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Abstract

Answering an old problem in nonlinear theory, we show that c0 cannot be coarsely or uniformly
embedded into a reflexive Banach space, but that any stable metric space can be coarsely and
uniformly embedded into a reflexive space. We also show that certain quasi-reflexive spaces (such
as the James space) also cannot be coarsely embedded into a reflexive space and that the unit ball of
these spaces cannot be uniformly embedded into a reflexive space. We give a necessary condition
for a metric space to be coarsely or uniformly embeddable in a uniformly convex space.

1. Introduction

Let M1, M2 be metric spaces. Suppose that f : M1 → M2 is any map and let

ϕf (t) = inf{d(f (x), f (y)) : d(x, y) ≥ t}, t > 0,

and
ωf (t) = sup{d(f (x), f (y)) : d(x, y) ≤ t}, t > 0,

so that
ϕf (d(x, y)) ≤ d(f (x), f (y)) ≤ ωf (d(x, y)), x, y ∈ M1. (1)

Then we say that f is a coarse embedding and M1 coarsely embeds into M2 if ωf (t) < ∞ for all
t and limt→∞ ϕf (t) = ∞. On the other hand, f is a uniform embedding and M1 uniformly embeds
into M2 if ϕf (t) > 0 for all t > 0 and limt→0 ωf (t) = 0. We shall refer to f as a strong uniform
embedding if it is both a coarse embedding and a uniform embedding. It is worth mentioning that in
the literature this terminology is not yet standardized; coarse embeddings are often called uniform
embeddings following the terminology of Gromov [12, p. 211] (for example, [7]). However, we
prefer the term coarse embedding since uniform embedding already has a well-established meaning
as above.

A metric space M is called uniformly discrete if infx �=y d(x, y) > 0. Let us define a skeleton M ′
of a metric space M as a subset such that for suitable constants 0 < a, b < ∞ we have

d(x, y) ≥ a, x �= y, x, y ∈ M ′,

and
d(x, M ′) ≤ b, x ∈ M.
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Then M always coarsely embeds into any of its skeletons and so coarse embedding problems reduce
to the consideration of uniformly discrete spaces.

A metric space M is called locally finite if any set of finite diameter is finite and has
bounded geometry if there is a function ψ : (0, ∞) → N so that every set of diameter r con-
tains at most ψ(r) points. Recently, in connection with the Novikov conjecture, there has been
some considerable interest in the problem whether every metric space with bounded geome-
try can be coarsely embedded into a uniformly convex Banach space. This results from the
work of Yu [28] and Kasparov and Yu [18] who show that such metric spaces with bounded
geometry which coarsely embed into a uniformly convex space satisfy the coarse Novikov con-
jecture. It is known from results of Johnson and Randrianarivony [16] and Randrianarivony [25]
that there are uniformly convex Banach spaces which do not coarsely embed into a Hilbert
space.

Recently Brown and Guentner [7] proved that a metric space with bounded geometry coarsely
embeds into a reflexive Banach space. However, it was apparently unknown whether there was any
metric space which did not coarsely embed into a reflexive space. Since every separable metric
space Lipschitz embeds into c0 [1] it is natural to ask whether c0 (or one of its skeletons) coarsely
embeds into a reflexive space. In fact a similar problem was open for uniform embeddings. Does
c0 uniformly embed into a reflexive Banach space? This question has been a problem in the area
for at least 30 years. It is explicitly raised in the recent book of Benyamini and Lindenstrauss [6,
p. 184] (in the form of the question whether every separable metric space can be uniformly embedded
into a reflexive space). We note that the recent paper of Mendel and Naor [20] shows that c0 cannot
be coarsely embedded into a super-reflexive Banach space. However, it is known that c0 can be
uniformly embedded into a Banach space with the Schur property [17] and in fact this embedding
is also a strong uniform embedding, and hence a coarse embedding. Thus c0 can be coarsely and
uniformly embedded into a Banach space that does not contain c0 (as a closed linear subspace). One
of our main results in this paper shows that c0 cannot be uniformly or coarsely embedded into a
reflexive Banach space.

Let us recall that a metric space M is called stable if for any pair of sequences (xn)
∞
n=1, (yn)

∞
n=1

such that both iterated limits exist we have

lim
m→∞ lim

n→∞ d(xm, yn) = lim
n→∞ lim

m→∞ d(xm, yn).

It is well known that c0 cannot be uniformly embedded into a stable metric space [6, pp. 213,
214, 26] and the same argument works for coarse embeddings. An example of a non-reflexive stable
Banach space is L1 which coarsely and uniformly embeds into a Hilbert space [2, 25].

We now describe our main results. First we prove that a stable metric space can always be
coarsely embedded into a reflexive Banach space. We then show that c0 cannot be coarsely
or uniformly embedded into a reflexive space, or more generally into any Banach space all of
whose duals are separable (for example, a quasi-reflexive space). We next develop a criterion
which enables us to identify a property inherited by metric spaces which can be either uni-
formly or coarsely embedded into a reflexive space. This reduces to a single property for Banach
spaces, the Q-property, which is inherited by all spaces X such that either X coarsely embeds
into a reflexive space or BX uniformly embeds into a reflexive space. Examples of spaces fail-
ing the Q-property include the James quasi-reflexive space and any non-reflexive space with
non-trivial type.
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In some cases analogous results for embeddings into stable metric spaces are already known from
work of Raynaud [26], and our methods are based on some of his ideas.

2. Coarse embeddings of stable metric spaces

Let M be a metric space. We distinguish a point 0 in M and define the Banach space Lip0(M, d) of
all Lipschitz f : M → R such that f (0) = 0 with the norm

‖f ‖Lip0(M,d) = sup
x �=y

{ |f (x) − f (y)|
d(x, y)

}
.

We write d(x) = d(x, 0).

THEOREM 2.1 Let M be stable metric space. Then M strongly uniformly embeds into a reflexive
Banach space.

Proof . Fix 0 < a < 1. We will consider a second metric on M given by

da(x, y) =
{

d(x, y)a if d(x, y) ≤ 1,

d(x, y) if d(x, y) > 1.

Let M̃ = {(p, q) : p, q ∈ M, p �= q}. For (p, q) ∈ M̃ we define a function

gp,q(x) = max(d(p, q) − d(q, x), 0) − max(d(p, q) − d(q), 0).

Let us observe that

|gp,q(x) − gp,q(y)| ≤ min(d(x, y), d(p, q)), x, y ∈ M.

Now let
fp,q = min(1, d(p, q)a−1)gp,q, (p, q) ∈ M̃.

We clearly have fp,q ∈ Lip0(M, d) ⊂ Lip0(M, da).

Note that
|fp,q(x) − fp,q(y)|

da(x, y)
≤

{
d(p, q)1−a, d(p, q) ≤ 1,

d(p, q)a−1, d(p, q) > 1,
(2)

and
|fp,q(x) − fp,q(y)|

da(x, y)
≤

{
d(x, y)1−a, d(x, y) ≤ 1,

d(p, q)d(x, y)−1, d(x, y) > 1.
(3)

Let W ⊂ Lip0(M, da) be the set W = {fp,q : (p, q) ∈ M̃}. We will show that W is relatively
weakly compact. Note first that our assumptions give that ‖fp,q‖Lip0(M,da) ≤ 1 for all (p, q) ∈ M̃.
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To prove weak compactness it suffices, by the Eberlein–Smulian theorem, to show that any
sequence (fn = fpn,qn

)∞n=1 has a weakly convergent subsequence. Let E be the subspace of Lip0(M)

generated by the functions {fn : n = 1, 2, . . .}; then E is separable and so we can find a countable
subset M0 of M containing 0 and all {pn, qn : n = 1, 2, . . .} so that

‖f ‖Lip0(M) = ‖f ‖Lip0(M0), f ∈ E.

Without loss of generality we may assume that (fn)
∞
n=1 converges pointwise on M0 to some func-

tion f. We may also assume that limn→∞ d(pn, qn) = r where 0 ≤ r ≤ ∞ and that all the limits
limn→∞ d(x, qn) exist in [0, ∞] for x ∈ M0. Let s = limn→∞ d(qn) (so that 0 ≤ s ≤ ∞).

Let M̃0 = M̃ ∩ (M0 × M0). We consider a map V : Lip0(M, da) → �∞(M̃0) defined by

V h(x, y) = h(x) − h(y)

da(x, y)
.

Then ‖V ‖ ≤ 1 but V |E is an isometry. We shall show that (Vfn)
∞
n=1 is weakly convergent to Vf.

Let A be the real subalgebra of �∞(M̃0) generated by the constants and the functions

(x, y) → f (x) − f (y)

da(x, y)
,

(x, y) → arctan(d(x, u)), u ∈ M0,

(x, y) → arctan(d(y, u)), u ∈ M0,

(x, y) → arctan(d(x, y)).

Let K be the associated compactification of M̃0 so each h ∈ A continuously extends to K; K is
then a compact metric space. Note that Vfn, Vf belong to C(K) and so it will suffice to show that
limn→∞ Vfn(ξ) = Vf (ξ) for every ξ ∈ K.

First observe that by (2) ‖Vfn‖ ≤ min(d(p, q)a−1, d(p, q)1−a) so that if r = 0 or r = ∞ the
sequence (Vfn)

∞
n=1 is norm convergent to zero. Therefore we can suppose that 0 < r < ∞.

If ξ ∈ K we may pick a sequence (xm, ym) ∈ M̃0 with (xm, ym) → ξ. Note that
limm→∞ d(xm, ym) = t for some t with 0 ≤ t ≤ ∞. Observe that if t = 0 or t = ∞, we have
Vf (ξ) = 0 = Vfn(ξ) for all n by (3). We therefore reduce to the case 0 < t < ∞.

We need the remark that if (un)
∞
n=1, (vn)

∞
n=1 are two sequences in M such that

lim
n→∞ d(un) = ∞

and limm→∞ d(un, vm) exists in [0, ∞] for all m then

lim
n→∞ lim

m→∞ d(un, vm) = lim
m→∞ lim

n→∞ d(un, vm) = ∞.

Indeed, limn→∞ d(un, vm) = ∞ for all m. If for some k we have limm→∞ d(uk, vm) < ∞ we
note that

d(un, vm) ≥ d(un, uk) − d(uk, vm)
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and so that
lim

m→∞ d(un, vm) ≥ d(un, uk) − lim
m→∞ d(uk, vm),

which converges to ∞ as n → ∞. Thus the stability of (M, d) applies even to extended valued limits.
Now

lim
n→∞ fn(xm) = f (xm) = min(1, ra−1)

(
max

(
r − lim

n→∞ d(qn, xm), 0
)

− max(r − s, 0)
)

while

lim
m→∞ fn(xm) = min(1, d(pn, qn)

a−1)(max(d(pn, qn) − lim
m→∞ d(qn, xm), 0)

− max(d(pn, qn) − d(qn), 0)

and so
lim

m→∞ f (xm) = lim
n→∞ lim

m→∞ fn(xm).

Similarly,
lim

m→∞ f (ym) = lim
n→∞ lim

m→∞ fn(ym).

Thus

Vf (ξ) = lim
m→∞ Vf (xm, ym)

= min(t−a, t−1) lim
m→∞(f (xm) − f (ym))

= lim
n→∞ lim

m→∞ min(d(xm, ym)−a, d(xm, ym)−1)(fn(xm) − fn(ym))

= lim
n→∞ Vfn(ξ).

Thus (Vfn)
∞
n=1 is weakly convergent and therefore so is (fn)

∞
n=1.

We conclude that W is weakly compact. This implies that the map S : �1(M̃) → Lip0(M)

defined by

S(ξ) =
∑

p,q∈M̃

ξp,qfp,q

is weakly compact. If we let ex,y be the canonical basis vectors we have Sex,y = fx,y for (x, y) ∈ M̃.

Clearly ‖S‖ ≤ 1. Consider the adjoint S∗ : Lip0(M)∗ → �∞(M̃) which is also weakly compact by
Gantmacher’s theorem. By the factorization theorem of Davis et al. [10] there is a reflexive space Z

and maps T : Lip0(M)∗ → Z and U : Z → �∞(M̃) so that ‖U‖, ‖T ‖ ≤ 1 and S∗ = UT.
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Let us define a map δ : (M, da) → Lip0(M, da)
∗ by

δ(x)(f ) = f (x).

Then δ is an isometric embedding. Now, if x �= y ∈ M

‖T δ(x) − T δ(y)‖ ≤ ‖δ(x) − δ(y)‖ ≤ da(x, y)

while

‖T δ(x) − T δ(y)‖ ≥ ‖S∗δ(x) − S∗(δ(y))‖
≥ |(δ(x) − δ(y))(Sex,y)|
= |fx,y(x) − fx,y(y)|
= min(d(x, y), d(x, y)a).

This shows that T ◦ δ is a strong uniform embedding of M into Z with

min(d(x, y), d(x, y)a) ≤ ‖T ◦ δ(x) − T ◦ δ(y)‖ ≤ max(d(x, y), d(x, y)a), x, y ∈ M.

Brown and Guentner [7] showed that every metric space with bounded geometry coarsely embeds
into a reflexive space; our original motivation for the above result was that any locally compact metric
space is automatically stable, so that we have a corollary.

COROLLARY 2.2 If M is a locally compact metric space then M strongly uniformly embeds into a
reflexive space.

However, the author has learned of a more recent result of Baudier and Lancien [3] that every
locally finite metric space Lipschitz embeds into any Banach space failing cotype (and in particular
into a reflexive space). This is, of course, a much stronger conclusion for this class of spaces.

3. Embeddings of infinite graphs

Let G be a connected graph. Then G has an associated metric space structure given by setting d(u, v)

to be the length of the shortest path from u to v.

Let M be any subset of N. For r ∈ N we define Pr (M) to be the set of all subsets of M of size r.

For r = 0 we define P0(M) to be the singleton {∅}. We make Pr (M) into a graph by declaring two
distinct subsets σ = {m1, m2, . . . , mr} and τ = {n1, n2, . . . , nr} (written in increasing order) if they
interlace so that either

m1 ≤ n1 ≤ m2 ≤ · · · ≤ mr ≤ nr or n1 ≤ m1 ≤ n2 ≤ · · · ≤ nr ≤ mr.

We write σ < τ if mr < n1. It is clear that as long as |M| ≥ 2r , the diameter of this graph (and of its
associated metric space) is r. It is also easy to verify that

d(σ, τ ) = r

if and only if either σ < τ or τ < σ.
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For r = 0 we define P0(M) to be the singleton {∅}, and thus a function on P0(M) is a constant.
The following proposition is elementary.

PROPOSITION 3.1 Suppose M is a stable metric space and f : Pr (N) → M is a bounded map, where
r ≥ 1. Then, for any ε > 0, there is an infinite subset M of N such that for any σ, τ ∈ Pr (M) with
σ < τ we have d(f (σ ), f (τ )) < ωf (1) + ε.

Proof . By a standard application of Ramsey theory we can pass to an infinite subset M of N so that
for some constant a and every σ, τ ∈ Pr (M) with σ < τ we have |d(f (σ ), f (τ )) − a| < ε/2.

Now let U be any non-principal ultrafilter on N containing M. Then

lim
m1∈ U

lim
n1∈ U

· · · lim
mr∈ U

lim
nr∈ U

d(f (m1, . . . , mr), f (n1, . . . , nr)) ≤ ωf (1).

Thus using stability [6, p. 213] we also have

lim
m1∈ U

· · · lim
mr∈ U

lim
n1∈ U

· · · lim
nr∈ U

d(f (m1, . . . , mr), f (n1, . . . , nr)) ≤ ωf (1).

Hence for some σ, τ ∈ Pr (A) with σ < τ we have

d(f (σ ), f (τ )) < ωf (1) + ε

2

and so
a < ωf (1) + ε,

and the result follows.

Now suppose X is a Banach space and f : Pr (N) → X is a bounded map, where r ≥ 1. Fix some
non-principal ultrafilter U on N. Then we can define a bounded map ∂Uf : Pr−1(N) → X∗∗ by setting

∂Uf (m1, . . . , mr−1) = w∗ − lim
mr∈ U

f (m1, . . . , mr).

In the case r = 1 we can regard ∂Uf as an element of X∗∗. We can then iterate this procedure and
define bounded maps ∂k

Uf : Pr−k(N) → X(2k) for 1 ≤ k ≤ r , where X(k) denotes the kth dual of X.

We consider ∂r
Uf as an element of X(2r).

Of course if X is reflexive each ∂k
Uf maps Pr−k(N) into X. We shall also use this notation when

X = R.

LEMMA 3.2 Let h : Pr (N) → R be a bounded map. Then, given ε > 0, there is an infinite subset M

of N so that
|h(σ) − ∂r

Uh| < ε, σ ∈ Pr (M).

Proof . We select M = {m1, m2, . . .} inductively so that for each k if σ ⊂ {m1, . . . , mk} and
1 ≤ |σ | = s ≤ min(k, r) then |∂r−s

U h(σ) − ∂hr
U | < ε. To start the induction select m1 so that

|∂r−1
U h(m1) − ∂r

Uh| < ε.
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Assume m1 < m2 < · · · < mk have been chosen. For each subset σ of {m1, . . . , mk} with s =
|σ | ≤ r − 1 there is a set Aσ ∈ U so that ifm ∈ Aσ we havem > mk and |∂r−s−1

U h(σ ∪ {m}) − ∂r
Uh| <

ε. The intersection A of all such Aσ also belongs to U . Hence we may pick mk+1 ∈ A and complete
the inductive step.

Suppose X is a Banach space and that f : Pr (N) → X and g : Pr (N) → X∗ are bounded maps.
Define f ⊗ g : F2r (N) → R by

f ⊗ g(m1, m2, . . . , m2r ) = 〈f (m2, m4, . . . , m2r ), g(m1, m3, . . . , m2r−1)〉.

LEMMA 3.3 Under the above hypotheses,

∂2
U (f ⊗ g) = ∂Uf ⊗ ∂Ug.

Proof . We have

∂U (f ⊗ g)(m1, . . . , m2r−1) = lim
m2r∈U

〈f (m2, . . . , m2r ), g(m1, m3, . . . , m2r−1)〉

= 〈∂Uf (m2, . . . , m2r−2), g(m1, m3, . . . , m2r−1)〉.

Now letting m2r−1 → ∞ through U gives the conclusion.

LEMMA 3.4 Suppose f : Pr (N) → X is a bounded map. Then for any ε > 0 there exists an infinite
subset M of N so that

‖f (σ)‖ < ‖∂r
Uf ‖ + ωf (1) + ε, σ ∈ Pr (M).

Proof . Using the Hahn–Banach theorem, we define g : Fr (N) → X∗ so that ‖g(σ )‖ = 1 and

〈f (σ), g(σ )〉 = ‖f (σ)‖, σ ∈ Pr (N).

Now by Lemma 3.3 and induction we have

∂2r
U (f ⊗ g) = ∂r

Uf ⊗ ∂r
Ug = 〈∂r

Uf, ∂r
Ug〉 ≤ ‖∂r

Uf ‖.

By Lemma 3.2, we can find an infinite set A ⊂ N so that

|f ⊗ g(σ )| < ‖∂r
Uf ‖ + ε, σ ∈ P2r (A).

Let A = {m1, n1, m2, n2, . . .}, where m1 < n1 < m2 < · · ·. Let M = {m1, m2, . . .}.
Suppose σ = {mu1 , mu2 , . . . , mur

}, where u1 < u2 < · · · < ur. Then

‖f (σ)‖ = 〈f (σ), g(σ )〉
≤ ωf (1) + 〈f (nu1 , nu2 , . . . , nur

), g(mu1 , mu2 , . . . , mur
)〉

≤ ‖∂r
Uf ‖ + ωf (1) + ε.
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THEOREM 3.5 Suppose r ∈ N. Let X be a Banach space such that X(2k) is separable. Then given any
uncountable family of bounded maps fi : Pr (N) → X for i ∈ I and ε > 0, there exist i �= j and an
infinite subset M of N so that

‖fi(σ ) − fj (σ )‖ < ωfi
(1) + ωfj

(1) + ε, σ ∈ M.

Proof . Since X(2r) is separable we may find i �= j so that ‖∂r
Ufi − ∂r

Ufj‖ < ε/2. Now ‖∂r
U (fi −

fj )‖ < ε/2 and so using Lemma 3.4 gives the conclusion.

THEOREM 3.6 c0 cannot be uniformly or coarsely embedded into a Banach space X such that every
dual space X(r) is separable. In particular, c0 cannot be uniformly or coarsely embedded into a
reflexive Banach space.

Proof . Suppose h : c0 → X is any map. Let (ek)
∞
k=1 be the canonical basis of c0. For any r > 0 and

0 < θ < ∞ and any infinite subset A of N we define

sn(A) =
∑
k≤n
k∈A

ek

and then

fA,θ,r (n1, . . . , nr) = θ

r∑
j=1

snj
(A).

We then consider h ◦ f : Pr (N) → X. Fix θ, r. By Theorem 3.5 we can find A �= B and an infinite
subset M of N so that

‖hfA,θ,r (σ ) − hfB,θ,r (σ )‖ < ωhf (1) + ε, σ ∈ M.

Since A �= B there exists σ so that

‖fA,θ,r (σ ) − fA,θ,r (σ )‖ = rθ.

Thus
ϕh(rθ) ≤ ωhf (1) + ε ≤ ωh(θ) + ε.

It follows that
ϕh(rθ) ≤ ωh(θ), 0 < θ < ∞.

If ωh(θ) < ∞ for some θ this implies limθ→∞ ϕh(θ) < ∞. If limθ→0 ωh(θ) = 0 this implies that
ϕh(θ) = 0 for all θ > 0.

COROLLARY 3.7 There is a separable Schur space X such that BX cannot be uniformly embedded
into a Banach space Z such that every dual of Z is separable.

Proof . By [17, Proposition 5.2] there is a Schur space X which is uniformly homeomorphic to Y ⊕ c0

for some Banach space Y. In particular Bc0 is uniformly homeomorphic to a subset of BX. Since c0

is uniformly into Bc0 by [1], the result follows from Theorem 3.6.
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Odell and Schlumprecht [21] showed that if X has an unconditional basis, then BX is uniformly
homeomorphic to B�2 if and only if X has non-trivial cotype; the corresponding result for Banach
lattices is due to Chaatit [8]; see also [9]. We now present a simple generalization of this result.

THEOREM 3.8 Let X be a separable Banach lattice. Then the following are equivalent:

(i) BX is uniformly homeomorphic to a subset of a reflexive Banach space;
(ii) BX is uniformly homeomorphic to BY for some reflexive Banach lattice;

(iii) X contains no subspace isomorphic to c0.

Proof . (iii) ⇒ (ii) X can be represented as an order-continuous Banach function space on some
probability space (, μ) (which may contain atoms). For 1 < p < ∞ we define Y to be the p-
concavification of X [19, pp. 53, 54]. Thus Y is the space of measurable functions y :  → R such
that |y|p ∈ X with the norm ‖y‖Y = ‖|y|p‖1/p

X . This space is p-convex and hence contains no copy
of �1. On the other hand, if Y contains a copy of c0 then it contains a disjoint sequence (yn)

∞
n=1

equivalent to the c0-basis [19, p. 35]; but then (|yn|p)∞n=1 would be equivalent to the c0-basis in X,
which yields a contradiction. Thus Y is reflexive [19, Theorem 1.c.5, p. 35]. Define f : BX → BY by
f (x) = |x|1/psgn x. Then f is onto.

If x1, x2 ∈ BX with ‖x1 − x2‖X = θ. Let u = |x1| + |x2| and v = |x1 − x2|. Define a measurable
function a with 0 ≤ a ≤ 1 so that v = au.

If a(s) = 1 then x1(s), x2(s) have opposite signs and so

|f (x1(s)) − f (x2(s))|p = (|x1(s)|1/p + |x2(s)|1/p)p.

Thus

u(s) ≤ |f (x1(s)) − f (x2(s))|p ≤ 2p−1u(s).

If a(s) < 1 then x1(s), x2(s) have the same signs and

|f (x1(s)) − f (x2(s))|p =
((

1

2
(1 + a)

)1/p

−
(

1

2
(1 − a)

)1/p
)p

u(s).

Note that ϕ(t) = ((1/2)(1 + t))1/p − ((1/2)(1 − t))1/p is a convex function of t on [0, 1] and so
ϕ(t) ≥ ϕ′(0)t . However, ϕ′(0) = 21−1/pp−1.

Thus

2p−1p−papu(s) ≤ |f (x1(s)) − f (x2(s))|p ≤ au(s).

Thus in general we conclude

2p−1p−papu ≤ |f (x1) − f (x2)|p ≤ 2p−1au.

The right-hand inequality gives

‖f (x1) − f (x2)‖Y ≤ 21−1/p‖au‖1/p = 21−1/pθ1/p.
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We also note that ‖u‖ ≤ 2 so that if A = {s : a < (θ/4)} then ‖auχA‖X ≤ θ/2. Hence if B is the
complement of A we have ‖auχB‖X ≥ θ/2. Now

‖f (x1) − f (x2)‖Y ≥ 21−1/pp−1‖apuχB‖1/p

X ≥ 21−1/pp−1

(
θ

4

)1−1/p (
θ

2

)1/p

≥ θ

2p
.

Now (ii) ⇒ (i) is trivial and (i) ⇒ (iii) follows from Theorem 3.5.

4. Embeddings of metric spaces into reflexive spaces

We now consider the problem of embedding a metric space coarsely or uniformly into a reflexive
Banach space. We will use the following theorem to develop necessary conditions for the existence
of such embeddings.

THEOREM 4.1 Suppose r ∈ N. Let X be a reflexive Banach space and suppose f : Pr (N) → X is a
bounded map. Then, given ε > 0, there exists an infinite subset M of N and x ∈ X so that

‖f (σ) − x‖ ≤ ωf (1) + ε, σ ∈ Pr (M).

Proof . This follows directly from Lemma 3.4. Since X is reflexive we have ∂r
Uf = x ∈ X. Let

f ′(σ ) = f (σ) − x so that ∂r
Uf ′ = 0 and apply Lemma 3.4.

If M is a metric space and ε > 0 and δ ≥ 0 we shall say that M has property Q(ε, δ) if for every
r ∈ N if f : Pr (N) → M is a map with ωf (1) ≤ δ there exists an infinite subset M of N with

d(f (σ ), f (τ )) ≤ ε, σ < τ, σ, τ ∈ Pr (M).

Let us define �M(ε) to be the supremum of all δ ≥ 0 so that M has property Q(ε, δ).

Note first that if M is a stable metric space then �M(ε) ≥ ε for every ε > 0 by an application of
Proposition 3.1.

THEOREM 4.2 Suppose M is a metric space.

(i) If M uniformly embeds into a reflexive Banach space then �M(ε) > 0 for every ε > 0.

(ii) If M coarsely embeds into a reflexive space then limε→∞ �M(ε) = ∞.

Proof . Let h : M → X be a map of M into a reflexive Banach space X. Let f : Pr (N) → M be a
map with ωf (1) ≤ δ. Then ωhf (1) ≤ ωh(δ). Hence there is an infinite subset M of N and x ∈ X so
that

‖hf (σ) − x‖ ≤ 2ωh(δ), σ ∈ Pr (M).

Thus
‖hf (σ) − hf (τ)‖ ≤ 4ωh(δ), σ, τ ∈ Pr (M).

From this we have

ϕh(d(f (σ ), f (τ ))) ≤ 4ωh(δ), σ < τ, σ, τ ∈ Pr (M).
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If h is a uniform embedding then
lim
δ→0

ωh(δ) = 0

and ϕh(ε) > 0. Thus �M(ε) > 0 for all ε > 0. If h is a coarse embedding limε→∞ ϕh(ε) = ∞ and
ωh(δ) < ∞ for each δ > 0 so that limε→∞ �M(ε) = ∞.

If X is a Banach space it is clear that �X(ε) = aε for some constant a and that �BX
(ε) = �X(ε)

if 0 < ε ≤ 1. We denote by QX the constant such that �X(ε) = QXε. We will say that X has the
Q-property if QX > 0.

We remark that if X is a stable Banach space then QX = 1 while if X is reflexive we have
QX ≥ 1/2 by Theorem 4.1. Thus all stable or reflexive Banach spaces have the Q-property. On the
other hand, c0 fails the Q–property; this can be proved by the methods of Theorem 3.5 but will also
follow from the more delicate examples given below, since every separable Banach space Lipschitz
embeds into c0 by the result of Aharoni [1].

COROLLARY 4.3 If X is a Banach space which fails the Q-property then

(i) BX cannot be uniformly embedded into a reflexive Banach space,
(ii) X cannot be coarsely embedded into a reflexive Banach space.

THEOREM 4.4 Let X be a Banach space with the Q-property. Then given ε > 0 and a bounded
sequence (xn)

∞
n=1 with a weak∗-cluster point x∗∗ ∈ X∗∗ there is a subsequence (yn)

∞
n=1 of (xn)

∞
n=1

such that

∥∥∥∥
2r∑

j=1

(−1)j ynj

∥∥∥∥ ≥ (1 − ε)QXrd(x∗∗, X), n1 < n2 < · · · < n2r , r = 1, 2, . . . .

Proof . Let θ = d(x∗∗, X) and let B = supn ‖xn‖. We can assume θ > 0. We will pick λ > 1 and
α > 0 small enough so that

λ−2QX − 2αB − α > (1 − ε)QX.

We can extract a subsequence (vn)
∞
n=1 of (xn)

∞
n=1 such that

∥∥∥∥
m∑

j=1

ajvj −
n∑

k=m+1

ajvj

∥∥∥∥ > λ−1θ

whenever 1 ≤ m < n, aj ≥ 0 and

m∑
j=1

aj =
n∑

j=m+1

aj = 1.

Using Ramsey’s theorem and a diagonalization argument we can extract a further subsequence
(yn)

∞
n=1 so that for each r ∈ N there is a constant br such that if αr ≤ n1 < n2 < · · · < n2r then

br − αθ ≤
∥∥∥∥∥∥

2r∑
j=1

(−1)j ynj

∥∥∥∥∥∥ ≤ br .
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For fixed r let M = {n ∈ N : n ≥ αr}. Define f : Pr (M) → X by

f (σ) =
∑
k∈σ

yk.

Then ωf (1) ≤ br and so there exist σ < τ in Pr (M) with

‖f (σ) − f (τ)‖ ≤ λQ−1
X br .

Hence
λ−1rθ ≤ λQ−1

X br

that is,
br ≥ λ−2QXrθ.

Now if {n1, . . . , n2r} ∈ P2r (N) there exist {m1, . . . , m2r} so that αr ≤ m1 and

∥∥∥∥
2r∑

j=1

(−1)j ynj
+ β

2r∑
j=1

(−1)j ymj

∥∥∥∥ ≤ 2αrB

for either β = 1 or β = −1. Thus

∥∥∥∥
2r∑

j=1

(−1)j ynj

∥∥∥∥ ≥ λ−2QXrθ − 2αBrθ − αθ > (1 − ε)QXrθ.

We now recall [4] that a Banach space X has the alternating Banach–Saks property if every bounded
sequence (xn)

∞
n=1 in X has a subsequence (yn) so that the Cesaro means (1/n)

∑n
k=1(−1)kyk converge

to 0. Beauzamy [4] proves that X has the alternating Banach–Saks property if and only if X has no
spreading model equivalent to the �1−basis.

THEOREM 4.5 Suppose X has the alternating Banach–Saks property. If X has the Q-property then X

is reflexive.

Proof . Let (xn)
∞
n=1 be a bounded sequence in X. Let x∗∗ be a weak∗-cluster point of (xn)

∞
n=1 in X∗∗.

According to Theorem 4.4 there is a subsequence (yn)
∞
n=1 and c > 0 so that

∥∥∥∥
2r∑

j=1

(−1)j ynj

∥∥∥∥ ≥ crd(x∗∗, X), n1 < n2 < . . . < n2r , r = 1, 2, . . . .

By the alternating Banach–Saks property we have d(x∗∗, X) = 0 and so by the Eberlein–Smulian
theorem, X is reflexive.

We are now in a position to give some more examples of spaces failing the Q-property. A space
with non-trivial type has the alternating Banach–Saks property [4].
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COROLLARY 4.6 Let X be a non-reflexive Banach space with non-trivial type. Then X fails
property Q.

We note that examples of such spaces were constructed by James [15] and later by Pisier and Xu
[24]. Pisier and Xu also gave quasi-reflexive examples. This result does not cover the original James
quasi-reflexive space [13, 14] but this can be done directly from the definition. We recall that J is
defined to be the space of all real sequences (ξn)

∞
n=1 such that limn→∞ ξn = 0 and

‖ξ‖J = sup
i0<i1<i2<···<in

⎛
⎝ n∑

j=1

(ξj − ξj−1)
2

⎞
⎠

1/2

< ∞.

PROPOSITION 4.7 The James space J and its dual J ∗ fail the Q-property.

Proof . In J consider the sequence xn = e1 + · · · + en which converges weak∗ to an element χ ∈ J ∗∗
with ‖χ‖ = 1. However,

∥∥∥∥
2r∑

j=1

(−1)j xnj

∥∥∥∥J = (2r − 1)1/2, n1 < n2 < · · · < n2r .

We can then directly apply Theorem 4.4.
Similarly in J ∗ consider the sequence (e∗

n)
∞
n=1 (the dual basis). Then xn converges weak∗ to an

element of J ∗∗∗ of norm one but

∥∥∥∥
2r∑

j=1

(−1)j e∗
nj

∥∥∥∥J ∗ ≤ r1/2, n1 < n2 < · · · < n2r .

However, we do not know whether it is possible to find a non-reflexive quasi-reflexive space X so
that BX embeds uniformly in a reflexive space, or X embeds coarsely. We will show that there are
quasi-reflexive spaces with the Q-property. First let us define the ω-dual of a Banach space X as the
space X(ω) obtained by completing

⋃
k≥0 X(2k); where X2k−2 is considered as a subspace of X2k for

k ≥ 1 via the canonical embedding.

THEOREM 4.8 Let X be a separable Banach space so that dim X∗∗/X = 1. Then the following are
equivalent:

(i) X(ω) ≈ X ⊕ �1;
(ii) X has the Q-property.

Proof . Although our proof is essentially self-contained, we use ideas due to Perrott [22] and
Bellenot [5].

We start with some general remarks on X(ω). Pick some e1 ∈ X∗∗ \ X so that ‖e1‖ = 1. Let
θ = d(e1, X).Then there is a weakly Cauchy sequence (un)

∞
n=1 converging weak∗ to e1 with‖un‖ ≤ 1.

We then define ek ∈ X(2k) by setting ek to be the weak∗-limit of (un)
∞
n=1 considered as a sequence
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in X ⊂ X(2k). It is clear that X(2k) = [X, e1, . . . , ek]. We consider the sequence (en)
∞
n=1 in Xω =⋃

k≥0 X(2k).

Now by taking convex combinations of the (un)
∞
n=1 and using a diagonalization argument it is

possible to find a sequence (vn)
∞
n=1 in X with ‖vn‖ ≤ 1 so that

lim
n→∞ ‖ξ + vn‖ = ‖ξ + ek‖, ξ ∈ X(2k−2), k = 1, 2, . . . .

Now it follows that if x ∈ X and α1, . . . , αr ∈ R we have

∥∥∥∥x +
r∑

j=1

αjej

∥∥∥∥ = lim
n1→∞ lim

n2→∞ · · · lim
nr→∞

∥∥∥∥∥∥x +
r∑

j=1

αr−j+1vnj

∥∥∥∥∥∥ .

From this it follows easily that (ek)
∞
k=1 is spreading over X, that is,

∥∥∥∥x +
r∑

j=1

λjej

∥∥∥∥ =
∥∥∥∥x +

r∑
j=1

λjenj

∥∥∥∥, x ∈ X, λ1, . . . , λr ∈ R, n1 < n2 < · · · < nr. (4)

It also follows that if 1 ≤ k < r then

∥∥∥∥x +
∑
j<k

λj ej + (λk + λk+1)ek +
∑

j>k+1

λjej

∥∥∥∥ ≤
∥∥∥∥x +

r∑
j=1

λjej

∥∥∥∥, x ∈ X, λ1, . . . , λr ∈ R.

(5)

Both (4) and (5) are due to Perrott [22]. By (4) and (5) the sequence (ej )
∞
j=1 is a dual neighborly

sequence in the sense of Bellenot [5].
We note furthermore that

‖x + e1 − e2‖ = lim
n→∞ ‖x + e1 − un‖ ≥ θ, x ∈ X. (6)

(i) ⇒ (ii) We show first that (en)
∞
n=1 is equivalent to the canonical basis of �1. Indeed by Rosenthal’s

theorem [27] if this fails (en) is weakly Cauchy. However, X(ω) has codimension one in the subspace
of (X(ω))∗∗ consisting of all sequential limits in the weak∗-topology. Hence there exists α ∈ R so
that en − αvn is weakly convergent to some z ∈ X(ω). Given ε > 0 we can find by Mazur’s theorem
n1 < n2 < n3 and aj ≥ 0 for n1 + 1 ≤ j ≤ n2 such that

n2∑
j=n1+1

aj =
n3∑

j=n2+1

aj = 1

and ∥∥∥∥z −
n2∑

j=n1+1

aj (ej − αvj )

∥∥∥∥,

∥∥∥∥z −
n3∑

j=n2+1

aj (ej − αvj )

∥∥∥∥ <
θ

2
.
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Subtracting shows that there exists x ∈ X with

∥∥∥∥x +
n2∑

j=n1+1

aj ej −
n3∑

j=n2+1

aj ej

∥∥∥∥ < θ.

By (5) this implies
‖x + e1 − e2‖ < θ,

contradicting (6). It follows that there is a constant C so that

r∑
j=1

|λj | ≤ C

∥∥∥∥
r∑

j=1

λjej

∥∥∥∥, λ1, . . . , λr ∈ R.

Now suppose f : Pr (N) → X is a bounded map. Then

∂Uf (n1, . . . , nr−1) = g1(n1, . . . , nr−1) + ψ1(n1, . . . , nr−1)e1

for suitable bounded functions g1 : Pr−1(N) → X and ψ1 : Pr−1(N) → R. Thus, again for suitable
bounded maps g2 : Pr−2(N) → X and ψ2 : Pr−2(N) → R,

∂2
Uf (n1, . . . , nr−2) = g2(n1, . . . , nr−2) + ∂Uψ1(n1, . . . , nr−2)e1 + ψ2(n1, . . . , nr−2)e2

and iterating we have

∂k
Uf (n1, . . . , nr−k) = gk(n1, . . . , nr−k) +

k∑
j=1

∂
k−j

U ψj(n1, . . . , nr−k)ej ,

where gk : Pr−k(N) → X and ψk : Pr−k(N) → R are bounded maps. In the case k = r these maps
are constants. Let λj = ∂

r−j

U ψj ∈ R. Thus

∂r
Uf = gr +

r∑
j=1

λjej .

Now define h : P2r (M) → X by h(n1, . . . , n2r ) = f (n1, n3, . . . , nr) − f (n2, n4, . . . , n2r ). Then

∂2r
U h =

r∑
j=1

∂
r−j

U λje2j −
r∑

j=1

∂
r−j

U λje2j−1.

Hence
r∑

j=1

|λj | ≤ C

2
sup

σ∈P2r (N)

‖h(σ)‖ ≤ Cωf (1).

Now define

f ′(n1, . . . , nr) = gr +
r∑

j=1

λr−j vnj
.
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Then

ωf ′(1) ≤ 2
r∑

j=1

|λj | ≤ Cωf (1).

Thus ∂r
U (f − f ′) = 0 and ω(f −f ′)(1) ≤ (C + 1)ωf (1). Hence by Lemma 3.4 we can find an

infinite subset M of N so that

‖f (σ) − f ′(σ )‖ ≤ (C + 2)ωf (1), σ ∈ Pr (N).

Hence if σ < τ in Pr (M) we have

‖f (σ) − f (τ)‖ ≤ 2(C + 2)ωf (1) + ‖f ′(σ ) − f ′(τ )‖

≤ 2(C + 2)ωf (1) + 2
r∑

j=1

|λj |

≤ (3C + 2)ωf (1).

This shows that X has the Q-property.
(ii) ⇒ (i) We first observe that from Theorem 4.4 we can assume that

∥∥∥∥
2r∑

j=1

(−1)j vnj

∥∥∥∥ ≥ cr, r = 1, 2, . . .

for some constant c > 0. Thus ∥∥∥∥
r∑

j=1

uj

∥∥∥∥ ≥ cr, r = 1, 2, . . . ,

where uj = e2j − e2j−1.

We will show that (en)
∞
n=1 is equivalent to the �1-basis. Suppose not: then as before (en)

∞
n=1 is

weakly Cauchy. Thus (un)
∞
n=1 is weakly null. Hence we can find a convex combination

∑r
j=1 ajuj

so that ∥∥∥∥
r∑

j=1

ajuj

∥∥∥∥ <
c

2
.

For any integer N we have ∥∥∥∥
N∑

k=1

r∑
j=1

ajuj+k

∥∥∥∥ ≤ cN

2
.

This implies ∥∥∥∥
N∑

j=r+1

uj

∥∥∥∥ ≤ cN

2
+ 4r.

Thus

c(N − r) ≤ cN

2
+ 4r.

For large enough N this is a contradiction.
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Thus (en)
∞
n=1 is equivalent to the �1-basis, that is, there is a constant C so that

r∑
j=1

|λj | ≤ C

∥∥∥∥
r∑

j=1

λjej

∥∥∥∥, λ1, . . . , λr ∈ R.

Next note that if x ∈ X and λ1, . . . , λr ∈ R then

‖x‖ ≤
∥∥∥∥x +

r∑
j=1

λjej

∥∥∥∥ +
∥∥∥∥

r∑
j=1

λjej

∥∥∥∥

≤
∥∥∥∥x +

r∑
j=1

λjej

∥∥∥∥ + 1

2
C

∥∥∥∥
r∑

j=1

λj (e2j − e2j−1)

∥∥∥∥

≤
∥∥∥∥x +

r∑
j=1

λjej

∥∥∥∥ + 1

2
C

∥∥∥∥x +
r∑

j=1

λje2j

∥∥∥∥ + 1

2
C

∥∥∥∥x +
r∑

j=1

λje2j−1

∥∥∥∥

≤ (C + 1)

∥∥∥∥x +
r∑

j=1

λjej

∥∥∥∥.

Thus X(ω) = X ⊕ [en] ≈ X ⊕ �1.

We now observe that Bellenot [5] has constructed a quasi-reflexive space X so that X(ω) ≈ X ⊕ �1.

Bellenot’s space is thus an example of a quasi-reflexive space with the Q-property. However, we do
not know if this space can be coarsely embedded in a reflexive space or its unit ball is uniformly
homeomorphic to a subset of a reflexive space.

5. Embeddings in uniformly convex spaces

Our results have some applications to uniform and coarse embeddings in uniformly convex spaces
(or super-reflexive spaces). We recall the results of Enflo [11] (see Pisier [23] for an improve-
ment) that a Banach space is super-reflexive if and only if it has an equivalent uniformly convex
norm.

We recall that Raynaud [26] proved that a non-reflexive Banach space X with non-trivial type has
the property that BX cannot be uniformly embedded into a stable metric space. Our first application
is an extension of this result (by Theorem 2.1).

THEOREM 5.1 Let X be a Banach space with non-trivial type. Assume that either

(i) BX embeds uniformly in a uniformly convex space, or
(ii) X coarsely embeds into a uniformly convex space.

Then X is super-reflexive (that is, has an equivalent uniformly convex norm).
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Proof . It follows quickly in either case that every ultraproduct of X has the same property and
therefore has the Q-property. Hence every ultraproduct is reflexive by Corollary 4.6. Thus X is
super-reflexive.

We may also give a criterion for coarse or uniform embeddability of a metric space into a super-
reflexive space. We denote by [N ] the set {1, 2, . . . , N}.

THEOREM 5.2 Let M be a metric space.

(i) In order that M coarsely embeds into a uniformly convex space it is necessary that there exists
a function φ : (0, ∞) → [0, ∞) with limt→∞ φ(t) = ∞ and a function N : N × (0, ∞) →
N so that if r ∈ N and f : Pr ([N(r, t)]) → M satisfies ωf (1) ≤ φ(t) then there exist σ < τ

in Pr ([N(r, t)]) with
d(f (σ ), f (τ )) ≤ t.

(ii) In order that M uniformly embeds into a uniformly convex space it is necessary that there
exists a function φ : (0, ∞) → (0, ∞) and a function N : N × (0, ∞) → N so that if r ∈ N

and f : Pr ([N(r, t)]) → M satisfies ωf (1) ≤ φ(t) then there exist σ < τ in Pr ([N(r, t)])
with

d(f (σ ), f (τ )) ≤ t.

Proof . Suppose X is a super-reflexive space. Let h : M → X be a map which is either a coarse
embedding or a uniform embedding. Suppose that t ∈ R and θ > 0 is such that for some r ∈ N and
every m there is a map fm : Pr ([m]) → M such that ωfm

(1) ≤ θ but

d(fm(σ, τ )) > t, σ < τ, σ, τ ∈ Pr ([m]).

(If m < 2r this always holds vacuously.) Let ym = hfm(1, 2, . . . , r). Consider the ultraproduct XU ,
where U is some non-principal ultrafilter on N. Thus XU is the space of all bounded sequences (xk)

∞
k=1

in X under the seminorm
‖(xk)

∞
k=1‖XU = lim

k∈U
‖xk‖.

We define a map
g : Pr (N) → XU

by
g(σ ) = (xm)∞m=1

where

xm =
{

0 if m < max σ,

hfm(σ ) − ym if m ≥ max σ.

Then ωg(1) ≤ ωh(θ). Hence since XU is reflexive there exists σ < τ in N with

‖g(σ ) − g(τ)‖ < 3ωh(θ).

It follows that for large enough m

‖hfm(σ) − hfm(τ)‖ < 3ωh(θ).
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However, for large enough m we have d(fm(σ ), fm(τ)) > t. Thus

ϕh(t) ≤ 3ωh(θ).

It follows that if ωh(θ) < (1/3)ϕh(t) we can choose N(r, t) so that if f : Pr ([N(r, t)]) → M has
ωf (1) ≤ θ then there exist σ < τ with d(f (σ ), f (τ )) ≤ t. It can now be checked easily that we can
define the functions φ in cases (i) and (ii).

Note that a space with bounded geometry always fulfills (i) of Theorem 5.2.

6. Problems

There are a number of obvious problems that we leave unsolved.

PROBLEM 6.1 Does every (separable) reflexive Banach space coarsely (or uniformly) embed into a
stable metric space? Is the converse of Theorem 2.1 valid?

We suspect the answer to Problem 1 is negative. However, we may perhaps have some hope for a
positive answer to:

PROBLEM 6.2 If X is a separable reflexive Banach space, does BX uniformly embed into a stable
metric space?

Here we note that the results of [8; 9; 21; 6, pp. 199–206] show that for a very wide class of
super-reflexive spaces, BX is uniformly homeomorphic to B�2 ; see also [17].

PROBLEM 6.3 If X is separable super-reflexive, is BX uniformly homeomorphic to B�2 ?

We also do not know the answers to the following.

PROBLEM 6.4 Suppose X is a separable Banach space which coarsely embeds into a reflexive space;
must X be weakly sequentially complete? Similarly if BX uniformly embeds into a reflexive space,
must X be weakly sequentially complete?

PROBLEM 6.5 If X is a separable Banach space is the Q-property for X equivalent to coarse
embeddability of X into a reflexive space (or to uniform embeddability of BX into a reflexive space)?

Finally we note that Raynaud [26] proves that if X is a separable Banach space which uniformly
embeds into a super-stable Banach (see [26] for the definition) then X contains a copy of some �p

where 1 < p < ∞. The result of Randrianarivony [25] shows that if X coarsely embeds into �2 then
the same conclusion holds. Therefore it is natural to ask for an analog of Raynaud’s result for coarse
embeddings.

PROBLEM 6.6 If X is a separable Banach space which coarsely embeds into a super-stable Banach
space, must X contain a copy of some �p, where 1 < p < ∞?
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