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Abstract. A continuous quadratic form (“quadratic form”, in short) on a
Banach space X is: (a) delta-semidefinite (i.e., representable as a difference of
two nonnegative quadratic forms) if and only if the corresponding symmetric
linear operator T': X — X factors through a Hilbert space; (b) delta-convex
(i.e., representable as a difference of two continuous convex functions) if and
only if 7" is a UMD-operator. It follows, for instance, that each quadratic form
on an infinite-dimensional L, (p) space (1 < p < c0) is: (a) delta-semidefinite
iff p > 2; (b) delta~-convex iff p > 1. Some other related results concerning
delta-convexity are proved and some open probms are stated.
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Introduction

Let X be a real Banach space. Recall that a function ¢: X — R is a continu-
ous quadratic form (more precise would be “continuous purely quadratic form”)
if there exists a continuous bilinear form b: X x X — R such that ¢(z) = b(z, x)
for each = € X.
In the present paper, we are interested mainly in the following two isomorphic
properties of X.
(D) Each continuous quadratic form on X is delta-semidefinite, i.e., it can be
represented as a difference of two nonnegative continuous quadratic forms.
(dc) Fach continuous quadratic form on X is delta-convex, i.e., it can be repre-
sented as a difference of two continuous convex functions.
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Since nonnegative quadratic forms are convex, (D) always implies (dc). The reverse
implication is not true, as we shall see in Section 3.

In Section 1, we characterize delta-semidefinite continuous quadratic forms on
X as precisely those whose corresponding symmetric linear operator 7: X — X*
is factorizable through a Hilbert space. This leads, via known results on factoriz-
ability, to sufficient conditions for a Banach space X to satisfy (D). The charac-
terization also implies that the property (D) passes to quotients, and the spaces
¢y, 1 < p <2, do not satisfy (D).

In Section 2, we use X-valued Walsh-Paley martingales to prove that a con-
tinuous quadratic form on X is delta-convex if and only if the corresponding
symmetric linear operator is a UMD-operator. It follows that ¢; not only fails (D)
but it also fails (dc).

In Section 3, we discuss relationships between the properties (D), (dc) and
the following property.

(Cde) Each CY1 function on X is delta-convez.

It is easy to see that also (Cdc) implies (dc). We show that (dc) and (Cdc) pass to
quotients. For each of the properties (D), (dc), (Cdc), we characterize those p’s in
[1,00] for which an infinite-dimensional L,(u) space satisfies the property (The-
orem 3.3). It follows that (dc) implies neither (D) nor (Cdc). (The latter should
be compared with a result from [10] which says that all Banach space-valued qua-
dratic mappings on X are delta-convex if and only if all Banach space-valued C*+!
mappings on X are delta-convex.) We also solve a probm from [20] by proving
existence of a function f whose compositions with all “delta-convex curves” (in
the sense of [20]) are delta-convex while f is not locally delta-convex. Some of
these counterexamples use a result by M. Zeleny [23]. Finally, we show that the
property (dc) is not stable with respect to direct sums, and we state some open
problems.

As usual, Bx and Sx denote the closed unit ball and the unit sphere of the
Banach space X, respectively.

1. Delta-semidefinite Quadratic Forms

In what follows, the term “operator” means “bounded linear operator”. Recall that
an operator T: X — X* is called symmetric if (Tx,y) = (Ty,z) for all x,y € X
(equivalently: 7% =T on X).

It is easy to see that the formula

q(x) = (Tz,x) (1)
defines a one-to-one correspondence between the continuous quadratic forms ¢ on
X and the symmetric operators T: X — X*.

(Indeed, if ¢ is generated by a continuous bilinear form b, it is generated also by
the symmetric bilinear form % Moreover, there is a unique symmetric
bilinear form b that generates ¢; this follows from the formula
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2b(x,y) = b(x +y, v +y) — bz, z) — by, y) (2)
valid for symmetric b. The rest follows from the well-known one-to-one correspon-
dence, via the formula b(x,y) = (Tx,y), between the continuous bilinear forms b
on X x X and the operators T: X — X*.)

If (1) holds for each x € X, we say that T' generates q.
The formula (2) also implies the following

Fact 1.1. Fach continuous quadratic form q on X is everywhere Fréchet differen-
tiable. Moreover, its Fréchet derivative at x is given by ¢'(x) = 2Tx where T is
the symmetric operator that generates q.

The following theorem characterizes delta-semidefinite continuous quadratic
forms. (Recall that a continuous quadratic form is called delta-semidefinite if it
is the difference of two nonnegative continuous quadratic forms.) An operator
T: X — Y is said to be factorizable through Z if there exist operators A: X — Z
and B: Z — Y such that T'= BA.

Theorem 1.2. Let q be a continuous quadratic form on a Banach space X, and
T: X — X* be the symmetric operator that generates q. Then the following asser-
tions are equivalent:

(i) q is delta-semidefinite;

(ii) there exists a continuous quadratic form p on X, such that |q| < p;
(iii) T is factorizable through a Hilbert space.

Proof.
(791) = (i). If T' = BA where A: X — H and B: H — X* are operators,
and H is a Hilbert space, then we have

a(x) = (BAw,x) = (Aw, B2)i = Y| Az + B all}y — 1Az — B*all%

which shows that ¢ is difference of two nonnegative quadratic forms.

(1) = (#). If ¢ = p1 — pa where p; (i = 1,2) are nonnegative continuous
quadratic forms, then |¢| < p; + p2 =: p.

(#4) = (i4i). Let (ii) hold, and let S: X — X* be the symmetric operator
such that p(x) = (Sz,z). The function

[,-]: X/Ker(S) x X/Ker(S) — R, [£,n]:=(Sx,y) where z € £, y € 7,

is well-defined, bilinear, symmetric, and [£,£] > 0 for each & € X/Ker(S). More-
over, if p(z) = 0 for some x € X, then x is a minimizer for p, and hence 0 = p’(x) =
2Sx by Fact 1.1. In other words, [¢,£] = 0 implies £ = 0. Consequently, [, -] is an
inner product on X/Ker(S). Let H be the completion of the inner product space
(X/Ker(S), ['7 ])

Consider the operator J = iQ: X — H where Q: X — X/Ker(S) is the
quotient map and ¢: X/Ker(S) < H is the inclusion map. (J is continuous since
1Qzl%, = (Sz,z) < 1S - 2]]* for all 2 € X.)

If € Ker(S), then p(z) = g(x) = 0. Since p + ¢ is a nonnegative quadratic
form generated by the symmetric operator T' + S, the same argument as above
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shows that Tx 4+ Sz = 0. This proves that Ker(S) C Ker(T). Consequently, the
operator

To: X/Ker(S) — X*, To& :=Tax where z € &,

is well-defined. We claim that Ty is continuous also in the norm generated by the
inner product [-,-]. To prove this, consider £ € X/Ker(S) and y € X such that
€]l < 1and [ly]| < 1. Fixz € ¢, and denote 5 — Qy. Then [[n|% = (Sy,y) < IS]|
and |(To&, y)| < (T, y)| = § la(z +y) — q(x) — q(y)| < 5 [p(x +y) +p(z) + p(y)]
=3 (1€ +nllF + €1 + IInllF] < 5 [A+1SIV2)? +1+1IS]] -

Thus Ty has a unique extension to an operator from H into X*; let us denote
it by Ty again. Then T' = TyJ is the desired factorization through H. (]

Corollary 1.3. (a) A Banach space X has the property (D) (see Introduction) if
and only if each symmetric operator T: X — X* is factorizable through a
Hilbert space.

(b) The property (D) passes to quotients, and hence also to complemented sub-
spaces.

Proof. (a) follows immediately from Theorem 1.2. Let us show (b). Let X satisfy
(D), and let L be a closed subspace of X. Let T: X/L — (X/L)* = L* be a sym-
metric operator. Consider the operator S = iTQ: X — X* where Q: X — X/L
is the quotient map, and i: L+ — X* is the inclusion isometry. Since Q* = i, we
have (Sz,y) = (T(Qx), (Qy)) (z,y € X), which shows that S is symmetric. By
(a), S is factorizable through a Hilbert space. Now, Proposition 7.3 in [9] implies
that T factors through a Hilbert space, too. U

Operators that are factorizable through a Hilbert space were intensively
studied (the main reference is [16], see also [9]), and there exist many sufficient
conditions for factorizability of all operators between two given spaces. Thus, by
Theorem 1.2, we obtain various sufficient conditions for validity of the property
(D) (defined in Introduction); we collect them in the following theorem.

For the classical notion of modulus of smoothness, see e.g. [13]. For the notion
of type and cotype, see e.g. [13] or [9]. We shall need the following notion of second
order differentiability, studied in [2].

Definition 1.4. (a) Let f be a continuous convex function on a Banach space X .
We say that f is second order differentiable at a point xo € X if there exist
x5 € X* and a continuous quadratic form q on X such that, for eachv € X,

fzo+tv) = f(x0) + 25 (v)t + q(v)t* + o(?) ast— 0.

(b) A second order differentiable norm is a norm which is second order differen-
tiable at each nonzero point.

Remark 1.5. It follows from results in [2] that a norm || - || on X is second order
differentiable iff it is Fréchet (equivalently: Gateaux) smooth and its derivative
[I-1I": X\ {0} — X* is weak™-Gateauz differentiable.



Vol. 12 (2008)  Delta-semidefinite and Delta-convex Quadratic Forms 225

Theorem 1.6. Let X be a Banach space. Each continuous quadratic form on X is
delta-semidefinite (and hence delta-convex), provided at least one of the following
conditions is satisfied.

(a) X has type 2.

)
) X* has cotype 2, and X does not contain €1(n)’s uniformly.
) X* has cotype 2, and X is a Banach lattice.
) X = C(K) for some compact space K.
) X =L,(n) for 2 <p < oo and some positive measure f.
) X =co(I) for some set I.

) X admits a uniformly smooth renorming with modulus of smoothness of power

type 2 (i.e., ox(1) < at? for some a > 0).

(i) X has the Radon—Nikodym property and admits an equivalent second order
differentiable norm.

Proof. (a) follows from Corollary 3.6 and Proposition 3.2 in [16].

(b) see Theorem 4.1 in [16].

(c) follows from (a) by [15, Corollary 2.5].

(d) follows from Theorems 8.17 and 8.11 in [16].

) follows e.g. from (d) since C'(K)* has cotype 2 (see [16, p.34]).
) the case p < oo follows from (a) (see [13, p.73]); the case p = oo follows from

(e) (see [13, Theorem 1.b.6]).

(g) follows from (e) by Corollary 1.3(b), since ¢y(T') is a closed hyperplane in
¢(T') = C(K) where K is the one-point compactification of the discrete set I'.

(h) follows from (a) (see Theorem 1.e.16 in [13]).

(i) follows from (h) by the following reasoning. If the norm of X is second order
differentiable, then this norm is Lipschitz-smooth at each point of Sx by [2];
this implies (by [11, Lemma 2.4]) that the gradient of the norm is pointwise
Lipschitz at each point of Sx. By [7, Corollary I11.2], if X has also the RNP,
then it satisfies (h). O

Results in [19, Section 5] imply that, for each 1 < p < 2, there exists an
operator U: £, — {,- (where %—&— p% = 1) such that U is not factorizable through a
Hilbert space. Since U, constructed in [19], is also symmetric, we obtain one more
corollary to Theorem 1.2.

Corollary 1.7. The space £, fails the property (D) whenever 1 < p < 2.
(The case of p = 1 follows from Corollary 1.3(b) and from the well-known fact
that each separable Banach space is isometric to a quotient of ¢;.)

2. Delta-convex Quadratic Forms

Let X be a Banach space. Recall that a continuous function ¢: X — R is delta-
conveg if it is the difference of two continuous convex functions on X. It is easy
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to see that ¢ is delta-convex if and only if there exists a (necessarily convex) con-
tinuous function 1) on X such that both +¢ + ¥ are convex. Every such function
1 is called a control function for ¢. Denoting

A%p(z,y) =@ +y) +o(x—y) —2p(x), 2,y€X,

it is easy to see that 1 is a control function for ¢ if and only if |A2p(x,y)| <
A%)(x,y) for all z,y € X.

Since every nonnegative quadratic form is convex, each delta-semidefinite
quadratic form is delta-convex. As we shall see in Section 3, the converse is not
true in general.

In this section, we use X-valued Walsh-Paley martingales to study delta-con-
vexity of quadratic forms. We recall all needed definitions and properties to make
our exposition self-contained.

Let n > 1 be an integer, I' = {—1,1}, f: ™ — X. Then the expectation of
f is defined as Ef = 27" Znern f(m) = [ fdP, where P = P, is the uniformly
distributed probability measure on I'™.

For 0 < k < n, consider the o-algebra ¥, = {AxI'"~* : A ¢ T*}. Obviously,
a function f: I'™ — X is Yj-measurable if and only if f depends only on the first
k coordinates (in particular, all ¥j-measurable functions are constant). For this
reason, we sometimes view Xj-measurable functions on I'™ as functions on I'*.

For f: I — X and 0 < k < n, the conditional expectation of F w.r.t. ¥y, is
the Xp-measurable function E(f|Xx): I'"™ — X which has the same integral (w.r.t.
P) as f over each element of ¥j. It is easy to see that it is given by

E(-ﬂzk)(w) = fr‘n—k f(wv ) AP, _, s w e Fk

Note that E(f|X0) = Ef, E(f|X,) = f, and E(E(f|2)) = Ef.
In this paper, we consider only Walsh-Paley martingales of finite length.

Definition 2.1. Let X be a Banach space. An X-valued Walsh-Paley martingale
is any finite sequence (fo,..., fn) of X-valued functions on T™ such that fr =
E(fn|2k) for each 0 < k < n; or equivalently, each fi is Xi-measurable, and

fe(@) = 3 frs1(w, —1) + 3 fup1(w, 1)  whenever 0 < k < n and w € T*.

Given a Walsh-Paley martingale (fo, ..., fn), the corresponding martingale differ-
ences are the functions dfy, = fr — fr—1 (1 <k <n).

Remark 2.2. Let (fo,..., fn) be an X-valued Walsh-Paley martingale. The above
definition easily implies the following properties.
(a) E(dfx|X;) =0 whenever 0 < j <k <mn.
() (fo,---s fus frs--+» fn) is a Walsh-Paley martingale no matter how many
times f, is repeated.
(¢) (Tfo,...,Tfn) is a Y-valued Walsh-Paley martingale whenever T: X —'Y
is linear.
(d) If 0 < m < n and w € T'™, then the finite sequence (go,...,gn—m), where
gk = [y (@,): I — X is a Walsh-Paley martingale.
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(e) dfy(w) = %wk [fe(wiy. oy wi—1,1) = fr(wi, ... ,wg—1,—1)] whenever 1 < k <
n and w € Tk,
(f) feo1(w) £dfr(w) = felwy,. .. ,wp_ 1, *wi) whenever 1 <k <n andw € T'*.

A finite sequence (e1,...,e,) of functions on I'™ is said to be predictable if
€ is X _1-measurable for each 1 < k < n.

Lemma 2.3. Let (fo,..., fn) be an X -valued Walsh-Paley martingale.
(a) If p: X — R is a function, then B>} _ A%o(fr—1,dfx) = 2Eo(fn) —2¢(fo)-
(b) If1 <k <nandw:T™ — R is Xy_1-measurable, then E(w dfy) = 0.
(¢) If (go,- - -, 9n) is an X*-valued Walsh-Paley martingale and (e1,...,,) is a
predictable sequence of real-valued functions, then E(dfy,c;dg;) = 0 whenever

k#jandk,j€{l,...,n}.
(@) (B s [15u)!7 < 2Bl for each real p > 1.

Proof. (a) Recall that fj is constant. By Remark 2.2(f), the left-hand side equals
> / )+ GUa@n 01, —wh)) — 201 ()] dPy(w)

=23 (Bo(fi) — Ep(fi-1)) = 2Ep(fn) — 2E0(fo)-
k=1

follows easily from Remark 2.2(a).
Let, e.g., k < j. Obviously, (dfy,e;dg;) is Xj-measurable. For each fixed
w € T1 we have

E({(dfk, £5dg;)12j-1)(w) = E(df(w), €5 (w)dg;(w,-)) = (df(w), j(w)Edg;(w,-)) =0

by Remark 2.2(d),(a). Thus E(dfx,e;dg;) = E (E({dfx,€;dg;)|Xx)) = 0. The case

k > j is similar.

(d) For real-valued martingales, this is the well-known Doob’s L,-inequality (see

e.g. [22, Theorem 14.11]). In the general case, consider the Walsh-Paley martingale

(90, - -+ gn) given by g = E([| full [Ex). Then || fi]| = [E(fn]Zx)| < g and |[£a]]

gn. Hence, using the scalar case, we get (E max | fi|[?)/? < (E max g})'/?
0<k<n 0<k<n

2 (Bgn) VP = 24 (E| £l

IA I

O

Lemma 2.4. Let ¢ be a continuous real function on a Banach space X . In order that
@ 1is delta-convex it is necessary and sufficient that there is a continuous function
0: X —[0,00) such that if (fo,..., fn) is an X -valued Walsh-Paley martingale then

E> A% fuo1, dfi)| < Eolfn). (3)

k=1

Moreover, in this case, o can always be taken convex.
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Proof. Let ¢ be delta-convex with a control function . By adding a suitable affine
function, we can (and do) suppose that 1) > 0. Now Lemma 2.3(a) implies

E S [6%(fedf)l < EYCANW(frd)
= k=1

DE(f) — 20(fo)
< EG(f).

Thus (3) holds with ¢ = 2¢ (which is convex).
Conversely, if (3) holds, we may define

v(o) = 3 nt {Bo(f) - 2 3 1% (s, a0 @

where the infimum is taken over all X-valued Walsh-Paley martingales with fo = x.

Suppose z,u € X,y =+ u,z = —u and € > 0. Using Remark 2.2(b)
and the definition of v, pick X-valued Walsh-Paley martingales (fo,..., f,.) and
(90, ---,9gn) such that fo =y, go = z and

W) > g Eelfa) ~ EY IN%(fir,di)| e
k=1

2

1 1«
P(z) > *Eg(gn)_iEZ‘AQSD(Qkfladgk)l_E'
k=1

Form a new Walsh-Paley martingale (hq,...,h,+1) by setting ho = = and, for
1<k<n+1,

- v iin lf :1
hie(n1s .- 1) = Sr—1(m2 Mnt1) : m
9k:—1(772, e 717n+1) if g = —1.

Note that, for example,

EQ(hn-H) = / Q(hn-i-l) dPpi1 + / Q(hn-i-l) dPp41 = %Eg(fn) + }Eg(gn)

2
{m=1} {m=-1}
Thus
n+1
2)(z) < Eolhni1) =B |A%p(hy_1,dhy)|
k=1

= %]Eg(fn) + %EQ(gn)

1_ & 1_ &
—|A%p(x, u)| — 3 EZ |2 ( fr—1, dfi)| — 3 EZ |A%0(gr—1, dg)|
k=1 k=1

< Y(x) +P(y) + 26 — [A%p(x, u)).

Since £ > 0 was arbitrary, it follows that [A2p(x, u)| < A%)(x,u) whenever z,u €
X. Thus % is a midconvex (or Jensen convex) function which is locally bounded
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since 0 < ¢ < p/2. Consequently (see [18, p.215]), ¢ is a continuous convex
function. Thus % is a control function for . (]

Observation 2.5. For each g: I'™ — [0,00) and p > 0, we have

[ee]
> 2PP(g>2) < EgP.

j=1

2r —1

Indeed, [gPdP > / gPdP > Y 207YP [P(g > 2971) —P(g > 27)]
J=1{2i-1<g<27} 7=1

8

20=DPP(g > 27) > (1 —27P) 3 2PP(g > 279).
1 j=1

2P P(g > 2j) —
0

o0 o0

J

J
Let p > 0. Recall that a function ¢: X — R is called positively p-homoge-
neous if p(tx) = tPp(x) whenever t > 0, x € X.

Lemma 2.6. Suppose p > 1. A continuous positively p-homogeneous function
p: X — R is delta-convex if and only if there is a constant C such that for all
X -valued Walsh-Paley martingales (fo, ..., fn) we have

EY (A% fi-1,dfi)| < CE[|fulP- (5)

k=1
Proof. Assume ¢ is delta-convex. Let g be the corresponding continuous function
from Lemma 2.4. Choose r > 0 so that Cy := sup{o(z) : ||z|| < r} < co. Then

EY [A%(fr-1,dfe)l <Eo(fn) <Co  whenever [|fullos <7,
k=1

where ||g|lcc = max,cr» |g(n)| as usual. Hence, for an arbitrary Walsh-Paley mar-
tingale (fo, ..., fn), p-homogeneity implies that

E 3 1% (fuor.dfi)] < il (6)

where Cy = Cy/rP.

Now, fix any X-valued Walsh-Paley martingale (fo,. .., f,) with E|| f,[|P = 1.
(By p-homogeneity, it suffices to prove (5) for such martingales.) Let n € I'". We
define mg(n) = 0 and, for any integer r > 1,

M (n) = {0 <k <n:max{|[fu(n) + dfir (|} > 2"}

and

min M,.(n) if M.(n) # 0,
my(n) = .
n if M, (n) = 0.
For each m € {0,...,n}, the set {m, = m} belongs to ¥,, by Remark 2.2(f).

(Thus the functions m,. are so-called “stopping times”.) Hence it can be written
in the form

{m, =m}=A,,, x "™ where A, ,, CT"™.
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We have
E Y A%(fr-1,dfi)|

my_1<k<m,

=Y [ Y i) )

m=0 {my_1=m} m<k<mg,(n)

-/ ( /| = |A2¢(fk1(w7§)7dfk(w,§))dﬂ”nm(€)) AP, ().

Tn—m m<k<my(n)

The expression in parentheses can be seen as

E > [A%(gr-1(w,),dgr(w,"))], (7)
m<k<n
where
) fe(w,6) it m <k <m;(w,§),
gre(w, &) = {fm,.(w,f)(wvf) it mp(w,&) <k <n.

Since (gr(w, -))7_,, is a Walsh-Paley martingale by Remark 2.2(d), and the defini-
tion of m,. implies || fr, () (M = [| frn, o) =1 (1) +dfmm, oy () || < 27, we can majorize
the expression (7) (using (6)) by

Cillgn (@, % = Cull fam, ) (W, ) < CL2".

Thus
EY IN¢(fi-v,dfi)l = D E Y [A%(fro1,dfe)]
k=1 r=1 = m,_1<k<m,
00 n—1 o)
< Cl Z 2P Z PnL (Ar—l,m) = Ol Z 2"P P(mr—l < TL)
r=1 m=0 r=1

Now, for r > 1, Remark 2.2(f) implies that

P(mq—1 <n) <P (1max max{||fx £ dfet+1]l} > 27'71) < 2P <0mkaé< | fxll > 27'71) .

<k<n

This gives (via Observation 2.5 and Lemma 2.3(d))

n o0
E A? _4,d < Oy2P 4042 2PP or—1
;I e(fron,dfs)] < C12P+C ; (g 1fll > 277"
= 127 + Cy2rt! 22j” P(max | fill > 27)

o

22p+1

IN

p P
Ci2° +C4 % 1 Eorgnl?%(n [l fiell

< G+ E|full?) =2C2,
where C is a suitable constant depending only on p. Thus (5) holds.
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The converse follows trivially from Lemma 2.4 by putting o(z) = C||z||P. O

Corollary 2.7. Suppose p > 1. Then every positively p-homogeneous delta-convex
function ¢: X — R has a control function which is positively p-homogeneous.

Proof. The case p = 1 was proved in [20, Lemma 1.21]. Assume p > 1. By
Lemma 2.6, (3) holds with go(x) = C||z||P. By the proof of Lemma 2.4, the formula
(4) defines a positively p-homogeneous control function for ¢. O

Remark 2.8. Let us remark that natural analogues of Lemma 2.4, Lemma 2.6 and
Corollary 2.7 hold also for mappings ®: X — Y (instead of functions p: X — R),
where “delta-convez function” is replaced by “delta-convexr mapping” (as defined
in [20]) and, in the terms involving ®, the absolute value is replaced by the norm
of Y. This follows from [20, Proposition 1.13].

Definition 2.9. Let X and Y be Banach spaces. We say that a linear operator
T: X —Y is a UMD-operator if there exists a constant C > 0 such that

Bl 35—y ex Tdfel|* < CE[|fa ] (®)

whenever (fo, ..., fn) is an X-valued Walsh-Paley martingale and e1,...,&, are
numbers in {—1,1}. We say that X is a UMD-space if the identity I: X — X is
a UMD-operator.

Remark 2.10. (a) It is easy to see that a composition of two bounded linear
operators is a UMD-operator whenever at least one of them is. In particular,
if at least one of X, Y is a UMD-space, then each bounded linear operator
T: X —Y is a UMD-operator.

(b) Suppose p > 1 is a real number. Then X is a UMD-space if and only if is a
constant ¢, > 0 such that

E|Y endfill” < cp Ellfall”
k=1

whenever e, = +1 (1 <k <n)and (fo,..., fn) is a Walsh-Paley martingale.
Moreover, in this case the above inequality holds also for general (i.e. not
necessarily Walsh-Paley) martingales. (See p.67 and Lemma 7.1 in [6].)

(¢c) Every UMD-space is superreflexive. (See e.g. [17, p.222] or [1, Proposition 2].)

For us the following result, which was proved in [21], will be important. Let
us remark that a similar result for general martingales in UMD-spaces was proved
by Burkholder [5] and, as remarked in [4, p.502], his proof can be easily modified
to prove the same for UMD-operators defined using general martingales.

Fact 2.11. Let T: X — Y be a UMD-operator between Banach spaces X,Y . Then
there exists a constant C > 0 such that (8) holds whenever (fo,..., fn) is an
X -valued Walsh-Paley martingale and (e1,...,e,) is a predictable sequence of
{£1}-valued functions (i.e., each ey, is Xj_1-measurable). (See [21].)



232 N. Kalton et al. Positivity

Theorem 2.12. Let q be a continuous quadratic form on X and T: X — X* the
symmetric operator that generates q. Then q is delta-convex if and only if T is a
UMD-operator.

Proof. Let T be a UMD-operator, let (fo,..., f,) be an X-valued Walsh-Paley
martingale. Using the identity

APq(z,y) = 2q(y), 9)

we can write, for n € '™ and 1 < k < n,

IA2q(fr—1(n), dfk(n)] = 2lq(dfi(n)| = 2ex(n)q(dfi(n)) = 2e1(n)(df(n), Tdfr(n)),

where ex(n) = 1 if ¢(dfi(n)) > 0, ex(n) = —1 if ¢(dfi(n)) < 0. Observe that g
is ¥g_1-measurable by Remark 2.2(e) since ¢ is an even function; in other words,
the sequence (g1, ...,&,) is predictable. Using Lemma 2.3, we can write

n

Ekft |A2(fr1,dfi)| = 2E2<dfk,edefk>2E<dej,Zsdefk>
=1 k=1 k=1

= j=1 =

2E <fn —for ) sdefk> = 2E <fn, > sdefk>
k=1 k=1

IA

n 1/2
2(E]| fu2) /2 (En Zsﬂdmz) <2V E|ful?,

k=1

where C' is the constant from Fact 2.11.

For the converse, suppose that ¢ is delta-convex. Consider any X-valued
Walsh-Paley martingale (fy, ..., f,) with E| f,]|> = 1, and numbers ¢, € {—1,1}
(1 <k <n). It is easy to see that there exists h,,: I'™ — X such that E|h,[|*> =1
and

n 1/2 n
E <|| Zsdefk|2> <2E <hn,Zsdefk> ;
k=1

k=1

indeed, denoting g = >_;_, €, Tdf), one can put h(n) := t(n)v(n), where ¢: I —
[0,00) satisfies Et? = 1 and (E|g[?)*/? = E(t - ||g||), and v(n) € Sx is such that
lg(m)]| < 2(v(n),g(n)). Let (ho,...,h,) be the Walsh-Paley martingale given by
hy, (i-e., hy =E(hp|Xk), 1 <k <n). Then Lemma 2.6 and the identities

(x,Ty) = (1/4) (¢(z +y) —q(z —y)) and (9)
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imply
n 1/2 n
E (|| > sdefk||2> < 2E <hn,25defk> = (as above)
k=1 pr
= 2B (dhx,exTdfi) < 2B |(dhy, Tdfy)]
k=1 k=1
1 n 1 n
< 51@2 lq(d(fr. + )| + §EZ lg(d(fr. — )]
k=1 k=1

1 1
< JCE|fa+hall* + {CEllfn = hnl?

1
< SCE(fall + 1hal)* < C (Ellfall? + Ellhal?) < 2C.

Thus T is a UMD-operator. O

The following theorem is an immediate consequence of Theorem 2.12 and
Remark 2.10(a).

Theorem 2.13. Let X be a Banach space. Then every continuous quadratic form
on X 1is delta-convex if and only if every symmetric operator T : X — X* is a
UMD-operator. In particular, if X is a UMD-space, then every continuous qua-
dratic form on X 1is delta-convex.

Theorem 2.14. There exists a continuous quadratic form on €1 which is not delta-
conver.

Proof. Let J: ¢4 — lo be an isometric embedding (recall that every separable
Banach space isometrically embeds into £.,). Consider the continuous quadratic
form on ¢ = ¢4 &1 {1, given by

q($,y):<y,J$>+<J},Jy>7 95,96517

which is generated by the symmetric operator T'(z,y) = (Jy, Jx). If ¢ were delta-
convex, T would be a UMD-operator. But then J would be a UMD-operator;
consequently, ¢; would be a UMD-space. But this is false by Remark 2.10(c). O

Let us conclude with a simple but useful proposition.

Proposition 2.15. Let p > 0. Let p: X — R be a p-homogeneous function on a
Banach space X. Then ¢ is delta-convex if and only if ¢ is delta-convexr on a
convex neighborhood of the origin.

Proof. Let ¢ be delta-convex on a convex neighborhood U of the origin, and let
1: U — R be a corresponding control function. There exists § > 0 such that 1 is
bounded on dBx. A simple homogeneity argument shows that ¢ is delta-convex
on each rBx (r > 0) with a bounded control function of the form o(z) = c19(cox).
Then ¢ is delta-convex on X by [12, Theorem 16]. O
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3. Further Results and Open Problems

We shall consider the following three properties of a Banach space X, defined
already in Introduction.

(D) Each continuous quadratic form on X is delta-semidefinite.
(dc) Each continuous quadratic form on X is delta-convez.
(Cdc) Each CY' function f: X — R is delta-convez.

Recall that a function (or mapping) f is C1! if the Fréchet derivative f/(x) exits
for each z and the mapping [ is Lipschitz.

We have seen that (D) passes to quotients (Corollary 1.3). Let us observe the
same result for properties (dc) and (Cdc).

Lemma 3.1. If X is a Banach space with property (dc) (respectively, (Cdc)), then
for any closed subspace E of X, the quotient X/E has property (dc) (respectively,

(Cde)).

Proof. Let Q: X — X/FE be the quotient map and let f: X/E — R be a con-
tinuous function such that f o @ is delta-convex. We show that f is delta-convex
(which proves both assertions). Let ¢: X — R be a continuous convex function
such that ¥ + (f o Q) is convex; we can assume 1 > 0. Define ¥ X/E — R by
O(y) = inf{e(x) : Qu = y}. Then it is easy to prove that ¢) & f is convex. More-
over, the (convex) function 77/} is continuous since it is easily seen to be bounded
on a neighborhood of the origin. O

Since each continuous quadratic form is C*! (by Fact 1.1), we always have
the implications

(D) = (d¢) <= (Cdc).

As we shall see in the next theorem, no two of the above three properties are
equivalent.

Let us start with the following corollary of [10, Theorem 11]. A norm on X is
said to have modulus of convexity of power type 2 if, for some ¢ > 0, §x(g) > c-&2
whenever € € (0,2] (where dx is the usual modulus of convexity; see e.g. [13]).

Fact 3.2. Let X be a Banach space that admits a uniformly convexr renorming with
modulus of convezity of power type 2. Then X satisfies (Cdc) and hence also (dc).

By an L, (i) space we mean an infinite-dimensional space L, (€2, X, 1) where
(Q,%, 1) is a positive measure space. This class includes the spaces L,(0,1) and
¢y. For such spaces, we have the following theorem which summarizes results of
[10], [23] and of the present paper.

Theorem 3.3. Let X be an infinite-dimensional L, (1) space with 1 < p < oco.
(a) X satisfies (D) if and only if p > 2.
(b) X satisfies (Cdc) if and only if 1 < p < 2.
(¢) X satisfies (dc) if and only if p > 1.
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Proof. (a) If p > 2 then L,(p) satisfies (D) by Theorem 1.6(f). If p < 2 then
L,(p) fails (D) since it contains a complemented copy of £, which fails (D) by
Corollary 1.7.

(b) If 1 < p < 2, then the standard norm on X = L,(x) has modulus
of convexity of power type 2 (see [8, Corollary V.1.2]). By Fact 3.2, each such
space satisfies (Cde). Ly () fails (Cdce) since it fails (dc) (see (c¢) below). Now, let
2 < p < o0. For such p, M. Zeleny [23] proved that ¢, fails (Cdc); thus L, (u)
fails (Cdc), too. Finally, to see that also Lo (p) fails (Cdc), it suffices to show
that Lo (0,1) fails (Cdc); indeed, the spaces Lo (0,1) and £ are isomorphic by
[14], and Loo(u) contains a complemeted copy of £o. By [13, Corollary 2.f.5],
(€4)* = £4/3 isometrically embeds in L;(0, 1); consequently, £4 is isomorphic to a
quotient of Lo (0,1). Hence Lo (0,1) fails (Cdc) by Lemma 3.1, since we already
know that ¢4 fails (Cdc).

(¢) Li(u) fails (dc) since it contains a complemented copy of ¢; which fails
(dc) by Theorem 2.14. For p > 1, the space L,(u) satisfies (dc) since, by (a) and
(b), it satisfies (D) (if p > 2) or (Cdc) (if p < 2). Alternately one may observe
that L,(p) is a UMD-space if 1 < p < oo using Remark 2.10(b) and then apply
Theorem 2.13. O

Remark 3.4. By Theorem 3.3, (dc) # (D) and also (dc) # (Cdc). It is interest-
ing to compare the second non-implication with the following result from [10] about
vector-valued mappings: every Banach space-valued continuous quadratic mapping
on X is delta-convex if and only if every Banach space-valued C*'! mapping on X
is delta-convex.

Delta-convex functions via delta-convex curves

There is another corollary to the above results. It is connected with Problem 6
in [20]. In that paper, delta-convex mappings between Banach spaces (a gener-
alization of delta-convex functions) were defined and widely studied. We do not
state the definition here; it can be found also in [10] together with a survey of
principal results. We confine ourselves to stating an equivalent definition (see [20,
Theorem 2.3]) of a delta-convex mapping of one real variable.

Definition 3.5. Let I C R be an open interval, X be a Banach space. A mapping
¢: I — X is delta-convex on I if the right derivative ¢, (t) exists at each t € T
and the mapping ', has bounded variation on each compact subinterval of 1.

For real-valued functions, Problem 6 in [20] asks: suppose that X is a Banach
space and f: X — R is a function such that foyp is a delta-convex function on (0,1)
whenever ¢: (0,1) — X is a delta-convex mapping; is then f locally delta-conver?
The following example answers in negative this problem. (Let us remark that the
vector-valued case was solved in negative already in [10].)

Example 3.6. Let X be an infinite-dimensional L, (1) space where either p =1 or
2 < p < oo. Then there exists a continuous function f: X — R such that f is
delta-convex on no neighborhood of 0, and f o ¢ is delta-convex on (0,1) for each
delta-convex mapping ¢: (0,1) — X.
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Proof. The case p = 1. By Theorem 3.3(b), there exists a continuous quadratic
form ¢ on X such that ¢ is not delta-convex. By Proposition 2.15, ¢ is delta-convex
on no neighborhood of 0. By Proposition 14 in [10], ¢ o ¢ is delta~-convex for each
delta-convex “curve” ¢. Thus we can put f = gq.

The case 2 < p < oo follows in a similar way using [23] instead of Theorem 3.3.
Indeed, by [23], there exists a ! function g: £, — R that is not delta-convex. A
careful look at the proof in [23] shows that the function constructed therein is d.c.
on no neighborhood of 0. Consider ¢, as a complemented subspace of X = L,(u)
and extend g to a C'! function on the whole X by f = g o P where P is a
bounded linear projection of X onto ¢,. Then f has the desired property by [10,
Proposition 14] again. O

It is natural to ask the following

Problem 3.7. Does there exist a function f as in Example 3.6 for each at least two-
dimensional Banach space X 2 Or, at least, for each infinite-dimensional Banach
space X ?

Stability with respect to direct sums
Consider two Banach spaces X; and Xs. Since (X7 ® X5)* = X7 & X3, each
bounded linear operator operator T: X; @& Xo — (X1 @ X3)* can be represented

z,:; %z ) where Tj;: X; — X[ It is an

as an operator-valued matrix T = (
easy exercise to verify that:

(I) T is factorizable through a Hilbert space if and only if each Tj; is;

(IT) T is a UMD-operator if and only if each Tj; is;
(IIT) T is symmetric if and only if 7}% = T}; on X; whenever 4,5 € {1,2} (equiv-

alently, 11 and Ty are symmetric and T35 = Th on X7).

Hence we have the following consequence of Corollary 1.3 and Theorem 2.12.
(Given Banach spaces X and Y, we denote by £(X,Y") the set of all bounded
linear operators from X into Y'.)

Corollary 3.8. Let X1 and X5 be Banach spaces. Then:
(a) X1 @® Xy has the property (D) if and only if X1 and Xa have (D) and every
element of L(X1,X3) is factorizable through a Hilbert space;
(b) X1 @ Xy has the property (dc) if and only if X1 and Xa have (dc) and every
element of L(X1,X3) is a UMD-operator.
In particular, if X is isomorphic to X? then
(a’) X has the property (D) if and only if every element of L(X, X™*) is factoriz-
able through a Hilbert space;
(b)) X has the property (dc) if and only if every element of L(X,X™*) is a
UMD-operator.

The following Corollary is immediate using Remark 2.10(a) for part (b).
Corollary 3.9. Let X be a Banach space.
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(a) If X satisfies (D) and H is a Hilbert space, then X ® H satisfies (D).
(b) If X satisfies (dc) and U is a UMD-space, then X @ U satisfies (dc).

Observation 3.10. The adjoint T* is a UMD-operator if and only if T is a
UMD-operator. In particular, X is a UMD-space if and only if X* is.
To see this, note that T: X — Y is a UMD-operator if and only if the operators

Tpe = ngT(Ek,X — By 1x): Lo(T™, X) — Ly(T™,Y), neN, eec{-1,1}",
k=1
are equi-bounded, where Ej, x :=E(-|X;): L2(T'™, X) — Lo(I'™, X). But then also
the corresponding adjoints are equi-bounded. Moreover, it is easy to see that
n n
T, .= Z€k(Ek,X* —Ep1.x:)T" = Z8kT*(Ek,Y* —Ep_1,y+)
k=1 k=1

which means that 7™ is a UMD-operator. The reverse implication follows easily
from this one.

Proposition 3.11. Let X be a Banach space. Let @ be the continuous quadratic
form on X ®& X*, given by Q(x,x*) = x*(x). Then the following three assertions
are equivalent:
(i) X @& X* satisfies (D);
(ii) Q is delta-semidefinite;
(iii) X s isomorphic to a Hilbert space.
And also the following three assertions are equivalent:
(i) X ® X* satisfies (dc);
(ii") Q is delta-convex;
(iii") X is a UMD-space.

Proof. The implications (iii)=-(i)=-(ii) are obvious. Assume (ii). Since @ is gener-
ated by the symmetric operator T: X & X* — X* @ X**, T(z,z*) = %(m*,x), it
follows from Theorem 1.2 that the identity I: X — X factors through a Hilbert
space. It is easy to see that this implies (iii). (Indeed, if I = BA is a factorization
through a Hilbert space H, then AB is a bounded linear projection onto a closed
subspace Hy = A(X) of H. Then A is a linear isomorphism between X and H.)

The implication (i’)=-(ii’) is obvious. If (ii’) holds, then (as above, via Theo-
rem 2.12) the identity I: X — X is a UMD-operator, which gives (iii’). Finally, if
(iii”) holds, then X @ X* is a UMD-space (indeed, it suffices to apply (IT) before
Corollary 3.8 to the identity operator of X & X*, taking into account Observa-
tion 3.10). Hence (i) holds by Theorem 2.13. O

As far as we know, the following question is open.

Problem 3.12. Is the property (D) stable with respect to making direct sums of
two spaces? Equivalently, if Banach spaces X1 and Xo have property (D), does it
imply that each S € L(X1,X3) is factorizable through a Hilbert space?
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We conjecture that the answer is negative, but we do not know any counter-
example. However, the following observation shows that a possible counterexample
cannot be found by using only spaces provided by Theorem 1.6.

Observation 3.13. Let each of given two Banach spaces X1 and Xo satisfy at least
one of the conditions (a)-(i) in Theorem 1.6. Then X1 ® X2 has (D).

Proof. By Corollary 3.8, it suffices to show that every operator S € £(X;, X3)
factors through a Hilbert space. By the proof of Theorem 1.6, each of the spaces
X; (i =1,2) has at least one of the following three properties:

() X; has type 2;

(6) X} has cotype 2, and X; has the approximation property;

(v) X has cotype 2, and X, is a Banach lattice.
First observe that this implies that X has cotype 2 (see e.g. [16, Proposition 3.2]).
Now, if X satisfies («), apply [16, Corollary 3.6]; if X satisfies (3), apply [16,
Theorem 4.1]; if X; satisfies (), apply [16, Theorems 8.17 and 8.11]. O

Note that Proposition 3.11 implies that Problem 3.12 will have a negative
answer once the following probm is solved in negative.

Problem 3.14. Let X and X* satisfy (D). Does it imply that X is isomorphic to
a Hilbert space?

For the property (dc) we have the following theorem.
Theorem 3.15. The property (dc) is not stable under making direct sums.

Proof. By [3], there exists a Banach lattice X such that X is not a UMD-space
and X satisfies an upper-3 estimate and a lower-4 estimate (see [13] for defini-
tions). By [13, Theorem 1.f.7], X is 2-convex and 5-concave. Then X admits a
uniformly smooth renorming with modulus of smoothness of power type 2 by [13,
Theorem 1.f.1], which implies that X has (D) (see Theorem 1.6(h)), and hence
(dc). By duality (see [13, p.63]), X* admits a uniformly convex renorming with
modulus of convexity of power type 2; consequently, X* has (dc) by Fact 3.2. By
Proposition 3.11, X & X* fails (dc) since X is not a UMD-space. O
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