ON SUBSPACES OF c_0 AND EXTENSION OF OPERATORS INTO C(K)-SPACES

by N. J. KALTON[†]

(Department of Mathematics, University of Missouri-Columbia, Columbia, MO 65211, USA)

[Received 3 December 1999]

Abstract

Johnson and Zippin recently showed that if X is a weak*-closed subspace of ℓ_1 and $T : X \to C(K)$ is any bounded operator then T can be extended to a bounded operator $\tilde{T} : \ell_1 \to C(K)$. We give a converse result: if X is a subspace of ℓ_1 such that ℓ_1/X has an unconditional finitedimensional decomposition (UFDD) and every operator $T : X \to C(K)$ can be extended to ℓ_1 then there is an automorphism τ of ℓ_1 such that $\tau(X)$ is weak*-closed. This result is proved by studying subspaces of c_0 and several different characterizations of such subspaces are given.

1. Introduction

In [15], Johnson and Zippin proved an extension theorem for operators into C(K)-spaces:

THEOREM 1.1 Let X be a weak*-closed subspace of ℓ_1 (considered as the dual of c_0) and let $T: X \to C(K)$ be a bounded operator. Then T has an extension $\tilde{T}: \ell_1 \to C(K)$.

Note that this implies the same conclusion for any subspace X so that ℓ_1/X is isomorphic to the dual of a subspace of c_0 (using results of [17]). The aim of this paper is to prove a partial converse result to the Johnson–Zippin theorem. We show that if X is a subspace of ℓ_1 such that every bounded operator $T : X \to C[0, 1]$ can be extended and if, additionally, ℓ_1/X has an unconditional finite-dimensional decomposition (UFDD) then ℓ_1/X is isomorphic to the dual of a subspace of c_0 , and hence there is an automorphism τ of ℓ_1 such that $\tau(X)$ is weak*-closed. The hypothesis on X can be weakened a little: it suffices that ℓ_1/X be the dual of space which embeds in a space with a UFDD.

The technique of proof depends heavily on ideas developed in [8], where subspaces of c_0 are characterized in terms of properties of norms. We also use ideas from [9] where trees are used to obtain renormings, to obtain a characterization of subspaces of c_0 in terms of properties of trees in the dual.

If X is a subspace of ℓ_1 which satisfies the conclusion of Theorem 1.1 we show that ℓ_1/X has a property we call the very strong Schur property (the strong Schur property was considered first for subspaces of L_1 by Rosenthal [22]; see also [2]). In the presence of some unconditionality assumption, for example, if ℓ_1/X has a UFDD this can then be used to show that ℓ_1/X is the dual of a subspace of c_0 .

We would like to thank Gilles Godefroy and Dirk Werner for helpful comments on the content of this note.

Quart. J. Math. 52 (2001), 313-328

© Oxford University Press 2001

[†]E-mail: nigel@math.missouri.edu

2. Preliminary results

In this section we gather together some basic definitions and preliminary results.

We start by recalling that a projection P on a Banach space X is an *L*-projection if ||x|| = ||Px|| + ||x - Px|| for any $x \in X$. We shall say that P is a θ -*L*-projection where $0 < \theta \leq 1$ if we have $||x|| \ge ||Px|| + \theta ||x - Px||$. We shall say that X is an *L*-summand (respectively a θ -*L*-summand) if there is an *L*-projection (respectively a θ -*L*-projection) of X^{**} onto X; we shall say that X is a crude-*L*-summand if it can be equivalently renormed to be a θ -*L*-summand for some $0 < \theta \leq 1$. We also recall that X is called an *M*-ideal if the canonical projection π of X^{***} onto X^* is an *L*-projection. Similarly that a Banach space X is a θ -*M*-ideal if π is a θ -*L*-projection and a crude *M*-ideal if it has an equivalent norm so that it is a θ -*M*-ideal for some $0 < \theta \leq 1$. For background on the theory of *M*-ideals we refer to [12]. The notion of a crude *M*-ideal has also been considered in the literature, originating with the work of Ando [1] and more recently as a special case of the so-called M(r, s)-inequalities [3, 4, 11].

Let us recall that X has the strong Schur property [22] if there is a constant c > 0 such that if (x_n) is any normalized sequence with $||x_m - x_n|| \ge \delta > 0$ for any $m \ne n$ then there is a subsequence $(x_n)_{n \in \mathcal{M}}$ such that

$$\left\|\sum_{k\in\mathcal{M}}\alpha_k x_k\right\| \geqslant c\delta\sum_{k\in\mathcal{M}}|\alpha_k|$$

for any finitely non-zero sequence $(\alpha_k)_{k \in \mathcal{M}}$. This notion was first introduced implicitly by Johnson and Odell [13], and then explicitly by Rosenthal [22] and later studied by Bourgain and Rosenthal [2].

We will need some equivalent formulations of the strong Schur property:

PROPOSITION 2.1 Let X be a Banach space. The following are equivalent.

- (i) X has the strong Schur property.
- (ii) There is a constant $c_1 > 0$ such that if (x_n) is any normalized sequence with $\inf_{m>n} ||x_m x_n|| = \delta$ then there exists $x^* \in B_{X^*}$ with

$$\limsup_{n\to\infty} x^*(x_n) - \liminf_{n\to\infty} x^*(x_n) \ge c_1\delta.$$

- (iii) For some fixed $\epsilon > 0$ there exists a constant $c_2 > 0$ such that if (x_n) is a normalized sequence with $\inf_{m>n} ||x_m x_n|| \ge 1 \epsilon$ for any $m \ne n$ then there exists $x^* \in B_{X^*}$ with $\limsup_{n \to \infty} x^*(x_n) \ge c_2$.
- (iv) There is a constant $c_3 > 0$ such that for any sequence (x_n) in X there exists $x^* \in B_{X^*}$ with $\limsup_{n\to\infty} x^*(x_n) \ge c_3 \limsup_{n\to\infty} \|x_n\|$.

Proof. The equivalence of (i) and (ii) is essentially contained in the usual proof of Rosenthal's ℓ_1 -theorem (cf. [6, pp. 209–211]). (ii) trivially implies (iii).

We now prove that (iii) implies (iv). By the Uniform Boundedness Principle we may suppose (x_n) bounded and by passing to subsequences and renormalizing we may suppose that $||x_n|| = 1$ for all *n*. Let $\delta = \inf_{m>n} ||x_m - x_n||$, and suppose that x^{**} is any weak*-cluster point of (x_n) . If $\delta < 1 - \epsilon$ then $||x^{**} - x_n|| \leq 1 - \epsilon$ for all *n* and so $||x^{**}|| \ge \epsilon$. In this case there exists $x^* \in B_{X^*}$ with $\limsup_{n \to \infty} x^*(x_n) \ge \frac{1}{2}\epsilon$. If $\delta \ge 1 - \epsilon$, then we apply (ii). Thus (iii) holds with $c_3 = \min(c_2, \frac{1}{2}\epsilon)$.

Finally we show that (iv) implies (ii). Indeed there exists $x^* \in B_{X^*}$ with $\limsup x^*(x_{2n} - x_{2n-1}) \ge c_3\delta$ and so

$$\limsup_{n\to\infty} x^*(x_n) - \liminf_{n\to\infty} x^*(x_n) \ge c_3\delta.$$

We will be interested in conditions which guarantee that a Banach space X embeds into c_0 . We next state a criterion from [16] (the almost isometric case) and [8].

THEOREM 2.2 Let X be a separable Banach space. Suppose there is a constant c > 0 such that if $x^* \in X^*$ and (x_n^*) is any weak*-null sequence then

$$\liminf_{n \to \infty} \|x^* + x_n^*\| \ge \|x^*\| + c \liminf_{n \to \infty} \|x_n^*\|$$

Then X is isomorphic to a subspace of c_0 .

Note here that we can replace lim inf by lim sup or consider only the case when both limits exist without changing the criterion. A norm with this property is called *Lipschitz-UKK*^{*}. We now give a simple application in the spirit of later results. We refer also to [10] for connections between embeddability into c_0 and the strong Schur property.

THEOREM 2.3 Suppose that X is a separable Banach space such that X^* has the strong Schur property and suppose that X is a crude M-ideal. Then X is isomorphic to a subspace of c_0 .

Proof. We may suppose X is a θ -M-ideal for some $0 < \theta \leq 1$. Suppose $x^* \in X^*$ and that (x_n^*) is a weak*-null sequence. Then there exists $x^{**} \in B_{X^{**}}$ such that $\limsup x^{**}(x_n^*) \ge c_3 \limsup \|x_n^*\|$. Hence $(x_n^*)_{n=1}^{\infty}$ has a weak*-cluster point $x^{***} \in X^{***}$ with $\|x^{***}\| \ge c_3 \limsup \|x_n^*\|$. Clearly $x^{***} \in X^{\perp}$ and so

$$\limsup_{n \to \infty} \|x^* + x_n^*\| \ge \|x^* + x^{***}\| \ge \|x^*\| + \theta \|x^{***}\|$$
$$\ge \|x^*\| + c_3\theta \limsup_{n \to \infty} \|x_n^*\|.$$

We can now apply the result of [8] to deduce that X embeds into c_0 .

Another important concept we use concerns unconditionality. We shall say that a Banach space X is of *unconditional type* if whenever $x \in X$ and (x_n) is a weakly null sequence in X we have

$$\lim_{n \to \infty} (\|x + x_n\| - \|x - x_n\|) = 0.$$

We shall say that X is of *shrinking unconditional type* if whenever $x^* \in X^*$ and (x_n^*) is weak*-null in X^* then

$$\lim_{n \to \infty} (\|x^* + x_n^*\| - \|x^* - x_n^*\|) = 0.$$

These notions were introduced and studied (with different terminology) by Neuwirth [19]. We first note the following.

LEMMA 2.4 If X is a separable Banach space which has shrinking unconditional type then X has unconditional type.

Proof. Suppose $x \in X$ and (x_n) is weakly null and that $||x + x_n|| > ||x - x_n|| + \epsilon$ for all *n*, where $\epsilon > 0$. Choose $y_n^* \in B_{X^*}$ such that $y_n^*(x + x_n) = ||x + x_n||$. By passing to a subsequence we can suppose y_n^* converges to some $x^* \in X^*$. Then $\lim_{n\to\infty} ||2x^* - y_n^*|| = \lim_{n\to\infty} ||y_n^*|| = 1$. Now $\lim_{n\to\infty} (||x + x_n|| - y_n^*(x_n)) = x^*(x)$ and so

$$\lim_{n \to \infty} (\langle x - x_n, 2x^* - y_n^* \rangle - ||x + x_n||) = 0.$$

This implies that $\lim \inf(||x - x_n|| - ||x + x_n||) \ge 0$ and gives the lemma.

Let us recall that a separable Banach space X has the unconditional metric approximation property (UMAP) if there is a sequence of finite-rank operators (T_n) such that $\lim_{n\to\infty} T_n x = x$ for $x \in X$ and $\lim_{n\to\infty} \|I - 2T_n\| = 1$ (see [5,7]); we say X has shrinking (UMAP) if, in addition, $\lim_{n\to\infty} T_n^* x^* = x^*$ for $x^* \in X^*$. It is shown in [7] that X has (UMAP) if and only if for every $\epsilon > 0$ X is isometric to a one-complemented subspace of a space V_{ϵ} with a $(1 + \epsilon)$ -(UFDD).

LEMMA 2.5 Let X be a Banach space with (UMAP); then X is of unconditional type. If X has shrinking (UMAP) X is of shrinking unconditional type.

Proof. Suppose $x \in X$ and (x_n) is weakly null. It is enough to show that $\lim_{n\to\infty} ||x + x_n|| \le \lim_{n\to\infty} ||x - x_n||$ under the assumption that both limits exist;

$$\lim_{n \to \infty} \|x + x_n\| = \lim_{k \to \infty} \lim_{n \to \infty} \|(2T_k - 1)x + x_n\|$$
$$= \lim_{k \to \infty} \lim_{n \to \infty} \|(2T_k - I)x + (I - 2T_k)x_n\|$$
$$\leqslant \lim_{n \to \infty} \|x - x_n\|.$$

The shrinking case is similar.

LEMMA 2.6 Let X be a separable Banach space of shrinking unconditional type. Then any subspace or quotient of X has shrinking unconditional type.

Proof. If *Y* is a subspace of *X* then $(X/Y)^*$ can be identified with Y^{\perp} and trivially X/Y has shrinking unconditional type. Now Y^* can be identified with X^*/Y^{\perp} . Let $Q : X^* \to Y^*$ be the canonical quotient map. Suppose $y^* \in Y^*$ and that (y_n^*) is weak*-null in Y^* . Suppose that $||y^* + y_n^*|| < ||y^* - y_n^*|| - \epsilon$, where $\epsilon > 0$. We may pick (by the Hahn–Banach theorem) $x_n^* \in X^*$ such that $||x_n^*|| = ||y^* + y_n^*||$ and $Qx_n^* = y^* + y_n^*$. Passing to a subsequence we can suppose that x_n^* converges weak* to x^* . Now

$$\lim_{n \to \infty} (\|2x^* - x_n^*\| - \|x_n^*\|) = 0$$

and $Q(2x^* - x_n^*) = 2Qx^* - y^* - y_n^* = y^* - y_n^*$ by the weak*-continuity of Q. Hence

$$\limsup_{n \to \infty} (\|y^* - y_n^*\| - \|y^* + y_n^*\|) \le 0,$$

which yields a contradiction; thus *Y* is of shrinking unconditional type.

LEMMA 2.7 Let X be a subspace of a space with (UMAP); if X does not contain ℓ_1 then X has shrinking unconditional type.

Proof. Suppose $\epsilon > 0$ and that $x^* \in X^*$ and that (x_n^*) is any weakly null sequence; assume that $\sup_n ||x^* + x_n^*|| \le 1$ and $||x^* - x_n^*|| > ||x^* + x_n^*|| + \epsilon$ for all $n \in \mathbb{N}$, where $\epsilon > 0$. By results of [7] we may suppose X is isometric to a subspace of a space $V = V_{\epsilon}$ with a $(1 + \epsilon/2)$ -(UFDD). Indeed suppose (Q_n) are finite rank projections defining a $(1 + \epsilon/2)$ -(UFDD). Let $T_n = \sum_{k=1}^n Q_i$. Let $j: X \to V$ be the isometric embedding.

If $v^* \in V^*$ we have $j^*v^* = \sum_{k=1}^{\infty} j^* Q_k^* v^*$ unconditionally in the weak*-topology. Since X^* does not contain c_0 (or equivalently ℓ_{∞}) this series converges in norm so that $\lim_{k\to\infty} ||j^*v^* - j^*T_k^*v^*|| = 0$.

Now by the Hahn–Banach theorem we can find $v_n^* \in V^*$ such that $||v_n^*|| = ||x^* + x_n^*||$ and $j^*v_n^* = x^* + x_n^*$. By passing to a subsequence we can suppose that v_n^* converges weak* to some v^* . Clearly $j^*v^* = x^*$. Then

$$\begin{split} \limsup_{n \to \infty} \|x^* - x_n^*\| &= \limsup_{n \to \infty} \|2j^*v^* - j^*v_n^*\| \\ &= \limsup_{k \to \infty} \limsup_{n \to \infty} \|2j^*T_k^*v^* - j^*v_n^* - 2j^*(T_k^*v^* - T_kv_n^*)\| \\ &\leqslant \limsup_{k \to \infty} \limsup_{n \to \infty} \|(2T_k - I)v_n^*\| \\ &\leqslant (1 + \frac{1}{2}\epsilon)\limsup_{n \to \infty} \|x^* + x_n^*\|. \end{split}$$

This contradiction establishes the lemma.

3. Subspaces of *c*⁰ and trees

Consider the set $\mathcal{F}\mathbb{N}$ of all finite subsets of \mathbb{N} with the following partial order. If $a = \{n_1, n_2, \ldots, n_k\}$ where $n_1 < n_2 < \cdots < n_k$ and $b = \{m_1, m_2, \ldots, m_l\}$ where $m_1 < m_2 < \cdots < m_l$, then $a \leq b$ if and only if $k \leq l$ and $m_i = n_i$ where $1 \leq i \leq k$ (that is, *a* is an initial segment of *b*). We say that *b* is a *successor* of *a* if |b| = |a| + 1 and $a \leq b$; the collection of successor of *a* is denoted by a+. If $a \neq \emptyset$ then a- denotes the unique predecessor of *a*; that is, *a* is a successor of a-. Let *S* be a subset of $\mathcal{F}\mathbb{N}$. We say that *S* is a *full tree* whenever

- 1. $\emptyset \in S$;
- 2. each $a \in S$ has infinitely many successors in S;
- 3. if $a \in S$ and $\emptyset \neq a \in S$ then $a \in S$.

It is easy to see that any full tree is isomorphic as an ordered set to \mathcal{FN} . If S is any full tree we will say that a sequence $\beta = \{a_n\}_{n=0}^{\infty}$ is a *branch* of S if $a_n \in S$ for all $n, a_0 = \emptyset$ and a_{n+1} is a successor of a_n for all $n \ge 0$.

Now let *V* be a vector space. We define a *tree-assignment* to be a map $a \to x_a$ defined on a full tree *S*. We define a *tree-map* to be a tree-assignment $a \to x_a$ with the properties that $x_{\emptyset} = 0$ and for every branch β the set $\{a : x_a \neq 0 : a \in \beta\}$ is finite. Given any tree-map we define a *height function h* which assigns to each *a* a countable ordinal; to do this we define h(a) = 0 if $x_b = 0$ for $b \ge a$ and then inductively h(a) is defined by $h(a) \le \eta$ if and only if $h(b) < \eta$ for every b > a. The *height* of the tree-map is defined to be $h(\emptyset)$. Note that the tree-map $a \to x_a$ has finite height $m \le n$ if and only if $x_a = 0$ whenever |a| > n.

The following easy lemma, proved in [9], is a restatement of the fact that certain types of games (which are not used in this paper) are determined.

N. J. KALTON

LEMMA 3.1 Suppose $(x_a)_{a \in S}$ is a tree-map and that A is any subset of V. Then either there is a full tree $T \subset S$ such that $\sum_{a \in \beta} x_a \in A$ for every branch $\beta \subset T$ or there is a full tree $T \subset S$ such that $\sum_{a \in \beta} x_a \notin A$ for every branch $\beta \subset T$.

Now suppose V = X is a Banach space. If τ is a topology on X (for example, the weak topology or for dual spaces the weak*-topology) we say that a tree-map $(x_a)_{a \in S}$ is τ -null if for every $a \in S$ the set $\{x_b\}_{b \in a+}$ is a τ -null sequence.

We now introduce a definition which will characterize subspaces of c_0 . We say that a Banach space *X* has the *bounded tree property* with constant $\sigma > 0$ if every weakly null tree-map $(x_a)_{a \in S}$ has a full subtree *T* such that $\|\sum_{a \in \beta} x_a\| \leq 1$ for every branch β .

THEOREM 3.2 Let X be a separable Banach space containing no copy of ℓ_1 with the bounded tree property. Then X is isomorphic to a subspace of c_0 .

Proof. cf. [9, Theorem 4.1]. Define for $x \in X$, f(x) to be the infimum of all $\lambda > 0$ such that for every weakly null tree-map $(x_a)_{a \in S}$ with $||x_a|| \leq \sigma$ there is a full tree $T \subset S$ with $||x + \sum_{a \in \beta} x_a|| \leq \lambda$ for every branch β . Note that $||x|| \leq f(x)$, $f(0) \leq 1$, f(-x) = f(x) and that $|f(x) - f(y)| \leq ||x - y||$. In particular we have $||x|| \leq f(x) \leq ||x|| + 1$. We now argue exactly as in [9] that f is convex. For the convenience of the reader we repeat the argument. Let u = tx + (1 - t)y, where 0 < t < 1. Suppose $\lambda > f(x)$ and $\mu > f(y)$. Let $(x_a)_{a \in S}$ be any weakly null tree-map of height k with $||x_a|| \leq \sigma$ for all $a \in S$. Then we can find a full subtree $T_1 \subset S$ such that for every branch β we have

$$\left\|x + \sum_{a \in \beta} x_a\right\| \leqslant \lambda$$

and then a full subtree $T_2 \subset T_1$ such that for every branch $\beta \subset T_2$

$$\left\| y + \sum_{a \in \beta} x_a \right\| \leqslant \mu.$$

Obviously for every branch $\beta \subset T_2$

$$\left\| u + \sum_{a \in \beta} x_a \right\| \leqslant t\lambda + (1-t)\mu$$

so that $f_k(u) \leq t\lambda + (1-t)\mu$.

Next we note that if $||x_n|| \leq \sigma$ and $\lim_{n\to\infty} x_n = 0$ weakly then $\limsup f(x + x_n) \leq f(x)$. Assume that $\lambda < \limsup_{n\to\infty} f(x + x_n)$. By passing to a subsequence we can suppose that $\lambda < f(x + x_n)$ for every *n*. Then for each *n* there is a weakly null tree-map $(y_a^{(n)})_{a\in S_n}$ of height *k* such that $||y_a^{(n)}|| \leq \sigma$ for all $a \in S_n$ and

$$\left\|x + x_n + \sum_{a \in \beta} y_a^{(n)}\right\| > \lambda$$

for every branch $\beta \subset S_n$. Now let *T* be the tree consisting of all sets $\{m_1, \ldots, m_l\}$, where $m_1 < m_2 < \cdots < m_l$ such that if l > 1 then $\{m_2, \ldots, m_l\} \in S_{m_1}$. We define a weakly null tree-map by

$$z_{m_1,\dots,m_l} = \begin{cases} x_{m_1} & \text{if } l = 1, \\ y_{m_2,\dots,m_l}^{(m_1)} & \text{if } l > 1. \end{cases}$$

Then for every branch $\beta \subset T$ we have

$$\left\|x + \sum_{a \in \beta} z_a\right\| > \lambda$$

so that $f(x) \ge \lambda$. This implies our claim.

Let $|\cdot|$ be the Minkowski functional of the set $\{x : f(x) \leq 2\}$. Then $|\cdot|$ is a norm on X satisfying $\frac{1}{2}||x|| \leq |x| \leq ||x||$. Suppose |x| = 1 and (x_n) is a weakly null sequence with $|x_n| \leq \frac{1}{2}\sigma$. Then $||x_n|| \leq \sigma$ and so lim sup $f(x + x_n) \leq 2$. Hence

$$\limsup |x + x_n| \leq 1.$$

Now by [9, Proposition 2.7] we have that X^* is separable. We can then apply [9, Proposition 2.6] to deduce that if $|x^*| = 1$ and (x_n^*) is a weak*-null sequence in X^* with $||x_n^*|| = \tau$ then

$$\liminf_{n \to \infty} |x^* + x_n^*| \ge 1 + \frac{\sigma}{12}\tau$$

Thus X^* has a Lipschitz-UKK^{*} norm and by the results of [8] (see also [16]) this implies that X embeds into c_0 .

We next introduce a dual notion. We say that X^* has the *weak*^{*} summable tree property with constant c > 0 if for every weak^{*}-null tree-map $(x_a^*)_{a \in S}$ on X^* satisfying the boundedness property

$$\sup_{a\in\mathcal{S}}\left\|\sum_{b\leqslant a} x_b\right\| < \infty,\tag{3.1}$$

and for every $\epsilon > 0$ there is a full subtree T such that

$$\left\|\sum_{a\in\beta}x_a^*\right\| > c\sum_{a\in\beta}\|x_a^*\| - \epsilon$$

for every branch β . Notice that if X is a subspace of c_0 then [16]

$$\liminf_{n \to \infty} \|x^* + x_n^*\| \ge \|x^*\| + \liminf_{n \to \infty} \|x_n^*\|$$

and this implies directly that X^* has the weak^{*} summable tree property with constant one.

THEOREM 3.3 Suppose X is a separable Banach space such that X^* has the weak*-summable tree property. Then X is isomorphic to a subspace of c_0 .

Proof. We show that X contains no subspace isomorphic to ℓ_1 and that X has the bounded tree property. To show X contains no copy of ℓ_1 it suffices to show that ℓ_2 does not embed in X^* by [**21**]. Suppose then u_n^* is a weak*-null sequence in X^* so that $||u_n^*|| = 1$ and $||\sum_{i \in A} u_i|| \leq C|A|^{1/2}$ for any finite subset of A of \mathbb{N} , where C is an absolute constant. Then define, for any N, the tree-map on $\mathcal{F}\mathbb{N}$ by

$$x_a^* = u_{m_n}^*$$
 if $a = \{m_1, \dots, m_n\}$ and $1 \le n \le N$

and x_a^* otherwise. It is clear that any full subtree T has a branch β with $\left\|\sum_{a\in\beta}u_a^*\right\| \leqslant CN^{1/2}$

while $\sum_{a \in \beta} ||u_a^*|| = N$, and therefore if N is large enough we obtain a contradiction to the weak^{*} summable tree property.

Next we need a duality argument. We assume that X^* has the weak* summable tree property with constant c > 0. We show that X has the bounded tree property with constant σ for any $0 < \sigma < c/2$. Indeed if not there is by Lemma 3.1 a weakly null tree-map $(x_a)_{a \in S}$ with the properties that $||x_a|| \leq \sigma$ for all a and $||\sum_{a \in \beta} x_a|| > 1$ for every branch β . For each branch β pick $u_{\beta}^* \in X^*$ with $||u_{\beta}^*|| = 1$ and $\langle \sum_{a \in \beta} x_a, u_{\beta}^* \rangle > 1$. Let h be the height function of the given tree-map. For each $a \in S$ we define y_a^* by transfinite induction on h(a). If h(a) = 0 let $y_a^* = u_{\beta}^*$ where β is any branch to which a belongs. Then if (y_a^*) has been defined for $h(a) < \eta$ and if $h(b) = \eta$ we define (y_b^*) to be any weak*-cluster point of $(y_a^*)_{a \in b+}$. (Note that according to our definition (y_a^*) is a tree-assignment but not necessarily a tree-map because it is not supported on a well-founded tree and we might have $y_0^* \neq 0$.)

Let us now make a tree-map by defining $x_{\emptyset}^* = 0$ and then if $h(a-) \ge 1$ we define $x_a^* = y_a^* - y_{a-}^*$. If h(a-) = 0 we define $x_a^* = 0$. This is clearly a tree-map which also satisfies (3.1) and we have that for each $a \in S$, zero is a weak*-cluster point of $(x_b^*)_{b \in a+}$. It is then easy to see that we can pass to a full subtree T so that $(x_a^*)_{a \in T}$ is weak*-null. Let $x^* = y_{\emptyset}^*$.

Now pick $\epsilon > 0$ such that $3\epsilon + 2c^{-1}\sigma < 1$. We can use the definition of the weak*-summable tree property and also [9, Lemma 3.3] to pass to a further full subtree (still labelled *T*) so that we have $|\langle x_a, x^* \rangle| < \epsilon/2^{|a|}$ when |a| > 0 and for any branch $\beta \subset T$

$$\left| \left\langle \sum_{a \in \beta} x_a, \sum_{a \in \beta} x_a^* \right\rangle - \sum_{a \in \beta} \langle x_a, x_a^* \rangle \right| \leq \epsilon$$
$$c \left(\sum_{a \in \beta} \|x_a^*\| - \epsilon \right) \leq \left\| \sum_{a \in \beta} x_a^* \right\|.$$

For any branch β let b be the first point for which h(b) = 0. Then

$$\left\|x^* + \sum_{a \in \beta} x_a^*\right\| = \|y_b^*\| = 1.$$

It follows that

$$\left\|\sum_{a\in\beta}x_a^*\right\|\leqslant 2.$$

Now we have

$$1 < \left\langle \sum_{a \in \beta} x_a, y_b^* \right\rangle \leqslant \sum_{a \in \beta} |\langle x_a, x^* \rangle| + \left| \left\langle \sum_{a \in \beta} x_a, \sum_{a \in \beta} x_a^* \right\rangle \right|$$
$$\leqslant 2\epsilon + \sum_{a \in \beta} |\langle x_a, x_a^* \rangle| \leqslant 2\epsilon + \sigma \sum_{a \in \beta} \|x_a^*\|$$
$$\leqslant 3\epsilon + c^{-1}\sigma \left\| \sum_{a \in \beta} x_a^* \right\| \leqslant 3\epsilon + 2c^{-1}\sigma.$$

This gives a contradiction and so we deduce that X has the bounded tree property and we can apply Theorem 3.2 to obtain the result.

4. The very strong Schur property

We shall say that a tree-assignment $(x_a)_{a \in S}$ in X is δ -separated if $||x_b - x_{b'}|| \ge \delta$ whenever $b, b' \in S$ are such that $b, b' \in a+$ for some $a \in S$. Let us say that a Banach space X has the very strong Schur property if there is a constant c > 0 such that whenever $(x_a)_{a \in S}$ is a δ -separated bounded tree-assignment then there is a branch β and $x^* \in B_{X^*}$ with $|x^*(x_a)| \ge c\delta$ whenever $\emptyset \neq a \in \beta$.

We first justify this terminology.

PROPOSITION 4.1 Suppose X is a Banach space with the very strong Schur property. Then X has the strong Schur property.

Proof. We verify condition (iii) of Proposition 2.1 with $\epsilon = \frac{1}{2}$. Let (x_n) be a normalized sequence with $\inf_{m>n} ||x_m - x_n|| \ge \frac{1}{2}$. Form a tree-assignment $(y_a)_{a \in \mathcal{F}\mathbb{N}}$ by putting $y_{\emptyset} = 0$ and then $y_a = x_n$ if $n = \max a$. Then (y_a) is a bounded $\frac{1}{2}$ -separated tree-assignment and so there is a branch β and $x^* \in B_{X^*}$ with $|x^*(y_a)| \ge \frac{1}{2}c$. This leads to a subsequence $(x_{n_k})_{k=1}^{\infty}$, where $|x^*(x_{n_k})| \ge \frac{1}{2}c$ and Proposition 2.1 (iii) holds with either x^* or $-x^*$.

There is an important situation when the converse is true.

THEOREM 4.2 Suppose that Y is a crude L-ideal. If X is a closed subspace of Y with the strong Schur property then X has the very strong Schur property.

Proof. We may suppose that *Y* is a θ -*L*-ideal where $0 < \theta \leq 1$. Suppose *P* is the associated *L*-projection. We also use Proposition 2.1 (iv) to deduce that there is a constant c > 0 such that if $(x_n)_{n \in \mathbb{N}}$ is any bounded sequence in *X* with $\inf_{m \neq n} ||x_m - x_n|| \ge \delta > 0$ then (x_n) has a subsequence (w_n) such that we have an estimate

$$\left\|\sum_{k=1}^{\infty} \alpha_k w_k\right\| \ge c \sum_{k=1} |\alpha_k| \tag{4.1}$$

for all finitely non-zero sequences (α_k).

Now suppose $(x_a)_{a \in S}$ is a δ -separated tree-assignment. Let $\sigma = \frac{1}{4}c\theta$. We shall show by an inductive construction that there is a branch β and for each $a \in \beta$, $x_a^* \in X^*$ with $||x_a^*|| < 1$ so that $|x_a^*(x_b)| \ge \sigma \delta$ if $\emptyset \neq b \le a$. This will complete the proof since then we can take x^* as any weak^{*} cluster point of $\{x_a^* : a \in \beta\}$.

We start the branch with \emptyset . Now suppose $a \in \beta$; we must choose a successor $b \in a+$ and a corresponding x_b^* . First let y_a^* be any norm-preserving extension of x_a^* to Y. Next we pick a subsequence $w_n = x_{b_n}$ of $\{x_b : b \in a+\}$ satisfying (4.1). Let x^{**} be any weak*-cluster point of $(w_n)_{n=1}^{\infty}$.

Suppose $y \in Y$. Let $x^{**} - y$ belong to the weak*-closed convex hull W_k of $\{w_n - y\}_{n=k}^{\infty}$; then 0 is in the norm-closure of the set $W_k - \|x^{**} - y\|B_Y$. We deduce that for any $\epsilon > 0$ we can find convex combinations $\sum_{j=1}^k \alpha_j (w_n - y)$ and $\sum_{j=k+1}^l \alpha_j (w_n - y)$ of norm at most $\|x^{**} - y\| + \epsilon/2$. Hence

$$2c\delta \leqslant \left\|\sum_{j=1}^k \alpha_j w_j - \sum_{j=k+1}^l \alpha_j w_j\right\| \leqslant 2\|x^{**} - y\| + \epsilon.$$

Thus $d(x^{**}, Y) \ge c\delta$.

In particular, $||x^{**} - Px^{**}|| \ge c\delta$. Let *E* be the linear span of $\{x_d : d \le a\} \cup \{Px^{**}, x^{**} - Px^{**}\}$.

We define a linear functional φ on E by $\varphi(e) = y_a^*(e)$ if $e \in E \cap Y$ and $\varphi(x^{**} - Px^{**}) = 2\sigma$ if $y_a^*(Px^{**}) \ge 0$ and $\varphi(x^{**} - Px^{**}) = -2\sigma$ if $y_a^*(Px^{**}) < 0$. For any $e \in E$ we have $e = e_0 + \lambda(x^{**} - Px^{**})$, where $e_0 \in E \cap Y$ and $\lambda \in \mathbb{R}$. Then

$$|\varphi(e)| \leq |y_a^*(e_0)| + 2|\lambda||\sigma| \leq ||x_a^*|| ||e_0|| + \frac{1}{2}\theta ||e - Pe||.$$

Hence $\|\varphi\| < 1$. It follows that φ has a weak*-continuous extension $y^* \in Y^*$ with $\|y^*\| < 1$. Now $|\langle y^*, x^{**} \rangle| \ge 2\sigma$ and hence we can pick *n* such that $|y^*(w_n)| = |y^*(x_{b_n})| \ge \sigma$. We thus select $b = b_n$ and set $x_b^* = y^*|_X$. This inductive process establishes our result.

Observe that a closed subspace of L_1 has the very strong Schur property if and only if it has the strong Schur property since L_1 is an L-ideal in its bidual. It follows therefore that the examples constructed by Bourgain and Rosenthal [2] show that for subspaces of L_1 , the very strong Schur property does not imply embeddability into ℓ_1 or even the Radon–Nikodym property. However, Johnson and Odell [13] showed that a subspace of L_1 with a UFDD and the strong Schur property is isomorphic to a subspace of ℓ_1 ; see also [20]. Thus the presence of some unconditionality is crucial here. This motivates our next theorem.

THEOREM 4.3 Let X be a separable Banach space with the property that X^* has the very strong Schur property. Assume that X is linearly isomorphic to a subspace of a Banach space with UFDD. Then X is linearly isomorphic to a subspace of c_0 .

REMARK. The assumption that X embeds into a space with UFDD is equivalent to the assumption that X embeds in a space with unconditional basis [18, p. 51]. As will be seen in the proof, the theorem holds if X is assumed to have shrinking unconditional type.

Proof. Note first that X cannot contain ℓ_1 by results of [**21**] since X^* has the Schur property. Therefore we can apply Lemma 2.7 to deduce that X can be given an equivalent norm so that it has shrinking unconditional type. We complete the proof by showing that X has the weak*-summable tree property and applying Theorem 3.3.

Assume that X^* has the very strong Schur property with constant c. We will show that X has the weak*-summable tree property with constant c/2. Suppose $(x_a^*)_{a \in S}$ is a weak*-null tree such that

$$\sup_{a\in S} \left\| \sum_{b\leqslant a} x_b^* \right\| = M < \infty.$$

Assume that (x_a^*) fails to have a full subtree such that

$$\left\|\sum_{a\in\beta}x_a^*\right\| > \frac{c}{2}\sum_{a\in\beta}\|x_a^*\| - \epsilon.$$

Then by considering the tree-map $(x_a^*, ||x_a^*||)$ in $X^* \times \mathbb{R}$ and using Lemma 3.1 we can find a full subtree $(x_a^*)_{a \in S_1}$ such that for every branch we have

$$\left\|\sum_{a\in\beta}x_a^*\right\|\leqslant \frac{c}{2}\sum_{a\in\beta}\|x_a^*\|-\epsilon.$$

Next we can pass to a full subtree S_2 such that for each $a \in S_2$ either $\inf_{b \in a+} ||x_a^*|| > 0$ or

 $\sup_{b \in a+} ||x_b^*|| \leq 2^{-|a|-3}\epsilon$. We then define a tree assignment (u_b^*) as follows. Put $u_{\emptyset}^* = 0$. If $a \in S_2$ is such that $\inf_{b \in a+} ||x_b^*|| = 0$ then let $\{u_b^* : b \in a+\}$ be assigned to be any fixed weak*-null normalized sequence. If $a \in S_2$ and $\inf_{b \in a+} ||x_b^*|| > 0$ we let $u_b^* = x_b^*/||x_b^*||$ if $b \in a+$. Then $(u_a^*)_{a \in S_2}$ is weak*-null and, using the weak*-lower-semicontinuity of the norm we may pass to a full subtree S_3 so that for any $a \in S_3$ we have

$$\inf_{b,b'\in a+} \|u_b^* - u_{b'}^*\| \ge \frac{1}{2}.$$

Next we use the fact that X has shrinking unconditional type. For each $a \in S_3$ there is a closed absolutely convex weak*-neighbourhood of the origin W_a such that if $w^* \in W_a$ and $||w^*|| \leq 2M$ then

$$\left\|\sum_{b\leqslant a}\eta_b x_b^* + w^*\right\| - \left\|\sum_{b\leqslant a}\eta_b x_b^* - w^*\right\|\right| \leqslant 2^{-|a|-2}\epsilon$$

for every choice of signs $\eta_b = \pm 1$ for $b \leq a$. Let $T = \{a \in S_3 : x_a^* \in 2^{|b| - |a|} W_b$, if $b < a\}$. Then T is a full subtree of S_3 .

Let β be any branch in T. We write $\beta = \{a_0, a_1, a_2, \dots\}$, where $a_0 < a_1 < a_2 < \cdots$. Let

$$\sigma_n := \max_{\eta_k = \pm 1} \left\| \sum_{k=0}^n \eta_k x_{a_k}^* + \sum_{k=n+1}^\infty x_{a_k}^* \right\|.$$

Then $\sigma_0 = \left\| \sum_{k=1}^{\infty} x_{a_k}^* \right\|$. Notice that if $\eta_n = -1$ where $n \ge 1$ then since $\sum_{k=n+1}^{\infty} x_{a_k}^* \in W_{a_n}$ and $\left\| \sum_{k=n+1}^{\infty} x_{a_k}^* \right\| \le 2M$,

$$\left\|\sum_{k=0}^{n} \eta_{k} x_{a_{k}}^{*} + \sum_{k=n+1}^{\infty} x_{a_{k}}^{*}\right\| \leq 2^{-n-2} \epsilon + \left\|\sum_{k=0}^{n-1} \eta_{k} x_{a_{k}}^{*} - \sum_{k=n} x_{a_{k}}^{*}\right\|.$$

Thus

$$\sigma_n \leqslant \sigma_{n-1} + 2^{-n-2} \epsilon.$$

It follows that

$$\sigma_n \leqslant \sum_{k=1}^n 2^{-k-2} \epsilon + \bigg\| \sum_{k=0}^\infty x_{a_k}^* \bigg\|.$$

Thus we conclude that for any branch and any choice of signs η_a we have

$$\left\|\sum_{a\in\beta}\eta_a x_a^*\right\| \leqslant \left\|\sum_{a\in\beta}x_a^*\right\| + \frac{1}{4}\epsilon.$$

Next we can use the very strong Schur property and the fact that $(u_a^*)_{a \in T}$ is $\frac{1}{2}$ -separated to find a branch β and $u^{**} \in B_{X^{**}}$ with $|u^{**}(u_a^*)| \ge \frac{1}{2}c$ for $a \in \beta$. By the construction of (u_a^*) we have

$$\|x_a^* - \|x_a^*\|u_a^*\| \le 2^{-|a|-2}\epsilon$$

so that

$$|u^{**}(x_a^*)| \ge \frac{c}{2} ||x_a^*|| - 2^{-|a|-2}\epsilon.$$

Choose $\eta_a = \pm 1$ such that $\eta_a u^{**}(x_a^*) \ge 0$. Then

$$u^{**}\left(\sum_{a\in\beta}\eta_a x_a^*\right) \geqslant \frac{c}{2}\sum_{a\in\beta}\|x_a^*\| - \frac{1}{2}\epsilon.$$

Hence

$$\left\|\sum_{a\in\beta}x_a^*\right\| \ge \frac{c}{2}\sum_{a\in\beta}\|x_a^*\| - \frac{3}{4}\epsilon.$$

This is a contradiction and shows that X has the weak^{*} summable tree property. The proof is complete.

COROLLARY 4.4 Suppose X and Y are Banach spaces such that X^* and Y^* are isomorphic. Suppose X is isomorphic to a subspace of c_0 . Then Y is isomorphic to a subspace of c_0 if and only if Y embeds in a space with UFDD.

REMARK. We do not know if one can conclude that X and Y are isomorphic if both embed into c_0 .

5. The extension property

Let us recall that if X is a Banach space X and E is a closed subspace of X then the pair (E, X) is said to have the λ -extension property (λ -(EP)) if, for any compact Hausdorff space K, every bounded operator $T : E \to C(K)$ has a bounded extension $\tilde{T} : X \to C(K)$ with $\|\tilde{T}\| \leq \lambda \|T\|$ (Johnson and Zippin [15]). We say (E, X) has the EP if it has λ -(EP) for some $\lambda \geq 1$. Johnson and Zippin [15] showed that if X is a weak*-closed subspace of $\ell_1 = c_0^*$ then (X, ℓ_1) has the EP, although curiously it is unknown whether it has $(1 + \epsilon)$ -(EP) for any $\epsilon > 0$. See [23,24] for recent progress on extension properties.

As observed in [15, Corollary 1.1], using the results of [17], the extension property of (X, ℓ_1) depends only on the quotient space ℓ_1/X ; hence it follows that if ℓ_1/X is isomorphic to Y^* where Y is a closed subspace of c_0 then (X, ℓ_1) has the extension property (because there is an automorphism τ of ℓ_1 such that $\tau(X)$ is weak*-closed). The aim of this section is to show how the results of the paper can give a partial converse to this theorem.

THEOREM 5.1 Suppose X is a closed subspace of ℓ_1 so that (X, ℓ_1) has the EP. Then ℓ_1/X has the very strong Schur property.

REMARK. The result that ℓ_1/X has the Schur property was obtained earlier by the author and A. Pełczyński by somewhat similar arguments. This answered a question of Zippin concerning the case $\ell_1/X \approx L_1$.

Proof. We suppose that (X, ℓ_1) has λ -(EP). Let $Y = \ell_1/X$ and denote by Q_Y the quotient map of ℓ_1 onto Y.

We start by supposing that $(y_a)_{a \in S}$ is a bounded δ -separated tree assignment in $Y = \ell_1/X$. Let E_n be an increasing sequence of finite-dimensional subspaces of Y whose union is dense. We start by observing that for each $a \in S$ and each $n \in \mathbb{N}$ there is an infinite number of $b \in a+$ such that $d(y_b, E_n) > \delta/4$. Indeed, if not there are infinitely many $b \in a+$ such that $d(y_b, E_n) \leqslant \delta/4$ and for each such b we can find $e_b \in E_n$ with $||y_b - e_b|| \leqslant \delta/4$. The set of such e_b is bounded and so by compactness arguments we obtain $b \neq b'$ with $||y_b - y_{b'}|| \leqslant 3\delta/4$.

Now we may pass to a full subtree $(y_a)_{a \in T}$ such that there exists a map $\psi : T \setminus \{\emptyset\} \to \mathbb{N}$ with

the properties that $d(y_a, E_{\psi(a)}) \ge \delta/4$ and if $a = \{n_1, \dots, n_k\}$ where $n_1 < n_2 < \dots < n_k$ then we have

$$|\{b \in a+ : \psi(b) = m\}| = \begin{cases} 0 & \text{if } m \leq n_1 + \dots + n_k, \\ 1 & \text{if } m > n_1 + \dots + n_k. \end{cases}$$

Now for each $a \in T \setminus \emptyset$ we can choose $y_a^* \in B_{Y^*} \cap E_{\psi(a)}^{\perp}$ such that $|y^*(y_a)| \ge \delta/4$. Note that the set $\{y_a^* : a \in T\}$ forms a weak*-null sequence. For convenience let $y_{\emptyset}^* = 0$.

Consider the closed unit interval I = [0, 1] and let D be the set of dyadic rationals $k/2^n$, where $1 \le k \le 2^n - 1$ and $n \in \mathbb{N}$. Let Z be the space of all real-valued functions f on I which are continuous on $I \setminus D$ and such that on D both left and right limits f(q-) and f(q+) exist:

$$f(q) = \frac{1}{2}(f(q-) + f(q+))$$

It is easy to see that Z equipped with the sup-norm is isometric to $C(\Delta)$, where Δ is the Cantor set. Then C(I) is a closed subspace of Z and $Z/C(I) \approx c_0(D)$ with the quotient map being given by $Qf = (f(q+) - f(q-))_{q \in D}$.

Now we can define a one-one map $\varphi : T \to D$ with the property that $\lim_{b \in a+} \varphi(b) = \varphi(a)$ and $|\{b : \varphi(b) > \varphi(a)\}| = |\{b : \varphi(b) < \varphi(a)\}| = \infty$ for $a \in T$.

Next define an operator $L: Y \to c_0(D)$ by putting $Ly(q) = y_a^*(y)$ if $\varphi(a) = q$ and Ly(q) = 0otherwise; then $||L|| \leq 1$. Then $LQ_Y: \ell_1 \to c_0(D)$ can be lifted to an operator $U: \ell_1 \to Z$ such that $QU = LQ_Y$ and $||U|| \leq 2$. Then U maps X into C(I) and by assumption this restriction $U|_X$ has an extension $V: \ell_1 \to C(I)$ with $||V|| \leq 2\lambda$. Now U - V factors to an operator $U - V = RQ_Y$, where $R: Y \to Z$ satisfies $||R|| \leq 2(\lambda + 1)$ and QR = L.

We can then write R in the form

$$Ry(q) = \langle y, h(q) \rangle,$$

where $h: I \to Y^*$ is weak*-continuous except on points of D and has left and right weak*-limits h(q-) and h(q+) on D with

$$h(q) = \frac{1}{2}(h(q-) + h(q+)).$$

Note that $||h(q)|| \leq \lambda + 1$:

$$h(q+) - h(q-) = \begin{cases} y_a^* & \text{if } q = \varphi(a), \\ 0 & \text{if } q \notin \varphi(T). \end{cases}$$

Finally we build a branch $\beta = \{a_0, a_1, ...\}$ such that for each $n \ge 1$ there exists $y_n^* = h(\varphi(a_n) + 1)$ or $y_n^* = h(\varphi(a_n) - 1)$ such that

$$|\langle y_{a_k}, y_n^* \rangle| > \delta/10$$

for $1 \le k \le n$. This is done by induction. Let $a_0 = \emptyset$ and a_1 be any element of T with $|a_1| = 1$. Then since

$$\frac{\delta}{4} \leqslant \langle y_{a_1}, y_{a_1}^* \rangle = \langle y_{a_1}, h(\varphi(a_1)+) - h(\varphi(a_1)-) \rangle$$

we can choose an appropriate sign so that the inductive hypothesis holds when n = 1. Now suppose a_0, \ldots, a_{n-1} have been chosen and that

$$|\langle y_{a_k}, y_{n-1}^* \rangle| > \frac{\delta}{10}$$

for $1 \le k \le n-1$. We shall assume that $y_{n-1}^* = h(\varphi(a_{n-1})+)$; the other case is similar. Then there exists $\eta > 0$ such that if $\varphi(a_{n-1}) < q < \varphi(a_{n-1}) + \eta$ we have, for some $\rho > 0$,

$$|\langle y_{a_k}, h(q) \rangle| > \frac{\delta}{10} + \rho$$

for $1 \le k \le n-1$. Then we can choose $a_n \in a_{n-1}$ + such that $\varphi(a_{n-1}) < \varphi(a_n) < \varphi(a_n) + \eta$. Then

$$|\langle y_{a_k}, h(\varphi(a_n)\pm)\rangle| > \frac{\delta}{10}$$

for $1 \leq k \leq n - 1$. Now

$$\langle y_{a_n}, h(\varphi(a_n)+) - h(\varphi(a_n)-) \rangle \ge \frac{\delta}{4}$$

so that we can choose $y_n^* = h(\varphi(a_n)\pm)$ to satisfy the inductive hypothesis. This completes the inductive construction of the branch β . Finally we let y^* be any weak*-cluster point of the sequence $((2\lambda + 2)^{-1}y_n^*)_{n=1}^{\infty}$ so that $||y^*|| \leq 1$ and

$$|y^*(y_a)| \ge \frac{\delta}{20(\lambda+1)}$$

for all $a \in \beta$. This shows that Y has the very strong Schur property with constant $1/20(\lambda + 1)$.

Our next theorem is then a partial converse of the Johnson-Zippin theorem of [15].

THEOREM 5.2 Suppose X is a closed subspace of X such that (X, ℓ_1) has the EP and one of the following holds:

(i) ℓ_1/X has a UFDD.

(ii) ℓ_1/X is isomorphic to the dual of a Banach space Y which embeds into a space with a UFDD.

Then ℓ_1/X is isomorphic to the dual of a subspace of c_0 and there is an automorphism τ of ℓ_1 such that $\tau(X)$ is weak*-closed.

Proof. First note that (i) implies (ii). In fact by Theorem 5.1 ℓ_1/X is a Schur space and hence any UFDD is boundedly complete so that ℓ_1/X is a dual of a space with UFDD. If we assume (ii) then Theorem 4.3 and Theorem 5.1 together yield the result.

REMARK. We can replace (i) by the assumption that ℓ_1/X has (UMAP) (in some equivalent norm). Indeed if ℓ_1/X has (UMAP) it is shown in [7] that it has *commuting* (UMAP) and hence by [19, Lemma 5.2], ℓ_1/X is the dual of a space with (UMAP). Hence by Lemma 2.7 and the remarks following Theorem 4.3 we obtain that ℓ_1/X is the dual of a subspace of c_0 . As observed above the classical results of [17] yield the existence of the desired automorphism.

Let us also remark that, in the case when ℓ_1/X has a UFDD one can easily deduce (from, say, results of [14]) that ℓ_1/X is isomorphic to an ℓ_1 -sum of finite-dimensional spaces. Note what we have proved.

THEOREM 5.3 Let X be a separable Banach space with a UFDD. If X has the very strong Schur property then X is isomorphic to the dual of a subspace of c_0 .

Acknowledgement

The author was supported by NSF grant DMS-9870027.

References

- **1.** T. Ando, A theorem on nonempty intersection of convex sets and its application, *J. Approx. Theory* **13** (1975), 158–166.
- J. Bourgain and H. P. Rosenthal, Martingales valued in certain subspaces of L¹, *Israel J. Math.* 37 (1980), 54–75.
- **3.** J. C. Cabello and E. Nieto, *M*(*s*)-inequality and property (*u*), *Rend. Circ. Mat. Palermo* **40** (1996), 73–78.
- **4.** J. C. Cabello, E. Nieto, and E. Oja, On ideals of operators satisfying the *M*(*r*, *s*)-inequality, *J. Math. Anal. Appl.* **220** (1998), 334–348.
- P. G. Casazza and N. J. Kalton, Notes on approximation properties in separable Banach spaces, *Geometry of Banach spaces*, London Mathematical Society Lecture Notes 158, (Eds P. F. X. Müller and W. Schachermeyer), University Press, Cambridge, (1990), 49–63.
- 6. J. Diestel, Sequences and Series in Banach Spaces, Springer-Verlag, Berlin, 1984.
- G. Godefroy and N. J. Kalton, Approximating sequences and bidual projections, *Quart. J. Math.* 48 (1997), 179–202.
- **8.** G. Godefroy, N. J. Kalton, and G. Lancien, Subspaces of $c_0(\mathbb{N})$ and Lipschitz isomorphisms, *Geom. Funct. Anal.* **10** (2000), 798–820.
- 9. G. Godefroy, N. J. Kalton, and G. Lancien, Szlenk indices and uniform homeomorphisms, *Trans. Amer. Math. Soc.* 353 (2001), 3895–3918.
- **10.** G. Godefroy, N. J. Kalton, and D. Li, On subspaces of L_1 which embed into ℓ_1 , J. Reine Angew. Math. **471** (1996), 43–75.
- 11. R. Haller and E. Oja, Geometric characterizations of positions of Banach spaces in their biduals, *Arch. Math. Basel* 69 (1997), 227–233.
- **12.** P. Harmand, D. Werner, and W. Werner, *M-Ideals in Banach Spaces and Banach Algebras*, Lecture Notes in Mathematics 1547, Springer-Verlag, Berlin, 1993.
- 13. W. B. Johnson and E. Odell, Subspaces of L_p which embed into ℓ_p , Compositio Math. 28 (1974), 37–49.
- 14. W. B. Johnson and M. Zippin, On subspaces and quotients of $(\sum G_n)_{\ell_p}$ and $(\sum G_n)_{c_0}$, *Israel J. Math.* 13 (1972), 311–316.
- W. B. Johnson and M. Zippin, Extension of operators from weak*-closed subspaces of l₁ into C(K) spaces, *Studia Math.* 117 (1995), 43–55.
- N. J. Kalton and D. Werner, Property (M), *M*-ideals and almost isometric structure, *J. Reine Angew. Math.* 461 (1995), 137–178.
- 17. J. Lindenstrauss and H. P. Rosenthal, Automorphisms in c_0 , ℓ_1 and m, Israel J. Math. 7 (1969), 227–239.
- J. Lindenstrauss and L. Tzafriri, *Classical Banach spaces*, Sequence Spaces, Vol. 1, Springer-Verlag, Berlin, (1977).
- 19. S. Neuwirth, Metric unconditionality and Fourier analysis, Studia Math. 131 (1998), 19-62.
- **20.** E. Odell, On certain complemented subspaces of L_1 with the strong Schur property, Longhorn Notes (1983/4), The University of Texas, 177–184.
- **21.** A. Pełczyński, On Banach spaces containing $L_1(\mu)$, Studia Math. **30** (1968), 231–246.

N. J. KALTON

- **22.** H. P. Rosenthal, Sous-espaces de L_1 , *Cours de troisième cycle*, Université Paris VI, 1979 (unpublished).
- **23.** D. M. Speegle, Banach spaces failing the almost isometric universal extension property, *Proc. Amer. Math. Soc.* **126** (1998), 3633–3637.
- 24. M. Zippin, Applications of Michael's continuous selection theorem to operator extension problems, *Proc. Amer. Math. Soc.* 127 (1999), 1371–1378.