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LET A be a subset of a topological vector space X, and let Y be another
topological vector space. We shall say that A can be linearly embedded in
Y if there is a linear map T:lin(A)— Y (not necessarily continuous)
whose restriction to A is a homeomorphism. Until recently it was
unknown whether every compact convex subset of a topological vector
space could be linearly embedded in a locally convex space. However, J.
Roberts [6] has now constructed a non-empty compact convex subset of
L,=L,(0,1) (0<p<1) which has no extreme points and hence cannot
be linearly embedded in a locally convex space (see [4] for some results in
the other direction).

In this note we consider a similar problem for p-convex sets where
0<p<1 (see the definition below). In view of the example of Roberts it
is perhaps somewhat surprising that we are able to show that a compact
p-convex set can be linearly embedded in a locally p-convex topological
vector space, and always has p-extreme points. We are also able to prove
an appropriate version of Choquet’s theorem which for p<1 takes a
rather trivial form.

Throughout the paper we shall assume that all vector spaces are over
the real field and that all topologies are Hausdorff. A subset C of a vector
space is p-convex if whenever x, ye C and a, be R with 0<a,b<1 and
a?+bP=1 then ax+byeC. C is absolutely p-convex if it is p-convex
and x € C implies —x € C. A p-extreme point of a set C is any point x € C
such that whenever x=ay,+by, with y,, y,eC, 0<gq, b<1 and
a’+b” =1 then x =y, or x=y,; the set of p-extreme points of C is
denoted by 9,C. If C is any set we denote by T »(C) and A,(C) the
smallest p-convex and absolutely p-convex sets containing C. Note that in
a topological vector space, if p<1, a closed p-convex set always contains
0.

Let K be a compact Hausdorfl topological space, and let C(K) be the
Banach space of all real-valued continuous functions on K. Let #(K)=
C(K)* be the dual of C(K), i.e. the space of all regular Borel measures
on K, with the usual dual norm denoted by ||;; we shall denote by w*
the weak*-topology on #(K) induced by C(K). For x € K we denote by
8, or 8(x)eM(K) the unit mass concentrated at x; let §(K)=

{6(x):xe K}.
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Now suppose 0<p <1, and let #,(K) be the subspace of #(K) of all n
of the form

p=2 a,5(x,)
n=1

where (x,:n e N) is a sequence of distinct points K and

lul, = X ladlr <.
n=1

Let U, ={p:||ul, <1} and U; ={n=0:||ul, <1}. Observe that || |, is a
p-norm on #,(K) (see [7] p. 3).

We shall define the topology 6, on (,(K) to be the finest vector
topology on #,(K) which agrees with the w*-topology on each set
nU,(n e N). We can give an explicit basic set of neighbourhoods for 6,
(see Wiweger [8]), namely sets of the form

U X kU,NW,

n=1f=1
where {W, :k € N} is a sequence of w*-neighbourhoods of 0. Since each
U, is p-convex and the w*-topology is locally convex, we conclude:

Lemma 1. 6, is a locally p-convex topology on A, (K).

In the next lemma we combine two results which have essentially the
same proof.

LemMa 2. (i) U,and U, are 6,-compact.

(i) Suppose T:M,(K)— X is a linear map into a topological vector
space satisfying (a) T is continuous for the weak*-topology on 8(K) and
(b) whenever p, € U, and ||, |;— O then Tu, — 0; then T is continuous
for the topology 6,.

Proof. The operator T in (ii) will be continuous if its restriction to U, is
continuous for the w*-topology. Using this and the observation that the
unit ball of #(K) is w*-compact and contains U, we see that if either (i)
or (ii) is false we can construct a net {u,} in U, such that p, — u w* and
either (1) n¢ U, or (2) p € U, and there is a neighbourhood V of 0 in X
such that T(u-u,)¢ V for all a.

In either case, by replacing p, by a subnet, we may assume that when
each u, is written in the form

Ba= 2, Gond (X
n=1

where (x,.ne€N) is a sequence of distinct points of K and |a,,|=
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|@yn+1] (n € N) then the limits lim a, , (= a,, say) and lim x, , (= x,) exist.

To see this consider the net (a,,; x, ) in the compéct space [—1, 1]N x
KN,
Now

n

n Iaoz,nlpS Z Iaa,klpgl
k=1

so that |a,,|<n""P and hence

lta= 2 Baidxadli= Y. laud
k=1

n+1

S+ Y Jagp

n+1
<(n+1)\"WP,

By the lower-semi-continuity of ||-||, with respect to w* we have

n

lu— Y @bl <(n+1)-»
k=1

and hence 3a;8(x,)= p in ||-|l;. However we clearly have 3 |a,[? <1 and
hence (after combining terms where x, =x) it is clear that pe U,
contradicting (1).

For (2) pick a symmetric neighbourhood W of 0 in X such that
W+ W+ Wc V. Then there exists ne€ N such that [ul, <1 and |ul,<
(n+1)*%® implies T € W. Since T is continuous for the w*-topology
on §(K) we may choose « such that

T(i A 1 0(X o) — i ak6(xk))e w.
k=1 k=1

Then
Tt — 1) = T(i aa,kaua,k)) ¥ T(Z Gas8(Kar)— Z ak(xk))
- T(Z as(s)

eW+W+WcV

contradicting (2). This completes the proof.
We remark that it is now clear that 6, is the finest topology agreeing
with the w*-topology on U, (by a result of Waelbroeck [7] p. 48).




304 N.J. KALON

LemMA 3. Let X be a topological vector space and suppose x(t)€ X for
O0<t=<1. Suppose that the set A,(A) is relatively compact where

A={(t—s)"Y(x(t)—x(s)):0<s<t=<1}.
Then x(t)=x(0)for 0st<1.

Proof. Let E be the space of real functions on [0, 1] of the form
= z CiXi *)
i=1

where x; ... X. are characteristic functions of disjoint intervals. We may
define a linear map T:E — X so that

Tx s,y = Txrs, = Tx(s,1= T (5,0 = %(8) — x(5).
If ¢ € E is given by (*), and
1

j ()P dt<1

0
then

To = i ¢t — Si)l/p[(ti -5;) _(Up)(x(ti) —x(s:))]

where 5; <t are the endpoints of the interval whose characteristic func-
tion is ;.
As

J' I‘P(t)lp dt= i ,Cilp(ti—si)
i=1

we have ToeA,(A) and so T extends uniquely to a compact operator
T:L,— X. Hence T =0, by the results of [5] and so x(1)=x(0), 0=<t=<1.

LeEmMaA 4. Let K be a compact subset of a topological vector space X and
suppose A,(K) is relatively compact. Then the map T:(#,(K), 6,) = X

defined by
1§ as)=F ax,
n=1

n=1

is continuous. (Note that the series necessarily converges since A,(K) is
bounded).

Proof. We use Lemma 2(ii). Clearly (a) is satisfied by T. To prove (b)
suppose the contrary that there is a sequence p,, € U, such that ||u,[, <1
and ||w,.[l; = 0, but that for some neighbourhood V of 0 in X we have
Tw,.¢ V.
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Let
Z @ 1,8 (X )

where (x,,,: n € N) is a sequence of distinct points of K. Define y,,(t), 0=
t=<1 as follows:

ym(t)=0, O$t<|am,llp
k k k+1
=) GrXmms 2 |GmnP SE< Y |l
n=1 n=1 n=1
=Y Gptem L | P <t<1
n=1 n=1

We shall show that if 1=¢>s=0 and t—s=2|u,]; then
(t—s)" Py, (8)— ym(s))e (3)"/?’A,(K). This will be trivially true if either

t<|am1f’ or s= Z |a,..f°. Hence we assume t=|a,° and s<

n=1

Y. |@p,./f. Then
=1

n

k

VD= Y ()= Y, Gy nXomn

n=[+1

where 0<]/<® and 1<k =<, and

k
t=5= 2, |anl?

n=1+2
k
= D L P
n=[+1
k
= Z lmn (t_S)
n=[+1
Hence
k
=523 ) |amal
n=Il+1
and so

K

(=5 YOy (D= V() = D Gt ) P

n=l+1

€ AA, (K)
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where

k
AP =(t=5)"1 ), lanalP<3.
+1
Now considering (y,, : m € N) as a sequence in the compact space of all
A, (K)-valued functions on [0, 1] with pointwise convergence we may find
a cluster point y(). Then since [|,,[l; > 0 we will have

(t=5)"0P(y(1) - y(s)) € Q)P A, (K)

whenever 0<s<t<1. Hence by the preceding lemma, y(t)=y(0)=0 for
all . However y(1) is a cluster point of the sequence Tu,, and Tp, ¢ V;
thus we have arrived at a contradiction.

TueoreM 1. Let K be a compact p-convex subset (0<p<1) of a
topological vector space X. Then K can be linearly embedded in a locally
p-convex topological vector space.

Proof. Clearly A,(K)={ax—by:0=<a, b< 1, aP+bP=<1, x,yeK} is
compact and hence we may construct the continuous operator
T:(M,(K), ,)— X as in Lemma 4. Let N=T"1(0) and consider the
quotient space J,(K)/N with quotient 6,-topology, “which is locally
p-convex. Then there is an induced injective map T: M, (K)/IN— X.
Restricted to q(8(K)) (where q: ﬁttp(K) — M,(K)/N is the quotient map), T
is a homeomorphism onto K; T~ is the required embedding.

In view of Theorem 1, we could appeal to the results of Fuchssteiner
(1], [2) to demonstrate the existence of p-extreme points, and an
analogue of the Krein-Milman theorem. In fact we may go further and
establish a version of Choquet’s theorem (improving Theorem 2 of [3]).

TueoreM 2. Let C be a compact p-convex subset (0 <p <1) of a topologi-
cal vector space X and let K be a closed subset of C such that C is the
closure of T',(K). Then

(1) 8,C<K.

(2) If x € C there is a sequence of distinct points x, € 3,C and a, = 0 with
Y af=1 such thatx= ), a,x,.

n=1
Proof. Construct as in Lemma 4 the map T:,(K)— X. Then T(U;)
is a compact p-convex set containing K, and is clearly the smallest such.
Hence T(U,)=C. If x€9,C then

X=Y, Qs

where x, € K and 2af=<1. Since it is p-extreme, and using the fact that
0e C we see that this representation must be trivial, i.e. x€ K.

For (2) consider the map T as in (1) but in the case K=C. For
xeC, the set T {x}NU;} is w*-compact and hence there exists
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ve T {x}N U, such that »(C)=< u(C) whenever pe T"{x}N U;. Let
v=2, b.5(y,)

where the y, are distinct and each b,# 0. Then if some Y€ 3,C we have
Yk = €121+ €32, where z,,2,€C, 0<cy, ¢, <1 and ¢+ cE=1. Consider

v'= Z b.8(yn) + byc,8(y,) + bic,8(y,)

n#k

Then v'€ U; N T '{x} but

V(C)= ), b,+be(c,+¢)<w(C)

n#*k
and we have a contradiction.
Now we have 2b}<1; if Zb%=1 we are home. Suppose 0€9,C; then
by the minimality of »(C), 0¢{y,:neN}. Hence if 3b2<1, x may be
represented in the required form:

o0 (1/p)
x= Zb,,yn+<1—z b,‘:) (0)
n=1

Next suppose 0¢9,C; then 0=c,z,+c,z, where z, % z,€C and 0<
€1, €;<1 and c§+cE=1. By the preceding argument there exist non-zero
measures vy, v,€ U such that »,(C\9,C) = v,(C\3,C)=0 and Tv,=z,,
Tv,=z,. Then T(c,v,+c,»,)=0, and hence for any A =0,

T(V + /\(61 1 4] + C2V2)) = X.

Then A — [[v +A(c; v, + ¢,v,)||, is continuous in A and tends to infinity as
A — o, Hence for suitable A >0,

IIV + A.(CIV1+ C2V2)"p =1.
Letting
v +/\(C1V1+C2V2) = Z a, 6(xn)

with the x, distinct, we are home.
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