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L. Introduction

SINCE the appearance of Enflo’s negative solution to the approximation
problem [3], only a few positive general results on the approximation
properties have been obtained. However, it is shown in [2] that any
separable Banach space with the metric approximation property (M.A.P.)
has the commuting metric approximation property. More precisely, if X
has (MAP) there exists a sequence {R,} of finite rank operators such that

lim Jx - R,x| =0 (1)
for all x € X, with lim ||R,|| =1 and
n—+w

R,R.=R(R, = Rlnf(k,n) (2)

for all k= n. Sequences of finite rank operators which satisfy (1) are
called approximating sequences in this paper. The result was known
much before in the case of shrinking approximating sequences [11}, hence
in particular in the reflexive case.

In the present work we exhibit tight connections between the existence
of a projection with a w*-closed kernel in the w*-closure of an
approximating sequence and the construction of commuting approximat-
ing sequences. This permits us to improve control of commuting
approximating sequences when X does not contain /,(N), and provides an
alternative proof of the results of [2] in that case. Combined with
techniques from [5], these methods allow us to show that (UMAP)
implies commuting (UMAP) for arbitrary separable Banach spaces. We
recall that a separable Banach space X has the unconditional metric
approximation property (UMAP) if there exists an approximating se-
quence {R,} on X such that

lim ||/ -2R,|| =1. (3)

n—+o«

We show that any separable Banach space with (UMAP) has an
approximating sequence satisfying (2) and (3).
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We now turn to a detailed discussion of our resuits. In Section 2 we
prove three lemmas which provide commuting approximating sequences.
In the case when {R,} is w*-convergent to a projection with w*-closed
kernel (Lemma I1.1) or in the case when the norm of the commutators
tend to zero (Lemma I1.2), slight perturbations of appropriate convex
combinations satisfy (2). If we simply know that the w*-closure of {R,}
contains a projection with w*-closed kemel, then we need perturbations
of operators from the convex semi-group generated by {R,} (Lemma
I1.3). In Section 3 we use the ball topology (see [6]) to show that the
assumptions of Lemma II.3 are satisfied by any approximating sequence
of contractions on a Banach space X not containing /,(N). An improve-
ment of ([2], Theorem 2.4) in the case X »[;(N) follows. Note that
the commuting approximating sequence obtained by the approach of
[2] does not necessarily consist of operators which are uniformly
close to the convex semi-group generated by a given approximating
sequence.

In Section 4 we use Lemma II.1 and techniques from [5] to show that
any separable space with (UMAP) has commuting (UMAP) (Theorem
IV.1). The crucial point is to show that the kernel of the limit projection
is w*-closed (see Claim I'V.3). Note that this point is simpler to show
when one assumes that X does not contain co(N) ([7], Prop. 2.8). A
corollary is a satisfactory structure theorem for separable spaces with
(UMAP) (Corollary IV.4). An Appendix, which concludes Section IV,
contains a simpler proof of Theorem IV.1 in the case of the complex
(UMAP) on a complex Banach space. This alternative approach relies on
the use of Hermitian operators and on a theorem of Sinclair [21]. In
Section V we exhibit a subspace J of the dual of a Banach space X not
containing /;(N) which plays an important role in dualization of ap-
proximating sequences.

We use classical notation, as can be found e.g. in [17). The closed unit
ball of a Banach space X is denoted By. We refer to [2] and references
therein for recent progress on the approximation properties. Our
reference for classical notions of Banach space theory is [17].
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II. Construction of commuting approximating sequences
We start with

Lemma II.1. Let X be a separable Banach space, with an approximating
sequence {R,} such that

Px** = w* — lim R}*x**

n— +oo

exists for all x** e X**, with P € L(X**) a projection with w*-closed
kernel. Then there exists a sequence {C,} of successive convex combina-
tions of {R,}, and a sequence {B,} of finite rank operators such that

lim [|[C, — B[} =0
and for all n #k,
B,B, = BB, = Binf(k,n)‘

Proof. We denote M = (Ker(P)), c X* Let Q = X*— X*/M be the
canonical quotient map, and

L,=QR*=X*— X*/M.
For any y* € (X*/M)*, we have
w*— lim L¥(y*)=w* — lim R}*Q*(y*)=0 (1)
n—o n~s+o

and, since R}*(X**) € X, (1) means that for all y* € (X*/M)*
w — lim L¥(y*) = 0. @

It follows from (2) and Lebesgue’s dominated convergence theorem (see
[12]) that

w— lim (L,)=0

n— -+

in the space K(X*, X*/M). Therefore there exist successive convex
combinations {D,} of {L,} such that lim || D[ = 0. In other words, there
exist successive convex combinations {U,} of {R,} such that

lim_[|QUE| =0. ©

We still have P =w* ~ lim (U}*), hence for all x* € M and x** ¢ X**

lim (x**, Ugx*) = (Px**, x*) = (x**, x*)

k>t
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and hence for all x* e M,
w— lim U¥(x*)=x* 4)
k—+®
By (4), M is separable and there exists a sequence {C,} of successive
convex combinations of {U,} such that for all x* e M
im [|Cox*—x*|=0 ()
+

and by (3), we still have
lim_JQCE =0. (©)

Since M* = Ker(P) is the kernel of a bounded projection, M is locally
complemented in X* ([13]), that is, there exists A € R such that for every
finite-dimensional subspace F of X*, there exists A: F— M with |[A]|<A
and L(x*)=x* for all x* e FNM. If follows from (6) and a proper
choice of a finite-dimensional space F, containing C*(X*) that there exist
operators V,, with V*=A,C}, such that

lim |C,-V,| =0 )
n— +oo
and
VHX* M (8)

for all n = 1. Clearly, {V,} is an approximating sequence and {V }} satisfies
(5). It then follows from (8) that for all n =1

lim |V,V, -V, =0= lim |V}VZ-VZ.
k—+ k—+

Now a perturbation lemma (see [22], Proof of Lemma 111.9.2, p. 315-316)
provides a subsequence {V,} of {V,} and a sequence {B,} of finite rank
operators such that

lim ||V, - Bl =0, 9
k— 4+

and for all n>k, B,B, =B, and B}B}= B}, thus B,B,= B,. The
lemma now follows from (7) and (9).

We observe now that ([2], Cor. 2.2) can be obtained through convex
combinations.

Lemma I1.2. Let X be a separable Banach space with an approximating
sequence {R,} such that

tim {sup IR, R} =0. (10)

n—s +w
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Then there exists a sequence {C,} of successive convex combinations of
{R,}, and a sequence {B,} of finite rank operators with

lim |G, — B,|| =0
and for all n #k
B,By = BB, = Bin!(k,n)-
Proof. Let 4L be a free ultrafilter on N. We let
Px** = w* — lim (R}*x**).
n—Y
We have
Pix** = w* — lim R**(Px**)

n—-U

=w* — lim R,‘,“'(w"' — lim R,‘}""x"‘)

n—U k—U

=w* — lim (w" — lim R,':“R,’f"‘x").
n—U k—U

It follows from (10) that
P%x** = w* — lim (w"‘ - lim R,‘;"R,‘,““x“).
n—% k—U
Since {R,} is an approximating sequence, we have

w* — lim RE*RE*x** = R3*x** 1)
k—

and it follows that P2x** = Px**. We claim that Ker(P) is w*-closed.
Indeed denote

&x = sup {[|[Ry, R.]ll; k =n}.
It follows from (11) that for any x** e X**

lim |[RY*RE*x** — Ry*x**| < ¢, |x**|.
k—

If x** € Ker(P) we have, since R** is w*-to-norm continuous, that
lim ||R¥*R*x**| =0
k—u

and thus

IRA*x**|| < g, [|x**]. (12)
Hence

Ker(P) N Bye. = {x** € Bx..; [R**x**(|<¢, foralln=1} (13)

since the reverse inclusion is clear, and (13) shows that Ker(P) N B y.. is
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w*-closed. Hence Ker(P) is w*-closed by the Banach-Dieudonné
theorem. We also observe that (13) shows that Ker(P) does not depend
upon the choice of 4. Let M < X* be such that Ker(P)=M*. For any
x* € M and any free ultrafilter 4, we have

lim (r*4, REx®) = (c*%, x%;
n—%u

hence for all x* e M,
w— lim R¥x*=zx* (14)

n—+w

Now we let again Q: X*— X*/M be the canonical quotient map, and
L,=QR?. Since Q*((X*/M)*)=M", it follows from (12) that for any
y* e (X"‘/M)",
lim [L3y*|=0. (15)
n— -+

Note that by (14), we have for any sequence {U,} of successive convex
combinations of {R,} and any x* € M that

w— lim UZlx*=x* (16)
k— 4o

We may now finish the proof along the lines of the proof of Lemma II.1,
substituting (15) and (16) to (2) and (4).

Our next lemma addresses the slightly more complicated situation
when there is a projection P with w*-closed kernel in the w*-closure of
an approximating sequence.

LemMa I1.3. Let X be a separable Banach space with an approximating
sequence {R,} such that for some ultrafilter 9,

Px** =w* — lim R}*x**
n—-%

defines a projection P € L(X**) with w*-closed kernel. Then there exists
an approximating sequence {C,} of convex combinations of the products
{R,R;; j > i =1}, and a sequence {B,} of finite rank operators such that

lim [|C, — B,|| =0
and for all n # k
BBy = BiB, = Biagx,ny
Proof. Letting as before M = (KerP),, we have for all x* e M

w— lim R}x* = x* an

n—u
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Since the R,s are finite rank operators, the space
Z =span{RXx*,x* e X*,n =1}

is separable, and so is M which is by (17) a subspace of Z. Note that if
Q = X*— X*/M is the canonical quotient map, we have for any x* € X*
and any x** € M* that

lim (x*, QREx*) = (PO*x**, x*) = 0;

hence for any x* € X*
w — lim QRXx*=0. (18)
n—Y
It now follows from (17), (18) and the separability of Z that there exists a

sequence {D,} of successive convex combinations of {R,} such that for all
x*elZ

lim dist(D}x*, M) =0, (19)
n—+w
and for all x* e M,
lim ||x*—D2Xx*|=0. (20)
n— +w

Clearly {D,} is still an approximating sequence. We now observe that if §
and T are operators such that ||Sx —x|| <¢ and ||[Tx — x| <€ for some
x € X and £ >0 then

1STx —x|| = [|S(Tx —x)+ (Sx — x)||
< (|IS]| +1)e.

Using this observation, we find that for any subsequence {U,} of {D,}, if
we let

Vi = UpUp sy
then {V,} is still an approximating sequence and {V}} still satisfies (20).
Since the D,s are finite rank operators, (19) shows that the subsequence
can be chosen in such a way that

Jim |QVE| = lim |QUE., ULl =0. @1)

It now follows from (20) (with the V}'s) that for any n =1

lim sup [[VEVZ-Vil<(@1+M)QV7] (22)
k—+o
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with M =sup {||V¥||: k = 1}, while on the other hand
lim WV, -V, =0 (23)
k—+®

It is easy to deduce from (21), (22) and (23) that there exists a
subsequence {W,} of {V,} such that

lim _(sup {I[We, Wallls k> n}) =0

We can now apply Lemma 11.2 to the sequence {W,}, and this provides
{C,} which satisfies the conclusion of Lemma I1.3.

Remarks 11.4. 1) The proof of Lemma II.2 shows that when an
approximating sequence {R,} satisfies

Tim_{sup (IERy, RAID} =0

then any of its w*-cluster points in L(X**) is a projection with w*-closed
kernel. This shows that finding such a projection is essentially a necessary
step in our constructions. For instance, if an approximating sequence {R,}
is w*-convergent (for the Frechet filter) in L(X**), then it satisfies the
conclusion of Lemma II.1 if and only if its w*-limit is a projection with
w*-closed kernel.

2) The projection P from the proof of Lemma II.2 depends in general
upon the ultrafilter 4. For instance, if {R,} are the partial sums associated
to the summing basis of co(N), and (e}) is the canonical basis of /;(N), we
have forn=k

Ra(ex) =ek —ens1.

Hence if P=w*— limq (R2*) and u = (u(k)) € I,(N), we have for all
k 3 1 n—

P(u)(k) = u(k) - &iﬂu(n).

III. Commuting approximation in spaces which do not contain /;(N)

The main result of this section is an improvement of ([2], Theorem 2.4)
in the special case when the space on which approximation is performed
fails to contain /;(N).

THeOREM III.1. Let X be a separable space not containing 1,(N), with
the metric approximation property. For any approximating sequence {T,}
of contractions, there exists an approximating sequence {C,} in the convex
semi-group & generated by the sequence {T,,} and a sequence {B,} of finite
rank operators such that:
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Q) i, 16:=B=0,
(ii) B‘B,=B.B3=Bmf(,|.k) for alln#k.

Proof. We denote by ¥* the closure of {T**;T € ¥} in L(X**)
equipped with the w*-operator topology, and

So={TE 9’"‘; TIX::IdX}'

Note that %, # & since {R,} is an approximating sequence. We equip %
with the order relation < defined by: S<T if ||Sx**| < Tx**| for all
x#i I3 X‘#'

It follows from w*-compactness that the set (%, <) is (downwards)
inductive. We denote by P a minimal element.

The set %, is a convex semi-group. Indeed convexity is clear, and to
check that (UV) € &, when U € &% and V € &%, we write

U=w*—lLim U¥*,
V=w*—-limV3*
and then
UV =w*—lim li;n (U, Vp)**

and (U,V,) € ¥ provided that U, e ¥and V; € &.

We now claim that P is a projection. Indeed since P is minimal and
IIS] =<1 for all S € %, we have ||SPx**| = ||[Px**| for all § € % and ali
x‘* € X‘t.

Applying this observation to

1 n
s,== (3 P
provides
"(SnPZ_SnP)x“" = "SHP(P*:“'l _x“)"
= |P(Px** —x**)]
= |P%x** — Px**|.

But since we have
1
SaP? = S,P =~ (P"** = P?),
we have [|[P2x** — Px**||<2n"! for all n =1, hence P?= P. Clearly, we
have [|P|| =1. We need the following crucial claim.

Claim II1.2. If X5 1,(N) and P=X**— X** is a projection with
[|P]l =1 and P(X**) < X, the space Ker(P) is w*-closed.
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Proof of Claim I11.2.

Recall that the ball topology by on a Banach space Y equipped with a
given norm, is the coarsest topology for which the closed balls are closed
(see [6]). If X  /;(N) and X € Y = X** then the restriction of by to the
bounded subsets of Y is Hausdorff ({6], Th. 9.3) when Y is equipped with
the norm induced by the bidual norm.

We let Y = P(X**). Let (x,) < By be a w*-convergent net in X**, and
put x** =w* —lim (x,). For any y € Y, we have

liminf x, ~ y|| = [x** - y|
= || Px** —y|
and thus
P(x**)=by —lim (x,).

Pick x** € Ker(P) with ||x**|| =1. There is a net (x,) in By, hence in
By, such that x** = w* — lim (x,) and by the above by — lim (x,) =0.

Conversely, if there is a net (x,) in By such that x** = w* — lim (x,,)
and 0= by - lim (x,), then we have

P(x**)=by —lim (x,)
and since by is Hausdorff it follows that P(x**) =0. Thus we have
Ker(P)N BY* =N {V*; Vs a b, neighbourhood of 0 in By}.

Thus Ker(P)N By.. is w*<closed, and Claim II1.2 follows by the
Banach-Dieudonné theorem.

To conclude the proof of Theorem III.1 we observe that since the
semi-group & is uniformly separable, we can find a sequence {R,} in &
such that

Px** =w*— lim R:""x“’

n—¥%

for some ultrafilter % and for all x** € X**. By Claim III.2 we may apply
Lemma I1.3 which concludes the proof.

The following corollary is a restatement of Theorem III.1 in isomorphic
terms.

Cororrary II1.3. Let X be a separable Banach space which does not
contain I,(N). Let S be a uniformly bounded convex semi-group of finite
rank operators such that Idy belongs to the closure of & in the weak
operator topology. Then there exist a sequence {S,} in &, and a sequence
{B,} of finite rank operators such that

(i) lm IS, - B,[|=0;
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(i) lim ||x-B.x|i=0forallxeX;
(iii) nB_,:;; = ByB, = Biagnx) for all n # k.
Proof. 1If || denotes the original norm we define
lxll =sup {ISx}; S e #}.

It follows from our assumptions that ||.]] is an equivalent norm on X.
Clearly ||S||=<1 for all S € ¥ Using the separability of X, we easily
construct an approximating sequence {7} in &. Now the corollary is an
immediate consequence of Theorem III.1.

We do not know whether Corollary II1.3 (or equivalently, Theorem
II1.1) holds true for an arbitrary separable Banach space.

IV. The unconditional metric approximation property

We recall that a separable Banach space X has the unconditional
metric approximation property (in short, (UMAP)) if there exists an
approximating sequence {R,} such that lim,_, .. ||/ —2R,|| =1. This
notion is defined and studied in [2]. The main result of this section, which
answers positively ([5], Questions 6 and 8), asserts in particular that as
soon as the (UMAP) holds, it can be achieved by commuting operators.

THEOREM IV.1. Let X be a separable Banach space, with an ap-
proximating sequence {R,} such that

lim |/ -2R,| =1
n—+w

Then there exists a sequence {C,} of successive convex combinations of
{R,}, and a sequence {B,} of finite rank operators such that:
(i) kliT |Ce = Be|l =0,

(i) B,By = BxB, = Biny,m) for all n % k.
In particular, every separable Banach space with (UMAP) has the
commuting (UMAP).

Proof. Let {R,} be as above. Then, by ([5], Th. 6.5 and Th. 7.5), for
any x** € X**,
Tx** =w*— lim RX*x**
A—s 40
exists, and T e L(X**) is a projection from X** onto the w*-sequential
closure Ba(X) of X in X**, such that |/ —2T| =1. To prove the
theorem, it suffices by Lemma I1.1 to check that Ker(T) is w*-closed.
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Claim IV.2. If X has (UMAP), and {x,} is a weakly null net in By, then
foranyxe X

lim (Jx + x, | = llx = xa[) =0.

Proof of Claim IV.2.
With the above notation, for any x € X and € >0 there is ky € N such
that

lx — Rexll <e/4
and
I —2R. | <1+e

Since {x,} is weakly null we have for a = a,

IR (xa)ll <e/4.
Hence for a = a,
lx — Ri(x —x)|| <&/2
and
lxa = (I = Ri)(xa — x)I < €/2.

By addition, it follows that for a = a,
l(x +x,) — (I — 2R )(x, — x)[| <&
and thus if a = a,
lx +xq]l < (T +¢€) |x —x, || +&

Claim IV.2 follows since € > 0 is arbitrary.
We now prove another crucial result.

Claim IV.3. If X has (UMAP), then
S = {x** € By..; |x** + x| = |x** — x| for all x € X}
is a w*-closed subset of X**.
Proof. Pick u** e §” *. There exists a net {u.} in By such that
utt=w*— lign (u,) 1)

and
o(x) = lim |x +u, | @

exists for all x e X and satisfies 7(x)= 7(—x). The local reflexivity
principle implies (see e.g. [9]) the existence of a net {vg} in By such that

u** =w* —lim (vg), 3)
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and forall x e X
lx + w**| =lim |lx + vg . 4)
B
By Claim IV.2 it suffices to show that for any x € X, § >0 and W a weak
neighbourhood of 0 in X, there exists + € W such that
[x +u**| = [lx +zll| <8 (5)

Pick such x, 6§ and W and let >0 and N =1 to be chosen later. By (3)
and (4), there is B, such that

llx +wi = llx+u**||<n (6)

for all weconvivg;B=Bo}. Let M=4N+1, and pick By, Bs,- ..,
Bum = Bo. Since 7(y) = 7(—y) for all y € X, there exists

ag = aO(ﬁl; BZ) s BM)
such that if @ = a, then for all ¢ € {—1, 1} (1 i< M) one has

| N L

It follows from (1), (3) and Claim IV.2 that there exist
BM = Bgl(Bl; BZ: LR} ﬁM—l)

<n.

and
a = al(Bl; BZ} crey BM—I)

such that if By BB‘}, and a = a,, then

1
X+— E vﬂ: (vﬂu ua) - &+ﬁ§ vﬂd_ﬁ(vﬁu—ua) <7"

Hence if By = B}, and a = sup {a, @}, we have

F+ 2 vﬁd (vﬂu+ua) - x+_ E vﬂ:_i(vﬁu+ua) <377

l-l

We now proceed to the iterative part of the proof.
By (1) and (3), the net
{ve, ., t Vp, , — Vg, — lUa}
is weakly null. Hence by Claim IV.2 there exist for j e {M —2, M — 1, M}
B} =B}(31, Bz,...,Bu-3)

and

az= a2(ﬁlr BZ) ceey ﬁN—3)
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such that if ﬁ, = B; and a = a, then

1
M & vﬁ'_ITI(vﬂ"+ u,)

1 M-3
- ”X + ;{ et Vg, — M (vﬂu-z + VB 1) +— (vﬂu + uﬂ)
Hence if  Bu—2=Bh_, Bum-12 By, Bu = sup {BY, BA},

a =sup {ay, a;, ay}, we have

‘“’ MZ”“'+_“

N‘ 2 vﬂl (vﬂu_z + vﬂy-,) + vﬂu - < 517.

We continue in this manner, this time using the fact that the net

{vﬂu—a + Vg s 7 VUsys ™ VBuoy + Vg, — ua}

is weakly null.
Using again Claim IV.2 we find that under suitable conditions on the
Bis, M—4<i<M)and a,

1 M u lM -5
+1\_41-E1v&+_ﬁ;“_ﬂx Mg: Vg, — M(”B~-4+"Bu,)

1
+ A—{ (vﬁu—z + Uﬁu—x) - ;!— Vg, — ﬁ_{ Uaf| < 717'

After (2N —1) iterations of that procedure, we obtain D,, Dy(B;-,

Bj—l’ RS ﬁl)(2€]$M), all greatcr than ﬁOy and A(ﬁl: ﬁl’ rety ﬂM)
such that if 8, Dy(1<j=< M) and a = A, then

H]" sz"‘

1 [ v
== - — ——Bu
¥4 M [120 ( vﬁqﬂ vﬁqoz + vﬂw: + vﬁqu)] M .

—Hx+z—ﬁ|”<(4N+3)n,

where

By (6), we have

”.x MZ vﬂ+—” lx + u**|)

i=1

<n+e
"IM-
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Hence if the B;s and a satisfy the above conditions, we have

Uy
+ k|l + — —
[lx + u™**| I‘x z M”

We now choose N and 7. There exists A>0 and W' a weak neighbour-
hood of 0 in X such that

<(4N +4)n +$. 0

(W' +ABx)cW.
We choose N such that M =4N + 1 satisfies
M = sup {2/8, 2/A}
and then n > 0 such that
(AN+4)n+1/M < 6. 8

Since B;, then B,, then B,,..., then B, can be chosen arbitrarily large
such that there exists a for which (7) holds, (3) shows that we can ensure
that

1 N-1 ,
H [IEO (_quﬂ - vBJj-ﬂ + vﬁdh) + qu+A):| € W

and then
t= (z - l—s) eW
By (7) and (8), ¢ satisfies (5), and this concludes the proof of Claim IV.3.

To conclude the proof of Theorem IV.1 it suffices to check that Ker(T)
is w*-closed, or by the Banach-Dieudonné theorem, that

K =Ker(T)N By«

if w*-closed. The set K* is convex and balanced and b.y Claim IV.3, it is
contained in S. If K is not w*-closed, we pick x** K" \K, and we write
x** =) +s, with b € Ba(X)\{0} and s € K. Since b =x** -5, we have
b/2) e K" and hence b e S. But we have Ba(X)NS ={0} by a result
from [18]. We can also observe that K, (b) =1 ([S5], Lemma 8.1) and thus
Ker(b) is not a norming subspace of X* ([4], Lemma 6.3), while
Ker(y**) is norming for all y** € S.

Let us mention that if we assume that X 3 /;(N) in Theorem IV.1 then
Ker(T) = {0}, while if we assume that X 3 cy(N), the proof that Ker(T) is
w*-closed can be simplified (see [7], Prop. 2.8).

Our next result provides a complete description of spaces with
(UMAP).
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CoRrROLLARY IV.4. Let X be a separable Banach space. Then:

1) X has (UMAP) if and only if for any € >0, X is isometric to a
1-complemented subspace of a space V, with a (1+ €)-unconditional
F.D.D.

2) The unconditional F.D.D. in 1) can be made shrinking if and only if
X does not contain 1,(N).

3) The unconditional F.D.D. in 1) can be made boundedly complete if
and only if X does not contain co(N).

Proof. 1t is clear that 1-complemented subspaces of spaces with
(UMAP) have (UMAP). The “if”’ implications of Corollary IV.4 follow
from this observation. We now show the reverse implications.

Pick > 0. if X has (UMAP), there exists ([2], Th. 3.8) a sequence {A,}
of finite rank operators such that

k
Sg = 2 A
i=1

is an approximziting sequence and

sup {

To prove 1), it suffices to apply ([19]): the space V, is defined to be the
completion of (£ ® A,(X)) equipped with the norm

N

EE,A,H;NBI, e,=:t1}<1+e.

i=1

(@)l = sup {12 €nanllx; €4 = £1}.

The map Q((a,)) =X a, is a quotient map from V, onto X, whose right
inverse is given by

o(x)=(Ax(x)) e V..

The assertion 2) is in ([5], Th. 9.3). We recall a simple proof, based on a
well-known interpolation argument (see [16]). We denote by & the group
of isomorphisms J of V, = (2 @ E,) defined by J(T e,) = (T €,¢,), where
&, € {—1, 1}N is a given choice of signs. We call

Q=VisX*
the canonical quotient map, and we define a new norm of V' by
llo* i = sup {1 QJv* Ilx=; J € &) ©
We denote V, the completion of (X' @ E,) with respect to the predual
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norm |||.||l,. It is easily seen that

%l = lxlll (10)

for all x € S. Since the F.D.D. {E,} is (1 + €)-unconditional on V,, we also
have

livlle=Q+e) vl 11)

for allv e ' ® E,). It follows from (10) and (11) that X is isomorphic to
a complemented subspace of V,. It follows from (9) that V, has a
1-unconditional F.D.D. Since X % /,(N), X* does not contain co(N). It
follows that V* does not contain co(N). Indeed if not, there exists a
sequence of blocks (w*) € V* with

lwall =1 (12)
and
N
M=sup”Ee,w,‘ i N=1, e,=:t:1}<oo. 13)
=1
By (12), there exists J, € & such that
QT whlx-=4. (14)

If x} = QJ,w}, for any choice of signs n, = +1, there exists since (w}) is a
sequence of blocks £, = +1 such that

Zl mxy = 2’ Wi

and then it follows from (13) that

sup {

But (14) and (15) would imply that X* o co(N), contradicting X 3 [;(N).
This shows 2).

To prove 3), we observe that by the proof of Theorem IV.1 when X
has (UMAP) and X % co(N), we have

N
> mx?‘“ N1, =21 <M (15)
i=1 X"

X** =X, X,

with X, = M* a w*-closed subspace. Moreover if {R,} is an approximat-
ing sequence on X with lim ||/ — 2R, || = 1, we have for all x** ¢ X**

w*— lim R¥**x#* = Tx** (16)

n—s+o
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with 7 = X**— X the projection of kernel X,. It follows from (16) that
forallx*e M

w— lim R¥x*=x*
n—s +o

We may now follow the lines of the proof of Lemma II.1 to obtain finite
rank operators V, with V¥(X*)= M and convex combinations {C,} of
{R,} such that

lim |}V,—-C,| =0 17
n—+w
and for all x* e M
lim |x*—V}x*| =0. (18)
n—+oo

Clearly, (17) and (18) show that predual M of X has (UMAP). Obviously
M 2 I;,(N) since M* = X is separable. Hence 2) applies to M, and then 3)
follows by dualization.

Remarks IV.5. 1t is instructive to compare Corollary IV.4.3) with some
negative results. There exist: (a) a separable Banach lattice U with the
Radon-Nikodym property such that if U** =U® S is the decomposition
of U** in orthogonal bands, S is not w*-closed [23], although U is the
dual of a Banach lattice [24]. (b) A translation invariant subspace X of
L'(T) which is isometric to a dual space, and such that X** = X®, X, but
X, is not w*-closed [8]. (c) A subspace V of a space with an unconditional
basis, such that V has (PCP) but not (RNP). In particular, V % ¢co(N) but
V does not embed into a space with boundedly complete unconditional
F.D.D. [10].

All these spaces are failing (UMAP). We refer to [7] for (UMAP) in
certain subspaces of L', and more relevant examples.

We recall that a 1-complemented subspace of a space with a 1-
unconditional basis has, in the complex case, a 1-unconditional basis
([14]; see [4], [20]). It is not so in the real case [15]. This yields to the idea
that Theorem IV.1 should have a simpler proof in the complex case. It is
indeed so, as shown in the Appendix below.

Appendix. An alternative proof of Theorem IV.1 in the complex case.

We recall that a complex Banach space X has complex (UMAP) if
there exists an approximating sequence {R,} on X such that lim ||/ — (1 +
AR, =1 for any A eC with |A|=1 (see [5], §8). Using Hermitian
operators, we can give a simpler proof of “(UMAP) implies (UCMAP)”
in the complex case.
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If X has C-UMAP, by ([5], Lemma 8.1) there exists a sequence {A,} of
finite rank operators such that

+oo
x=2 Ax

n=1

for all x € X and

sup {

As in the proof of Theorem IV.1 we have w* — 3 AX* = P pointwise on
X** with P the Hermitian projection from X** onto Ba(X). If
x|l = lx*|| =x*(x) =1, we have

IEIA,A,V; A el Al=1, n21}<1+£. 6))

+o

1= 2 x*(Ax) @

n=1

and by (1)

+a0

> kA <1+e 3)

n=1

Given 8§ >0, we can find £ > 0 such that (2) and (3) imply

+o

2 [Im(x*(Ax)) <.

n=1
Hence if S, = i Ap, Hm(x*(S,x))| < 6.
k=]

It follows that there exists an approximating sequence {R,} such that
RiR,=R,if k>n, lim|I-2R,|| =1, and lim (v,) =0, with

v, = sup {IIm(x*(R,x))}; lx*|| = x|l = x*(x) =1}.
For all 1 € R, we have (see [1])

llexp (itR,)|| <exp (v, |tl). 4)
If Kk >n, we have
[Rx, Ra)* = R,(I = R)R,(I — R) =0 (5)

since (/ — R,)R, =0. We now use an ultraproduct argument. Let U be a
free ultrafilter on N, let § and R be the elements provided by {R,} and a
subsequence in the ultrapower algebra

L(X)=(L(X))a
By (4), R and $, and thus i[R, §] are Hermitian. By (5), we have
[R, 8} =0.



198 G. GODEFROY AND N. J. KALTON

Hence we have

G[R,5])*=0

and then [21] allows us to conclude that [R, §] = 0; which implies since 4
is arbitrary that

nlirfm {sup{ll[R«, R,]ll; k=n}}=0,

and then Lemma II.2 concludes the proof.

V. Minimal projections and a distinguished subspace of certain dual
spaces

For a given Banach space X, we set
Py ={Y < X**, Y =Ker(P), with P2=P, ||P|| =1, P(X**)2 X}.
The following geometrical statement is related to our results.

ProposiTION V.1. Let X be a Banach space not containing 1,(N). Then
Py consists of w*-closed subspaces of X**, and Py has a largest element
L.

Proof. Claim III.2 asserts precisely that %P, consists of w*-closed
subspace. We denote

F={T e LX**); IT|| =1, Tix =ldy}

The proof of Theorem III.1 shows that & is inductive when equipped
with the order: S < T if | Sx**| < || Tx**| for all x** € X**, and that the
non-empty set 4 of minimal elements of & consists of projections.

We pick P and Q two projections in 4. By minimality, we have

§QPx**| = [Px**||, | PQx**|| = [|Qx**|

for all x** e X**. Hence (QP) and (PQ) belong to 4 and are
projections. Moreover

Ker(QP) = Ker(P),
hence

(I - QP)(X**) = Ker(P).
Thus
PQP=P

and therefore

P(X**)=PQ(X**).

Hence P and PQ are two projections in 4 with the same range. Observe
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now that by the proof of Claim II1.2 we have for any projection R in &
with R(X**) =Y that

Bx.-NKer(R)={V?*; V by—neighbourhood 0 in By}

and in particular R is determined by its range. Since P(X**) = PQ(X**),
it follows that P = PQ, hence Ker(Q) < Ker(P). Since P and Q were
arbitrary elements of 4, we conclude that L = Ker(P) does not depend
upon the choice of P € 4

If we pick now Y = Ker(Q) € Py, we find P € M with P <, and then
for every x** € X'**

I Px**|} < || Qx**||

and thus Ker(Q) =Y < L = Ker(P).

We denote J the subspace of X* such that J* = L. The space J is
closely related to the dualization of approximating sequences. For
instance, one has the following proposition.

ProrosiTiON V.2. a) If X is separable with the metric approximation
property and X does not contain 1,(N), then for every approximating
sequence {T,} of contractions, there exists an approximating sequence {C}
in the convex semi-group & generated by {T,} such that we have
klim |x* — Ctx*|| =0 for all x* € J. In particular ] is separable.

—» 4@

b) If X* is separable and has the approximation property, there exists
an approximating sequence {E,} on X with |E || <1 and E}(X*)</J for
all k=1, and

lim ||x* - E¥x*|=0
k— 4+
for all x* e J.

Note that b) means that, at least when X* is separable with A.P., the

space J is the largest space for which a) holds true.

Proof. a) It follows from Theorem III.1 that there is an approximating
sequence {C,} in & such that

Jm_sup{[[[C, Ci]ll; n =k} =0.

By the proof of Lemma II.2 we have
w— lim Cix*=x* 1)

n—+w
For all x* € M, where M is a subspace of X* such that M* is the kernel
of a contractive projection. By Proposition 1, we have M*cL=J*
hence J = M. Since (1) implies that M is separable, we can conclude the
proof of a) by a convex combination argument.
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b) If X* is separable with A.P. then it has M.A.P. and thus X has
M.A.P. (see [17], § 1.e). Moreover we have

KXy*=X**Q®X*
and
K(X)**=L(X**). )

We denote P € L(X**) a projection with ||P|| =1 and P(X**)2 X such
that Ker(P) = L = J*. It follows from (2) that there exists an approximat-
ing sequence {R,} and a ultrafilter 4 such that
Px** = w* — lim R¥*x**
n—%

for all x** € X** We denote by Q = X*— X*/J the canonical quotient
map. Reproducing the proof of Lemma II.3 with M =J, we construct an
approximating sequence {V,} of contractions such that

lim |QVZ2)=0 3

n— +eo

and for all x* e J
im ||Vix*—x*|=0.
n—+w
Now since J* is the kernel of a bounded projection, J is locally
complemented in X*. It then follows from (3) that there exists a
sequence {E,} of finite rank operators such that

lim |E,-V,|=0
n—+®

and E}(X*) cJ. This shows b).

Remarks V.3. 1) We do not know whether J is always a strict subspace
of X* when X non containing /,(N) is separable but X* is not. In fact, we
do not know whether J, which clearly is a norming subspace of X*,
always coincide with the minimal norming subspace Ny of X* for all
spaces X not containing I,(N) (see [6], Th. 5.6 for the existence of the
space Ny).

2) In general norm-one projections on X** with kernel J* are not
unique. For instance, take X = Z** a non-reflexive bidual not containing
Ii(N). Then L=(Z*)*<Z*** and J=2Z* But if iy Z®—>2Z**?
denotes the canonical injection, the canonical projection iit: Z“—
i,(Z**) and the projection ig*i¥: ZW— i3%(Z**) = iy(Z)** are distinct
contractive projections with kernel i;(Z*)*.

3) If X has (UMAP), then by ([5], Lemma 6.3 and Lemma 8.1)
Ker(x**) is not norming if x** € Ba(X)\{0}. If moreover X does not
contain /;(N), it follows that Ny =J = X* It can be shown along the
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same lines that the same conclusion holds when X is an order-continuous
Banach lattice not containing /;(N).
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