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Abstract. We study the class of r.i. spaces in which Cesaro means of any
weakly null martingale difference sequence is strongly null. This property is
related to the Banach-Saks property. We show that in classical (separable)
r.i. spaces (such as Orlicz, Lorentz and Marcinkiewicz spaces) these proper-
ties coincide but this is no longer true for general r.i. spaces. We locate also
a class of r.i. spaces having this property where an analogue of the classical
Dunford-Pettis characterization of relatively weakly compact subsets in L1

holds.
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1. Introduction

A Banach space is said to have the Banach-Saks property if and only if each weakly
null sequence contains a subsequence whose arithmetic (Cesaro) means converge
strongly to zero (sometimes this is called the weak Banach-Saks property). It is
a classical result [5], [6], that the spaces Lp[0, 1), 1 < p < ∞ have this property.
Later, it was shown by Szlenk [33] that the non-uniformly convex Banach space
L1[0, 1) also has the Banach-Saks property. More recently, Banach-Saks property
and Banach-Saks type properties have been actively studied in the class of separa-
ble rearrangement invariant (r.i.) function spaces X with the Fatou property [10],
[9], [32], [31], [3], [4] (all relevant definitions are given below). A general approach
employed in these articles goes back to the paper [15] (see also the paper of Ga-
poshkin [13]) which studied weakly null sequences and martingale differences in
classical Lp-spaces. It consists in the decomposition of some subsequence of any
bounded sequence in X into the sum of a norm perturbation of an equimeasur-
able sequence (or a sequence of martingale differences) and a disjointly supported
sequence which converges to zero for the measure topology. In this context, an
interesting result for weakly null martingale difference sequences may be found in
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Freniche’s paper [12]. It is shown there that Cesaro means of any such sequence
in Lp[0, 1], 1 ≤ p < ∞ converge strongly. Later, an extension of the Freniche’s
result to a special class of Orlicz spaces LF had been obtained in [1]. The class
of Orlicz spaces considered there was denoted as ∇3 and may be described as fol-
lows: LF ∈ (∇3) if and only if limt→∞

G(ct)
G(t) = ∞ for some c > 1, where G is the

complementary function to F .
The main objective of the present paper consists in studying of the question

of identifying the class of r.i. spaces X such that Cesaro means of any weakly
null martingale difference sequence in X converge strongly (we will say, in this
case, that X has the martingale difference Cesaro mean property (MDCMP)). We
show that if a separable r.i. space X does not contain a subspace isomorphic to
�1, then X has (MDCMP) if and only if X is p-convex for some p > 1 and its
lower Boyd index αX > 0. At the same time, we identify a wide class of spaces
which contain a subspace isomorphic to �1 and, however, also have such a property.
The class of these spaces (following to [21], we call them (Wm)-spaces) may be
described as follows: these are the spaces where an analogue of the classical Dun-
ford-Pettis characterization [8] of relatively weakly compact subsets in L1 holds.
More precisely, an r.i. space X ∈ (Wm) if and only if every relatively weakly
compact subset of X consists of elements having equicontinuous norms in X (see
Theorem 5.5 below). The fact that every Orlicz space LF ∈ (∇3) also possesses
the (Wm)-property easily follows from [26] (see also [2] [22]). It should be pointed
out that the (Wm)-property is close (though not equivalent) to the so-called weak
Dunford-Pettis property (see e.g. [34], [17]). We shall show in this paper that every
Lorentz space has the (Wm)-property and prove that an Orlicz space LF has the
(Wm)-property if and only if LF ∈ (∇3). We shall also fully characterize the class
of Orlicz and Marcinkiewicz spaces which have (MDCMP).

Note that every separable r.i. space X having (MDCMP) automatically has
the Banach-Saks property (see Proposition 2.1 below). In the final section of the
present paper, we shall show that the converse implication fails in the class of all
r.i. spaces. More precisely, using constructions of the paper [16], we shall build an
example of an r.i. space X which possesses the Banach-Saks property and which
fails (MDCMP). In fact, the space X fails analogous property even for weakly null
sequences of disjointly supported functions. This is in marked contrast with the
situation in classical (Orlicz, Lorentz, Marcinkiewicz) r.i. spaces, where these two
properties are equivalent.

2. Preliminaries

In this section, we shall briefly list the definitions and notions used throughout
this paper.

A Banach space (X, ‖·‖
X

) of real-valued Lebesgue measurable functions (with
identification m-a.e.) on the interval [0, 1] will be called rearrangement invariant
if
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(i) X is an ideal lattice, that is, if y ∈ X, and if x is any measurable function
on [0, 1] with 0 ≤ |x| ≤ |y| then x ∈ X and ‖x‖X

≤ ‖y‖
X

;
(ii) X is rearrangement invariant in the sense that if y ∈ X, and if x is any

measurable function on [0, 1] with x∗ = y∗, then x ∈ X and ‖x‖
X

= ‖y‖
X

.
Here, m denotes Lebesgue measure and x∗ denotes the non-increasing, right-con-
tinuous rearrangement of x given by

x∗(t) = inf{ s ≥ 0 : m({| x |> s}) ≤ t }, t > 0.

For basic properties of rearrangement invariant spaces, we refer to the monographs
[20,24]. We note that for any rearrangement invariant (=r.i.) space X = X[0, 1]

L∞[0, 1] ⊆ X ⊆ L1[0, 1].

The Köthe dual X× of an r.i. space X consists of all measurable functions y
for which

‖y‖
X× := sup

{∫ 1

0

|x(t)y(t)|dt : x ∈ X, ‖x‖
X

≤ 1
}
< ∞.

The basic properties of Köthe duality may be found in [24] and [20] (where the
Köthe dual is called the associate space). If X∗ denotes the Banach dual of X, it
is known that X× ⊂ X∗ and X× = X∗ if and only if the norm ‖ · ‖

X
is order-con-

tinuous, i.e. from {xn} ⊆ X,xn ↓n 0, it follows that ‖xn‖X
→ 0. We note that the

norm ‖ · ‖
X

of the r. i. space X is order-continuous if and only if X is separable.
An r.i. space X is said to have the Fatou property if whenever {fn}n≥1 ⊆ X and
f measurable on [0, 1] satisfy fn → f a.e. on [0, 1] and supn ‖fn‖X

< ∞, it follows
that f ∈ X and ‖f‖X

≤ lim infn→∞ ‖fn‖X
. It is well known that an r.i. space X

has the Fatou property if and only if the natural embedding of X into its Köthe
bidual X×× is a surjective isometry. Such spaces are called maximal. If X is sep-
arable or maximal r.i. space, then the natural embedding X ↪→ X×× is isometric.
We denote by (X)0 the closure of L∞ in X. The space (X)0 is a r.i. subspace of
X.

Recall that for τ > 0, the dilation operator στ is defined by setting στx(t) =
x(t/τ)χ(0,min(1,τ))(t). Operators στ are bounded in every r.i. space X. The num-
bers αX and βX given by

αX := lim
τ→0

ln ‖στ‖X
ln τ

, βX := lim
τ→∞

ln ‖στ‖X
ln τ

belong to the closed interval [0, 1] and are called the Boyd indices of X (see [20]).
The Boyd indices of a given r.i. space X are said to be non-trivial if 0 < αX ≤
βX < 1.

Let us recall some classical examples of r.i. spaces on [0, 1]. Each increasing
concave function ϕ on [0, 1], ϕ(0) = 0, generates the Lorentz space Λ(ϕ) endowed
with the norm

‖x‖Λ(ϕ) =

1∫
0

x∗(t)dϕ(t),
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and the Marcinkiewicz space M(ϕ) endowed with the norm

‖x‖M(ϕ) = sup
0<τ≤1

1
ϕ(τ)

τ∫
0

x∗(t)dt. (2.1)

The space M(ϕ) is not separable, but the space⎧⎨
⎩x ∈ M(ϕ) : lim

τ→0

1
ϕ(τ)

τ∫
0

x∗(t)dt = 0

⎫⎬
⎭

endowed with the norm (2.1) is a separable r.i. space which, in fact, coincides with
the space (M(ϕ))0.

Let M(t) be an increasing convex function on [0,∞) such that M(0) = 0.
Denote by LM the Orlicz space on [0, 1] (see e.g. [19], [27]) endowed with the norm

‖x‖LM
= inf{λ : λ > 0,

1∫
0

M(|x(t)|/λ)dt ≤ 1}.

Convergence in measure (respectively, in weak topology) of a sequence of
measurable functions {xn}∞

n=1 (respectively, from an r.i. space X) to a measurable
function x (respectively, from X) is denoted by xn

µ→ x (respectively, xn
w→ x).

In this paper, we will consider sequences of martingale differences (with re-
spect to an increasing sequence of σ-subalgebras of the σ-algebra of all Lebesgue
measurable subsets of [0, 1]) and, in particular, we need the following simple result
[32].

Proposition 2.1. If X is a separable r.i. space on [0, 1], then every weakly null
sequence {xn}∞

n=1 ⊂ X contains a subsequence {xnk
}∞
k=1 ⊂ {xn}∞

n=1 such that

xnk
= yk + zk, k = 1, 2, . . . ,

where {yk}∞
k=1 ⊂ X is a weakly null sequence of martingale differences from X

and ‖zk‖ ≤ 2−k, k = 1, 2, . . ..

Thus, if the Cesaro means of any weakly null sequence of martingale differ-
ences from X converge strongly to zero (that is, X ∈ (MDCMP )), then X has
the Banach-Saks property.

3. The disjoint Cesaro mean property (DCMP)

We say that an r.i. space X has the disjoint Cesaro mean property (DCMP) if
whenever (xn)∞

n=1 is a disjoint weakly null sequence in X, then

lim
n→∞

1
n

‖
n∑
j=1

xj‖X = 0.
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Theorem 3.1. Let X be a separable r.i. space on [0, 1]. The following conditions
on X are equivalent:

(i) X has the (DCMP);

(ii) Whenever (xn)∞
n=1 is a disjoint weakly null sequence then

lim
m→∞ sup

⎧⎨
⎩

1
m

∥∥∥∥∥∥
∑
j∈A

xj

∥∥∥∥∥∥ : A ⊂ N, |A| = m

⎫⎬
⎭ = 0;

(iii) Whenever W is a relatively weakly compact subset of X, then

lim
m→∞ sup

{
1
m

‖ max
1≤j≤m

|xj |‖X : x1, . . . , xm ∈ W

}
= 0.

Proof. (i) =⇒ (ii). Assume that (ii) is false. Let M = supn ‖xn‖. Then there
exist c > 0 and an increasing sequence (mk)∞

k=1 so that for each k we can find
Ak ⊂ N with |Ak| = mk and ∥∥∥∥∥∥

∑
j∈Ak

xj

∥∥∥∥∥∥
X

≥ cmk.

We can assume that mk+1 > 3Mc−1mk for each k. Let B1 = A1 and then Bk =
Ak \ ∪k−1

j=1Aj for k ≥ 2. Then mk ≤ | ∪kj=1 Bj | ≤∑k
j=1mj ≤ 3mk/2 and

∥∥∥∥∥∥
k∑
j=1

∑
i∈Bj

xi

∥∥∥∥∥∥
X

≥
∥∥∥∥∥
∑
i∈Bk

xi

∥∥∥∥∥
X

≥
∥∥∥∥∥∥
∑
j∈Ak

xj

∥∥∥∥∥∥
X

−M

k−1∑
j=1

mj

≥ cmk − 3M
2
mk−1

>
cmk

2
.

Let (rj)∞
j=1 be a sequence of integers so that for some increasing sequence (sj)∞

j=0

with s0 = 0 we have {rj}sk
j=sk−1+1 = Bk for k ≥ 1. Then (xrj

)∞
j=1 contradicts the

(DCMP).
(ii) =⇒ (iii). Let supx∈W ‖x‖ = M . For each m ∈ N let

ϕ(m) = sup
{

1
m

‖χE max
1≤j≤m

|xj |‖X : x1, . . . , xm ∈ W, m(E) ≤ m−1

}
.

We argue first that limm→∞ ϕ(m) = 0. Indeed if not we may find a sequence
mk ↑ ∞ with ϕ(mk) > c > 0. Hence for each k we may find a finite subset Vk ⊂ W
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with Vk = {xkj}mk
j=1, and measurable subset Ek of [0, 1] with m(Ek) ≤ m−1

k so
that

‖χEk
max
j≤mk

|xkj |‖X ≥ cmk.

Now, by passing to a subsequence, we can further assume the existence of a disjoint
sequence of sets Fk ⊂ Ek so that

‖χEk\Fk
max
j≤mk

|xkj |‖X ≤ cmk/2.

Then we may find disjoint subsets Gkj of Fk so that

χFk
max
j≤mk

|xkj | = max
j≤mk

χGkj
|xkj |.

Now the countable set {χGkj
xkj}j≤mk,k≥1 forms a weakly null sequence. However
∥∥∥∥∥∥
mk∑
j=1

χGkj
xkj

∥∥∥∥∥∥
X

≥ cmk/2

and this contradicts (ii). Thus limm→∞ ϕ(m) = 0.
Now suppose m ∈ N and N > m3. Let x1, . . . , xN ∈ W. Choose disjoint

measurable sets Gj so that

max
j≤N

|xj | =
N∑
j=1

χGj
|xj |.

Let yj = χGj
xj and aj = m(Gj). Let Ω denote the collection of all m-subsets

of {1, 2, . . . , N} equipped with normalized counting measure P. Let ηj(ω) = 1 if
j ∈ ω and ηj = 0 otherwise. Then E(

∑N
j=1 ajηj) = m/N and

P

⎛
⎝ N∑
j=1

ajηj > m−1

⎞
⎠ ≤ m2

N
<

1
m
.

If
∑N
j=1 ajηj(ω) ≤ m−1 then E = E(ω) = ∪ηj(ω)=1Gj has measure less than m−1

and ∣∣∣∣∣∣
N∑
j=1

ηj(ω)yj

∣∣∣∣∣∣ ≤ χE max
ηj(ω)=1

|xj |.

Thus we have for all such ω,∥∥∥∥∥∥
N∑
j=1

ηj(ω)yj

∥∥∥∥∥∥
X

≤ mϕ(m).
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Hence, as the exceptional set has measure less than 1/m and the ‖∑N
j=1 ηjyj‖X

is bounded by mM

E

∥∥∥∥∥∥
N∑
j=1

ηjyj

∥∥∥∥∥∥
X

≤ mϕ(m) +M.

This implies that

1
N

∥∥∥∥∥∥
N∑
j=1

yj

∥∥∥∥∥∥ =
1
m

∥∥∥∥∥∥E
N∑
j=1

ηj(ω)yj

∥∥∥∥∥∥
≤ ϕ(m) +Mm−1.

This clearly implies (iii).
(iii) =⇒ (i) is trivial. �

Lemma 3.2. Suppose X is a separable r.i. space containing no copy of �1. Then
every bounded martingale difference sequence is weakly null.

Proof. Since X contains no copy of �1, X∗ is order-continuous and also separable.
Suppose (dn)∞

n=1 is a bounded martingale difference sequence. It suffices to show
that some subsequence is weakly null. By Rosenthal’s theorem [28], (dn)∞

n=1 has
a subsequence (d′

n)
∞
n=1 which is weakly Cauchy and hence also weakly Cauchy in

L1. Thus (d′
n)

∞
n=1 is weakly convergent in L1 and its limit must be zero since it is

a martingale difference sequence. Thus for every f ∈ L∞ we have

lim
n→∞

∫
fd′

n dt = 0.

Since L∞ is dense in X∗ this implies that (d′
n)

∞
n=1 is weakly null in X. �

Theorem 3.3. If X is an r.i. space which is p-convex for some p > 1, then X has
the (DCMP). In the case when X is a separable r.i. space containing no copy of
�1 the opposite assertion holds also.

Proof. If X is p-convex with constant K where p > 1 then we have

‖max(|x1|, . . . , |xn|)‖ ≤ Kn1/p max(‖x1‖, . . . , ‖xn‖), x1, . . . , xn ∈ X

and so (iii) of Theorem 3.1 is immediate.
Conversely, if X fails to be p-convex for any p > 1 then so does X[2−n, 21−n]

for any choice of n. Hence, by [24, Theorem 1.f.12], for any n we can find n disjoint
functions (ynj)nj=1 with supp ynj ⊂ [2−n, 21−n), ‖ynj‖ = 1 and ‖∑n

j=1 ynj‖X >

n/2. But then, by Lemma 3.2, (ynj)j≤n,n≥1 is a weakly null sequence contradicting
(ii) of Theorem 3.1 above. �

Theorem 3.4. Any Orlicz space LF on the interval [0, 1] has the (DCMP).
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Proof. Assume (xn)∞
n=1 is a normalized weakly null disjoint sequence. Let

Gn(s) =

1∫
0

F (|sxn(t)|)dt,

so Gn(1) = 1 and Gn(s)/s is a non-decreasing function. Let

ψ(s) = lim
n→∞Gn(s)/s.

We claim that lims→0 ψ(s) = 0. Indeed if not, we can find c > 0, a strictly
increasing sequence (nk)∞

k=1 of integers and a sequence 0 < sk < 2−k such that
Gnk

(sk)>csk. Suppose
∑
akxnk

converges and ‖∑ akxnk
‖LF

< 1. Then
∞∑
k=1

Gnk
(|ak|) < 1

and so ∑
|ak|>sk

|ak| < c−1.

Since
∑
sk < ∞ this implies

∑ |ak| < ∞ and this contradicts the fact that (xn)∞
n=1

is weakly null.
Now fix 0 < s < 1, a > 1 and suppose n > as−1. Then∫

F
(a
n

(|x1(t) + · · · + xn(t)|)
)
dt =

n∑
k=1

Gk(
a

n
) ≤ a

n

n∑
k=1

Gk(s)
s

.

Hence

lim
n→∞

∫
F
(a
n

(|x1(t) + · · · + xn(t)|)
)
dt ≤ aψ(s)

and since lims→0 ψ(s) = 0 we have

lim
n→∞

∫
F
(a
n

(|x1(t) + · · · + xn(t)|)
)
dt = 0 (a > 1),

i.e.

lim
n→∞

1
n

‖x1 + · · · + xn‖LF
= 0.

�

4. The martingale difference Cesaro mean property (MDCMP)

Let us recall that an r.i. space X has the martingale difference Cesaro mean prop-
erty (MDCMP) if for every weakly null martingale difference sequence (dn)∞

n=1 in
X we have

lim
n→∞

1
n

∥∥∥∥∥
n∑
k=1

dk

∥∥∥∥∥
X

= 0.
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Lemma 4.1. If X has the (MDCMP) then X has the (DCMP).

Proof. Let (xn)∞
n=1 be a disjoint weakly null sequence. Consider the sequence

yk = xk ⊗ rk in X[0, 1]2. Here (rk)∞
k=1 denote the standard Rademachers. Then

|yk| ≤ |xk| ⊗ χ[0,1] k = 1, 2, . . .

so that (yk)∞
k=1 is relatively weakly compact (see also [11]). It is also a martingale

difference sequence and hence weakly null. The Lemma follows trivially. �

Lemma 4.2. If X has the (MDCMP) then for every weakly compact set W we have

lim
s→0

sup
x∈W

‖σsx‖X = 0.

Proof. Let W be a weakly compact set for which criterion fails. Then we may
find a sequence (xn) in W so that ‖σ2−2nxn‖X ≥ c > 0 for each n. Consider the
sequence in X([0, 1]2) defined by y1 = y2 = 0 and then

yk = xn ⊗ rk 2n + 1 ≤ k ≤ 2n+1, n ≥ 1.

Then |yk| ≤ |xn|⊗χ[0,1] for 2n+1 ≤ k ≤ 2n+1. As in Lemma 4.1 (yk)∞
k=1 is weakly

null. On the other hand, ∣∣∣∣∣∣
2n+1∑

k=2n+1

yk

∣∣∣∣∣∣ ≥ 2n|xn| ⊗ χEn

where En = {t : rk(t) = 1, 2n + 1 ≤ k ≤ 2n+1} has measure 22−n

. Therefore,∥∥∥∥∥∥
2n+1∑

k=2n+1

yk

∥∥∥∥∥∥
X

≥ 2n‖σ2−2nxn‖ ≥ c2n,

whence

1
2n+1

∥∥∥∥∥∥
2n+1∑
k=1

yk

∥∥∥∥∥∥
X

≥ c/2 n = 1, 2, . . .

which contradicts (MDCMP). �

Theorem 4.3. Let X be a separable r.i. space with αX > 0 and the (DCMP). Then
X has the (MDCMP).

Proof. Let (dk)∞
k=1 be a weakly null martingale difference sequence. Let

M = supn ‖dn‖. By Theorem 3.1 we have an estimate

‖ max
1≤j≤n

|dj |‖X ≤ nϕ(n)
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where limn→∞ ϕ(n) = 0. By a result of Johnson and Schechtman [14] we have∥∥∥∥∥
n∑
k=1

dk

∥∥∥∥∥
X

≤
∥∥∥∥∥ sup
m≤n

∣∣∣∣∣
m∑
k=1

dk

∣∣∣∣∣
∥∥∥∥∥
X

≤ C

∥∥∥∥∥∥
(

n∑
k=1

|dk|2
)1/2

∥∥∥∥∥∥
X

≤ C

∥∥∥∥max
j≤n

|dj |
∥∥∥∥

1/2

X

∥∥∥∥∥∥
n∑
j=1

|dj |
∥∥∥∥∥∥

1/2

X

≤ CM1/2ϕ(n)1/2n,

so that

lim
n→∞

1
n

∥∥∥∥∥
n∑
k=1

dk

∥∥∥∥∥
X

= 0.

�

Theorem 4.4. Let X be a separable r.i. space on [0, 1] containing no subspace
isomorphic to �1 (e.g. suppose X is reflexive). Then the following conditions are
equivalent:

(i) X has the (MDCMP);

(ii) X is p-convex for some p > 1 and αX > 0;

(iii) If (dn)∞
n=1 is a bounded martingale difference sequence then limn→∞ 1

n‖d1 +
· · · + dn‖X = 0.

Proof. (ii) =⇒ (i). Apply Theorem 3.3 and Theorem 4.3.
(i) =⇒ (ii). By Theorem 3.3 and Lemma 4.1 X is p-convex for some p > 1.

Now assume αX = 0. Then there is a sequence (xn)∞
n=1 in X with ‖xn‖X = 1 and

‖σ4−nxn‖X ≥ 1
2 . Let (yn)∞

n=1 be a sequence so that supp yn ⊂ (2−n, 21−n) and yn
has the same distribution as σ2−nxn. By Lemma 3.2, (yn) is weakly null. However,
‖σ2−nyn‖X ≥ 1

2 and this contradicts Lemma 4.2.
The equivalence of (i) and (iii) follows from Lemma 3.2. �

Remark 4.5. Note that the implication (ii) =⇒ (iii) holds for every r.i. space.
Indeed, since αX > 0, we have due to [14],

∥∥∥∥∥
n∑
k=1

dk

∥∥∥∥∥
X

≤ C

∥∥∥∥∥∥
(

n∑
k=1

d2
k

)1/2
∥∥∥∥∥∥
X

.
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By the assumption, we have ‖dk‖X ≤ K, k ≥ 1 for some K > 0. Thus, the
preceding estimate implies for r ∈ (1,min{2, p}] that

∥∥∥∥∥
n∑
k=1

dk

∥∥∥∥∥
X

≤ C

∥∥∥∥∥∥
(

n∑
k=1

|dk|r
)1/r

∥∥∥∥∥∥
X

≤ CKn1/r,

whence the assertion follows.

The following corollary immediately follows from Remark 4.5 and Proposition
2.1.

Corollary 4.6. If a separable r.i. space X satisfies conditions of (ii) of Theorem 4.4,
then X has the Banach-Saks property.

Recall, that Freniche [12] proved that Lp (1 ≤ p < ∞) has the martingale
difference Cesaro mean property. The following theorem gives precise character-
ization of the class Orlicz spaces with the (MDCMP).

Theorem 4.7. An Orlicz space LF on [0, 1] has the (MDCMP) if and only if
αLF

> 0.

Proof. If αLF
= 0 then by [9, Theorem 5.5 (ii)], we know that the separable

part (LF )0 of the Orlicz space LF fails the Banach-Saks property. Hence, due to
Proposition 2.1, (LF )0 (and moreover LF ) does not possess the (MDCMP).

If αLF
> 0, then LF is separable and we may use Theorem 4.3 and Theorem

3.4. �

Theorem 4.8. Let M(ϕ) be a Marcinkiewicz space on [0, 1]. The following condi-
tions are equivalent:

(i) ϕ(+0) > 0 or 0 < γϕ ≤ δϕ < 1;
(ii) for every bounded martingale difference sequence {dk}∞

k=1 ⊂ M(ϕ), we have

1
n

∥∥∥∥∥
n∑
k=1

dk

∥∥∥∥∥
M(ϕ)

→ 0;

(iii) M(ϕ) has the (MDCMP).

Proof. If ϕ(+0) > 0, then M(ϕ) = L1. Therefore, to prove (i) =⇒ (ii), we need
only to note that the space M(ϕ) is p-convex as soon as p > 1

γϕ
and αM(ϕ) =

1 − δϕ > 0 (see [25], [20]) and use Remark 4.5. The implication (ii) =⇒ (iii)
is trivial. To prove that (iii) =⇒ (i), assume that (i) does not hold. Thanks to
[4], we then have that the separable part M0(ϕ) of the Marcinkiewicz space M(ϕ)
does not have the Banach-Saks property. This immediately implies that one can
locate in the space M0(ϕ) a weakly null sequence of martingale differences whose
Cesaro means do not converge strongly. �
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5. Rearrangement invariant spaces satisfying Dunford-Pettis
criterion of relative weak compactness

Here, we introduce (see also [21]) a class of r.i. spaces which do not satisfy the
conditions of Theorem 4.4 but still possess the (MDCMP).

Definition 5.1. An r.i. space X on [0, 1] is said to have (Wm)-property (X ∈
(Wm)), if from {xn}∞

n=1 ⊂ X, xn
w→ 0 and xn

µ→ 0 it follows that ‖xn‖X → 0.

Proposition 5.2. If an r.i. space X is p-convex for some p > 1, then X �∈ (Wm).

Proof. Let {fn}∞
n=1 ⊂ X be pairwise disjoint functions and let ‖fn‖X = 1,

n = 1, 2, . . .. For any n ∈ N and any αi ∈ R, i = 1, 2, . . . , n, we have

‖
n∑
i=1

αifi‖X ≤ M(
n∑
i=1

|αi|p)1/p, (5.1)

where M > 0 is some constant. We define a linear operator T : lp �→ X by

T (ei) = fi, i = 1, 2, . . . .

where {ei}∞
i=1 is the standard basis in lp. By (5.1), T is a continuous mapping

onto [fn]∞n=1. Since fn
w→ 0 in X, fn

µ→ 0, and ‖fn‖X = 1, n ∈ N, we infer that
X �∈ (Wm). �

Proposition 5.3. If an r.i. space X ∈ (Wm), then X is separable.

Proof. If X is non-separable, then there exists a sequence of pairwise disjoint nor-
malized elements {xn}∞

n=1 such that the space [xn]∞n=1 spanned by {xn}∞
n=1 in X

is a lattice isomorphic to the space l∞ [23, 1.a.7]. To see that X �∈ (Wm) it suffices
to verify that xn

w→ 0 in X and xn
µ→ 0 as n → ∞. The latter convergence is obvi-

ous. To see the former, observe that since l∗∞ = π(l1) ⊕ π(l1)⊥, where π(l1) is the
subspace of all order continuous functionals on l∞ and π(l1)⊥ is the subspace of all
singular functionals [18], the sequence of standard unit vectors {en}∞

n=1 converges
weakly in l∞. �

Proposition 5.4. If an r.i. space X ∈ (Wm), then X has the (MDCMP).

Proof. If (dn)∞
n=1 is a weakly null martingale difference sequence in X then

lim
n→∞ ‖ 1

n

n∑
k=1

dk‖L1 = 0

since L1 has the (MDCMP) (e.g. by [12] or Theorem 4.7). Since this sequence is
weakly null in X we have

lim
n→∞ ‖ 1

n

n∑
k=1

dk‖X = 0.

�
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Now we show that the following equivalent characterization of (Wm)-spaces,
mimicking the classical Dunford-Pettis characterization of relatively weakly com-
pact subsets in L1-spaces, holds.

Theorem 5.5. An r.i. space X has the property (Wm) if and only if each relatively
weakly compact set K ⊂ X satisfies

lim
E⊆[0,1], m(E)→0

sup
x∈K

‖xχE‖X = 0. (5.2)

Proof. Assume that the condition (5.2) holds, but there exists a sequence
{xn}∞

n=1 ⊂ X such that xn
w→ 0, xn

µ→ 0 and, however, for some ε > 0 and
some subsequence {x̄n}∞

n=1 ⊂ {xn}∞
n=1, we have

‖x̄n‖X ≥ ε, n = 1, 2, . . . . (5.3)

We set En := {t ∈ [0, 1] : |x̄n(t)| > ε
3}, n = 1, 2, . . .. Since x̄n

µ→ 0, it follows that
m(En) → 0. Since the set {x̄n}∞

n=1 is relatively weakly compact, it follows from
the assumption that there exists δ > 0 such that for any E ⊂ [0, 1], m(E) < δ

‖x̄nχE‖X ≤ ε

3
, n = 1, 2, . . . .

Thus, if N ≥ 1 is such that m(En) < δ, n ≥ N , we obtain ‖x̄nχEn
‖X ≤ ε

3 , n ≥ N .
On the other hand, by the definition of En, ‖x̄nχ[0,1]\En

‖X ≤ ε
3 , n = 1, 2, . . . .

Therefore, ‖x̄n‖X ≤ 2ε
3 (n ≥ N), which contradicts (5.3).

To prove the converse assertion, assume that X ∈ (Wm) and that there
exists a relatively weakly compact set K ⊂ X, for which (5.2) does not hold. Due
to Proposition 5.3 the space X is separable, and so, using standard arguments, we
obtain that there exist η > 0, {x̄n}∞

n=1 ⊂ K and a sequence of pairwise disjoint
sets {Fn}∞

n=1 ⊂ [0, 1], n = 1, 2, . . ., such that

‖x̄nχFn
‖X ≥ η, n = 1, 2, . . . . (5.4)

Setting yn := x̄nχFn
, we obviously have yn

µ→ 0. To obtain a contradiction with
the assumption X ∈ (Wm), it suffices to show that the sequence {yn}∞

n=1 is weakly
null in X. It follows from the weak compactness criteria [11] that the set {yn}∞

n=1 is
relatively weakly compact and therefore, without loss of generality, we may assume
(passing to a subsequence, if necessary) that {yn}∞

n=1 converges weakly to some
z ∈ X. Now, the fact that z = 0 follows from [7, Lemma 5.3]. �

Next, we characterize Lorentz and Orlicz spaces having the (Wm)-property.

Proposition 5.6. If ϕ(t) is an increasing concave function on [0, 1] such that
ϕ(+0) = 0, then the Lorentz space Λ(ϕ) has the (Wm)-property.

Proof. By Theorem 5.5, it suffices to show that for any relatively weakly com-
pact set K ⊂ Λ(ϕ) condition (5.2) holds. The latter follows immediately from [30,
Theorem 1]. �
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Remark 5.7. The assumption ϕ(+0) = 0 is equivalent to the assumption Λ(ϕ) �=
L∞.

Proposition 5.8. Let F be an increasing convex function on (0,∞) such that
F (0)=0. The Orlicz space LF ∈ (Wm) if and only if either

(i) LF = L1, or
(ii) the complementary function G to F satisfies

lim
x→+∞

G(Cx)
G(x)

= ∞, (5.5)

for some C > 0.

Proof. The fact that L1 ∈ (Wm) follows immediately from the classical Dunford-
Pettis description of relatively weakly subsets in L1 (see also Proposition 5.6). Let
us assume that (5.5) holds. Using [2, Theorem 2.8], we observe that any relatively
weakly compact set K ⊂ LF satisfies condition (5.2). Note that the assumption
F ∈ ∆2, which was, in addition, requested in [2, Theorem 2.8] is a consequence
of (5.5) (see [19, Theorem 6.5]). Theorem 5.5 now implies that LF ∈ (Wm).

For the converse implication, it suffices to show that the conditions LF∈(Wm)
and LF �= L1 imply (5.5). Since LF �= L1, we may assume that F is an N -function.
In other words,

lim
x→0+

F (x)
x

= lim
x→+∞

x

F (x)
= 0.

This allows us to employ the Ando’s criterion of relative weak compactness in
Orlicz spaces [27, p. 144] which we may use, since LF is separable by Proposition
5.3. By that criterion, the set {xn}∞

n=1 ⊂ LF is relatively weakly compact if and
only if

lim
u→0

sup
n∈N

1
u

∫ 1

0

F (u|xn(t)|) dt = 0. (5.6)

The plan of the proof is as follows. Assuming that (5.5) does not hold, we shall
show that there exists a sequence {xn}∞

n=1 ⊂ LF , ‖xn‖LF
= 1, xn

µ→ 0, such
that (5.6) holds. The latter would immediately imply that LF �∈ (Wm), which is
sufficient to establish the converse implication.

Let us now assume that (5.5) does not hold, or equivalently, for any C > 0
there exists M = M(C) > 0 such that

G(Ctk) ≤ MG(tk), k = 1, 2, . . . , (5.7)

for some tk → ∞. Passing to the inverse function, we obtain

CG−1(τk) ≤ G−1(Mτk), k = 1, 2, . . . , (5.8)

where τk = G(tk) → ∞. Recall that the fundamental function ϕLF
of the Orlicz

space LF is given by ϕLF
(t) = ‖χ(0,t)‖LF

= 1
F−1(1/t) , t > 0 [19, Ch. 2, § 9, p. 72].

Moreover, from [20, Ch. 2, § 4, p. 144], we know that ϕX(t) ·ϕX×(t) = t, 0 ≤ t ≤ 1.
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Since (LF )× = LG [19, Ch. 2, § 14], we obtain G−1(τ) ·F−1(τ) = τ (τ ≥ 1). There-
fore, using (5.8), we see that the assumption that (5.5) fails is equivalent to the
assumption that for any C > 0 there exists M = M(C) > 0 such that

F (vk) ≥ MF

(
C

M
vk

)
, k = 1, 2, . . . ,

for some vk ↑ ∞ as k → ∞. The latter guarantees that for every n ≥ 1 there exists
Mn > 0 and vnk ↑ ∞ as k → ∞ such that

F (vnk ) ≥ MnF

(
nvnk
Mn

)
, n, k = 1, 2, . . . . (5.9)

We can assume that Mn ↑ ∞ (see (5.7)) and vnk ↑ ∞ as k → ∞ so that for
αnk := 1

F (vn
k ) , we have

∞∑
k=1

αnk ≤ 2−n, n = 1, 2 . . . . (5.10)

Since the function F (t)/t is increasing as t → ∞, we infer from (5.9) that for
all u ∈ (0, n/Mn)

αnk
u
F (uF−1(1/αnk )) ≤ αnk

n
MnF

(
n

Mn
vnk

)
≤ 1
n
, n, k = 1, 2, . . . .

Thus, for the diagonal sequence βn := αnn, n = 1, 2, . . . , we have
βk
u
F (uF−1(1/βk)) ≤ 1

n
, 0 < u <

n

Mn
, k ≥ n. (5.11)

By (5.10), we have
∑∞
n=1 βn < 1, and so there exist pairwise disjoint sets

En ⊂ [0, 1], such that m(En) = βn, n ∈ N.
Set xn := F−1(1/βn)χEn

, n = 1, 2, . . . . We have ‖xn‖LF
= 1 and xn

µ→ 0.
We observe that condition (5.6) may be rewritten for the set K := {xn}∞

n=1 ⊂ LF
as

lim
u→0

sup
n=1,2,...

βn
u
F (uF−1(β−1

n )) = 0. (5.12)

For any ε > 0, we choose n ∈ N such that n > 1
ε . Since F (t)

t → 0 as t → 0, it
follows that there exists δ1 > 0 such that for any u ∈ (0, δ1), we have

βk
u
F (uF−1(β−1

k )) < ε, k = 1, 2, . . . , n− 1.

Due to (5.11) and the choice n, we see that the inequality above also holds for
k ≥ n, whenever 0 < u < n

Mn
. This shows that (5.12) holds and so (5.6) holds for

the set {xn}∞
n=1 ⊂ LF defined above. This completes the proof. �

Remark 5.9. If an Orlicz space LF coincides with some Lorentz space Λψ, then,
by Proposition 5.6, we have LF ∈ (Wm) and so the complementary function G
to the function F satisfies (5.5). The converse implication is not correct. In other
words, there exist Orlicz spaces LF , different from any Lorentz space, for which
the function G satisfies (5.5).
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Example 5.10. Consider the function G given for sufficiently large t > 0 by

G(t) = tln ln ln t.

An immediate computation shows that G′(t) ≥ 0 and G′′(t) ≥ 0, if t is large
enough. Consequently, we may assume that G(t) is equivalent to an increasing
convex function on (0,∞). It is easy to check that this function satisfies (5.5)
and therefore, by Proposition 5.8, the Orlicz space LF ∈ (Wm), where F is the
complementary function to G.

At the same time, LF does not coincide with any Lorentz space. In fact,
observing that L×

F = LG and Λ(ϕ)× = M(ϕ) (see e.g. [20]), we note that the equal-
ity LF = Λ(ϕ) implies LG = M(ϕ) (where M(ϕ) is the Marcinkiewicz space). The
latest equality holds if and only if the function G−1(1/t)(0 < t ≤ 1) (the “maximal”
function of the space M(ϕ) with the fundamental function ϕM(ϕ)(t) = 1

G−1(1/t))
belongs to the Orlicz space LG [29]. But this is not the case, since straightforward
calculations show that for every λ > 0.

1∫
0

G

(
G−1(1/t)

λ

)
dt = ∞.

6. The (MDCMP) and the Banach-Saks property in general r.i.
spaces

We have established in the preceding sections that in classical r.i. spaces
(Orlicz, Lorentz and Marcinkiewicz spaces) satisfying the Banach-Saks property
Cesaro means of an arbitrary weakly null martingale difference sequence converge
strongly. In this section, we shall demonstrate that this is no longer true for general
r.i. spaces.

Proposition 6.1. Let F be a translation-invariant Banach sequence space with the
Fatou property so that the canonical basis (en)∞

n=1 is a normalized unconditional
basis of F . For ξ = (ξj)∞

j=1 ∈ E let Lξ = (ξ2, ξ3, . . .) and Rξ = (0, ξ1, ξ2, . . .).
Suppose (

lim
n→∞ ‖Ln‖1/n

)(
lim
n→∞ ‖Rn‖1/n

)
< 2. (6.1)

Then there is a separable r.i. space X with the Fatou property so that:
(i) 0 < αX < βX < 1;
(ii) If vn = χ[2−n,2−n+1) then (vn/‖vn‖X)∞

n=1 is equivalent to the canonical basis
of F ;

(iii) Every normalized disjoint sequence (xn)∞
n=1 has a subsequence equivalent to

a block basic sequence of (en)∞
n=1 in F .

Proof. Fix a < 1 so that

1 ≤ lim
n→∞ ‖Ln‖1/n < 21−a
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and

1 ≤ lim
n→∞ ‖Rn‖1/n < 2a.

Let J = {−1,−2, . . .}. We define a sequence space E modelled on J by ξ ∈ F if
and only if (2−anξ−n)∞

n=1 ∈ E with the norm

‖ξ‖E = ‖
∞∑
j=1

2−ajξ−jej‖F .

Now in the terminology of [16]

κ+(E) = 2a lim
n→∞ ‖Ln‖1/n < 2 and κ−(E) = 2−a lim

n→∞ ‖Rn‖1/n < 1.

Hence by Proposition 5.1 of [16] there is an r.i. space X on [0, 1] such that

‖f‖X ≈ ‖
∞∑
n=1

2−anf∗(2−n)en‖F

and furthermore

2αX = (κ−(E))−1 and 2βX = κ+(E)

so that (i) is proved. Moreover, we see that X is separable (since the simple func-
tions are dense there) and X has the Fatou property (since F does). For (ii) we
note that this follows from (ii) of Proposition 5.1 of [16].

At last, we show (iii). For each n = 1, 2, . . . we define

zn(t) =
∞∑
k=1

x∗
n(2

−k)χ[2−k−1,2−k).

It is clear that x∗
n(2t) ≤ zn(t) ≤ x∗

n(t) and that ‖zn‖X ≥ 1/2. Hence if (yn)∞
n=1 is

any disjoint sequence equimeasurable with (zn)∞
n=1 then (yn)∞

n=1 is equivalent to
(xn)∞

n=1.
Now since m(supp zn) ≤ m(supp xn) we may find increasing sequences of

integers (nk)∞
k=1 and (rk)∞

k=0 with r0 = 0 so that

‖znk
− znk

χ[2−rk ,2−rk−1 )‖X < 4−k.

Let

wk = znk
χ[2−rk ,2−rk−1 ).

Then (wk)∞
k=1 is a disjoint sequence in X with ‖wk‖X ≥ 1/4. Furthermore

we can find yk equimeasurable with znk
with disjoint supports so that wk =

ykχ[2−rk ,2−rk−1 ). Thus ‖yk −wk‖X < 4−k and so (wk)∞
k=1 is equivalent to (yk)∞

k=1

and hence to (xnk
)∞
k=1.

However (wk)∞
k=1 is block basic with respect to (vn)∞

n=1 and hence equivalent
to a block basic sequence of (en)∞

n=1 in F . �
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Theorem 6.2. There is an r.i. space X on [0, 1] which has the Banach-Saks prop-
erty, but which does not have the (MDCMP).

Proof. We take for F in Proposition 6.1 a translation-invariant Banach sequence
space with the Fatou property satisfying condition (6.1) and such that the canon-
ical basis {ek}∞

k=1 is a normalized 1-unconditional basis of F satisfying

(a) ek
w→ 0 in F ;

(b) there exists C > 0 such that ‖∑n
k=1 ek‖F ≥ Cn, for infinitely many n ∈ N;

(c) for any block basis {fk}∞
k=1 of {ek}∞

k=1 such that fk
w→ 0, there exists a

subsequence {fki
}∞
i=1 ⊆ {fk}∞

k=1, such that

1
m

‖
m∑
i=1

fki
‖F → 0.

Let vn = χ[2−n,2−n+1) and wn = vn/‖vn‖X(n = 1, 2, . . . ). Then, by Proposition
6.1 and assumptions (a) and (b), we have wk

w→ 0 in X and ‖∑n
k=1 wk‖X ≥ C1n

for infinitely many n ∈ N for some C1 > 0. Therefore, X does not have the
(MDCMP).

We shall show that X has the Banach-Saks property. Since X is separable
and has the Fatou property, then by [9, Th. 4.5], it suffices to check only that
each weakly null disjointly supported sequence from X contains a subsequence
whose Cesaro means converge strongly to zero. Let {xn}∞

n=1 ⊂ X be an arbitrary
sequence of pairwise disjoint functions such that xn

w→ 0 and ‖xn‖X = 1. By Prop-
osition 6.1, there exists a subsequence {xnk

}∞
k=1 ⊂ {xn}∞

n=1, which is equivalent
to some block basis {fk}∞

k=1 of {en}∞
n=1. Clearly, fk

w→ 0, and condition (c) implies
that there exists a subsequence {fki

}∞
i=1 ⊂ {fk}∞

k=1 such that

1
m

‖
m∑
i=1

fki
‖F → 0.

Therefore, 1
m‖∑m

i=1 xnki
‖F → 0 and thus X has the Banach-Saks property. �

Remark 6.3. It can be easily verified that the conditions of Theorem 6.2 hold for
F = (

∑⊕n�
2n

1 )
p (1 < p < ∞) with the norm

‖ξ‖F =

⎛
⎝ ∞∑
r=1

(
2r−1∑
k=2r−1

|ξk|
)p⎞
⎠

1/p

.

In particular, it is not hard to check that for every n = 0,±1,±2, . . .

max(‖Ln‖, ‖Rn‖) ≤ log2 |n| + 2.
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