$, there exists an infinite subset \mathbb{M} of \mathbb{N} and $x \in X$ so that

$$||f(\sigma) - x|| \le \omega_f(1) + \epsilon, \quad \sigma \in \mathcal{P}_r(\mathbb{M}).$$

Proof. This follows directly from Lemma 3.4. Since X is reflexive we have $\partial_{\mathcal{U}}^r f = x \in X$. Let $f'(\sigma) = f(\sigma) - x$ so that $\partial_{\mathcal{U}}^r f' = 0$ and apply Lemma 3.4.

If *M* is a metric space and $\epsilon > 0$ and $\delta \ge 0$ we shall say that *M* has *property* $Q(\epsilon, \delta)$ if for every $r \in \mathbb{N}$ if $f : \mathcal{P}_r(\mathbb{N}) \to M$ is a map with $\omega_f(1) \le \delta$ there exists an infinite subset \mathbb{M} of \mathbb{N} with

$$d(f(\sigma), f(\tau)) \leq \epsilon, \quad \sigma < \tau, \ \sigma, \tau \in \mathcal{P}_r(\mathbb{M}).$$

Let us define $\Delta_M(\epsilon)$ to be the supremum of all $\delta \ge 0$ so that *M* has property $\mathcal{Q}(\epsilon, \delta)$.

Note first that if *M* is a stable metric space then $\Delta_M(\epsilon) \ge \epsilon$ for every $\epsilon > 0$ by an application of Proposition 3.1.

THEOREM 4.2 Suppose M is a metric space.

- (i) If M uniformly embeds into a reflexive Banach space then $\Delta_M(\epsilon) > 0$ for every $\epsilon > 0$.
- (ii) If M coarsely embeds into a reflexive space then $\lim_{\epsilon \to \infty} \Delta_M(\epsilon) = \infty$.

Proof. Let $h : M \to X$ be a map of M into a reflexive Banach space X. Let $f : \mathcal{P}_r(\mathbb{N}) \to M$ be a map with $\omega_f(1) \leq \delta$. Then $\omega_{hf}(1) \leq \omega_h(\delta)$. Hence there is an infinite subset \mathbb{M} of \mathbb{N} and $x \in X$ so that

$$\|hf(\sigma) - x\| \le 2\omega_h(\delta), \quad \sigma \in \mathcal{P}_r(\mathbb{M}).$$

Thus

$$\|hf(\sigma) - hf(\tau)\| \le 4\omega_h(\delta), \quad \sigma, \tau \in \mathcal{P}_r(\mathbb{M}).$$

From this we have

$$\varphi_h(d(f(\sigma), f(\tau))) \le 4\omega_h(\delta), \quad \sigma < \tau, \ \sigma, \tau \in \mathcal{P}_r(\mathbb{M}).$$

If *h* is a uniform embedding then

$$\lim_{\delta \to 0} \omega_h(\delta) = 0$$

and $\varphi_h(\epsilon) > 0$. Thus $\Delta_M(\epsilon) > 0$ for all $\epsilon > 0$. If *h* is a coarse embedding $\lim_{\epsilon \to \infty} \varphi_h(\epsilon) = \infty$ and $\omega_h(\delta) < \infty$ for each $\delta > 0$ so that $\lim_{\epsilon \to \infty} \Delta_M(\epsilon) = \infty$.

If X is a Banach space it is clear that $\Delta_X(\epsilon) = a\epsilon$ for some constant a and that $\Delta_{B_X}(\epsilon) = \Delta_X(\epsilon)$ if $0 < \epsilon \le 1$. We denote by Q_X the constant such that $\Delta_X(\epsilon) = Q_X \epsilon$. We will say that X has the *Q*-property if $Q_X > 0$.

We remark that if X is a stable Banach space then $Q_X = 1$ while if X is reflexive we have $Q_X \ge 1/2$ by Theorem 4.1. Thus all stable or reflexive Banach spaces have the Q-property. On the other hand, c_0 fails the Q-property; this can be proved by the methods of Theorem 3.5 but will also follow from the more delicate examples given below, since every separable Banach space Lipschitz embeds into c_0 by the result of Aharoni [1].

COROLLARY 4.3 If X is a Banach space which fails the Q-property then

- (i) B_X cannot be uniformly embedded into a reflexive Banach space,
- (ii) *X* cannot be coarsely embedded into a reflexive Banach space.

THEOREM 4.4 Let X be a Banach space with the Q-property. Then given $\epsilon > 0$ and a bounded sequence $(x_n)_{n=1}^{\infty}$ with a weak*-cluster point $x^{**} \in X^{**}$ there is a subsequence $(y_n)_{n=1}^{\infty}$ of $(x_n)_{n=1}^{\infty}$ such that

$$\left\|\sum_{j=1}^{2r} (-1)^{j} y_{n_{j}}\right\| \geq (1-\epsilon) \mathcal{Q}_{X} r d(x^{**}, X), \quad n_{1} < n_{2} < \dots < n_{2r}, \ r = 1, 2, \dots$$

Proof. Let $\theta = d(x^{**}, X)$ and let $B = \sup_n ||x_n||$. We can assume $\theta > 0$. We will pick $\lambda > 1$ and $\alpha > 0$ small enough so that

$$\lambda^{-2}\mathcal{Q}_X-2\alpha B-\alpha>(1-\epsilon)\mathcal{Q}_X.$$

We can extract a subsequence $(v_n)_{n=1}^{\infty}$ of $(x_n)_{n=1}^{\infty}$ such that

$$\left\|\sum_{j=1}^{m}a_{j}v_{j}-\sum_{k=m+1}^{n}a_{j}v_{j}\right\|>\lambda^{-1}\theta$$

whenever $1 \le m < n, a_j \ge 0$ and

$$\sum_{j=1}^{m} a_j = \sum_{j=m+1}^{n} a_j = 1.$$

Using Ramsey's theorem and a diagonalization argument we can extract a further subsequence $(y_n)_{n=1}^{\infty}$ so that for each $r \in \mathbb{N}$ there is a constant b_r such that if $\alpha r \leq n_1 < n_2 < \cdots < n_{2r}$ then

$$b_r - \alpha \theta \leq \left\| \sum_{j=1}^{2r} (-1)^j y_{n_j} \right\| \leq b_r.$$

For fixed *r* let $\mathbb{M} = \{n \in \mathbb{N} : n \ge \alpha r\}$. Define $f : \mathcal{P}_r(\mathbb{M}) \to X$ by

$$f(\sigma) = \sum_{k \in \sigma} y_k.$$

Then $\omega_f(1) \leq b_r$ and so there exist $\sigma < \tau$ in $\mathcal{P}_r(\mathbb{M})$ with

$$\|f(\sigma) - f(\tau)\| \le \lambda \mathcal{Q}_X^{-1} b_r.$$

Hence

$$\lambda^{-1}r\theta \leq \lambda \mathcal{Q}_X^{-1}b_X$$

that is,

$$b_r \geq \lambda^{-2} \mathcal{Q}_X r \theta$$

Now if $\{n_1, \ldots, n_{2r}\} \in \mathcal{P}_{2r}(\mathbb{N})$ there exist $\{m_1, \ldots, m_{2r}\}$ so that $\alpha r \leq m_1$ and

$$\left\|\sum_{j=1}^{2r} (-1)^{j} y_{n_{j}} + \beta \sum_{j=1}^{2r} (-1)^{j} y_{m_{j}}\right\| \leq 2\alpha r B$$

for either $\beta = 1$ or $\beta = -1$. Thus

$$\left\|\sum_{j=1}^{2r} (-1)^{j} y_{n_{j}}\right\| \geq \lambda^{-2} \mathcal{Q}_{X} r \theta - 2\alpha B r \theta - \alpha \theta > (1-\epsilon) \mathcal{Q}_{X} r \theta.$$

We now recall [4] that a Banach space X has the *alternating Banach–Saks property* if every bounded sequence $(x_n)_{n=1}^{\infty}$ in X has a subsequence (y_n) so that the Cesaro means $(1/n) \sum_{k=1}^{n} (-1)^k y_k$ converge to 0. Beauzamy [4] proves that X has the alternating Banach–Saks property if and only if X has no spreading model equivalent to the ℓ_1 –basis.

THEOREM 4.5 Suppose X has the alternating Banach–Saks property. If X has the Q-property then X is reflexive.

Proof. Let $(x_n)_{n=1}^{\infty}$ be a bounded sequence in X. Let x^{**} be a weak*-cluster point of $(x_n)_{n=1}^{\infty}$ in X^{**} . According to Theorem 4.4 there is a subsequence $(y_n)_{n=1}^{\infty}$ and c > 0 so that

$$\left\|\sum_{j=1}^{2r} (-1)^{j} y_{n_{j}}\right\| \ge crd(x^{**}, X), \quad n_{1} < n_{2} < \ldots < n_{2r}, \ r = 1, 2, \ldots.$$

By the alternating Banach–Saks property we have $d(x^{**}, X) = 0$ and so by the Eberlein–Smulian theorem, X is reflexive.

We are now in a position to give some more examples of spaces failing the Q-property. A space with non-trivial type has the alternating Banach–Saks property [4].

COROLLARY 4.6 Let X be a non-reflexive Banach space with non-trivial type. Then X fails property Q.

We note that examples of such spaces were constructed by James [15] and later by Pisier and Xu [24]. Pisier and Xu also gave quasi-reflexive examples. This result does not cover the original James quasi-reflexive space [13, 14] but this can be done directly from the definition. We recall that J is defined to be the space of all real sequences $(\xi_n)_{n=1}^{\infty}$ such that $\lim_{n\to\infty} \xi_n = 0$ and

$$\|\xi\|_{J} = \sup_{i_{0} < i_{1} < i_{2} < \dots < i_{n}} \left(\sum_{j=1}^{n} (\xi_{j} - \xi_{j-1})^{2}\right)^{1/2} < \infty$$

1 10

PROPOSITION 4.7 The James space J and its dual J^* fail the Q-property.

Proof. In *J* consider the sequence $x_n = e_1 + \cdots + e_n$ which converges weak* to an element $\chi \in J^{**}$ with $\|\chi\| = 1$. However,

$$\left\|\sum_{j=1}^{2r} (-1)^j x_{n_j}\right\| J = (2r-1)^{1/2}, \quad n_1 < n_2 < \dots < n_{2r}$$

We can then directly apply Theorem 4.4.

Similarly in J^* consider the sequence $(e_n^*)_{n=1}^{\infty}$ (the dual basis). Then x_n converges weak^{*} to an element of J^{***} of norm one but

$$\left\| \sum_{j=1}^{2r} (-1)^j e_{n_j}^* \right\| J^* \le r^{1/2}, \quad n_1 < n_2 < \cdots < n_{2r}.$$

However, we do not know whether it is possible to find a non-reflexive quasi-reflexive space X so that B_X embeds uniformly in a reflexive space, or X embeds coarsely. We will show that there are quasi-reflexive spaces with the Q-property. First let us define the ω -dual of a Banach space X as the space $X^{(\omega)}$ obtained by completing $\bigcup_{k\geq 0} X^{(2k)}$; where X^{2k-2} is considered as a subspace of X^{2k} for $k \geq 1$ via the canonical embedding.

THEOREM 4.8 Let X be a separable Banach space so that dim $X^{**}/X = 1$. Then the following are equivalent:

- (i) $X^{(\omega)} \approx X \oplus \ell_1$;
- (ii) X has the Q-property.

Proof. Although our proof is essentially self-contained, we use ideas due to Perrott [22] and Bellenot [5].

We start with some general remarks on $X^{(\omega)}$. Pick some $e_1 \in X^{**} \setminus X$ so that $||e_1|| = 1$. Let $\theta = d(e_1, X)$. Then there is a weakly Cauchy sequence $(u_n)_{n=1}^{\infty}$ converging weak* to e_1 with $||u_n|| \le 1$. We then define $e_k \in X^{(2k)}$ by setting e_k to be the weak*-limit of $(u_n)_{n=1}^{\infty}$ considered as a sequence

in $X \subset X^{(2k)}$. It is clear that $X^{(2k)} = [X, e_1, \dots, e_k]$. We consider the sequence $(e_n)_{n=1}^{\infty}$ in $X^{\omega} = \bigcup_{k>0} X^{(2k)}$.

Now by taking convex combinations of the $(u_n)_{n=1}^{\infty}$ and using a diagonalization argument it is possible to find a sequence $(v_n)_{n=1}^{\infty}$ in X with $||v_n|| \le 1$ so that

$$\lim_{n \to \infty} \|\xi + v_n\| = \|\xi + e_k\|, \quad \xi \in X^{(2k-2)}, \ k = 1, 2, \dots$$

Now it follows that if $x \in X$ and $\alpha_1, \ldots, \alpha_r \in \mathbb{R}$ we have

$$\left\|x+\sum_{j=1}^{r}\alpha_{j}e_{j}\right\|=\lim_{n_{1}\to\infty}\lim_{n_{2}\to\infty}\cdots\lim_{n_{r}\to\infty}\left\|x+\sum_{j=1}^{r}\alpha_{r-j+1}v_{n_{j}}\right\|.$$

From this it follows easily that $(e_k)_{k=1}^{\infty}$ is spreading over X, that is,

$$\left\| x + \sum_{j=1}^{r} \lambda_j e_j \right\| = \left\| x + \sum_{j=1}^{r} \lambda_j e_{n_j} \right\|, \quad x \in X, \ \lambda_1, \dots, \lambda_r \in \mathbb{R}, \ n_1 < n_2 < \dots < n_r.$$
(4)

It also follows that if $1 \le k < r$ then

$$\left\|x + \sum_{j < k} \lambda_j e_j + (\lambda_k + \lambda_{k+1})e_k + \sum_{j > k+1} \lambda_j e_j\right\| \le \left\|x + \sum_{j=1}^r \lambda_j e_j\right\|, \quad x \in X, \ \lambda_1, \dots, \lambda_r \in \mathbb{R}.$$
(5)

Both (4) and (5) are due to Perrott [22]. By (4) and (5) the sequence $(e_j)_{j=1}^{\infty}$ is a *dual neighborly* sequence in the sense of Bellenot [5].

We note furthermore that

$$\|x + e_1 - e_2\| = \lim_{n \to \infty} \|x + e_1 - u_n\| \ge \theta, \quad x \in X.$$
(6)

(i) \Rightarrow (ii) We show first that $(e_n)_{n=1}^{\infty}$ is equivalent to the canonical basis of ℓ_1 . Indeed by Rosenthal's theorem [27] if this fails (e_n) is weakly Cauchy. However, $X^{(\omega)}$ has codimension one in the subspace of $(X^{(\omega)})^{**}$ consisting of all sequential limits in the weak*-topology. Hence there exists $\alpha \in \mathbb{R}$ so that $e_n - \alpha v_n$ is weakly convergent to some $z \in X^{(\omega)}$. Given $\epsilon > 0$ we can find by Mazur's theorem $n_1 < n_2 < n_3$ and $a_j \ge 0$ for $n_1 + 1 \le j \le n_2$ such that

$$\sum_{j=n_1+1}^{n_2} a_j = \sum_{j=n_2+1}^{n_3} a_j = 1$$

and

$$\left\|z - \sum_{j=n_1+1}^{n_2} a_j (e_j - \alpha v_j)\right\|, \quad \left\|z - \sum_{j=n_2+1}^{n_3} a_j (e_j - \alpha v_j)\right\| < \frac{\theta}{2}.$$

Subtracting shows that there exists $x \in X$ with

$$\left\|x+\sum_{j=n_1+1}^{n_2}a_je_j-\sum_{j=n_2+1}^{n_3}a_je_j\right\|<\theta.$$

By (5) this implies

$$\|x+e_1-e_2\|<\theta,$$

contradicting (6). It follows that there is a constant C so that

$$\sum_{j=1}^{r} |\lambda_j| \le C \left\| \sum_{j=1}^{r} \lambda_j e_j \right\|, \quad \lambda_1, \dots, \lambda_r \in \mathbb{R}.$$

Now suppose $f : \mathcal{P}_r(\mathbb{N}) \to X$ is a bounded map. Then

$$\partial_{\mathcal{U}} f(n_1, \ldots, n_{r-1}) = g_1(n_1, \ldots, n_{r-1}) + \psi_1(n_1, \ldots, n_{r-1})e_1$$

for suitable bounded functions $g_1 : \mathcal{P}_{r-1}(\mathbb{N}) \to X$ and $\psi_1 : \mathcal{P}_{r-1}(\mathbb{N}) \to \mathbb{R}$. Thus, again for suitable bounded maps $g_2 : \mathcal{P}_{r-2}(\mathbb{N}) \to X$ and $\psi_2 : \mathcal{P}_{r-2}(\mathbb{N}) \to \mathbb{R}$,

$$\partial_{\mathcal{U}}^2 f(n_1, \dots, n_{r-2}) = g_2(n_1, \dots, n_{r-2}) + \partial_{\mathcal{U}} \psi_1(n_1, \dots, n_{r-2}) e_1 + \psi_2(n_1, \dots, n_{r-2}) e_2$$

and iterating we have

$$\partial_{\mathcal{U}}^{k} f(n_1,\ldots,n_{r-k}) = g_k(n_1,\ldots,n_{r-k}) + \sum_{j=1}^{k} \partial_{\mathcal{U}}^{k-j} \psi_j(n_1,\ldots,n_{r-k}) e_j,$$

where $g_k : \mathcal{P}_{r-k}(\mathbb{N}) \to X$ and $\psi_k : \mathcal{P}_{r-k}(\mathbb{N}) \to \mathbb{R}$ are bounded maps. In the case k = r these maps are constants. Let $\lambda_j = \partial_{\mathcal{U}}^{r-j} \psi_j \in \mathbb{R}$. Thus

$$\partial_{\mathcal{U}}^r f = g_r + \sum_{j=1}^r \lambda_j e_j.$$

Now define $h : \mathcal{P}_{2r}(M) \to X$ by $h(n_1, ..., n_{2r}) = f(n_1, n_3, ..., n_r) - f(n_2, n_4, ..., n_{2r})$. Then

$$\partial_{\mathcal{U}}^{2r}h = \sum_{j=1}^r \partial_{\mathcal{U}}^{r-j}\lambda_j e_{2j} - \sum_{j=1}^r \partial_{\mathcal{U}}^{r-j}\lambda_j e_{2j-1}.$$

Hence

$$\sum_{j=1}^{r} |\lambda_j| \leq \frac{C}{2} \sup_{\sigma \in \mathcal{P}_{2r}(\mathbb{N})} \|h(\sigma)\| \leq C \omega_f(1).$$

Now define

$$f'(n_1,\ldots,n_r)=g_r+\sum_{j=1}^r\lambda_{r-j}v_{n_j}.$$

408

Then

$$\omega_{f'}(1) \le 2\sum_{j=1}^r |\lambda_j| \le C\omega_f(1).$$

Thus $\partial_{\mathcal{U}}^r(f - f') = 0$ and $\omega_{(f-f')}(1) \leq (C+1)\omega_f(1)$. Hence by Lemma 3.4 we can find an infinite subset \mathbb{M} of \mathbb{N} so that

$$||f(\sigma) - f'(\sigma)|| \le (C+2)\omega_f(1), \quad \sigma \in \mathcal{P}_r(\mathbb{N}).$$

Hence if $\sigma < \tau$ in $\mathcal{P}_r(\mathbb{M})$ we have

$$\|f(\sigma) - f(\tau)\| \le 2(C+2)\omega_f(1) + \|f'(\sigma) - f'(\tau)\|$$

$$\le 2(C+2)\omega_f(1) + 2\sum_{j=1}^r |\lambda_j|$$

$$\le (3C+2)\omega_f(1).$$

This shows that *X* has the Q-property.

(ii) \Rightarrow (i) We first observe that from Theorem 4.4 we can assume that

$$\left\|\sum_{j=1}^{2r} (-1)^{j} v_{n_{j}}\right\| \ge cr, \quad r = 1, 2, \dots$$

for some constant c > 0. Thus

$$\left\|\sum_{j=1}^{r} u_j\right\| \ge cr, \quad r = 1, 2, \dots,$$

where $u_j = e_{2j} - e_{2j-1}$.

We will show that $(e_n)_{n=1}^{\infty}$ is equivalent to the ℓ_1 -basis. Suppose not: then as before $(e_n)_{n=1}^{\infty}$ is weakly Cauchy. Thus $(u_n)_{n=1}^{\infty}$ is weakly null. Hence we can find a convex combination $\sum_{j=1}^{r} a_j u_j$ so that

$$\left\|\sum_{j=1}^r a_j u_j\right\| < \frac{c}{2}.$$

For any integer N we have

$$\left\|\sum_{k=1}^{N}\sum_{j=1}^{r}a_{j}u_{j+k}\right\|\leq\frac{cN}{2}.$$

This implies

$$\left\|\sum_{j=r+1}^N u_j\right\| \le \frac{cN}{2} + 4r.$$

Thus

$$c(N-r) \le \frac{cN}{2} + 4r.$$

For large enough N this is a contradiction.

Thus $(e_n)_{n=1}^{\infty}$ is equivalent to the ℓ_1 -basis, that is, there is a constant C so that

$$\sum_{j=1}^{r} |\lambda_j| \le C \left\| \sum_{j=1}^{r} \lambda_j e_j \right\|, \quad \lambda_1, \dots, \lambda_r \in \mathbb{R}.$$

Next note that if $x \in X$ and $\lambda_1, \ldots, \lambda_r \in \mathbb{R}$ then

$$\|x\| \le \left\|x + \sum_{j=1}^{r} \lambda_{j} e_{j}\right\| + \left\|\sum_{j=1}^{r} \lambda_{j} e_{j}\right\|$$
$$\le \left\|x + \sum_{j=1}^{r} \lambda_{j} e_{j}\right\| + \frac{1}{2}C \left\|\sum_{j=1}^{r} \lambda_{j} (e_{2j} - e_{2j-1})\right\|$$
$$\le \left\|x + \sum_{j=1}^{r} \lambda_{j} e_{j}\right\| + \frac{1}{2}C \left\|x + \sum_{j=1}^{r} \lambda_{j} e_{2j}\right\| + \frac{1}{2}C \left\|x + \sum_{j=1}^{r} \lambda_{j} e_{2j-1}\right\|$$
$$\le (C+1) \left\|x + \sum_{j=1}^{r} \lambda_{j} e_{j}\right\|.$$

Thus $X^{(\omega)} = X \oplus [e_n] \approx X \oplus \ell_1$.

We now observe that Bellenot [5] has constructed a quasi-reflexive space X so that $X^{(\omega)} \approx X \oplus \ell_1$. Bellenot's space is thus an example of a quasi-reflexive space with the Q-property. However, we do not know if this space can be coarsely embedded in a reflexive space or its unit ball is uniformly homeomorphic to a subset of a reflexive space.

5. Embeddings in uniformly convex spaces

Our results have some applications to uniform and coarse embeddings in uniformly convex spaces (or super-reflexive spaces). We recall the results of Enflo [11] (see Pisier [23] for an improvement) that a Banach space is super-reflexive if and only if it has an equivalent uniformly convex norm.

We recall that Raynaud [26] proved that a non-reflexive Banach space X with non-trivial type has the property that B_X cannot be uniformly embedded into a stable metric space. Our first application is an extension of this result (by Theorem 2.1).

THEOREM 5.1 Let X be a Banach space with non-trivial type. Assume that either

- (i) B_X embeds uniformly in a uniformly convex space, or
- (ii) X coarsely embeds into a uniformly convex space.

Then X is super-reflexive (that is, has an equivalent uniformly convex norm).

Proof. It follows quickly in either case that every ultraproduct of X has the same property and therefore has the Q-property. Hence every ultraproduct is reflexive by Corollary 4.6. Thus X is super-reflexive.

We may also give a criterion for coarse or uniform embeddability of a metric space into a superreflexive space. We denote by [N] the set $\{1, 2, ..., N\}$.

THEOREM 5.2 Let M be a metric space.

(i) In order that M coarsely embeds into a uniformly convex space it is necessary that there exists a function $\phi : (0, \infty) \to [0, \infty)$ with $\lim_{t\to\infty} \phi(t) = \infty$ and a function $N : \mathbb{N} \times (0, \infty) \to \mathbb{N}$ so that if $r \in \mathbb{N}$ and $f : \mathcal{P}_r([N(r, t)]) \to M$ satisfies $\omega_f(1) \le \phi(t)$ then there exist $\sigma < \tau$ in $\mathcal{P}_r([N(r, t)])$ with

$$d(f(\sigma), f(\tau)) \le t.$$

(ii) In order that M uniformly embeds into a uniformly convex space it is necessary that there exists a function $\phi : (0, \infty) \to (0, \infty)$ and a function $N : \mathbb{N} \times (0, \infty) \to \mathbb{N}$ so that if $r \in \mathbb{N}$ and $f : \mathcal{P}_r([N(r, t)]) \to M$ satisfies $\omega_f(1) \le \phi(t)$ then there exist $\sigma < \tau$ in $\mathcal{P}_r([N(r, t)])$ with

$$d(f(\sigma), f(\tau)) \le t.$$

Proof. Suppose X is a super-reflexive space. Let $h : M \to X$ be a map which is either a coarse embedding or a uniform embedding. Suppose that $t \in \mathbb{R}$ and $\theta > 0$ is such that for some $r \in \mathbb{N}$ and every *m* there is a map $f_m : \mathcal{P}_r([m]) \to M$ such that $\omega_{f_m}(1) \le \theta$ but

$$d(f_m(\sigma, \tau)) > t, \quad \sigma < \tau, \ \sigma, \tau \in \mathcal{P}_r([m]).$$

(If m < 2r this always holds vacuously.) Let $y_m = hf_m(1, 2, ..., r)$. Consider the ultraproduct $X_{\mathcal{U}}$, where \mathcal{U} is some non-principal ultrafilter on \mathbb{N} . Thus $X_{\mathcal{U}}$ is the space of all bounded sequences $(x_k)_{k=1}^{\infty}$ in X under the seminorm

$$\|(x_k)_{k=1}^{\infty}\|_{X_{\mathcal{U}}} = \lim_{k \in \mathcal{U}} \|x_k\|.$$

We define a map

$$g:\mathcal{P}_r(\mathbb{N})\to X_\mathcal{U}$$

by

$$g(\sigma) = (x_m)_{m=1}^{\infty}$$

where

$$x_m = \begin{cases} 0 & \text{if } m < \max \sigma, \\ h f_m(\sigma) - y_m & \text{if } m \ge \max \sigma. \end{cases}$$

Then $\omega_g(1) \leq \omega_h(\theta)$. Hence since $X_{\mathcal{U}}$ is reflexive there exists $\sigma < \tau$ in \mathbb{N} with

$$\|g(\sigma) - g(\tau)\| < 3\omega_h(\theta).$$

It follows that for large enough *m*

$$\|hf_m(\sigma) - hf_m(\tau)\| < 3\omega_h(\theta).$$

However, for large enough *m* we have $d(f_m(\sigma), f_m(\tau)) > t$. Thus

$$\varphi_h(t) \leq 3\omega_h(\theta).$$

It follows that if $\omega_h(\theta) < (1/3)\varphi_h(t)$ we can choose N(r, t) so that if $f : \mathcal{P}_r([N(r, t)]) \to M$ has $\omega_f(1) \le \theta$ then there exist $\sigma < \tau$ with $d(f(\sigma), f(\tau)) \le t$. It can now be checked easily that we can define the functions ϕ in cases (i) and (ii).

Note that a space with bounded geometry always fulfills (i) of Theorem 5.2.

6. Problems

There are a number of obvious problems that we leave unsolved.

PROBLEM 6.1 Does every (separable) reflexive Banach space coarsely (or uniformly) embed into a stable metric space? Is the converse of Theorem 2.1 valid?

We suspect the answer to Problem 1 is negative. However, we may perhaps have some hope for a positive answer to:

PROBLEM 6.2 If X is a separable reflexive Banach space, does B_X uniformly embed into a stable metric space?

Here we note that the results of [8; 9; 21; 6, pp. 199–206] show that for a very wide class of super-reflexive spaces, B_X is uniformly homeomorphic to B_{ℓ_2} ; see also [17].

PROBLEM 6.3 If X is separable super-reflexive, is B_X uniformly homeomorphic to B_{ℓ_2} ?

We also do not know the answers to the following.

PROBLEM 6.4 Suppose X is a separable Banach space which coarsely embeds into a reflexive space; must X be weakly sequentially complete? Similarly if B_X uniformly embeds into a reflexive space, must X be weakly sequentially complete?

PROBLEM 6.5 If X is a separable Banach space is the Q-property for X equivalent to coarse embeddability of X into a reflexive space (or to uniform embeddability of B_X into a reflexive space)?

Finally we note that Raynaud [26] proves that if X is a separable Banach space which uniformly embeds into a super-stable Banach (see [26] for the definition) then X contains a copy of some ℓ_p where $1 . The result of Randrianarivony [25] shows that if X coarsely embeds into <math>\ell_2$ then the same conclusion holds. Therefore it is natural to ask for an analog of Raynaud's result for coarse embeddings.

PROBLEM 6.6 If X is a separable Banach space which coarsely embeds into a super-stable Banach space, must X contain a copy of some ℓ_p , where 1 ?

Acknowledgement

The author was supported by NSF grant DMS-0555670.

References

- 1. I. Aharoni, Every separable metric space is Lipschitz equivalent to a subset of c_0^+ , *Israel J. Math.* 19 (1974), 284–291.
- I. Aharoni, B. Maurey and B. S. Mityagin, Uniform embeddings of metric spaces and of Banach spaces into Hilbert spaces, *Israel J. Math.* 52 (1985), 251–265.
- **3.** F. Baudier and G. Lancien, Embeddings of locally finite metric spaces into Banach spaces, *Proc. Amer. Math. Soc.*, to appear.
- 4. B. Beauzamy, Banach-Saks properties and spreading models, Math. Scand. 44 (1979), 357-384.
- 5. S. F. Bellenot, Transfinite duals of quasireflexive Banach spaces, *Trans. Amer. Math. Soc.* 273 (1982), 551–577.
- **6.** Y. Benyamini and J. Lindenstrauss, *Geometric Nonlinear Functional Analysis*, 1, American Mathematical Society Colloquium Publications 48, American Mathematical Society, Providence, 2000.
- 7. N. Brown and E. Guentner, Uniform embeddings of bounded geometry spaces into reflexive Banach space, *Proc. Amer. Math. Soc.* **133** (2005), 2045–2050 (electronic).
- **8.** F. Chaatit, On uniform homeomorphisms of the unit spheres of certain Banach lattices, *Pacific J. Math.* **168** (1995), 11–31.
- 9. M. Daher, Homéomorphismes uniformes entre les sphères unité des espaces d'interpolation, *Canad. Math. Bull.* 38 (1995), 286–294 (French, with French summary).
- W. J. Davis, T. Figiel, W. B. Johnson and A. Pełczyński, Factoring weakly compact operators, J. Funct. Anal. 17 (1974), 311–327.
- P. Enflo, Banach spaces which can be given an equivalent uniformly convex norm, *Israel J. Math.* 13 (1972), 281–288.
- M. Gromov, Asymptotic invariants of infinite groups, *Geometric Group Theory*, 2 Sussex, 1991, London Mathematical Society Lecture Note Series 182, Cambridge University Press, Cambridge, 1993, 1–295.
- 13. R. C. James, Bases and reflexivity of Banach spaces, Ann. Math. 52 (1950), 518-527.
- 14. R. C. James, A non-reflexive Banach space isometric with its second conjugate space, *Proc. Nat. Acad. Sci. USA* 37 (1951), 174–177.
- 15. R. C. James, Nonreflexive spaces of type 2, Israel J. Math. 30 (1978), 1–13.
- 16. W. B. Johnson and N. L. Randrianarivony, l_p (p > 2) does not coarsely embed into a Hilbert space, *Proc. Amer. Math. Soc.* 134 (2006), 1045–1050 (electronic).
- N. J. Kalton, Spaces of Lipschitz and Hölder functions and their applications. *Collect. Math.* 55 (2004), 171–217.
- **18.** G. Kasparov and G. Yu, The coarse geometric Novikov conjecture and uniform convexity, *Adv. Math.*, **206** (2006) 1–56.
- 19. J. Lindenstrauss and L. Tzafriri, *Classical Banach Spaces*, *II, Function Spaces*, 97, Springer, Berlin, 1979.
- 20. M. Mendel and A. Naor, Metric cotype, Ann. Math., to appear.
- 21. E. Odell and T. Schlumprecht, The distortion problem, Acta Math. 173 (1994), 259–281.

- 22. J. C. B. Perrott, Transfinite duals of Banach spaces and ergodic super-properties equivalent to super-reflexivity, *Quart. J. Math. Oxford* **30** (1979), 99–111.
- 23. G. Pisier, Martingales with values in uniformly convex spaces, Israel J. Math. 20 (1975), 326–350.
- 24. G. Pisier and Q. Xu, Random series in the real interpolation spaces between the spaces v_p , *Geometrical aspects of functional analysis* (1985/86), Lecture Notes in Mathematics 1267, Springer, Berlin, 1987, 185–209.
- 25. N. L. Randrianarivony, Characterization of quasi-Banach spaces which coarsely embed into a Hilbert space, *Proc. Amer. Math. Soc.* 134 (2006), 1315–1317 (electronic).
- **26.** Y. Raynaud, Espaces de Banach superstables, distances stables et homéomorphismes uniformes, *Israel J. Math.* **44** (1983), 33–52 (French, with English summary).
- 27. H. P. Rosenthal, A characterization of Banach spaces containing l¹, Proc. Nat. Acad. Sci. USA, 71 (1974), 2411–2413.
- **28.** G. Yu, The coarse Baum–Connes conjecture for spaces which admit a uniform embedding into Hilbert space, *Invent. Math.* **139** (2000), 201–240.