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Abstract

Johnson and Zippin recently showed that if X is a weak∗-closed subspace of �1 and T : X →
C(K ) is any bounded operator then T can be extended to a bounded operator T̃ : �1 → C(K ).
We give a converse result: if X is a subspace of �1 such that �1/X has an unconditional finite-
dimensional decomposition (UFDD) and every operator T : X → C(K ) can be extended to �1
then there is an automorphism τ of �1 such that τ(X) is weak∗-closed. This result is proved by
studying subspaces of c0 and several different characterizations of such subspaces are given.

1. Introduction

In [15], Johnson and Zippin proved an extension theorem for operators into C(K )-spaces:

THEOREM 1.1 Let X be a weak∗-closed subspace of �1 (considered as the dual of c0) and let
T : X → C(K ) be a bounded operator. Then T has an extension T̃ : �1 → C(K ).

Note that this implies the same conclusion for any subspace X so that �1/X is isomorphic to the
dual of a subspace of c0 (using results of [17]). The aim of this paper is to prove a partial converse
result to the Johnson–Zippin theorem. We show that if X is a subspace of �1 such that every bounded
operator T : X → C[0, 1] can be extended and if, additionally, �1/X has an unconditional finite-
dimensional decomposition (UFDD) then �1/X is isomorphic to the dual of a subspace of c0, and
hence there is an automorphism τ of �1 such that τ(X) is weak∗-closed. The hypothesis on X can
be weakened a little: it suffices that �1/X be the dual of space which embeds in a space with a
UFDD.

The technique of proof depends heavily on ideas developed in [8], where subspaces of c0 are
characterized in terms of properties of norms. We also use ideas from [9] where trees are used to
obtain renormings, to obtain a characterization of subspaces of c0 in terms of properties of trees in
the dual.

If X is a subspace of �1 which satisfies the conclusion of Theorem 1.1 we show that �1/X has
a property we call the very strong Schur property (the strong Schur property was considered first
for subspaces of L1 by Rosenthal [22]; see also [2]). In the presence of some unconditionality
assumption, for example, if �1/X has a UFDD this can then be used to show that �1/X is the dual
of a subspace of c0.

We would like to thank Gilles Godefroy and Dirk Werner for helpful comments on the content of
this note.
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2. Preliminary results

In this section we gather together some basic definitions and preliminary results.
We start by recalling that a projection P on a Banach space X is an L-projection if ‖x‖ =

‖Px‖ + ‖x − Px‖ for any x ∈ X . We shall say that P is a θ -L-projection where 0 < θ � 1
if we have ‖x‖ � ‖Px‖ + θ‖x − Px‖. We shall say that X is an L-summand (respectively a
θ -L-summand) if there is an L-projection (respectively a θ -L-projection) of X∗∗ onto X ; we shall
say that X is a crude-L-summand if it can be equivalently renormed to be a θ -L-summand for some
0 < θ � 1. We also recall that X is called an M-ideal if the canonical projection π of X∗∗∗ onto
X∗ is an L-projection. Similarly that a Banach space X is a θ -M-ideal if π is a θ -L-projection and
a crude M-ideal if it has an equivalent norm so that it is a θ -M-ideal for some 0 < θ � 1. For
background on the theory of M-ideals we refer to [12]. The notion of a crude M-ideal has also been
considered in the literature, originating with the work of Ando [1] and more recently as a special
case of the so-called M(r, s)-inequalities [3, 4, 11].

Let us recall that X has the strong Schur property [22] if there is a constant c > 0 such that if (xn)

is any normalized sequence with ‖xm − xn‖ � δ > 0 for any m = n then there is a subsequence
(xn)n∈M such that ∥∥∥∥ ∑

k∈M
αk xk

∥∥∥∥ � cδ
∑

k∈M
|αk |

for any finitely non-zero sequence (αk)k∈M. This notion was first introduced implicitly by
Johnson and Odell [13], and then explicitly by Rosenthal [22] and later studied by Bourgain and
Rosenthal [2].

We will need some equivalent formulations of the strong Schur property:

PROPOSITION 2.1 Let X be a Banach space. The following are equivalent.

(i) X has the strong Schur property.

(ii) There is a constant c1 > 0 such that if (xn) is any normalized sequence with infm>n ‖xm −
xn‖ = δ then there exists x∗ ∈ BX∗ with

lim sup
n→∞

x∗(xn) − lim inf
n→∞ x∗(xn) � c1δ.

(iii) For some fixed ε > 0 there exists a constant c2 > 0 such that if (xn) is a normalized
sequence with infm>n ‖xm − xn‖ � 1 − ε for any m = n then there exists x∗ ∈ BX∗ with
lim supn→∞ x∗(xn) � c2.

(iv) There is a constant c3 > 0 such that for any sequence (xn) in X there exists x∗ ∈ BX∗ with
lim supn→∞ x∗(xn) � c3 lim supn→∞ ‖xn‖.

Proof. The equivalence of (i) and (ii) is essentially contained in the usual proof of Rosenthal’s
�1-theorem (cf. [6, pp. 209–211]). (ii) trivially implies (iii).

We now prove that (iii) implies (iv). By the Uniform Boundedness Principle we may suppose
(xn) bounded and by passing to subsequences and renormalizing we may suppose that ‖xn‖ = 1
for all n. Let δ = infm>n ‖xm − xn‖, and suppose that x∗∗ is any weak∗-cluster point of (xn). If
δ < 1−ε then ‖x∗∗−xn‖ � 1−ε for all n and so ‖x∗∗‖ � ε. In this case there exists x∗ ∈ BX∗ with
lim supn→∞ x∗(xn) � 1

2ε. If δ � 1 − ε, then we apply (ii). Thus (iii) holds with c3 = min(c2,
1
2ε).
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Finally we show that (iv) implies (ii). Indeed there exists x∗ ∈ BX∗ with lim sup x∗(x2n −
x2n−1) � c3δ and so

lim sup
n→∞

x∗(xn) − lim inf
n→∞ x∗(xn) � c3δ.

We will be interested in conditions which guarantee that a Banach space X embeds into c0. We
next state a criterion from [16] (the almost isometric case) and [8].

THEOREM 2.2 Let X be a separable Banach space. Suppose there is a constant c > 0 such that if
x∗ ∈ X∗ and (x∗

n ) is any weak∗-null sequence then

lim inf
n→∞ ‖x∗ + x∗

n‖ � ‖x∗‖ + c lim inf
n→∞ ‖x∗

n‖.

Then X is isomorphic to a subspace of c0.

Note here that we can replace lim inf by lim sup or consider only the case when both limits exist
without changing the criterion. A norm with this property is called Lipschitz-U K K ∗. We now give
a simple application in the spirit of later results. We refer also to [10] for connections between
embeddability into c0 and the strong Schur property.

THEOREM 2.3 Suppose that X is a separable Banach space such that X∗ has the strong Schur
property and suppose that X is a crude M-ideal. Then X is isomorphic to a subspace of c0.

Proof. We may suppose X is a θ -M-ideal for some 0 < θ � 1. Suppose x∗ ∈ X∗ and that (x∗
n ) is

a weak∗-null sequence. Then there exists x∗∗ ∈ BX∗∗ such that lim sup x∗∗(x∗
n ) � c3 lim sup ‖x∗

n‖.
Hence (x∗

n )∞n=1 has a weak∗-cluster point x∗∗∗ ∈ X∗∗∗ with ‖x∗∗∗‖ � c3 lim sup ‖x∗
n‖. Clearly

x∗∗∗ ∈ X⊥ and so

lim sup
n→∞

‖x∗ + x∗
n‖ � ‖x∗ + x∗∗∗‖ � ‖x∗‖ + θ‖x∗∗∗‖

� ‖x∗‖ + c3θ lim sup
n→∞

‖x∗
n‖.

We can now apply the result of [8] to deduce that X embeds into c0.

Another important concept we use concerns unconditionality. We shall say that a Banach space
X is of unconditional type if whenever x ∈ X and (xn) is a weakly null sequence in X we have

lim
n→∞(‖x + xn‖ − ‖x − xn‖) = 0.

We shall say that X is of shrinking unconditional type if whenever x∗ ∈ X∗ and (x∗
n ) is weak∗-null

in X∗ then
lim

n→∞(‖x∗ + x∗
n‖ − ‖x∗ − x∗

n‖) = 0.

These notions were introduced and studied (with different terminology) by Neuwirth [19]. We first
note the following.

LEMMA 2.4 If X is a separable Banach space which has shrinking unconditional type then X has
unconditional type.
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Proof. Suppose x ∈ X and (xn) is weakly null and that ‖x + xn‖ > ‖x − xn‖ + ε for all n, where
ε > 0. Choose y∗

n ∈ BX∗ such that y∗
n (x + xn) = ‖x + xn‖. By passing to a subsequence we can

suppose y∗
n converges to some x∗ ∈ X∗. Then limn→∞ ‖2x∗ − y∗

n‖ = limn→∞ ‖y∗
n‖ = 1. Now

limn→∞(‖x + xn‖ − y∗
n (xn)) = x∗(x) and so

lim
n→∞(〈x − xn, 2x∗ − y∗

n 〉 − ‖x + xn‖) = 0.

This implies that lim inf(‖x − xn‖ − ‖x + xn‖) � 0 and gives the lemma.

Let us recall that a separable Banach space X has the unconditional metric approximation
property (UMAP) if there is a sequence of finite-rank operators (Tn) such that limn→∞ Tn x = x for
x ∈ X and limn→∞ ‖I − 2Tn‖ = 1 (see [5, 7]); we say X has shrinking (UMAP) if, in addition,
limn→∞ T ∗

n x∗ = x∗ for x∗ ∈ X∗. It is shown in [7] that X has (UMAP) if and only if for every
ε > 0 X is isometric to a one-complemented subspace of a space Vε with a (1 + ε)-(UFDD).

LEMMA 2.5 Let X be a Banach space with (UMAP); then X is of unconditional type. If X has
shrinking (UMAP) X is of shrinking unconditional type.

Proof. Suppose x ∈ X and (xn) is weakly null. It is enough to show that limn→∞ ‖x + xn‖ �
limn→∞ ‖x − xn‖ under the assumption that both limits exist;

lim
n→∞ ‖x + xn‖ = lim

k→∞ lim
n→∞ ‖(2Tk − 1)x + xn‖

= lim
k→∞ lim

n→∞ ‖(2Tk − I )x + (I − 2Tk)xn‖
� lim

n→∞ ‖x − xn‖.

The shrinking case is similar.

LEMMA 2.6 Let X be a separable Banach space of shrinking unconditional type. Then any
subspace or quotient of X has shrinking unconditional type.

Proof. If Y is a subspace of X then (X/Y )∗ can be identified with Y ⊥ and trivially X/Y has
shrinking unconditional type. Now Y ∗ can be identified with X∗/Y ⊥. Let Q : X∗ → Y ∗ be
the canonical quotient map. Suppose y∗ ∈ Y ∗ and that (y∗

n ) is weak∗-null in Y ∗. Suppose that
‖y∗ + y∗

n‖ < ‖y∗ − y∗
n‖ − ε, where ε > 0. We may pick (by the Hahn–Banach theorem) x∗

n ∈ X∗
such that ‖x∗

n‖ = ‖y∗ + y∗
n‖ and Qx∗

n = y∗ + y∗
n . Passing to a subsequence we can suppose that x∗

n
converges weak∗ to x∗. Now

lim
n→∞(‖2x∗ − x∗

n‖ − ‖x∗
n‖) = 0

and Q(2x∗ − x∗
n ) = 2Qx∗ − y∗ − y∗

n = y∗ − y∗
n by the weak∗-continuity of Q. Hence

lim sup
n→∞

(‖y∗ − y∗
n‖ − ‖y∗ + y∗

n‖) � 0,

which yields a contradiction; thus Y is of shrinking unconditional type.

LEMMA 2.7 Let X be a subspace of a space with (UMAP); if X does not contain �1 then X has
shrinking unconditional type.
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Proof. Suppose ε > 0 and that x∗ ∈ X∗ and that (x∗
n ) is any weakly null sequence; assume that

supn ‖x∗ + x∗
n‖ � 1 and ‖x∗ − x∗

n‖ > ‖x∗ + x∗
n‖ + ε for all n ∈ N, where ε > 0. By results of [7]

we may suppose X is isometric to a subspace of a space V = Vε with a (1 + ε/2)-(UFDD). Indeed
suppose (Qn) are finite rank projections defining a (1 + ε/2)-(UFDD). Let Tn = ∑n

k=1 Qi . Let
j : X → V be the isometric embedding.

If v∗ ∈ V ∗ we have j∗v∗ = ∑∞
k=1 j∗Q∗

kv
∗ unconditionally in the weak∗-topology. Since X∗

does not contain c0 (or equivalently �∞) this series converges in norm so that limk→∞ ‖ j∗v∗ −
j∗T ∗

k v∗‖ = 0.
Now by the Hahn–Banach theorem we can find v∗

n ∈ V ∗ such that ‖v∗
n‖ = ‖x∗ + x∗

n‖ and
j∗v∗

n = x∗ + x∗
n . By passing to a subsequence we can suppose that v∗

n converges weak∗ to some v∗.
Clearly j∗v∗ = x∗. Then

lim sup
n→∞

‖x∗ − x∗
n‖ = lim sup

n→∞
‖2 j∗v∗ − j∗v∗

n‖
= lim sup

k→∞
lim sup

n→∞
‖2 j∗T ∗

k v∗ − j∗v∗
n − 2 j∗(T ∗

k v∗ − Tkv
∗
n)‖

� lim sup
k→∞

lim sup
n→∞

‖(2Tk − I )v∗
n‖

� (1 + 1
2ε) lim sup

n→∞
‖x∗ + x∗

n‖.

This contradiction establishes the lemma.

3. Subspaces of c0 and trees

Consider the set FN of all finite subsets of N with the following partial order. If a =
{n1, n2, . . . , nk} where n1 < n2 < · · · < nk and b = {m1, m2, . . . , ml} where
m1 < m2 < · · · < ml , then a � b if and only if k � l and mi = ni where 1 � i � k (that is,
a is an initial segment of b). We say that b is a successor of a if |b| = |a| + 1 and a � b; the
collection of successors of a is denoted by a+. If a = ∅ then a− denotes the unique predecessor of
a; that is, a is a successor of a−. Let S be a subset of FN. We say that S is a full tree whenever

1. ∅ ∈ S;

2. each a ∈ S has infinitely many successors in S;

3. if a ∈ S and ∅ = a ∈ S then a− ∈ S.

It is easy to see that any full tree is isomorphic as an ordered set to FN. If S is any full tree we will
say that a sequence β = {an}∞n=0 is a branch of S if an ∈ S for all n, a0 = ∅ and an+1 is a successor
of an for all n � 0.

Now let V be a vector space. We define a tree-assignment to be a map a → xa defined on a full
tree S. We define a tree-map to be a tree-assignment a → xa with the properties that x∅ = 0 and
for every branch β the set {a : xa = 0 : a ∈ β} is finite. Given any tree-map we define a height
function h which assigns to each a a countable ordinal; to do this we define h(a) = 0 if xb = 0 for
b � a and then inductively h(a) is defined by h(a) � η if and only if h(b) < η for every b > a.
The height of the tree-map is defined to be h(∅). Note that the tree-map a → xa has finite height
m � n if and only if xa = 0 whenever |a| > n.

The following easy lemma, proved in [9], is a restatement of the fact that certain types of games
(which are not used in this paper) are determined.



318 N. J. KALTON

LEMMA 3.1 Suppose (xa)a∈S is a tree-map and that A is any subset of V . Then either there is a
full tree T ⊂ S such that

∑
a∈β xa ∈ A for every branch β ⊂ T or there is a full tree T ⊂ S such

that
∑

a∈β xa /∈ A for every branch β ⊂ T .

Now suppose V = X is a Banach space. If τ is a topology on X (for example, the weak topology
or for dual spaces the weak∗-topology) we say that a tree-map (xa)a∈S is τ -null if for every a ∈ S
the set {xb}b∈a+ is a τ -null sequence.

We now introduce a definition which will characterize subspaces of c0. We say that a Banach
space X has the bounded tree property with constant σ > 0 if every weakly null tree-map (xa)a∈S

has a full subtree T such that
∥∥ ∑

a∈β xa
∥∥ � 1 for every branch β.

THEOREM 3.2 Let X be a separable Banach space containing no copy of �1 with the bounded tree
property. Then X is isomorphic to a subspace of c0.

Proof. cf. [9, Theorem 4.1]. Define for x ∈ X , f (x) to be the infimum of all λ > 0 such that for
every weakly null tree-map (xa)a∈S with ‖xa‖ � σ there is a full tree T ⊂ S with

∥∥x +∑
a∈β xa

∥∥ �
λ for every branch β. Note that ‖x‖ � f (x), f (0) � 1, f (−x) = f (x) and that | f (x) − f (y)| �
‖x − y‖. In particular we have ‖x‖ � f (x) � ‖x‖ + 1. We now argue exactly as in [9] that f is
convex. For the convenience of the reader we repeat the argument. Let u = t x + (1 − t)y, where
0 < t < 1. Suppose λ > f (x) and µ > f (y). Let (xa)a∈S be any weakly null tree-map of height k
with ‖xa‖ � σ for all a ∈ S. Then we can find a full subtree T1 ⊂ S such that for every branch β

we have ∥∥∥∥x +
∑
a∈β

xa

∥∥∥∥ � λ

and then a full subtree T2 ⊂ T1 such that for every branch β ⊂ T2∥∥∥∥y +
∑
a∈β

xa

∥∥∥∥ � µ.

Obviously for every branch β ⊂ T2∥∥∥∥u +
∑
a∈β

xa

∥∥∥∥ � tλ + (1 − t)µ

so that fk(u) � tλ + (1 − t)µ.
Next we note that if ‖xn‖ � σ and limn→∞ xn = 0 weakly then lim sup f (x + xn) � f (x).

Assume that λ < lim supn→∞ f (x + xn). By passing to a subsequence we can suppose that λ <

f (x + xn) for every n. Then for each n there is a weakly null tree-map (y(n)
a )a∈Sn of height k such

that ‖y(n)
a ‖ � σ for all a ∈ Sn and ∥∥∥∥x + xn +

∑
a∈β

y(n)
a

∥∥∥∥ > λ

for every branch β ⊂ Sn . Now let T be the tree consisting of all sets {m1, . . . , ml}, where m1 <

m2 < · · · < ml such that if l > 1 then {m2, . . . , ml} ∈ Sm1 . We define a weakly null tree-map by

zm1,...,ml =
{

xm1 if l = 1,

y(m1)
m2,...,ml if l > 1.
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Then for every branch β ⊂ T we have ∥∥∥∥x +
∑
a∈β

za

∥∥∥∥ > λ

so that f (x) � λ. This implies our claim.
Let | · | be the Minkowski functional of the set {x : f (x) � 2}. Then | · | is a norm on X satisfying

1
2‖x‖ � |x | � ‖x‖. Suppose |x | = 1 and (xn) is a weakly null sequence with |xn| � 1

2σ . Then
‖xn‖ � σ and so lim sup f (x + xn) � 2. Hence

lim sup |x + xn| � 1.

Now by [9, Proposition 2.7] we have that X∗ is separable. We can then apply [9, Proposition 2.6]
to deduce that if |x∗| = 1 and (x∗

n ) is a weak∗-null sequence in X∗ with ‖x∗
n‖ = τ then

lim inf
n→∞ |x∗ + x∗

n | � 1 + σ

12
τ .

Thus X∗ has a Lipschitz-UKK∗ norm and by the results of [8] (see also [16]) this implies that X
embeds into c0.

We next introduce a dual notion. We say that X∗ has the weak∗ summable tree property with
constant c > 0 if for every weak∗-null tree-map (x∗

a )a∈S on X∗ satisfying the boundedness property

sup
a∈S

∥∥∥∥ ∑
b�a

xb

∥∥∥∥ < ∞, (3.1)

and for every ε > 0 there is a full subtree T such that∥∥∥∥ ∑
a∈β

x∗
a

∥∥∥∥ > c
∑
a∈β

‖x∗
a‖ − ε

for every branch β. Notice that if X is a subspace of c0 then [16]

lim inf
n→∞ ‖x∗ + x∗

n‖ � ‖x∗‖ + lim inf
n→∞ ‖x∗

n‖

and this implies directly that X∗ has the weak∗ summable tree property with constant one.

THEOREM 3.3 Suppose X is a separable Banach space such that X∗ has the weak∗-summable tree
property. Then X is isomorphic to a subspace of c0.

Proof. We show that X contains no subspace isomorphic to �1 and that X has the bounded tree
property. To show X contains no copy of �1 it suffices to show that �2 does not embed in X∗ by [21].
Suppose then u∗

n is a weak∗-null sequence in X∗ so that ‖u∗
n‖ = 1 and

∥∥ ∑
i∈A ui

∥∥ � C |A|1/2 for
any finite subset of A of N, where C is an absolute constant. Then define, for any N , the tree-map
on FN by

x∗
a = u∗

mn
if a = {m1, . . . , mn} and 1 � n � N

and x∗
a otherwise. It is clear that any full subtree T has a branch β with

∥∥ ∑
a∈β u∗

a

∥∥ � C N 1/2
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while
∑

a∈β ‖u∗
a‖ = N , and therefore if N is large enough we obtain a contradiction to the weak∗

summable tree property.
Next we need a duality argument. We assume that X∗ has the weak∗ summable tree property

with constant c > 0. We show that X has the bounded tree property with constant σ for any
0 < σ < c/2. Indeed if not there is by Lemma 3.1 a weakly null tree-map (xa)a∈S with the
properties that ‖xa‖ � σ for all a and

∥∥ ∑
a∈β xa

∥∥ > 1 for every branch β. For each branch β pick
u∗

β ∈ X∗ with ‖u∗
β‖ = 1 and

〈 ∑
a∈β xa, u∗

β

〉
> 1. Let h be the height function of the given tree-map.

For each a ∈ S we define y∗
a by transfinite induction on h(a). If h(a) = 0 let y∗

a = u∗
β where β

is any branch to which a belongs. Then if (y∗
a ) has been defined for h(a) < η and if h(b) = η we

define (y∗
b ) to be any weak∗-cluster point of (y∗

a )a∈b+. (Note that according to our definition (y∗
a ) is

a tree-assignment but not necessarily a tree-map because it is not supported on a well-founded tree
and we might have y∗

∅ = 0.)
Let us now make a tree-map by defining x∗

∅ = 0 and then if h(a−) � 1 we define x∗
a = y∗

a − y∗
a−.

If h(a−) = 0 we define x∗
a = 0. This is clearly a tree-map which also satisfies (3.1) and we have

that for each a ∈ S, zero is a weak∗-cluster point of (x∗
b )b∈a+. It is then easy to see that we can pass

to a full subtree T so that (x∗
a )a∈T is weak∗-null. Let x∗ = y∗

∅ .
Now pick ε > 0 such that 3ε + 2c−1σ < 1. We can use the definition of the weak∗-summable

tree property and also [9, Lemma 3.3] to pass to a further full subtree (still labelled T ) so that we
have |〈xa, x∗〉| < ε/2|a| when |a| > 0 and for any branch β ⊂ T∣∣∣∣∣

〈∑
a∈β

xa,
∑
a∈β

x∗
a

〉
−

∑
a∈β

〈xa, x∗
a 〉

∣∣∣∣∣ � ε

c

(∑
a∈β

‖x∗
a‖ − ε

)
�

∥∥∥∥ ∑
a∈β

x∗
a

∥∥∥∥.

For any branch β let b be the first point for which h(b) = 0. Then∥∥∥∥x∗ +
∑
a∈β

x∗
a

∥∥∥∥ = ‖y∗
b‖ = 1.

It follows that ∥∥∥∥ ∑
a∈β

x∗
a

∥∥∥∥ � 2.

Now we have

1 <

〈∑
a∈β

xa, y∗
b

〉
�

∑
a∈β

|〈xa, x∗〉| +
∣∣∣∣∣
〈∑

a∈β

xa,
∑
a∈β

x∗
a

〉∣∣∣∣∣
� 2ε +

∑
a∈β

|〈xa, x∗
a 〉| � 2ε + σ

∑
a∈β

‖x∗
a‖

� 3ε + c−1σ

∥∥∥∥ ∑
a∈β

x∗
a

∥∥∥∥ � 3ε + 2c−1σ .

This gives a contradiction and so we deduce that X has the bounded tree property and we can apply
Theorem 3.2 to obtain the result.
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4. The very strong Schur property

We shall say that a tree-assignment (xa)a∈S in X is δ-separated if ‖xb−xb′ ‖ � δ whenever b, b′ ∈ S
are such that b, b′ ∈ a+ for some a ∈ S. Let us say that a Banach space X has the very strong
Schur property if there is a constant c > 0 such that whenever (xa)a∈S is a δ-separated bounded
tree-assignment then there is a branch β and x∗ ∈ BX∗ with |x∗(xa)| � cδ whenever ∅ = a ∈ β.

We first justify this terminology.

PROPOSITION 4.1 Suppose X is a Banach space with the very strong Schur property. Then X has
the strong Schur property.

Proof. We verify condition (iii) of Proposition 2.1 with ε = 1
2 . Let (xn) be a normalized sequence

with infm>n ‖xm − xn‖ � 1
2 . Form a tree-assignment (ya)a∈FN by putting y∅ = 0 and then ya = xn

if n = max a. Then (ya) is a bounded 1
2 -separated tree-assignment and so there is a branch β and

x∗ ∈ BX∗ with |x∗(ya)| � 1
2 c. This leads to a subsequence (xnk )

∞
k=1, where |x∗(xnk )| � 1

2 c and
Proposition 2.1 (iii) holds with either x∗ or −x∗.

There is an important situation when the converse is true.

THEOREM 4.2 Suppose that Y is a crude L-ideal. If X is a closed subspace of Y with the strong
Schur property then X has the very strong Schur property.

Proof. We may suppose that Y is a θ -L-ideal where 0 < θ � 1. Suppose P is the associated
L-projection. We also use Proposition 2.1 (iv) to deduce that there is a constant c > 0 such that if
(xn)n∈N is any bounded sequence in X with infm =n ‖xm − xn‖ � δ > 0 then (xn) has a subsequence
(wn) such that we have an estimate ∥∥∥∥

∞∑
k=1

αkwk

∥∥∥∥ � c
∑
k=1

|αk | (4.1)

for all finitely non-zero sequences (αk).
Now suppose (xa)a∈S is a δ-separated tree-assignment. Let σ = 1

4 cθ . We shall show by an
inductive construction that there is a branch β and for each a ∈ β, x∗

a ∈ X∗ with ‖x∗
a‖ < 1 so that

|x∗
a (xb)| � σδ if ∅ = b � a. This will complete the proof since then we can take x∗ as any weak∗

cluster point of {x∗
a : a ∈ β}.

We start the branch with ∅. Now suppose a ∈ β; we must choose a successor b ∈ a+ and
a corresponding x∗

b . First let y∗
a be any norm-preserving extension of x∗

a to Y . Next we pick a
subsequence wn = xbn of {xb : b ∈ a+} satisfying (4.1). Let x∗∗ be any weak∗-cluster point of
(wn)∞n=1.

Suppose y ∈ Y . Let x∗∗ − y belong to the weak∗-closed convex hull Wk of {wn − y}∞n=k ; then
0 is in the norm-closure of the set Wk − ‖x∗∗ − y‖BY . We deduce that for any ε > 0 we can find
convex combinations

∑k
j=1 α j (wn − y) and

∑l
j=k+1 α j (wn − y) of norm at most ‖x∗∗ − y‖+ ε/2.

Hence

2cδ �
∥∥∥∥

k∑
j=1

α jw j −
l∑

j=k+1

α jw j

∥∥∥∥ � 2‖x∗∗ − y‖ + ε.

Thus d(x∗∗, Y ) � cδ.
In particular, ‖x∗∗ − Px∗∗‖ � cδ. Let E be the linear span of {xd : d � a}∪{Px∗∗, x∗∗ − Px∗∗}.
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We define a linear functional ϕ on E by ϕ(e) = y∗
a (e) if e ∈ E ∩ Y and ϕ(x∗∗ − Px∗∗) = 2σ if

y∗
a (Px∗∗) � 0 and ϕ(x∗∗ − Px∗∗) = −2σ if y∗

a (Px∗∗) < 0. For any e ∈ E we have e =
e0 + λ(x∗∗ − Px∗∗), where e0 ∈ E ∩ Y and λ ∈ R. Then

|ϕ(e)| � |y∗
a (e0)| + 2|λ||σ | � ‖x∗

a‖‖e0‖ + 1
2θ‖e − Pe‖.

Hence ‖ϕ‖ < 1. It follows that ϕ has a weak∗-continuous extension y∗ ∈ Y ∗ with ‖y∗‖ < 1. Now
|〈y∗, x∗∗〉| � 2σ and hence we can pick n such that |y∗(wn)| = |y∗(xbn )| � σ . We thus select
b = bn and set x∗

b = y∗|X . This inductive process establishes our result.

Observe that a closed subspace of L1 has the very strong Schur property if and only if it has the
strong Schur property since L1 is an L-ideal in its bidual. It follows therefore that the examples
constructed by Bourgain and Rosenthal [2] show that for subspaces of L1, the very strong Schur
property does not imply embeddability into �1 or even the Radon–Nikodym property. However,
Johnson and Odell [13] showed that a subspace of L1 with a UFDD and the strong Schur property
is isomorphic to a subspace of �1; see also [20]. Thus the presence of some unconditionality is
crucial here. This motivates our next theorem.

THEOREM 4.3 Let X be a separable Banach space with the property that X∗ has the very strong
Schur property. Assume that X is linearly isomorphic to a subspace of a Banach space with UFDD.
Then X is linearly isomorphic to a subspace of c0.

REMARK. The assumption that X embeds into a space with UFDD is equivalent to the assumption
that X embeds in a space with unconditional basis [18, p. 51]. As will be seen in the proof, the
theorem holds if X is assumed to have shrinking unconditional type.

Proof. Note first that X cannot contain �1 by results of [21] since X∗ has the Schur property.
Therefore we can apply Lemma 2.7 to deduce that X can be given an equivalent norm so that it has
shrinking unconditional type. We complete the proof by showing that X has the weak∗-summable
tree property and applying Theorem 3.3.

Assume that X∗ has the very strong Schur property with constant c. We will show that X has the
weak∗-summable tree property with constant c/2. Suppose (x∗

a )a∈S is a weak∗-null tree such that

sup
a∈S

∥∥∥∥ ∑
b�a

x∗
b

∥∥∥∥ = M < ∞.

Assume that (x∗
a ) fails to have a full subtree such that∥∥∥∥ ∑

a∈β

x∗
a

∥∥∥∥ >
c

2

∑
a∈β

‖x∗
a‖ − ε.

Then by considering the tree-map (x∗
a , ‖x∗

a‖) in X∗ × R and using Lemma 3.1 we can find a full
subtree (x∗

a )a∈S1 such that for every branch we have∥∥∥∥ ∑
a∈β

x∗
a

∥∥∥∥ � c

2

∑
a∈β

‖x∗
a‖ − ε.

Next we can pass to a full subtree S2 such that for each a ∈ S2 either infb∈a+ ‖x∗
a‖ > 0 or
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supb∈a+ ‖x∗
b‖ � 2−|a|−3ε. We then define a tree assignment (u∗

b) as follows. Put u∗
∅ = 0. If

a ∈ S2 is such that infb∈a+ ‖x∗
b‖ = 0 then let {u∗

b : b ∈ a+} be assigned to be any fixed weak∗-null
normalized sequence. If a ∈ S2 and infb∈a+ ‖x∗

b‖ > 0 we let u∗
b = x∗

b/‖x∗
b‖ if b ∈ a+. Then

(u∗
a)a∈S2 is weak∗-null and, using the weak∗-lower-semicontinuity of the norm we may pass to a

full subtree S3 so that for any a ∈ S3 we have

inf
b,b′∈a+

‖u∗
b − u∗

b′ ‖ � 1
2 .

Next we use the fact that X has shrinking unconditional type. For each a ∈ S3 there is a closed
absolutely convex weak∗-neighbourhood of the origin Wa such that if w∗ ∈ Wa and ‖w∗‖ � 2M
then ∣∣∣∣∣

∥∥∥∥ ∑
b�a

ηbx∗
b + w∗

∥∥∥∥ −
∥∥∥∥ ∑

b�a

ηbx∗
b − w∗

∥∥∥∥
∣∣∣∣∣ � 2−|a|−2ε

for every choice of signs ηb = ±1 for b � a. Let T = {a ∈ S3 : x∗
a ∈ 2|b|−|a|Wb, if b < a}. Then

T is a full subtree of S3.
Let β be any branch in T . We write β = {a0, a1, a2, . . . }, where a0 < a1 < a2 < · · · . Let

σn := max
ηk=±1

∥∥∥∥
n∑

k=0

ηk x∗
ak

+
∞∑

k=n+1

x∗
ak

∥∥∥∥.

Then σ0 = ∥∥ ∑∞
k=1 x∗

ak

∥∥. Notice that if ηn = −1 where n � 1 then since
∑∞

k=n+1 x∗
ak

∈ Wan and∥∥ ∑∞
k=n+1 x∗

ak

∥∥ � 2M ,

∥∥∥∥
n∑

k=0

ηk x∗
ak

+
∞∑

k=n+1

x∗
ak

∥∥∥∥ � 2−n−2ε +
∥∥∥∥

n−1∑
k=0

ηk x∗
ak

−
∑
k=n

x∗
ak

∥∥∥∥.

Thus
σn � σn−1 + 2−n−2ε.

It follows that

σn �
n∑

k=1

2−k−2ε +
∥∥∥∥

∞∑
k=0

x∗
ak

∥∥∥∥.

Thus we conclude that for any branch and any choice of signs ηa we have∥∥∥∥ ∑
a∈β

ηa x∗
a

∥∥∥∥ �
∥∥∥∥ ∑

a∈β

x∗
a

∥∥∥∥ + 1
4ε.

Next we can use the very strong Schur property and the fact that (u∗
a)a∈T is 1

2 -separated to find a
branch β and u∗∗ ∈ BX∗∗ with |u∗∗(u∗

a)| � 1
2 c for a ∈ β. By the construction of (u∗

a) we have

‖x∗
a − ‖x∗

a‖u∗
a‖ � 2−|a|−2ε

so that
|u∗∗(x∗

a )| � c

2
‖x∗

a‖ − 2−|a|−2ε.
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Choose ηa = ±1 such that ηau∗∗(x∗
a ) � 0. Then

u∗∗
( ∑

a∈β

ηa x∗
a

)
� c

2

∑
a∈β

‖x∗
a‖ − 1

2ε.

Hence ∥∥∥∥ ∑
a∈β

x∗
a

∥∥∥∥ � c

2

∑
a∈β

‖x∗
a‖ − 3

4ε.

This is a contradiction and shows that X has the weak∗ summable tree property. The proof is
complete.

COROLLARY 4.4 Suppose X and Y are Banach spaces such that X∗ and Y ∗ are isomorphic.
Suppose X is isomorphic to a subspace of c0. Then Y is isomorphic to a subspace of c0 if and
only if Y embeds in a space with UFDD.

REMARK. We do not know if one can conclude that X and Y are isomorphic if both embed into c0.

5. The extension property

Let us recall that if X is a Banach space X and E is a closed subspace of X then the pair (E, X)

is said to have the λ-extension property (λ-(EP)) if, for any compact Hausdorff space K , every
bounded operator T : E → C(K ) has a bounded extension T̃ : X → C(K ) with ‖T̃ ‖ � λ‖T ‖
(Johnson and Zippin [15]). We say (E, X) has the EP if it has λ-(EP) for some λ � 1. Johnson
and Zippin [15] showed that if X is a weak∗-closed subspace of �1 = c∗

0 then (X, �1) has the EP,
although curiously it is unknown whether it has (1 + ε)-(EP) for any ε > 0. See [23, 24] for recent
progress on extension properties.

As observed in [15, Corollary 1.1], using the results of [17], the extension property of (X, �1)

depends only on the quotient space �1/X ; hence it follows that if �1/X is isomorphic to Y ∗ where Y
is a closed subspace of c0 then (X, �1) has the extension property (because there is an automorphism
τ of �1 such that τ(X) is weak∗-closed). The aim of this section is to show how the results of the
paper can give a partial converse to this theorem.

THEOREM 5.1 Suppose X is a closed subspace of �1 so that (X, �1) has the EP. Then �1/X has the
very strong Schur property.

REMARK. The result that �1/X has the Schur property was obtained earlier by the author and A.
Pełczyński by somewhat similar arguments. This answered a question of Zippin concerning the
case �1/X ≈ L1.

Proof. We suppose that (X, �1) has λ-(EP). Let Y = �1/X and denote by QY the quotient map of
�1 onto Y .

We start by supposing that (ya)a∈S is a bounded δ-separated tree assignment in Y = �1/X . Let
En be an increasing sequence of finite-dimensional subspaces of Y whose union is dense. We start
by observing that for each a ∈ S and each n ∈ N there is an infinite number of b ∈ a+ such that
d(yb, En) > δ/4. Indeed, if not there are infinitely many b ∈ a+ such that d(yb, En) � δ/4 and for
each such b we can find eb ∈ En with ‖yb − eb‖ � δ/4. The set of such eb is bounded and so by
compactness arguments we obtain b = b′ with ‖yb − yb′ ‖ � 3δ/4.

Now we may pass to a full subtree (ya)a∈T such that there exists a map ψ : T \ {∅} → N with
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the properties that d(ya, Eψ(a)) � δ/4 and if a = {n1, . . . , nk} where n1 < n2 < · · · < nk then we
have

|{b ∈ a+ : ψ(b) = m}| =
{

0 if m � n1 + · · · + nk,

1 if m > n1 + · · · + nk .

Now for each a ∈ T \ ∅ we can choose y∗
a ∈ BY ∗ ∩ E⊥

ψ(a) such that |y∗(ya)| � δ/4. Note that
the set {y∗

a : a ∈ T } forms a weak∗-null sequence. For convenience let y∗
∅ = 0.

Consider the closed unit interval I = [0, 1] and let D be the set of dyadic rationals k/2n , where
1 � k � 2n − 1 and n ∈ N. Let Z be the space of all real-valued functions f on I which are
continuous on I \ D and such that on D both left and right limits f (q−) and f (q+) exist:

f (q) = 1
2 ( f (q−) + f (q+)).

It is easy to see that Z equipped with the sup-norm is isometric to C(�), where � is the Cantor set.
Then C(I ) is a closed subspace of Z and Z/C(I ) ≈ c0(D) with the quotient map being given by
Q f = ( f (q+) − f (q−))q∈D .

Now we can define a one–one map ϕ : T → D with the property that limb∈a+ ϕ(b) = ϕ(a) and
|{b : ϕ(b) > ϕ(a)}| = |{b : ϕ(b) < ϕ(a)}| = ∞ for a ∈ T .

Next define an operator L : Y → c0(D) by putting Ly(q) = y∗
a (y) if ϕ(a) = q and Ly(q) = 0

otherwise; then ‖L‖ � 1. Then L QY : �1 → c0(D) can be lifted to an operator U : �1 → Z such
that QU = L QY and ‖U‖ � 2. Then U maps X into C(I ) and by assumption this restriction U |X

has an extension V : �1 → C(I ) with ‖V ‖ � 2λ. Now U −V factors to an operator U −V = RQY ,
where R : Y → Z satisfies ‖R‖ � 2(λ + 1) and Q R = L .

We can then write R in the form

Ry(q) = 〈y, h(q)〉,
where h : I → Y ∗ is weak∗-continuous except on points of D and has left and right weak∗-limits
h(q−) and h(q+) on D with

h(q) = 1
2 (h(q−) + h(q+)).

Note that ‖h(q)‖ � λ + 1:

h(q+) − h(q−) =
{

y∗
a if q = ϕ(a),

0 if q /∈ ϕ(T ).

Finally we build a branch β = {a0, a1, . . . } such that for each n � 1 there exists y∗
n = h(ϕ(an)+)

or y∗
n = h(ϕ(an)−) such that

|〈yak , y∗
n 〉| > δ/10

for 1 � k � n. This is done by induction. Let a0 = ∅ and a1 be any element of T with |a1| = 1.
Then since

δ

4
� 〈ya1 , y∗

a1
〉 = 〈ya1 , h(ϕ(a1)+) − h(ϕ(a1)−)〉

we can choose an appropriate sign so that the inductive hypothesis holds when n = 1. Now suppose
a0, . . . , an−1 have been chosen and that

|〈yak , y∗
n−1〉| >

δ

10
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for 1 � k � n −1. We shall assume that y∗
n−1 = h(ϕ(an−1)+); the other case is similar. Then there

exists η > 0 such that if ϕ(an−1) < q < ϕ(an−1) + η we have, for some ρ > 0,

|〈yak , h(q)〉| >
δ

10
+ ρ

for 1 � k � n − 1. Then we can choose an ∈ an−1+ such that ϕ(an−1) < ϕ(an) < ϕ(an) + η.
Then

|〈yak , h(ϕ(an)±)〉| >
δ

10
for 1 � k � n − 1. Now

〈yan , h(ϕ(an)+) − h(ϕ(an)−)〉 � δ

4

so that we can choose y∗
n = h(ϕ(an)±) to satisfy the inductive hypothesis. This completes the

inductive construction of the branch β. Finally we let y∗ be any weak∗-cluster point of the sequence
((2λ + 2)−1 y∗

n )∞n=1 so that ‖y∗‖ � 1 and

|y∗(ya)| � δ

20(λ + 1)

for all a ∈ β. This shows that Y has the very strong Schur property with constant 1/20(λ + 1).

Our next theorem is then a partial converse of the Johnson–Zippin theorem of [15].

THEOREM 5.2 Suppose X is a closed subspace of X such that (X, �1) has the EP and one of the
following holds:

(i) �1/X has a UFDD.

(ii) �1/X is isomorphic to the dual of a Banach space Y which embeds into a space with a UFDD.

Then �1/X is isomorphic to the dual of a subspace of c0 and there is an automorphism τ of �1 such
that τ(X) is weak∗-closed.

Proof. First note that (i) implies (ii). In fact by Theorem 5.1 �1/X is a Schur space and hence any
UFDD is boundedly complete so that �1/X is a dual of a space with UFDD. If we assume (ii) then
Theorem 4.3 and Theorem 5.1 together yield the result.

REMARK. We can replace (i) by the assumption that �1/X has (UMAP) (in some equivalent norm).
Indeed if �1/X has (UMAP) it is shown in [7] that it has commuting (UMAP) and hence by [19,
Lemma 5.2], �1/X is the dual of a space with (UMAP). Hence by Lemma 2.7 and the remarks
following Theorem 4.3 we obtain that �1/X is the dual of a subspace of c0. As observed above the
classical results of [17] yield the existence of the desired automorphism.

Let us also remark that, in the case when �1/X has a UFDD one can easily deduce (from, say,
results of [14]) that �1/X is isomorphic to an �1-sum of finite-dimensional spaces.

Note what we have proved.

THEOREM 5.3 Let X be a separable Banach space with a UFDD. If X has the very strong Schur
property then X is isomorphic to the dual of a subspace of c0.
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(unpublished).

23. D. M. Speegle, Banach spaces failing the almost isometric universal extension property, Proc.
Amer. Math. Soc. 126 (1998), 3633–3637.

24. M. Zippin, Applications of Michael’s continuous selection theorem to operator extension
problems, Proc. Amer. Math. Soc. 127 (1999), 1371–1378.


