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Abstract

Let E be a Banach space with an unconditional basis. We prove that for 2 the Banach
spaceP(ME) of all m-homogeneous polynomials & has an unconditional basis if and only
if E is finite dimensional. This answers a problem of S. Dineen.

1. Introduction

As usual we denote bP(™E), E a Banach space and a natural number, the space of ait
homogeneous (scalar-valued and continuous) polynompiae E which together with the norm
Il := supx <1 P(X)| forms a Banach space. Recall that a scalar-valued magpargE is said
to be anm-homogeneous polynomial whenever there is sgme £, (E) which on its diagonal
coincides withp; as sual L (E) stands for the Banach space of all continuoubnear forms on
EM.

A problem of S. Dineen asks whether there exists an infinite-dimensional Banachspétbean
unconditional shrinking basis for whigA(™E) for m > 2 has an unconditional basis. Dineen [13,
p. 303] conjectures that this situatiesgoing to happen rarely and perhaps never. The following
theorem is our main result.

THEOREM1.1 Let E be a Banach space with an unconditional basisand m > 2. Then the Banach
space P(ME) of all m-homogeneous polynomials on E has an unconditional basisif and only if E
isfinite dimensional.

Let us also introduce the spa@@,(™E) of all m-homogeneous polynomials which are
approximable; this is defined as the closed linear sparfAd"E) of all polynomials of the type

P(X) = [rLq X (X), wherex;, - -+, X € E*,
SupposeE is a Banach space with a Schauder b@i},‘j’il and biorthogonal functiona[e]f P21
For any multi-indexa = (a1, ..., an) € Ny with order|a| = m we call

e (X)) =g x)*"...es(x)™, xeE,
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an (mhomogeneous) monomial da If thee; are shrinking, then by a result of [19] (see also [12,
13]) the monomials with the so-called square order form a basigf("E). For a reflexive space

E Alencar proved in [2] that the monomials (square order) form a bas@B(BfE) if and only if
P(ME) = Papp(™E)) if and only if P(ME) is reflexive. See [13] for a collection of results on the
reflexivity of spaces ofn-homogeneous polynomials on Banach spaces; for example, a result of
Pelczyhski [18] from 1957 states tha®(™¢ ) is reflexive if and only ifm < p. As a consequence,

the monomials (square order) form a basi®ef"¢ ) if and only if m < p.

In [9] the authors undertake a systematic study of Dineen’s problem following a program
originally initiated by Gordon and Lewis in [15]. Among other things, it is proved that for
each Banach spade which has a dual with an unconditional ba@)j’il, the spacéPapp(ME)
has an unconditional basis if and only if its monomigjsform an unconditional basis; see [9,
Corollary 2]. As a consequence asymptotically correct estimates for the unconditional basis constant
of all m-homogeneous polynomials dfg are determined. These results are used to narrow down
considerably the list of natural test candidaefor Dineen’s conjecture (in particulaB(™E) has
no unconditional basis whef is a super-reflexive space or the original Tsirelson sfage Our
proof of the preceding theorem is based on these results.

Wealso study whe@®(ME) is isomorphic to a Banach lattice. For spa&esith an unconditional
basis(ej)‘j"’:1 it turns out that this happens if and only if the monomigjSorm an unconditional
basic sequence. It can be seen easily@t¢,) is isomorphic to the Banach lattiég,. In contrast
we here construct an example of a Banach sfaegth a symmetric basis which is not isomorphic
to £1 but such thatP(ME) is isomorphic to a Banach lattice for evary > 1. We conclude with
some open problems.

2. Some preliminaries

We shall use standard notation and notions from Banach space theory, as presented, for example,
in [6] or [17].
A Banach spac& has cotype for 2 < q < oo if there is a constar€ such that

n 1/9 n 1/q
(Z ”Xk”q> < C<E Zekxk ) ) Xl»"'»xn € x7
k=1 k=1

where(ey, - - -, €n) denotes a sequence of mutually independent Rademachers on some probability
space.

We say thatE contains uniformly complementeids if there exist<C such that for every € N
there are operator§, : E?J — EandT, : E — K'F‘J with TS, = |dgr'1) (the identity onZ'r‘J) and
ISITall < C. Itis well known thatE has some non-trivial cotypg < oo if and only if E does
not contain uniformly complemented_s [17].

A normalized basic sequena:ej)?‘;l in a Banach spac& is calleddemocratic if there is a
constantC such that ifA, B are finite subsets df with |A| < |B| then

pC L

jeA jeB

q

<C

A basic sequence which is both unconditional and democratic is cgikedy. In fact, greedy
bases were originally defined in terms of approximation rates, and it is a theorem of Konyagin and
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Temlyakov [16] that this is equivalent to our definition. We refer to [1@] for more information
on greedy bases.
If (g )Cj’il is a greedy basic sequence then we define its fundamental function to be

¢(n) = sup{ Zej

jeA
Thus ¢ is increasing and there is a constantthe democratic constant) such that for any finite

setA
T

jeA

A < n}.

A (1A) < < B (AD.

An important principle we shall need is the following special case of [10, Proposition 5.3].

PROPOSITION 2.1 Suppose E is a Banach space with non-trivial cotype and (ej)‘]?o:l is an
unconditional basis of E. Then (e )<j>o= 1 has a subsequence (ej,,)n> ; which is greedy.

3. Remarkson atheorem of Tzafriri

A well-known result of Tzafriri [20] states that each infinite-dimensional Banach sKaeéh an
unconditional basis contains uniformly complementt%d for somep € {1, 2, co}. We shall here
modify the proof a little to obtain some additional information on greedy bases.

THEOREM 3.1 Suppose E has a greedy basis (g; )<j><>:1 with fundamental function ¢. Suppose E has
non-trivial cotype q < oo and that for some p > 1 we have

liminf n=1/Pg(n) = 0.
n—o0
Then E contains uniformly complemented ¢5s.

Proof. Forconvenience we suppose the basis is 1-unconditionalClb# the cotype constant of
E and letA be the democratic constant; clearly, we may assumejtbaip. Wefirst remark that if
| Al = mn then by splitting it intom subsets of siza we have

#(n) < CAM Y (mn), m, n € N. (3.1)
On the other hand the satof all n such that if 0< k < n we have
27Ky (2K) > 27"/Pp (2")

is infinite. Ifn € Alet N = 2". It follows that if 1 < m < N then if we choosek with
2k <'m < 2k1 we have
p(m) > ¢(2°) > 26=M/Pgp2").

Thus we have

$(m) > % (%)”%(N), 1<m<N. (3.2)
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On the other hand similar reasoning shows that (3.1) implies that
1
$(m) < 2CA (%) Moy, 1<m<N, 3.3)

Now if n € A andN = 2" we letQ2 be the sefl, 2, - - -, N} equipped with normalized counting
measurgi(A) = |A]/N.Fix1l<r < p<q<s< oo Wedefineamap) : Ls(2, u) —> E by

¢<N) Z (e

andamap/ : X — L (2, un) by
Vx(j) =¢(N)ef(x),  1<j<N.
Let us estimatéfU ||. If || f|ls < 1letAx = {j : 2 < | f(j)| < 2¥t1} for k € Z. Then by (3.3)

U< IUfxadl

keZ

<Y 2MeN)TH Y el

keZ jeAk

<Y 2Mp(N) (A

keZ

<4ACA Y 2u(AYY
keZ

< 4CA(1 +> ZKM(Ak)l/q).

k>0

However,

1/9 1/q'
> 2uAnta < (Z ZKSM(AK)) <Z 2—q’k<5/q—1>> ,

k>0 k>0 k>0

whereq’ is conjugate t@. Thus||U || < C’ where

1/9
C = 4CA<1+ (Z z—q/k(s/q—l)) )
k>0
The estimate foW is similar. Supposéx|| = 1 andAx = {j : 2¢ < P(N)|€ (x| < 241y for
k € Z. Then

iGAk

<X 2N )|e x)lej
ieA

<27%p(N)
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and hence (| Ac]) < A2 ¢ (N). Then together with (3.2) this yields

1/r
VX < 2(2 Zkrl/-(Ak)>

keZ

1
<2+ 2(2 ZkrM(Ak))

k>0

1/r
<24 21HP (Z 2 (¢(|Ak|))p(¢(N))_p>

k>0

1
< 24 2LHPIT AR (Z 2k(r—p>>
k>0

1
:C’

say.

Now sinceN = 2" we can identifyQ2 with {—1, +1}" and thus findh Rademacher functions
€1, en on Q. Definel : €5 — Ls(2, ) by L(§) = > ki fkek andR : Ly (2, u) — 25 by
Rf = (f fexdu)y_, and both|/L||, ||R|| are uniformly boundedly independentmf If we define
S=UL andT = RV then|T||||S|| is uniformly bounded independentofandT S = |dgﬂ.

ProPGsITION 3.2 Suppose E has an unconditional basisand m > 2. If P(TE) is separable then
either E contains uniformly complemented £5s or E contains uniformly complemented £7s.

Proof. Assume thatE neither contains uniformly complementeds nor contains uniformly
complementedl_s. ThenE has cotype and by Proposition 2ELhas a complemented subspace
F with a greedy basige;j)°? 21 and biorthogonal functionale?)$° e 1- We may assumee;j)s? ; is
1-unconditional. Ther?(MF) is also separable. Pick & p < m Then by Theorem 3.1 the
fundamental functios satisfiesp(n) > cnl/P for somec > 0. Now if x € F with ||x|| = 1, let
Ac={j :2¢< &) < 2“1y Theng (Ax) < A2 K whereA is the democratic constant. We
have

0]
Yo leooim < 2™y 2m™ A
j=1

k<0
<2MctY "2 (AP
k<0
<2Mcta )y S amepk,
k<0

Thus the serieg‘j";laj (e]f‘ (x))™ converges pointwise i®(™F) for any choice of signg; = +1
and it is easily seen that this then defines an uncountable 1-separated set, contradicting separability.

Proof of Theorem 1.1. SupposeE is infinite-dimensional. IfP(ME) has an unconditional basis
(wherem > 2) then by Proposition 3.2 it follows that eithErcontains uniformly complemented
£3s or E contains uniformly complemented_s. Now by [9, Corollary 4] we are done.



58 A. DEFANT AND N. KALTON

4. P(ME) asa Banach lattice

If E = ¢1 then the spac&,(E) of boundedm-linear forms is isometric td., and it follows that
P(ME) (which is isomorphic to a complemented subspacéffE)) is then also isomorphic tb,,
and is thus isomorphic to a Banach lattice.

PROPGsITION 4.1 Let E be a Banach space with an unconditional basis (e )‘J?Q= 1 and biorthogonal
functionals (e’f ‘]?‘;1. Then for each m the following are equivalent.

(1) The monomials (€%) form an unconditional basic sequencein P(ME).
(2) P(ME) isisomorphic to a Banach lattice.

Proof. Suppose we have (1). We may suppose([egq?‘;l is a 1-unconditional basis. L&, denote
the partial sum projection§,x = Y r_; €(x)&. Then forp € P(ME) we havepo S, € Papp(™E)
and for each multi-index with || = m we can defingd(«) so that

poSi=)_ Pe;,

a<n

wherea < n means that (k) = 0 fork > n. It is clear that

Ipll = S#pll po Kll-

Conversely, if(p())|o|=m are scalars such that

SH Z Pa)e’

a<sn
PO) = lim > ple)e; ). xeE.

a<n

< o0
P(ME)

then we can defing € P(ME) by

Thus the map — (p(a))|«j=m givesP(ME) the structure of a Banach lattice.

Conversely, assume (2). Then we show that for ewitte finite sequences]), <n has a bounded
unconditional basis constant that is uniformly bounded.irindeed, ifE, = [ej]T:1 the spaces
P(ME,) are 1-complemented i(ME) by the projectionsp — p o S,. We may then use [9,
Theorem 2].

We next construct a Banach space with a symmetric basis which is not isomorghibuabsuch
that the equivalent conditions of Proposition 4.1 hold for evary N.

Let us choose an increasing sequence of natural nuriggefs , withap = 1andfor = 1,2, .-
a > 3&-1g,_1. We then definew; = 1 and therwy = 27" if a,_1 < k < & . Consider the
Lorentz sequence spadéw, 1) consisting of all sequence&) 2 ; such that

o0
€] = supy _ wklérkl < oo,
T k=1
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wherern runs through all permutations &f. See [17, pp. 175ff] for background on such Lorentz
sequence spaces; note that by [17, Theorem 4.e.2] this space is also an Orlicz sequence space.
Let us denote the canonical basisdgfv, 1) by (en)q2 ;. The fundamental function fat(w, 1) is
given byg(n) = > p_; wk.
For A ¢ N defineX; (A) to be the collection of all elemengse d(w, 1) of the form

$=2rar_1Zekek, ek =1, |Bl=a, BCA.
keB

N
Observe that:, (A) = @ if |A] < a and that iffA] = N > a then|X, (A)| = ( )2"’". Let
S(A) = Ur 0% (A). Then if| Al = N we have a

N
N

(A g}j ok — 3N, 4.1

[Z(A)] k=0<k) 3 (4.1)

LEMMA 4.2 (1) Forr > 0Owehave2'a, < ¢(a) <2x 2 4.

(2) Suppose&™ e d(w, 1)*. Then

1
éllé*ll < sup E%(6) < 2187
§ex(N)

(3) For each ¢ € Lm(d(w, 1)) we have

1
o SUp le(ur,...,um)| < lleoll <27 sup le(ug, ..., Um)l.
2 ujes(N) ujex(N)

Proof. We first observe that 2 a; < ¢(ar). Next by induction we see that(a;) < 2 x 27 "a,.
Indeed this is trivially true when = 0 and then if we assume it is true for~ 1 we have

dp@)=¢@_1)+2" (& —ar—1)

so that, since,_1/a, < 3,

ar a a1
4x2" 2x27T

< =2x27".
3 T3 x

Now supposé™* € d(w, 1)* is such that

d@)  a—_1¢@-1) N <1_ %) ot

sup sup £*(€) = L.
I £ex(N)

Without loss of generality we may suppose thabjif= £*(ej) then(b; )j?ozl is a decreasing non-
negative sequence so that

ar
sup2'a b by =1.
r =1
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Thenifa,_1 < n < a we have

1< n
= bj<2X2—r<2@<2M_
N4 & n

/

Thus ifé = Z‘J?":l £jej with (£j) non-negative and decreasing,

3

£*(&) =) bj§j
j=1

2

(by+---+bj)Ej —&j10)

Il
AN

o
<2) o(D)E — &40
j=1
o
=2 Z wijéj.
j=1

Thus|l&*|| < 2.

On the other hand § € X, (N) then|&|| < ¢(ar)2ra;1 < 2sothat |&] > % Finally, (3)is a
straightforward consequence @).

THEOREM4.3 For every m € N the monomials (€%), form an unconditional basic sequence in
Papp(Md(w, 1)), and hence P(Md(w, 1)) isisomorphic to a Banach lattice.

Proof. It will suffice to show that the element ® - --® € form an unconditional basic sequence
in Lm(d(w, 1)) for every choice ofn. Indeed the monomials i®(Md(w, 1)) are equivalent to an
unconditional block basic sequence of this basis.
More precisely we show by induction that there is a cons@ptsuch that ifp is anm-linear
form given by
PO Xm) = Y By i€ () - 6 (Xm),
I1,,Im

where the arrayhy, ...i,,) is finitely non-zero and if

ol (XL, - Xm) = Y By i€, (1) -+ € (Xim)
i, im
then|||g|ll < Cmll¢ll.
The casan = 1 is trivial and indeedC; = 1. Let us now suppose the theorem is proved for
k < m. Weshallassuméy|| = 1 and letj|g||| = M. Then by Lemma 4.2 we can fing € %, (N)
for 1 < j < msuch that
|90|(ula ) um) 2 2_mM'

In fact eachu; can be taken of the form

where|Bj| = &;.
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By reordering if necessary we shall assume that= max;cj<mrj. Let us consider the case
whenry, < m— 1. In this case

M < 2™Mm max|p(a,., -, &,)] < 2™. 4.2)

We continue with the assumption that > m— 1. If 1 < j < mandrj = r,, we can write

2'm
uj = — e
am, keB;
a \
B 2( : > D, 2mla ) e
&rm—1 DCB; keD
\D|=arm—l

Expanding each sual; out in this way we see that we can fild with |Bj| = &;, whererj <rm
if | < mand such that if
2
vj = —
&) keB,
then
(1, vm) > 272™M. (4.3)
Now, for eachk € By, we defineyx € Lm—1(d(w, 1)) by

YKL XmeD) = Y Y i k€ () € (Xmo1).

ileBl im_]_EBm_l

Foreachk € By, there exists at least onigy, - -+, Em_1) € Z(B1) x - -+ x £(Bm_1) so that

Yk(E, - -2 Emo1) = 27 M D)y,

It follows that we can partitiof8y, into subset®y, - - -, Dn, where by (4.1) and since all <rp—1
N < 3ar1+~v-+a(m_1 g 3(m—1)a;m,1 (44)
so that for eachj there exists a choicgy, - - -, Em—1) € Z(B1) x --- x X(By-1) with

Yk o Eme1) = 2™ Pk, ke Dj.

Let|Dj| =sj. By Lemma 4.2 we havgéj|| < 2for 1< j < m, hence

o—(m-1) Z Ikl < o | &1, - Em_1, Z &l < 2m_1¢(5j).

keDj keDj

By the inductive hypothesis we hayiéyk||| < Cm—1lvkll. Returning to (4.3) we have (again
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noting that eachjv; || < 2)

2m|<o|(v1, S, Um)
22MHmg. Z [YK|(ve, - -, Vm=1)

keBm

Crn_123™ 1 Hmart 3™y

keBm

N
= Cpo122™ Hmar 1Ny

j=1keDj

N
< Cm_125m—3+rmar—m1 Z ¢ (Sj )
j=1

<2
<2

N

Finally, we estimat@:g\‘ﬂ(p(sj). Ifr > 1anda,_; < sj < a theng(sj) < sj aT‘_llqﬁ(ar_l) <
4 x 27"sj (by Lemma 4.2 and the fact thatn)/n is decreasing im). Thus

Yo s <4ax2T Y s (4.5)
ar_1<Sj<a ar_1<Sj<a

Defineoy := [{j : &_1 < Sj < & }| and notice tha[sj _19(sj) = op, whereog = |{j : 5j = 1}].
Then by (4.5) we have
Y. b <4x2ora
ar-1<Sj <&
Now if r < rm — 1 we have 2'a, < 217"ma, _; (use agaimg /a+1 < 3 < 3), and as a
consequence from (4.4)

rm—1
Y. o) <2 Ma, 1y op <3MVEm BTy
Sj gafmfl r=0

Hence asy, > m — 1 we deduce from the defining property of e that
Z o(sj) < 22 may,.
ai'm 1
On the other hand, by (4.5),
Z ¢(sj) <4x27m Z sj < 22 ma,
Arm—1<Sj Sarm Arm-1<Sj Sarm
(recall that the sum over ad} equalsa,). Combining we have
N
Y o) <2V e,
j=1
and hence

M < Cp_12°™1, (4.6)

Combining (4.2) and (4.6) we ha@y, < max(®?™1Cn,_1, 2m2) and this completes the proof.
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5. Somerelated open problems

The space created in Theorem 4.3 is not reflexive. We therefore ask the following.

Let E be a reflexive Banach space with an unconditional basis and suppose m > 2. Can P(ME)
be a Banach lattice?

Notice in this situation Proposition 4.1 implies tHat™E) is isomorphic to a Banach lattice if
and only if Papp("E) has an unconditional basis.

Finally, we relate our study of unconditionality in spacesehomogeneous polynomials with
complex analysis. LeE = (C", |.||) be a finite-dimensional Banach space such that its canonical
basis vectorgx form a normalized 1-unconditional basis. The Bohr radius of its open uniBgall
is defined to be

K (Bg) := supr,

where the supremum is taken over alkOr < 1 such that whenever the power serles a,z*
satisfieg )", a,z*| < 1forall z € Bg, it follows that) ", |a,z*| < 1 forallz € r Bg.

In this notation Bohr's power series theorem from [5] states that the Bohr radius of the open unit
disc inC equalsg, K (Bg) = 3.

Upper and lower estimates for Bohr radii in higher dimensions show two in a sense extreme cases.
The sequenceK (Byn ) of the Bohr radii of then-dimensional polydiscs tends to zero essentially
like /logn/n, whereas the sequenck (Bn) of the Bohr radii of then-dimensional hypercones
is uniformly bounded from below by some strictly positive constant. More precisely, there is a
constant > 0 such that for each > 2

1 logn flogn
<K@Bmn) < ¢/ —
c/loglogn n (Bx.) n

(see [4]14] for the upper estimate and [7] for the lower one) and

1
C<K®@p<c

(aresult of [1]). See [37] for the asymptotic behaviour of the whole scale of sequenkesn),
1 < p < o0, and [8] for an extension of these estimates within the framework of local Banach space
theory.
There is a basic link to unconditional basis constants of spaceshafmogeneous polynomials
[8, Theorem 2.2]. Define

r(E) := supxmon(P(ME)™,
m

where xmon(P(ME)) stands for the unconditional basis constant of the monomigX'Tte). Then

11

(1
gﬁ < K(Bp) < m|n<

3 r(E))
(for E = C this is obviously Bohr's result).

In view of this link the following problem seems to be a sort of uniform analogue of Dineen’s
problem. LetE be a Banach sequence space (thatis,c E C c¢p and theegs form a 1-
unconditional basis oE), and letEn = [ex]}_;.

Does E necessarily equal ¢1 whenever inf, K(Bg,) > 0 or, equivalently, is E = ¢1 whenever
thereis some constant C > 0 such that xmon(P(MER)) < C™ for all n and m?
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