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1. Introduction

Ix this paper, we are concerned with Banach algebras which contain
elements whose norm is the same as the spectral radius. These elements
we shall call radial. We say that a Banach algebra is radial if every
closed right ideal contains a radial element. This definition includes all
B* algebras, but more significantly the operator ideals of Pietsch [see
e.g. (12)] and others. In fact, we show that operator algebras are really
the canonical examples in that this gives an abstract characterization of
them.

The theory has a geometric flavour similar to numerical ranges (6);
in fact, Sinclair (15) has proved that hermitian elements are radial. But
it is more closely related to the work of Bonsall and Duncan in (4) and
(5) on dual representations. We shall need a stronger notion of Banach
space pair in duality, and this is developed in § 2. The representation of
these algebras takes place on minimal ideals, and in § 3 we give condi-
tions under which radial algebras have socle. The natural class of
algebras for this is the class of weakly compact algebras, which includes
the compact algebras of Alexander in (1) and all algebras that are
reflexive Banach spaces. In §4, we prove the main representation
theorem for radial algebras and give some applications. Amongst these
we give the characterization of operator algebras on a dual pair, and
also an application to the problem of when norm-decreasing isomor-
phisms of Banach algebras are isometries. This problem has been con-
sidered by Oshobi in (11), and by Bonsall in (3) since it is essentially the
problem of which Banach algebras have minimal norm. Finally, in § 5,
we show that the radial property characterizes H*-algebras amongst
Hilbert algebras, and we give some other consequences for *-algebras.

2. Basic definitions

Let 4 be a complex Banach algebra. We denote by p(a) the spectral
radius of an element a € 4; thus p(a) = lim,_,, [a™]"".

Definition 2.1. a is radial if |a]| = p(a).
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Definition 2.2. A is radial (co-radial) if every non-trivial closed right-
ideal (left-ideal) contains a non-zero radial element.

There are many examples of radial Banach algebras. It is obvious, for
example, that every B*-algebra is radial and co-radial; a B*-algebra is
co-radial, but not necessarily radial. However, the examples which
concern us in this section are generalizations of the operator ideals [see
(12), (9)]. These examples will be discussed in the remainder of the

section.
Let (X, Y) be a pair of Banach spaces in normed duality [(14) 62],

such that for any z, y

<z, 90| < [=] - ]

(Thus, in the definition of Rickart we shall always assume f = 1.) We
shall say that <X, Y> is strictly norming if given x € X there exists
ye Y with |y| = 1 and

@ 9> = |=].

We denote by B<(X, Y [see (4) 82] the space of all bounded oper-
ators 7' on X which possess adjoints 7 on Y such that

Tz, y> =Lz, T'"y>xeX,yel.

As shown by Bonsall and Duncan (4) Proposition 7, B(X, Y} is a
Banach algebra under the norm

I7)|] = max(| 7, |
If (X, Y is strictly norming and || =1
| [Tz = Tz, y)
for some y € ¥ with |y] = 1; and so
|72 = <@ T7y>
<|79] <[7"]-

).

Thus | 7] <||T"
izl = 12l

Forany T € B(X, Y, we define v(T') to be the infimum of Z|zy|| | ¥x
over all sequences (z,) in X and (y,) in Y such that

and B{X, Y) is a Banach algebra under the norm

Tz = Zl (%, Yn)Zn (x € X).
. n=

(If there is no such representation, then v(T') = co.) It can be shown by
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direct calculation that v(ST) <v(S)v(T) for S,T e B(X,Y). If
N{(X, Y denotes the spaces of all T' such that v(1") < co,then N{(X, ¥
can be shown to be a Banach space. For suppose Ty € N(X, ¥) and
Zv(Ty) < oo. Suppose

o8}

Trx = 21 &, Yk )ZTak (x € X),

n=

where Y u|| ynk| [|2n] < 2v(Tk).
Then let

Ty =

18

Z {x, Yk yTur (x € X).
1 n=1

Since Yk Yom |@nk| |yns] < 00, T is well-defined; T'e B(X, ¥) since
its adjoint

k

[ee]

[eo]
Ty =3 Y {Znk, Y Ynx (YY)
k=1 n=1

is also well defined. It is easy to see that T'e N<(X, Y ) and that X7
converges to 7' in the norm v.

Thus N{X, Y is a Banach algebra under the norm v, which we may
call the nuclear algebra on <X, Y). Clearly v(T)>|[|T||| for T e
NLX, Y.

We denote by ¥ ® x the operator on X given by

(¥ ® 2)(z) = <z yo%

and z ® y is the corresponding operator on Y.

Lemma 2.3. If (X, Y) s strictly norming, then for any x e X and
ye?,|lly ® ||| = vy ® 2) = |y] ||

Proof. Clearly vy ® ) <[y|.||. Now choose y;1 € Y with |y
1 and <z, 91> = [z|. Then |(y ® @)'y1 | = (@ ® y)y| = <@, y1)]y] =
|=] | 7], so that |||y ® ||| > [4]. ||

Definition 2.4. An operator algebra on a strictly norming dual pair
(X, Y) is a subalgebra 4 of B{(X, Y ), containing N{(X, Y equipped
with a norm |-| such that (4, |-|) is a Banach algebra and for 7' € 4,
lizlfl <17] <)

The most commonly arising operator algebras are the opérator ideals.
Take Y = X*; then by the Habhn-Banach theorem (X, X*) is a strictly
norming dual pair. Then the algebra N<{(X, X*) is the algebra N(X) of
nuclear operators on X; other examples of operator ideals are the
algebras of absolutely p-summing operators 4,(X) (1 <p < o0) and of
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compact operators K(X) [see (9) and (12)]. We remark that (X*, X is
only strictly norming if X is reflexive [see (13)].

THEOREM 2.5. An operator algebra A on a strictly norming dual pair
(X, Y)isradial. A is co-radial if and only if <Y, X is strictly norming.

Proof. Suppose R is a non-trivial closed right-ideal in 4 and 7' e B
with T' # 0. Choose zg € X with Txo # 0 and yo € ¥ such that | yo| =

1 and
{Txo,y0y = | T

Then T'.(yo ® x¢) € B, i.e. yo ® Txo € R. Then
(o @ Tx0)2 = | Txo|(yo ® To)

so that p(yo ® Txo) = |Txo| = |Txo|| [[yo]| = |yo ® T2e| by Lemma

2.3.
Suppose now 4 is co-radial and y € Y. Let L be the left-ideal in 4 of

all operators y ® #, ¢ € X. Then since |y @ z| = ||y| ||, L is closed
and contains a radial element y @ o of norm | y||. Then p(y ® zo) =
[<zo, y>| = ||y] and hence if 2, = |y||<zo, y>~lxo, then {z1,y)> =
|| while faa] = 1.

As pointed out above the usual examples of operator algebras are
modelled on <X, X*}. In the remainder of this section we give some
conditions enabling us to deduce that (X, ¥) is isometrically iso-
morphic to (X, X*).

If (X, Y) are in normed duality then there is a natural map J:
y — 7 from Y into X* given by

g(x) = <=, y>-

J is norm decreasing and one-one. Suppose U is the unit ball of ¥ and
V the unit ball of X*; then U = J(U) = V.

LemMa 2.6, If (X, Y is strictly norming, U is weak*-dense in V.

Proof. We use the theorem of bipolars. The weak*-closure of U is
U00, If » € U0 then ||z <1 by the strictly norming condition. Hence

goo 5 7.

Lemma 2.7. If U is norm dense in V, then J is an isometry of ¥ onto
X*,

Proof. If U is norm dense in V, J is almost open (or nearly open)

and therefore open and hence an isomorphism. Then U is closed and
U = V,ie. J is an isometry.
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Lemma 2.8. Let (X, Y be a dual pair and suppose {x,} is a bounded
sequence in X such that {xn,y) —<x,y) for all y e Y. Then the absol-
utely convex hull of {x,: n € N}is o(X, ¥)-relatively compact.

Proof. Let ¢ be the Banach space of convergent sequences; the dual
space of ¢ may be identified with the space I; of absolutely converging
series (ay: n > 0) under the identification

{a, ) = aplim B+ Z o Bs.

N~

Define S: Y —c by Sy = {{zn,y>}. Then 8 possesses an adjoint
S’: l; —»X defined by

[0 0]
S'(a) = aox+ Y, oy,
i=1

where the series converges in X since supl|x,| < co. 8" is continuous for
the weak*-topology on c* and the topology (X, ¥) on X. Hence the
image of the unit ball of c*, the ¢(X, ¥)-closed absolutely-convex cover
of {x,: n e N}, is a(X, Y )-compact.

TaroREM 2.9. Suppose (X, Y is a strictly norming dual pair with X
reflexive, then J is an isometry of ¥ onto X*,

Proof. It is enough to show that U is norm dense in V by Lemma
2.7. By Lemma 2.6 U is weak*-dense and hence weakly dense in V.
Therefore U is norm dense.

Lemma 2.10. If <X, Y) is a strictly normzng dual pair, with Y separ-
able, then Y is norm dense in X*.

Proof. We embed X* in X*, the space of all linear functionals on X.
Let 7 be the collection of all ¢(X, f’)-compa,ct and absolutely convex
subsets of X. If C € &/ then

sup|<z, y>| <

zeC

for each y € Y and so by the Principle of Uniform Boundedness

sup sup [<z, y>| < oo,
zeC i<l

and so C is bounded in X (since (X, Y is strictly norming). Let Z be
the subspace of X# of all linear functionals which are bounded on each
C e &; then X* < Z. Let 1, be the topology of uniform convergence
on each C € & ; then (Z, ) is a complete locally convex space.
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On ¥, _, coincides with the Mackey topology u(¥, X) and hence
every t-continuous linear functional  on Y is of the form

¥(g) = <z, y).
Hence, since (X, Y is strictly norming, for every y e (¥, t_) there
exists yo € U such that

V(o) = [o] > [<z, )] VyeU.

Thus by Pryce’s generalization of the James theorem (13), (we require
an obvious extension to complex vector spaces), U is relatively weakly
compact in (Z, 7,,). Let W be the t_-closure of U; then W is weakly
compact and therefore ¢(Z, X)-compact. As W > U, by Lemma 2.6,
W o V and hence Y is 7,,-dense in X*. In particular 7_ on X* reduces
to the Mackey topology u(X*, X) and so every C € & is weakly com-
pact in X,

Now suppose ¢ € X* and m € N. Let S be the unit ball of X ; the set
mS n ¢71(0) is weakly closed in X. We show that mS n ¢—1(0) is
o(X, Y)-closed; as Y is separable it is enough to check that mS A
$~1(0) is o(X, ¥)-sequentially closed. Suppose , € mS N ¢~1(0) and
zn—>2 0(X, Y). Then by Lemma 2.8 the absolutely closed convex cover
of {xy:n e N} is o(X, ¥)-compact and hence weakly compact. Hence
xn—>x weakly and so ¢(x) = 0. Clearly mS is o(X, ¥)-closed (as
<X, Y) is strictly norming) and hence mS n ¢=1(0) is ¢(X, ¥)-closed.
Suppose xg € X is any point such that ¢(x¢) = 1; then there exists
Ym € Y such that

[Im@)] <1, zemSn ¢70), Fm(xo) = 1.
Then for any z € X

Im(x) = ¢(@)+Fm(x— d(x)x0),
and so

[9n—d] <. L+ ] o],

and 50 ¢y, — ¢. Thus Y is norm-dense in X*.

TreorEM 2.11. Suppose (X, Y) and (¥, X) are both strictly norming
and X (or Y) is separable, then X is reflexive and Y is isometric to X *,

Proof. By 2.10 with X and Y interchanged, X is norm dense in Y*,
The map x— £ is an isometry since (X, Y is strictly norming and
hence X = Y*. Hence (Y*, Y is strictly norming and by the James-
Pryce theorem [see] (13) Y is reflexive.
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Example 2.12. Let X = C[0, 1] and let Y = /1[0, 1]—the space of
functions fon [0, 1] such ) ¢ | f(t)l < 00, under the norm

IO

Let Y = Yo ® C with the norm ||(f, )] = |f] + |¢|. Then <{X,Y>
is strictly norming under the duality

@ (f, 0> = TFO)+ [ 2(0)dt.

However J: ¥ — X*is not even an isometry onto its image.

3. The existence of the socle

We recall that if a Banach algebra 4 has minimal left-ideals, the left-
socle of 4 is the linear span of all the minimal left-ideals; similarly the
right-socle is the linear span of the minimal right-ideals. 4 is called semi-
prime [(7) 155] if {0} is the only two-sided ideal J in 4 for which J2 =
{0}. In a semi-prime Banach algebra with minimal left- or right-ideals the
left-socle and the right-socle exist and are equal; this set is then called
the socle and is a two-sided ideal [(14) 45-47 or (7). 155-156]. In this
section we study conditions under which a radial Banach algebra
possesses a socle. First we make an important preliminary observation.

ProposiTION 3.1. A radial Banach algebra A is semi-simple and
hence semi-prime.

Proof. Let R be the radical of 4. Then R is a closed two-sided ideal.
If R # {0} then R contains a non-zero radial element, contradicting
Proposition 1 of (7) 126. A semi-simple Banach algebra is semi-prime
[Proposition 5 of (7) 155].

Definition 3.2. A Banach algebra A4 is weakly compact if for every
a € A the map b — aba is weakly compact.

Weakly compact Banach algebras as such do not appear to have
been studied in detail. They include the compact Banach algebras of
Alexander (1) and Banach algebras which are reflexive as Banach
spaces; in the latter category we should point out the result of Gordon,
Lewis and Retherford (9) on the reflexivity of the operator ideal
A1(E, E) of absolutely summing operators.

ProrosITION 3.3. Let A be a weakly compact radial Banach algebra.
Then every closed right-ideal in A contains a non-zero radial idempotent.

Proof. If J is a closed right-ideal then there exists a € J with |a| =
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p(a) = 1. Then [a®|| = 1 for all # and since the map b —aba is weakly
compact the set {a”:n > 3} is relatively weakly compact. Its weak
closure is a compact semigroup (with separately continuous multiplica-
tion) in the weak topology; hence there is an idempotent e in the weak
closure of {a”: n > 3}, with [le[ < 1. [See (8) 19.]

Let Ao be the commutative Banach algebra generated by {a}; then
there is a multiplicative linear functional ¢ on 4o with |¢(a)] = |¢] =
1. Then ¢(e) is a cluster point of (¢(a))*. Hence |¢(e)] = 1 and so

e # 0.

THEOREM 3.4. Let ¢ be a non-zero idempotent in a radial Banach
algebra A. Then eAe is a radial Banach algebra.

Proof. Suppose J < ede is a closed right-ideal and suppose a eJ
with @ = 0. Then a4 contains a non-zero radial element b with lo]| =
1. Then eb = b, and hence b = (eb)® = (ebe)»~1b and hence | (ebe)?1| >
1. Therefore ebe is radial (since ||e| = 1) and ebe € ade = aede < J.

We recall that an idempotent e is minimal ife 5% 0and ede = %e.

THEOREM 3.5. Let A be a weakly compact radial Banach algebra and
let J be a non-zero closed right-ideal tn A. Then J contains a radial
manimal idempotent.

By 3.3, J contains a non-zero radial idempotent f. If g and % are radial
idempotents we write g > h if gh = hg = h. We show by Zorn’s lemma
that the set M of non-zero radial idempotents g such that g < f has
minimal elements with respect to this order relation. Let C = {g,:
a € o/} be a chain in M ; we consider (' as a monotone decreasing net.
Then fAf is reflexive (since the map a— faf is a weakly compact
projection) and |gaf| = 1 for « e o7; hence there is a subnet of C,
(9x(p) : B € &) say, which converges weakly to some g.

Then for ap € «,

99e, = liﬁm JoB) Jo, = g (Weakly)
since gu(p) < gu, eventually. Similarly g5 g = g and
g% = li;n 99x(6) = 9>

and so g is an idempotent and g < g4, « € &. It remains to show that
lg]| = 1; clearly |lg|| <1. Now ga(g —g weakly, and hence there is a
convex combma,tlon Zn_ cnga(g y with Zn=1 n=1,¢,>0and

I Z cndasy— 9| < 3%
=1




ON RADIAL BANACH ALGEBRAS 473

Now suppose, without loss of generality, that g,(s,) < gae,) for
n < k. Then

k
I (n; Cngais) — 9960 | < %,
i.e.
”g“(ﬁk) —g” < %,

-~ and so g # 0. Thus ¢ is a radial idempotent, and hence by Zorn’s
Lemma J contains a radial idempotent e such thatif e = ge = g and ¢
is a radial idempotent, g = e.

Now ede = B is a radial Banach algebra (3.4). Suppose b € B. Then

by 3.3,if b 0, bB contains a radial idempotent. Hence ¢ € bB and
since e is the identity of B, bB = B and so every b € B with b # 0 is
invertible. By the Gelfand-Mazur theorem B = %e and e is a minimal
idempotent.

It follows that a weakly compact radial Banach algebra contains a
minimal left- and right-ideal and hence has non-trivial socle S.

TrEOREM 3.6. Let A be a weakly compact radial Banach algebra. If
aecAand aS = {0}thena = 0.

Proof. Let J = {a:aS = {0}}. Then J is a closed right-ideal and so
if J # {0}, J contains a radial minimal idempotent e. Then e € S and so
eS # {0}. Thus J = {0}.

Thus weakly compact radial Banach algebras are, in a sense, deter-
mined by the socle. This also is the case under a geometrical condition.
A is called strictly convex if [a] = [|6] = 1 and |ja+b| = 2 together
imply that a = b.

TaEOREM 3.7. Let A be a strictly convex radial Banach algebra. Then

(i) every radial element is a scalar multiple of @ minimal idempotent;
(ii) the socle S of A exists and if aS = {0} then a = 0.

Proof. (i) Suppose [a] = p(a), and suppose A e Sp(a) with |4 =
p(a). Then let f = A~1a so that 1 eSp(f) and |f| = p(f) = 1. Then
2 e 8p(f+f?) and so |f+f2| = 2 with |f]| = |f2] = 1. Hence f2 =
Jf and fis an idempotent. If g is a non-zero radial idempotent with ¢ < f
then ||f+g|| = 2 (since (f+g)g = 2¢) and hence f = g¢. It follows easily
as in 3.5 that f is a minimal idempotent.

(ii) is similar to 3.6.

Some similar but deeper results on the existence of minimal idem-
potents of norm one are obtained by Bonsall and Duncan (5).
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In the next section we will consider the geometric structure of the
socle in a radial Banach algebra. However first we collect together for
convenience some remarks on the socle in Banach algebras.

ProPOSITION 3.8. Let A be a semi-prime Banach algebra, with socle S.
Then

(1) if e s @ minimal idempotent, then the smallest closed two-sided ideal
I containing e is a minimal closed two-sided ideal,

(ii) S 4s the closed linear span of the minimal closed two-sided ideals
contained in if.

If A is radial and either weakly compact or strictly convex, we have

(iii) every minimal-closed two-sided ideal is contasned in S.

Proof. (i) [ef (7) 165, Proposition 16]. Suppose J = I is a closed two-
sided ideal. If e € J then J = I; if e ¢ J then eJ is strictly contained in
eA and hence eJ = {0}. Hence e € lan J, the left-annihilator of J. As
lan J is a closed two-sided ideal, J < I < lan J and hence J2 = {0}.
Therefore J = {0}.

(ii) If L is a minimal left-ideal, then L = e4 for some minimal
idempotent e. Let I be the smallest closed two-sided ideal containing e;
then I = I = S, and the result follows.

(iii) If I is a minimal-closed two-sided ideal, then I contains a radial
minimal idempotent e by 3.5 or 3.7. Hence I is the smallest closed two-
sided ideal containing e and I = 8§.

4. Structure of the minimal ideals

Levma 4.1. Let 4 be a radial Banach algebra and let L be o minimal
left-ideal of A. Suppose a € L and a # 0; then there is a radial minimal
tdempotent p in A such that pb = n(b)a for b € L, where n is a linear
functional on L with n(a) = 1.

Proof. aA contains a non-zero radial element p; We may suppose
llpll = 1 and 1 € Sp(p). Suppose ac, —p and that L = Af where fis a
minimal idempotent. Then, for any z € 4, fxf = Y (x)f where ¢ € A*.

For any »,

(acn)? = afeqafe, = Y(cpa)acy,
so that p2 = Ap for some 1 e 4. Clearly since 1 e Sp(p), 1 = 1 and
V(cpa)—1.
For any b € 4,
acpbacy, = Y(cpba)acy,

and pbp € €p, so that p is a minimal idempotent.
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Ifbel,
acnb = Y(cnb)a,
so that
pb = n(b)a,

where n(b) = lim,,_,  ¥(c,b). If b = a thenlim _  ¥(c,a) = 1, so that
n(a) = 1.

LemMA 4.2. Let A be a radial Banach algebra and let T': A — B(X) be
a morm-decreasing topologically irreducible representation of A on a

normed space X. Suppose a # 0 and b # 0 belong to the same minimal
left-ideal L of A ; then for any x € X,

] 17ez] = [o] |Tax].

Proof. Again let L = Af where f is a minimal idempotent. Suppose
Tox = ATyx some A€ ¥. Then Ty 3Tz = 0. By Lemma 1 of (2),
Ty is a one-dimensional projection so that either Tsx = 0 or Ty =
Ta- ib Tf = 0.

If Trx = 0 then Tyx = ToTsx = Tpx = 0 so that the lemma is
trivial. If T, = O then a— 10 € T-1(0) n L. As L is minimal, either
a = Ab in which case the lemma is again trivial, or L < 7-1(0) so that

o =Ty = 0.

Hence we may assume 7'y and Ty linearly independent. Let

e =ta+(1—-£8)b (0<ELI).
By Lemma 4.1, there is a minimal radial idempotent p; such that
piC = ~71:,4,(6)6,‘,, ce L,

where ©; € L* and mz(c;) = 1.
Let
v = Jo ©<t<D)

Then y is Lipschitz and so differentiable almost everywhere; suppose ¢
is a point of differentiability with 0 < ¢ << 1. Then

Y(E+s) = Y(t)+sy’(t) +o(s),

and hence
”ptct+s” < HCtH + sy’ () +o(s),

les+spe(a—b)|| < [lez]| + sy’ (£) +o(s),
les] [1+smi(a—b)] < lee]| + s () +o(s).




476 N. J. KALTON AND G. V. WOOD
As this is true for both positive and negative values of s we conclude
Y(@)[Rem;(a—0)] = ¢'(f).

Now let ¢(t) = |Tc,x]; again ¢ is Lipschitz and differentiable almost
everywhere. For 0 < ¢ << 1 and ¢ a point of differentiability,

|Tp.Te,, | <|Tex]|+sd'(t)+o0(s),

so that
76,2+ 8T p,a-vy || < ||Te,|+80'(t)+0(s),

and by similar reasoning
¢@)[Re m;(a—b)] = ¢'(f).

The function log (Y(¢))/(¢(t)) is also Lipschitz (neither ¢ nor v
vanish) and so

tog ¥V _ 105 YO _ fl 2100 Y0 g1

—_— g —_— = J— _—
o(1) ¢(0) Jodt &)
(where the integrand is defined almost everywhere).

However, almost everywhere

d. y@) ¥ ¢
Hence

"and the lemma follows.
We now use Lemma 4.2 to establish the main theorem on representa-

tions of radial Banach algebras.

TaEOREM 4.3. Let A be a radial Banach algebra and let T: A —B(X)
be a norm decreasing topologically irreducible representation of A. Suppose
L is a minsmal left-ideal with T(L) # {0}. Then L s wsometrically iso-
morphic to X and there is an isometry 0: L — X such that for any x e X

and a € A,
' Tox = 0001z

Proof. Let L = Af, where fis a minimal idempotent. As T'(L) # {0}
we conclude 7'y # 0 and so there exists z9 € X, 2o # 0, with Tz =

o and [za] = []-
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Then define, for a € L, 6(a) = Tg4z¢. Then

|71 6@l = lal 175,

so that ||0(a)| = [|e||, and 6 is an isometry. Thus 6(L) is a closed
invariant subspace of X and so (L) = X.
Finally for any «,

Tax = TaB(O‘lx) = TaTo—lxx() = 0(1/.0_1:1:.

Suppose now [ is a minimal closed two-sided ideal and let K and L be
any two minimal left-ideals contained in I. Then using the natural left-
regular representation §: 4 — B(K) defined by

S,.b = ab,

we see that § is one-one on I and hence on L. By Theorem 4.3 we see
that L is isometrically isomorphic to K.

CorOLLARY 4.4. In a radial Banach algebra any two mintmal left-
ideals contained in the same minimal closed two-sided ideal are isometric.

We now give an application to the problem of when a norm-decreasing
isomorphism is necessarily isometric.

CoroLLARY 4.5. If A is a radial Banach algebra and T ts a norm-
decreasing homomorphism of A into an arbitrary Banach algebra B, then
T 1s a scalar multiple of an isometry on each minimal left-ideal of A.

Proof. Let J be a minimal left-ideal of A. If T'(J) = {0}, the result is
trivially true. If T'(J) # {0}, then T'(J) is a minimal left-ideal of 7'(4),
and there is a norm-decreasing representation of 7'(4) and hence of 4
into B(T'(J)) which is topologically irreducible. Applying 4.3, we have
that J and 7'(J) are isometrically isomorphic with 7' a scalar multiple
of the isometry.

We come now to the identification of the minimal closed two-sided
ideals. Suppose I is such an ideal and L is a minimal left-ideal in I. Then
by Lemma 4.1, I contains a radial minimal idempotent e. Then 4e and
e form a dual pair of normed spaces under the duality

- Kx,yye = yx,x € de, y e ed.
There is a dual representation 7': A — B{Ae, eA) defined by

!

T,x =oaz, Ty = ya.
Clearly
max ([T, | Ta]) <[al.
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PrOPOSITION 4.6. If e is a radial minimal idempotent in a radial
Banach algebra A then (Ae, ed) is a strictly norming pair.

Proof. Let I be the smallest closed ideal containing e; I is a minimal-
closed ideal (3.8). For z € A4e, let

|| = sup [<z, y)|.
llyli<l

Clearly |z| < |z]. If [¢] = 0, then « € ran(ed), the right-annihilator of
eA. However, ran(edA) n I is a closed two-sided ideal and since A is
semi-prime, I ¢ ran(ed). Therefore ran(ed) n I = {0} and z = 0. Hence
|| is a norm on Ae; we denote by X the normed space (4e, |-|). Con-
sider the representation 7': A — B(X), where T,z = ax. Then for
aed,xeXandyeed with |y]| <1,

KT, yy| = [<az, y>| = [<z, yad| < [a] |2|.

Hence 7' is norm-decreasing, and by Lemma 4.2 for x € Ae
[#] Tee = le] [Te], =] le] = |-

However, 1 = |e| > [¢|] > <e, ¢) = 1. Hence |2 = |jz| for € Ae. For
fixed x € Ae, there is a minimal idempotent p satisfying Lemma 4.1 and
pel. Hence T # 0 and by Lemma 1 of (2), 7)) = ¢ ® y where
Y e (ed)* and [y| = 1. Given & > 0, there exists zeed such that
|2] = 1 and

{w,2) > |x] —e.
Then

,2) = <Tpx’ zy = (=, T;gz> = Y(2)<=, y).
Hence
<& 9] = @] - o > [v] (] - o).

However |T,| = [¥] = 1. Hence [z, y>| = [«] and <{de,ed) is
strictly norming.

THEOREM 4.7. 4 minimal closed two-sided ideal I which contains a
minimal left-ideal in a radial Banach algebra ts tsometrically isomorphic
to an operator algebra on a strictly norming dual pair.

Proof. By Proposition 4.6 we set up a representation 7': I — B{Ae,
eA>. As I is minimal 7' is one-one. Now for a € I we define

|Ta| = [af-
Then T(I) is a Banach algebra under |-|. It remains to show that 7'()
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is an operator algebra as in § 2. Suppose y € e4 and x € de; let u = xy.
Then for & € Ae,
Tué = ayl = y, &,

so that 7, = y ® . Now |T,| = |u| > |T,|| = |||T.]|]- However,we
may choose 7 €ed so that || =1 and <z, 7> = ||z|. Then T n =
|2y, so that |[|Tul|| > |z| |y] > |=y| = [u]. Hence [Tu] = |||Tu]|]

It follows easily that for any a e I, |||T4||| < |Ts| < v(Ta), and hence
T(I) is an operator algebra.

CoROLLARY 4.8. Suppose I is a reflexive Banach space. Then I is
isometrically isomorphic to an operator algebra on a dual pair (X, X*),
with X a reflexive Banach space.

Proof. Apply Theorem 2.9.

CoROLLARY 4.9. Suppose A is a radial Banach algebra which is o
reflexive space. Then A s co-radial.

Proof. Let L be a closed left-ideal, and let § be the socle of A (see
§ 3). If Sa = 0 then a = 0 (a similar argument to 3.6). Then SL # {0}
and so for some minimal-closed two-sided ideal I n L # {0}. However,
I is isometric to an operator algebra on a dual pair (X, X*) where X is
reflexive. Hence I is co-radial and I n L contains a radial element.

COROLLARY 4.10. Suppose A is a separable Banach algebra which is
radial and co-radial. Then every minimal left-ideal L of A is reflexive, and
the minimal two-sided ideal generated by L is isometrically isomorphic to
an operator algebra on the dual pasr (L, L*).

Proof. Suppose e is a minimal radial idempotent. Then (A4e, e4) and
{ed, Ae) are strictly norming and so by 2.11, A4e is reflexive. By 4.4
any minimal left- (or right-) ideal is reflexive. The rest follows from 4.7.

The corresponding result for norm-decreasing homomorphisms for
reflexive algebras is as follows: '

ProrosiTioN 4.11. If A is a radial Banach algebra which is a reflexive
Banach space, then any norm-decreasing tsomorphism of A into an
arbitrary Banach algebra B is an isometry on minimal lefi-ideals.

We conclude this section with two easy applications of numerical
ranges of operators [see (6)], which will be used in the next section.

ProrosiTioN 4.12. Suppose A is a radial Banach algebra.

(i) Every minimal-closed two-sided ideal containing a reflexive minimal
left-ideal is the closed linear span of its radial idempotents.
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(i) If A s weakly compact and a € A with eae = 0 for every radial
tdempotent e then a = 0.

Proof. Let I be a minimal closed two-sided ideal intersecting the
socle. Then I is isometrically isomorphic to an operator algebra on a
strictly norming dual pair <X, Y. For 2 € X there exists z* € ¥ such
that [z*| = |2| and <z,2*) = [z|2. If we define for 1,23 X
[#1, %,] = {x;, x5y, then [, ]is a semi-inner product on X.

(i) Suppose ¥ is a bounded linear functional on I annihilating each
radial idempotent. Then it is easy to see from the reflexivity of X that

Yy ® z) = (Ve )

where V: X — X is a bounded linear map. Then for any x € X, z # 0,
1/(]|#[2)2* ® z is a radial idempotent on I so that y(z* ® z) = 0, i.e.
[Vz,x] = 0 for every z € X. By a result of Lumer (10) Theorem 5,
V = 0 and hence y(y ® x) = 0 for any y € Y and x € X. As the finite-
dimensional operators are dense in I, /(1) = 0.

(ii) Suppose e is a radial idempotent in I and take (X, ¥> = (4e,
ed>. Let T: A — B(Ae, e4) be the induced dual representation. Then
foranyzxe X,2* @ x.Ty.2* ® x = 0, i.e. 2*(T4x) = 0 which reduces
to [Ty, x] = 0 for every . Hence T, = 0 as before and so aS = 0. By
Theorem 3.6, ¢ = 0.

5. Hilbert spaces

A semi-simple H*-algebra is radial if (and only if) every minimal self-
adjoint idempotent is radial. In this section we prove a converse result
that every radial Banach algebra which is a Hilbert space is an H*-
algebra. We then give some results on radial *-algebras.

Lemma 5.1. Let A be a radial Banach algebra which is a Hilbert space.
Then if x € A and e is a minimal radial idempotent (z, e)e = exe.

Proof. If y(z)e = exe then Ye A* with |y <1. As y(e) =1 it
follows that y(x) = (=, e).

LemMA 5.2. Let 4 be a Hilbert operator algebra modelled on o Hilbert
space H.(ie. N(H)<c A < B(H)). Then the ideal Z(H) of Hilbert-
Schmidt operators is a closed ideal in A and |T| = o(T) for T € Z(H).

Proof. Let (,) be the inner product in 4 and (, ), be the inner
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product in Z(H). Then for any two minimal radial idempotents £, Fs
in A4,
(Bv, Bo)By = BB By = (B, Es)cE s,
so that (EI’ EZ) = (E17 EZ)O"
Suppose T is in the linear span of the radial idempotents of 4; then
T = Z;n=1 liEi and
n n n
|T2| = Z Aidi(E;, B;) = Z Z i, Bj)e = o(T)2;
i=1 j=1 i=1 j=1
it follows that for T' in the closed linear span of the radial idempotents,
7| =
By 4 12(1), the closure J of the finite-dimensional operators is the
closed lmear span of the radial idempotents. Hence J < Z(H) and
|T| = o(T') for T e J. Thus J = Z(H).

THEOREM 5.3. A radial Banach algebra which s a Hilbert space ts
isometrically isomorphic to an H*-algebra.

Proof. By Theorem 3.6, the socle S of 4 is non-trivial and a8 = 0
implies ¢ = 0. Suppose a € 8*; then for every minimal radial idempo-
tent e, (@, e)e = eae = 0(5.1). Hence by 4.12(ii), @ = 0 and so §is dense
in 4.

Now let I3, I be any two distinet minimal-closed two-sided ideals in
A. Then for a € I; and e € Iy a minimal radial idempotent, (a, e)e =
eae = 0 so that (a, e) = 0. By 4.12(i), (a,b) = 0 for any b € I5. Then
the minimal-closed two-sided ideals are mutually orthogonal. Since 4
is the closed linear span of the minimal two-sided closed ideals, 4 is their
lo-sum.

Finally, by Lemma 5.2, every such minimal two-sided ideal is iso-
metrically isomorphic to an algebra of Hilbert-Schmidt operators. Thus
A ~ lo— @ ZI(Hy) which by introducing the obvious involution on each
minimal ideal is an H*-algebra.

We conclude by giving a result on the geometry of radial *-algebras.
We suppose 4 is an algebra with a proper isometric involution (that is
for any x # 0, |2*|| = || and x*x # 0). The isomorphic structure of
*-algebras with minimal ideals is well developed (see (14) 260-276]. It is
not surprising that if A4 is radial then we obtain some similar results on
the isometric structure.

THEOREM 5.4. Let A be a radial Banach *-algebra, with a proper
tsometric involution. Then

G
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(1) every minimal left- or right-ideal is isometrically isomorphic to o
Hilbert space,

(11) of e 15 @ minimal idempotent in A then e is radial if and only if e is
self-adjoint.

Proof. It is enough to consider a minimal-closed two-sided ideal I. If
I contains a minimal left-ideal L then L = If where f is a self-adjoint
minimal idempotent [(14) Lemma 4.10.1]. By (14) Theorem 4.10.3 we
may introduce an inner product ( , ) on L, defined by

(%, x)f = x*ys

so if Lo is L equipped with the inner-product norm then the left-regular
representation 7': I — B(Lg) satisfies

|7l < pla¥a).

Hence 7' is norm-decreasing (since [a*| = [la|). Hence by Theorem 4.3
Ly is isometric to L, and so L is isometric to a Hilbert space.

Now let ¢ be a radial idempotent in I. Then ||| = 1 and T, is a
projection on L, so that T'; = T,. However, T is a *-representation
[(13) 4.10.3] and hence 7',. = 7). Finally T is faithful on I and as
I* =1 (I is minimal-closed), e* e I; hence e¢* = ¢, and any radial
idempotent in I is self-adjoint.

Now consider f; by Lemma 4.1 there is a radial minimal idempotent
p in I such that pf = f. Then p* = p and hence (pf)* = fp = f. Thus
ofp = f € ép since p is minimal and so p = f and f is radial. Thus any
self-adjoint minimal idempotent is radial.

Finally if R is a minimal right-ideal then B = el for some minimal
radial and self adjoint idempotent e. Then <(le, el) form a strictly
norming dual pair and as Je is isometric to a Hilbert space, so is el
[Theorem 2.9].

Remarks. We make two comments on the preceding theorem. First
we note that the assumption that |a*|| = |a| for @ € 4 may be replaced
by p(a*a) < |la|? without affecting the result. Secondly we observe that
1 is isometric to a *-invariant operator algebra on a Hilbert space by an
application of the results of § 4.
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