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1. Introduction
In [16] the author proved a theorem equivalent to the statement that a
finitely additive measure defined on a cr-algebra SP and taking values
in a complete metric separable additive group O is countably additive
provided it is countably additive for some weaker Hausdorff group
topology on 0. This generalized to abelian groups the well-known
Orlicz-Pettis theorem (Dunford and Schwartz, [9], p. 318). It was then
natural to investigate whether any similar result was available for
so-called exhaustive or strongly bounded measures, which instead of
being countably additive simply have the property that whenever (Sn)
is a sequence of disjoint sets then fx(Sn) -» 0. In the context of locally
convex spaces, such a result is available (Diestel, [4]) and is a close
relative of a theorem due to Grothendieck ([13]) that every bounded
linear operator T.l^^-X, where X is a complete separable locally
convex space, is weakly compact.

The solution of this problem is realized in Theorem 7. However, the
course of the proof leads us rather away from the original setting as it
requires the definition of a topology, the intrinsic topology (see §3),
which has significance in any lattice-ordered abelian group or more
generally in a group with the Riesz interpolation property. Therefore
we have prefaced the main theorem with a study of this topology in a
very general setting (§§3 and 4). In particular, we see that, in certain
circumstances, the topological completion of a group in its intrinsic
topology is also an order-completion.

The main substance of the paper, however, stems from Theorem 2 in § 5,
where it is shown that in a a-complete group the intrinsic topology has
some properties reminiscent of the Baire category theorem; this is in
fact a generalization of a theorem of Phillips ([21]) and involves no
new techniques. These properties lead in § 6 to the closed graph theorem
for ff-complete Riesz groups and the applications of this in § 7 solve the
problem under consideration.

Finally, in §8 we show the relevance of the intrinsic topology to
attempts to generalize the Riesz representation theorem.
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The intrinsic topology approach to measure theory is very closely
related to the approach of Drewnowski ([6]) using Frechet-Nikodym
topologies on rings of sets. However, we use a topology on the group of
integer-valued measurable functions rather than the algebra of sets itself.

2. Preliminaries

Throughout this paper all groups are abelian and written additively.
Let 0 be a partially ordered groupf (Fuchs, [9], provides background
on such groups); then we say that G is a Riesz group if whenever
a,b,c,d E G such that a < c, b ^ c, a ^ d, and b ^ d (or (a,b ^ c,d)),
then there exists g e G with a,b ^ g < c,d (the Riesz interpolation
property). The reader may refer to Fuchs ([10]) or Jameson ([15])
for the study of the algebraic properties of Riesz groups; particularly
important are the equivalent formulations of the property ([12], p. 14).

A special case of a Riesz group is a lattice group, also called an J-group
([11], p. 66), in which there is a supremum av6 and an infimum a/\b
of any two elements. In this case we use the notation

\a\ =

We say that a Riesz group is a-complete if every monotone increasing
sequence (an) which is bounded above has a supremum, and order-complete
if every bounded monotone increasing net has a supremum (an order-
complete Riesz group is automatically a lattice group).

A quasi-norm 77 on an abelian group G is a map rj: G -> R+ such that

*?(0) = 0,

rj(a + b)^ r)(a) + i)(b) {a, b e G),

-q{a) = 7)(-a) (aeO).

Any group topology on G may be induced by a family of quasi-norms.
We say that a subset B of G is bounded if

suprj(b) < 00
beB

whenever ^ is a continuous quasi-norm on G. HG has a given quasi-norm
then we may also refer to metrically bounded sets on which the given
quasi-norm is bounded.

If G is a lattice group then a subset V of G is solid if a e V and \x\ ^ | a I
imply tha t x e V. If G is a topological lattice group which has a base
of solid neighbourhoods of zero then G is called locally solid, and
([15], p . 151) the lattice operations are uniformly continuous on G.

t We shall always assume that 0 is positively generated (see Lemma 3).
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A subset V of G is called order-convex if a, b e V and a ^ x ^ b imply
x G V, and an order-ideal if it is also directed (that is, given a, b e F,
there exists c e V with c ^ a, c ^ 6). For details, again see [11].

3. A topology for Riesz groups
Suppose G is a Riesz group; we shall say that a test sequence is a sequence

(an) such that
(i) < U a B ( » = l , 2 , . . . ) ,

(ii) t he re exists b e G w i th Tn=iai ^b (n = 1,2,...).

We shall also write an ->-> 0 if an = bn — cn, where both (bn) and (cn)
are test sequences.

LEMMA 1. Suppose r) is a quasi-norm on G; then the following are
equivalent:

(i) 7] is bounded on every order-interval;
(ii) 7) is bounded on every test sequence;

(iii) 7] is bounded on any bounded monotone increasing sequence;
(iv) if an ->->• 0 then sup?7(an) < oo.

n

Proof. The implications (ii) o (iii) o (iv) are easy and we omit the
details. Clearly also (i) => (ii).

(ii) => (i) (cf. [1], p. 856). It is enough to show that if a e G with a ^ 0
then r] is bounded on [0, a]. For a e G with a ^ O w e define

7)*(a) = sup?7(c).

Now suppose a = x + y and c < a. By the Riesz decomposition property
c = cx + c2, where 0 ^ cx ^ x and 0 ^ c2 ^ y. Hence

n v
and therefore

r7*(a)^*(z)+ ,?%). (1)
Now suppose 7]*(a0) = oo; we construct a sequence (an: n = 1,2,...)

such that

(a) 0 ^ «„<«„_! (w=l ,2 , . . . ) ,

08) *?*K) = oo,

(y) ^ K ) >w+iy(an_x).
For given an - 1 satisfying (a), (/?), and (y), we may choose x (0 ^ x ^ a>n-\)

such that
T](X) ^ n + 27)(an_1).

Then if 7)*{x) = oo, let an = x; otherwise by (1) r)*{an_x — x) = oo and we
let an = an_x — x. In either case, (a), (j8), and (y) are satisfied. Now if
cn = an-\-an (w = 1, 2,...) then cn ^ 0 and JX-ici = ao~a»i ^ ao5

 a n d S(>
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(cn) is a test sequence. Clearly rj(cn) ^ n and so we have a contradiction
to (ii).

The conditions of Lemma 1 are not 'topological', for any quasi-norm
is equivalent to a bounded quasi-norm. However, we can introduce a
topological condition thus: a quasi-norm 77 is called limiting if for every
test sequence {an) we have \imr)(an) = 0. This means that in the topology

ra-»oo

induced by 77 every test sequence is null.

LEMMA 2. Let G be a Riesz group and suppose rj is a quasi-norm on G;
the following are equivalent:

(i) rj is limiting;
(ii) any bounded monotone increasing sequence has the rj-Cauchy property;

(iii) any bounded monotone increasing net has the rj-Cauchy property;
(iv) if an -?~» 0 then, given e > 0, there exists an integer m such that for

any finite subset F of {m+ l,m + 2,...} we have r](Yii€F
ai) ^ E-

Proof, (i) => (iv). If (iv) fails then for some e > 0 and some sequence
an -*-> 0 we may construct an increasing sequence (mn; n = 1, 2,...) and
a sequence (Fn) of finite subsets of integers with Fn £ {mn + l, '.-,mn+1}
such that v)(TneFnai) > e. (The construction is a standard induction
argument.) Suppose ai — bj — Cj, where (&3) and (Cj) are test sequences;

then S i e ^ ^ i = 2,ieFn
bi-I>UFnCi a n d b o t h (TueF^i) a n d (2>ieF»CJ a I e

test sequences. We quickly obtain a contradiction.
(iv) => (ii). This is immediate, for if an is bounded monotone and

increasing then an+1 — an ->-> 0.
(ii) => (iii). Suppose {aa) is bounded monotone and increasing but

does not have the 77-Cauchy property. Then, for some e > 0 and anj^ j3,
there exists a ^ /? with ^(a^ — afi) ^ e. Hence we may construct an
increasing sequence (an) such that ^(a^ — attn_1) ^ e. But (a^) must be
-jy-Cauchy by (ii), and we have a contradiction.

(iii) => (i). This is immediate.

Now we are ready to define the intrinsic topology on G. This is the
topology induced by the family of all limiting quasi-norms; we denote
it by A. We collect together some elementary remarks in

PROPOSITION 1. (i) A is the finest topology on G such that every bounded
monotone net is a Cauchy net.

(ii) A quasi-norm rj is X-continuous if and only if it is limiting.

Given a quasi-norm rj which is bounded on every test sequence we can
define a new quasi-norm 1771 as follows: let

rj*(a) = sup{rj(a;): 0 ^ x ^ a} (a ^ 0)
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and define

The fact that 177 J is a quasi-norm follows from (1) without difficulty. We
also have \rj \ (a) = r)*(a) for a ^ 0.

LEMMA 3. (i) r)(x) ^ 21 rj \ (x) (x e G).

(ii) If 7) is limiting then \rj\is limiting.

Proof, (i) Suppose — b^x^b, then by the Riesz property x = y — z,
where 0 ^ y ^ 6, 0 ^ z ^b. Hence r)(x) ^ r)(y) + t](z) ^ 2rj*(b).

As this is true for all such b,

(ii) If (an) is a test sequence then |?7|(an) = r)*(an), and so we may
choose bn such that 0 ^ bn ^ an and r)(bn) ^ ^r)*(an). Then (bn) is also a
test sequence and so r}(bn) ->• 0; therefore | -171 (an) -»• 0.

We shall call a quasi-norm solid if

rj(x) = i n f^a ) : — a ^ x ^ a}.

Lemma 3 implies that A may be determined by a family of solid
quasi-norms, and so has a base of neighbourhoods V such that if b e V
and —b^a^b then a e V. If G is a lattice, a solid quasi-norm 7} will
satisfy rj(x) = r)(\x\) and (G,A) is locally solid. Thus the lattice opera-
tions are continuous, and the positive cone is closed in A.

We do not know any reasonable conditions to ensure that A is a
Hausdorff topology. In general, the closure of {0} in (G, A), GQ, say, is
an order-convex subgroup of G, so that G/Go is a partially ordered group
under the natural ordering. If, in addition, G is a lattice then Go is an
order-ideal (that is, Go is directed—because if a e Go then | a | e Go); in
this case G/GQ is a lattice. In general, however, Go fails to be an order-
ideal and so we cannot deduce that G/Go is even a Riesz group ([10],
Proposition 5.3). Even in the lattice case it does not appear obvious that
the induced Hausdorff topology on G/Go is the intrinsic topology on G/Go.

We conclude the section with a criterion for continuity of group
homomorphisms in the intrinsic topology. Let H be an abelian topological
group; we say that a group homomorphism a: G -> H, where G is a Riesz
group, is exhaustive (see §7) if whenever (an) is a test sequence then
<xan -» 0.

PROPOSITION 2. a is exhaustive if and only if a. is continuous for the
intrinsic topology on G.

Proof. Let ^ be a continuous quasi-norm on H and suppose a is
exhaustive. For any test sequence (an), r)(a.an) -> 0 so that rjooc is limiting,
5388.3.28 I
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that is, a is continuous on (G,X). Conversely, if a is continuous then,
since an -> 0 in {G,\), ocan -> 0, that is, a is exhaustive.

COROLLARY. Let G and H be Riesz groups and let a: G -> Hbea positive
homomorphism. Then a is continuous for the intrinsic topologies.

Proof. If (an) is a test sequence then

£ a 4 < 6 {n= 1,2,...),

so that

and therefore {<xan) is a test sequence. Hence a is exhaustive.

4. The Fatou topology for a a-complete Riesz group
Suppose now that G is a a-complete Riesz group; that is, if (an) is a

test sequence then S"=i an = suP(Zn=i an) exists in G. Then we say a
k

quasi-norm 77 on G is a Fatou quasi-norm if rj is limiting and whenever
(an) is a test sequence then

\n=l I n=l

(that is, 7) is countably sub-additive).
We write an\a if (an) is a monotone increasing sequence whose

supremum is a.

LEMMA 4. The following are equivalent:
(i) r) is a Fatou quasi-norm;

(ii) 7) is limiting and whenever 0 ^ an\a then rj(a) ̂  suipr)(an);
n

(iii) if an\a then r)(a-an) -> 0.

Proof, (i) => (iii). If an\a, let cn = an+1 — an. Then (cn) is a test
sequence and Yt%=\cn — Q> — Q>\- By Lemma 2(iv) for e > 0, we can select
a sequence (mn) of increasing positive integers such that for any subset F
of {mn+l , . . . ,mn + 1}

S c4) < e/2».
ieF /

Now for & > m1}

00 00

i=/c n=l i
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where Fn = {j ^ k\mn+ 1 ^ j ^ mn} and (Si6Fn
c i) *s a ^es* sequence.

Therefore

( 00 \ 00

i=k I n=X
that is, r)(a — ak) ^ £ for k ^ mx. Therefore ^(a —an) -> 0.

(iii) => (ii).

lim sup rj(an) + lim sup r)(a — an)

(ii) => (i). If (an) is a test sequence,

( oo \ ( k \ k

2«n < sup^ 5 > J ^ sup S
n=l / A; \n=l / A: n=

We define the Fatou topology y on 0 in the obvious way as the topology
induced by all Fatou quasi-norms. We have immediately:

PROPOSITION 3. y is the finest topology on G such that every bounded
increasing sequence converges to its supremum, and y is weaker than A.

In the remainder of this section we show that every lattice group G in
which the intrinsic topology is a Hausdorif topology may be completed
to an order-complete lattice group; and then (G,A) can be embedded
densely in a a-complete lattice group Gff with its Fatou topology.

If (G, A) has the Hausdorff property then let (G, A) be its completion;
we identify G as a dense subgroup of G. Then we define the positive
cone P in G as the closure of the positive cone P in G; thus G is partially
ordered. Since G is a lattice group, P is A-closed in G and therefore the
partial order in G extends the partial order on G.

THEOREM 1. G is an order-complete lattice group.

Proof. By Lemma 3 and [15], p. 151, the lattice operations are uniformly
continuous on (G, A) and therefore extend to continuous operations on G;
it is a matter of trivial verification tha t these operations are the lattice
operations induced by the partial ordering in G. Thus G is a lattice group.

Now any limiting solid quasi-norm is also solid when extended to G
as then (a: — a ^ x ^ a) converges to (2x)+ — x = 2x+ — x = \x\( [11], p . 75).
We now demonstrate that the extended quasi-norm is also limiting. For
suppose an e G and an f with an ^ 0 for all n. Suppose rj is a solid
continuous quasi-norm on G and that £ > 0. We select xn e G with xn ^ 0
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a n d r j ( x n - a n ) ^ e/2n+2. L e t y n = x1w...vxn. Now

Vn v ««+i - a»+i = (y» - «»+i) v (»n+i - an+1)

^\yn-an\ + \
and

Vn v ^ n + l ~~ an+l ^ ^ n + l ~~

Therefore
l2/»v^n+1-an+ll < l*»+l-an+

and so
i(yn+i-^n+i) ^

Hence

Now yw e Ĝ  is increasing and yn ^ 0. Hence, for large enough w, and
m,p > n,

v(ym-yP) < &-
Then, for m,p ^ n,

r){am-ap) ^ ^e + ^e + ^e = e,
that is, (an) has the ^-Cauchy property.

Thus every bounded monotone sequence in {G,X) has the Cauchy
property, and therefore, by Lemma 2, so has every bounded monotone net.
However, (G, A) is complete and therefore if xa is an increasing bounded
set then xa -> x in G. Then x ̂  xa for all a, and if y ^ xK for all a then
y — x^-^y — x^O, that is, y ̂  x; thus x = sup(#a). As G is a lattice, it
follows that G is order-complete.

COROLLAHY. Suppose G is a lattice group with a Hausdorff intrinsic
topology; then (G, A) may be embedded as a dense subgroup of a a-complete
lattice group Ga with its Fatou topology.

Proof. Embed G in its completion G and let Ga be the smallest subset
of G containing G, which is stable under convergence of monotone
sequences. For x e Q? let Hx = {y: y e G^^ + y e G*}, then if x e G,
Hx 3 G and is also stable under convergence of monotone sequences, so
that Hx = G°.

In general, therefore, if x e Gv then HX^G and so Hx = Gff. Therefore
Gff is stable under addition; but clearly —G^^G and so — G° 2 G*, so
that Ga is a subgroup of G. A similar argument shows that Ga is a lattice
and therefore a a-complete lattice.
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Now let 7] be a Fatou quasi-norm on G*; then rj on G is limiting and so
has a unique continuous extension to G, rj' say. But {x: TJ(X) = r)'(x)} is
stable under monotone convergence of sequences, so 17 = t\ on Ga\ clearly
any A-continuous quasi-norm must be Fatou on Ga, and hence the corollary
follows.

5. 'Category' theorems in a-complete lattice groups
The next theorem is a modification of a celebrated result of Phillips

([21]); indeed the method of proof also stems from Phillips. We call it a
'category' theorem as it has a resemblance to the Baire category theorem
for complete metric spaces.

THEOREM 2. Let G be a a-complete Riesz group, and let (Cn) be an
increasing sequence of subsets Cn of G containing 0 and such that (J Cn = G.
Suppose (an) is a test sequence; then, for some m, ive have {an} c= Cm — Cm

(closure in the intrinsic topology).

Proof. If T = (Tn) is a subsequence of N, we denote by 2 i e r a

order-sum sup2*Li%v m @ (^ ^s ^-complete).
m

Now suppose the theorem false; then we may determine for each n
a A-neighbourhood Vn of 0 such that {an} $ Gn - Gn + Vn - Vn. We may
further suppose that each Vn is symmetric and has the property that if
0 ^ a ^ b and b e Vn then a e Vn (cf. Lemma 3). Now we select two
increasing sequences (p(n)) and (q(n)) such that

(ii) if F is a finite subset of {p(n),p(n) + 1,...} then TneF
ai G ^(n-i)5

(hi) if F c {1, 2, ...,p(n-l)}, Sie*«i e Oaln).
First, we select p(l) and q(l) so that (i) holds; next suppose p(n— 1)
and q(n— 1) have been chosen. Now by Lemma 2, we determine
m ^ p(n-l) such that XieF

ai e ^(n-i) f ° r F £ {m + l,m + 2,...}. As the
set {1,2, ...,m} is finite, there exists q(n) such that JZiiepai e Cqin) for
F c: (1, 2, ...,m}. Next, choose p(n) so that (i) holds; certainly p(n) > m
and so (ii) also holds.

Now let Fo = (p(l),p(2),...); we shall next determine a sequence (Fn)
of subsequences of N so that

(iv) Yn is a subsequence of Tn_1 (n ^ 1),
(v) S i e r ^ i S Vqln) {n> 1).

Suppose F^.j has been determined; then let rw_x = UA?=IAA:> where (A&)
is a sequence of disjoint subsequences of rn_v Then
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and so Ttiesk
ai *s a *es^ sequence. Hence for some m we have

S «< e TJ(n).
l G A m

Now let F n = Am for this choice of m.
The next stage is to define II = (n(ri)) as the sequence (Tnn) of the

nth term of each Fn (clearly II is an increasing sequence). Suppose
p(m) e II; in fact let p(m) = 7r(r), where r ^ m (obviously). Then we
have, if x =

r—1 m oo

X = 2 X « > + «„<»»> + S «*«> + S
•i=l i=r+l •i=7Ji+l

Now by (iii)
r - l

by (ii)

and

and so

S «ffK) G Fg(m) (for
i=r+l

i=m+l ieVm

S «w(i) e TJ(m, by (v).

Combining these remarks, we obtain

ap(m) E X~ C

This result is true for infinitely many m, and as ap{m) $ Cq{m) — Cq{m) + 2Vq{m)

this means that x $ ^q(m) infinitely often, which contradicts our
assumptions.

COROLLARY. Let y be a X-lower-semi-continuous quasi-norm on G; then
r) is bounded on any order-interval.

Proof. Let Cm = {a: rj(a) ̂  \m) (m = 1, 2,...); then (J Cm - G and so,
by Theorem 2, for any test sequence (an) there exists ra0 such that
{an} cz Cmo — Gmo <^{a: r)(a) ^ m0} since rj is lower-semi-continuous. There-
fore supi7(an) < oo, and we apply Lemma 1.

The topology induced by all A-lower-semi-continuous quasi-norms is
the analogue of the order-bound topology in locally convex vector lattice
theory. I t may, therefore, be of some interest in itself.
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THEOREM 3. Suppose G is a a-complete Riesz group, and H an abelian
topological group.

(i) Suppose (c^: i e / ) is a collection of exhaustive homomorphisms
aii: G -> H which are pointwise bounded; then the c^ are uniformly bounded
on order-intervals.

(ii) Suppose (an: n = 1,2,...) is a sequence of exhaustive homomorphisms
which converge pointwise to a: G -> H. Then a is exhaustive, and the
convergence is uniform on any test sequence.

Proof, (i) Suppose 77 is a continuous quasi-norm on H and let
fj(x) = sup 17(0̂ 3;) on G. r\ is A-lower-semicontinuous and therefore

iel

bounded on order-intervals by the corollary to Theorem 2.
(ii) Again suppose 77 is a continuous quasi-norm on H and e > 0. Let

Gm = {x £ G: r)(ocpx — otgX) ^ £e, p ^ q ^ m}. Then \JCm = G, and hence,
if (an) is a test sequence then for some k, we have {an} c: Ck — Ck. If
# G Ck — Ck, then ^(a^rc — a ^ ) ^ e (#> ^ # ^ k); hence this is also true for
each an. Therefore ocnam ->• ocam uniformly in m, and

lim aam = lim lim ocnam = 0,
m-»oo n-»oo m-*co

that is, a is exhaustive.

6. The closed graph theorem
THEOREM 4. Let G be a a-complete Riesz group and let H be a complete

metric separable abelian group. Suppose a: G -> H is a homomorphism
with closed graph in (G, A) x H. Then a: (G,X) -> H is continuous {that is,
a is exhaustive).

Proof. We use the closed graph theorem stated in [17], p. 213,
Example R. According to this we require only to show that a is almost
continuous, that is, that V is a neighbourhood of 0 in H then the closure
of a~a(F) is a neighbourhood of 0 in (G, A). Let 77 be a continuous quasi-
norm on H and let Ve = {x: rj(x) ̂  e}, Ue = a~1(I^). We define a quasi-norm
rj on G by _

rj(x) = inf{0: x e Ud}.

As a(G) c H is separable, we can find, for e > 0, xn e G with

n=l

that is,
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Let

By Theorem 2, if (an) is a test sequence then, for some p , {a7l} e Cp — Cp.
However,

CP~CP= U {j{xi-xi + Uu-Uil
1 = 1 3 = 1

^ U UK-* , + %}•
i= l 3=1

Therefore {an} c (J£=1 \JV=x{xi - a;,- + C/J, that is, {»„} is 77-precompact.
Now suppose liminf^(an) > 0, so that we may find a subsequence (cn)

with rj{cn) ^ 38 > 0; we may suppose this subsequence to have the
•jj-Cauchy property as {an} is rj-precompact. Hence, for some r and all
s ^ r, we have rj{cs — cr) ^ 8. Therefore cs — cr e t/^ for all s ^ r and, as
cs -» 0 in A, we have cr G TJn, that is, ^(cr) ^ 28 < 38, contrary to assump-
tion. Therefore rj{an) -> 0 and rj is limiting. Hence, for arbitrary e > 0,
we have Ue 2 {a; i?(a) < ^e}, which is a A-neighbourhood of zero, and a
is almost continuous.

COROLLARY. Under the hypotheses of Theorem 4, suppose a: {G,y) -> H
has closed graph. Then a: (G,y) -*• H is continuous.

Proof. By Theorem 4, a: (G,\) -> H is continuous, and so if an f a
in G* then aan is Cauchy in H. Then by the closed graph assumption,
<xan -^ ocain H and it quickly follows that a is Fatou-continuous.

THEOREM 5. Let G be a a-complete lattice group in which the intrinsic
topology is a Hausdorff topology. Suppose r is a locally solid separable
complete metric group topology on G. Then

(i) T coincides with the Fatou topology and the intrinsic topology,
(ii) G is order-complete.

Proof, (i) Let 6 be a solid quasi-norm determining the topology T.
Then suppose 9(xn) < 2~n for a sequence (xn); let an = \xn\ and then
6(an) ^ 2~n. Now Yia

n converges in (G,r), to b say; as the positive cone
is r-closed (G is a lattice group; see [15], p. 150) it follows that
b ^ 2£=iai (n = 1,2,...). Hence (an) is a test sequence and so an -> 0
in (G, A); but A is also locally solid and so xn -> 0 in A. Hence the identity
map i: (G, T) -> (G, A) is continuous; but by the closed graph theorem
the inverse is also continuous, that is, A = T. However, if (an) is a test
sequence, then, as T is complete, £ a n converges in (G} r), to b say, and
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b > ElU^i (n = 1, 2,...). If c = sup2?=1a,£ then c-^=1ai -> c-b in T
n

and therefore c ^ b; hence c = b and so T is weaker than the Fatou
topology y, that is, A = T = y.

Part (ii) follows from Theorem 1.

7. Applications to group-valued measures
Let y be a a-algebra of subsets of a set T, and H be an (abelian)

topological group. By an H-valued measure on £f we mean a finitely
additive map /u,: Sf -> H. We shall say fx is exhaustive if whenever (JS/n)
is a sequence of mutually disjoint sets in S? then jx{En) -> 0 (Labuda, [18],
and Drewnowski, [6]); in the case when H is a Banach space such a
measure is often called strongly bounded (Rickart, [23], and Diestel, [4]).

We construct for SP a a-complete lattice group T{Sf)\ T(S^) consists
of all bounded Z-valued functions on T which are ^-measurable. T(S^)
consists only of simple functions and is a a-complete lattice group. Given
an H-valued measure /x: S? ->• H, we can determine a homomorphism

\t=l

where x(S) is the characteristic function of S E 5? and ^ e Z.

PROPOSITION 5. fx is exhaustive if and only if <xfl is exhaustive.

Proof. Suppose /x is exhaustive and xn e T(S^) is an increasing sequence
with 0 ^xn^x. Let maxx{t) = M and define 8™ = {teT: xn(t) ^ k}.

teT

Then S^ f in S? for each k and so

that is,

Therefore
M

k=l

that is,
\im<xfl(xn+1-xn) = 0,

and hence a/t is exhaustive.
Now the results of §§ 5 and 6 apply immediately in this setting.
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THEOREM 6. (i) Let (^ : i e I) be a collection of exhaustive H-valued
measures which arepointwise bounded; then (fii: i e I) is uniformly bounded
on Sf. If H is quasi-normed, the same statement is valid for metric
boundedness.

(ii) (Vitali-Hahn-Saks.) Suppose (pn) is a sequence of exhaustive
H-valued measures converging to a measure fj, on each S e S?. Then /x is
exhaustive and the convergence is uniform on any disjoint sequence in Sf'.

Proof. See Theorem 3.
Here (i) is due to Drewnowski ([7]); (ii) is due to Drewnowski and

Labuda ([18]), and for vector-valued measures to Brooks and Jewett ([3]).

THEOREM 7. Let {H,T) be a complete metric separable (abelian) group,
and suppose p is a Hausdorff group topology on H with p ^ r. If SP is a
a-algebra and /x: S? -» H is a p-exhaustive measure then /x is r-exhaustive.

Proof, otp-. T(S?) -> H is A — p continuous and therefore, by Theorem 4,
X — T continuous, and the result follows.

COROLLARY 1. Let X be a separable complete metric topological vector
space with a Hausdorff weak topology. Then a weakly bounded vector
measure fi: £? -> X is exhaustive.

Proof. Clearly /x is weakly exhaustive. If X is a separable Banach
space, this result is due to Diestel ([4]), who obtains it (essentially) from
a theorem of Grothendieck that a bounded linear operator from l^ to X
is weakly compact. If X is a complete metric topological vector space
with a Schauder basis then Corollary 1 could be obtained from
Theorem 6(ii).

COROLLARY 2. // , in Theorem 1, p. is p-countably additive then /x is also
r-countably additive.

This result is proved in [16] by a rather different approach.

THEOREM 8. Let (H, p)bea Hausdorff topological group and let\i\ Sf -> H
be a H-valued exhaustive measure. Suppose r ^ p is a group topology on H
with a base of p-closed neighbourhoods of 0 and such that (H, r) is separable.
Then /x is r-exhaustive.

We omit the proof as a similar argument is employed in [16] to prove
a countably additive version of Theorem 8.

We conclude this section by pointing out an application of the
CT-completeness of T{Sf) to the structure of the Banach space B(S?) of
all bounded real-valued ^-measurable functions on T. Let r R ( ^ ) be
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the linear span of Y{Sf), consisting of the simple functions in B{SP).
The following result is equivalent to a theorem of Seever ([24]) or
Dieudonne* ([5]); see also [2].

PROPOSITION 6. TR{Sf) is a barrelled subspace ofB{$f).

Proof. Let 77 be a lower-semi continuous (l.s.c.) semi-norm on VR(S^)',
then 7] is l.s.c. with respect to the weak topology. Hence, restricted to
T(y), 77 is l.s.c. with respect to the intrinsic topology (any test sequence
tends to zero weakly). Therefore, by the Corollary to Theorem 2,

sup T)(X) < 00.

As 7] is a semi-norm this extends to the convex hull of {x e T(Sf): \\x\\ ^ 1}
which is the set {x e TR(S^): \\x\\ < 1}. Hence 77 is bounded on the unit
ball of FR(y) and is norm-continuous.

8. The Biesz representation theorem
Suppose now that T is a compact Hausdorff space and that S? is the

a-algebra of Borel subsets of T. Let B{T) denote the space of all bounded
real-valued Borel functions on T; then B(T) is a a-complete vector lattice.
We shall call a linear map *F: B(T) -> X, where X is a topological vector
space, an X-valued integral if it is Fatou-continuous; it is easy to show
that Y is an integral if and only if the measure fi(8) = YixiS)) is countably
additive on £P, and \F is bounded.

Now let L be the subset of l.s.c. functions in B(T), and let V = — L
be the subset of u.s.c. functions. For x e B(T), we denote by L(x) the
set of all I G L such that I ^ x; then L(x) is directed downwards and so
may be considered as a monotone net. Similarly V(x) = (v: v e V; v ^ x)
is a monotone net. We shall say that an X-valued integral W is regular
if ]imY(L(x)) = lim Y(F(a;)) = Y{x) for all x e B(T). This is equivalent
to the associated measure jx being regular.

The Riesz representation theorem states that a bounded linear map
<D: C(T) ->• R may be extended uniquely to a regular integral T : B(T) -> R.
We show here that if R is replaced by a complete topological vector space
X (not necessarily locally convex) then, for such an extension to exist,
it is necessary and sufficient that <D be exhaustive.

A quasi-norm rj on B(T) will be called regular if
(i) rj is limiting;

(ii) for x E B{T), L(x) -> x and V(x) -> x in rj.
The topology induced on B(T) by all regular quasi-norms is called the
regular topology. In the regular topology we clearly have L(x) -> x and
V(x) -> x for x e B(T).
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If | £ R then by ge we shall mean the constant function £ on T. If -q
is limiting on C(T) it is easy to show that lim^(^e) = 0.

For convenience we shall extend the class L to include l.s.c. functions
taking the value +00; we say I e Z/* if I: T -* Ru{ + oo} and l~\ — oo, £]
is closed for — 00 < | ^ 00. Similarly, let F* = — L*. The following lemma
is well known.

LEMMA 5. (i) If I e L* and u e F* with I > u then there exists f e C(T)
with I ^ / ^ u.

(ii) If Za is a monotone increasing net in _L* and u E V* is such that
u(t) ^ sup Za(£) (t E T) then for e > 0 there exists a such that

u(t)^la(t) + e (teT).

PROPOSITION 7. C{T) is dense in B(T) in the regular topology.

Proof. Tor I e L, we have V{1) -> 1. Let C(l) = {/ e C{T): f^l}, which
is a subset of V(l)\ the C{1) is cofinal with V{1), for if v e V{1) there exists
/ £ C(l) with f^v. Therefore C(l) -> I and so I e U(T), that is, L c (J(T);
therefore B(T) c C(JP).

PROPOSITION 8. Le^ TJ be a solid limiting quasi-norm on C(T); then rj
has a unique regular extension rj to B(T), and •») is solid and Fatou-continuous.

Proof. For I e L*, the net C(l) has the 77-Cauchy property (Lemma 2)
and so we may define

We observe the following facts concerning 6.
(1) 6 is monotone, that is, 0 < lx ^ Z2 implies 6(lx) ^ 6(lz).
(2) If ZX,Z2 e X* then fl^ + Za)
(3) If 0 < ln and Zn £ £* then
(1) is obvious. To prove (2), suppose e > 0 and choose / e C(T) with

/ ^ ^ 4 - ^ such tha t if / ^ ^ < ^ + Z2 and gr E C(T), then r)(g—f) ^ s.
Choose ^ £ C(T) with /— Z2 ^ h ^lx (Lemma 5). Then & ̂  Zj and
f—h ^ Z2; thus we may choose hx and h2 e C(T) such that h ^ hx ^ lv

f—h ^ h% ^ Z2, and

Then / ^ hx + h2 ^ Zx + Z2 and so

+ e ^ -qihj + r)(h2) + e

As e > 0 is arbitrary, (2) follows.
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For (3), suppose/ e C{T) a n d / < 2£=1Zn. Then by Lemma 5 for e > 0,
there exists k such that

and so

XT

Hence
ee)

\n=l I k \n=l

by (ii). Now ^(ee) -»• 0 as e -»• 0, and so (3) follows.
Now let F <= ^(T7) be defined as the set of y such that, given e > 0,

there exists I e L* and v e F* with I ^ y ^ v and 0(1 —v) ^ e. Then F
has the following properties (4)—(9).

(4) If £ > 0, ?/ e 7 then & e F.
(5) If y e Fthen - y e F.
(6) Iiyvy2 £ F then yx + y2e Y.
(7) If y,y2 £ F then yxvy2e Y.
(4) is immediate; (5) and (6) follow quickly (using (2)); and, for (7),

we note that if lx ^ yx ^ vz and Z2 ̂  y2 ^
 V2 *h e n î v Z2 ̂  2/iv 2/2 ̂  v i v V2

and ZjV^ — Vy^vv^ ^ (̂ 1 —^J + ^g —wa), and again we apply (2).
(4)—(7) imply that F is a vector sublattice of B(T). We now define

rj on F by

Then rj is a solid quasi-norm on F (for the triangle inequality, we appeal
to (2)) and f) = rj on C(T).

(8) rj is limiting on F.
Suppose (an) is a test sequence and 2|=iai ^ fe f°r aU &• For e > 0,

choose Le L and #„ £ F so that L ^ an ^ vn ^ 0 and 6(L — vn) ^ e2~n.
Then, by Lemma 5(i),

^J=in%(Sr) :V 7 l^9r , 9 r6C(T)}.

T h u s i f o n < « ; ^ ^ a n d « ; e l i f

(̂Z )̂ —T5(vn) ^ 9(l'n — vn) ^ e2~7l
J

and therefore

Now choose fn e C(T) with ln^ fn^ vn (Lemma 5) and let gn = X2=ifi-
Then the sequence [gnA£e: n = 1,2,...) is monotone increasing and
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bounded, and, as 77 is limiting on C(T),

n-»oo

However,

and therefore

**«• ^71+1 "*"- \!7 71+1 S «/7l = /

As 77 is monotone,
00

Iimsupt7(un+1) ^ r£,e2-i = e

and therefore limsupfj^J ^ e, and, as e is arbitrary, (8) follows.
7l-»00

(9) Y is a-complete and therefore Y = B(T) (since Y contains L).
Again suppose (an) is a test sequence in Y and 2 a

n
 = a G B(T); since

rj is limiting on Y we may suppose by grouping terms that rj{an) ^ l /2 n

for n ^ 2. As before, choose ln e L and vn e V so that Zn ^ an ^ vn and
^ n ~ v n ) ^ £2~n> c n o o s e a l s 0 ^ s 0 t h a t 1/2^ =̂  e. Let v = L iLi^ and
I* = 2S=i^; then ?* e L* and v e 7 and, by (3),

^ 2;e2-i+ £ 2
i=l i=JV+l

< 2e.

Clearly Z* ^ a > v. Choosing I G L with Z* ̂  Z ^ a, we see that a G Y.
Thus 77 is a quasi-norm denned on B(T) extending 77; fj is solid, as already

remarked.
Since T}(1) = 6(1) for positive l.s.c. functions Z, the construction of Y

shows that 7? is also regular. Finally the Fatou property of fj follows
quickly from (3).

THEOREM 9. (i) The restriction of the regular topology to C(T) is the
intrinsic topology.

(ii) The regular topology is locally solid and weaker than the Fatou topology.

Proof, (i) The regular topology on C(T) is clearly weaker than the
intrinsic topology, and Proposition 8 establishes the converse.

(ii) If 17 is a regular quasi-norm then (Lemma 3) there is a solid limiting
quasi-norm rjx dominating 77 on C{T). By Proposition 7, the regular
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extension ^ of rjv constructed in Proposition 8, dominates rj on B(T).
This regular extension is both a Fatou quasi-norm and solid.

THEOREM 10. Let O: C(T) -> X be a linear map into a complete
topological vector space X; in order that there exist a regular integral
T: B(T) ->• X extending O it is necessary and sufficient that O be exhaustive.

Proof. It is trivial that the restriction of a regular integral to C(T)
must be exhaustive. Conversely, if 0 is exhaustive then O is intrinsically
continuous and extends uniquely to a map \F: B(T) -> X which is
regularly continuous. It is easy to see that consequently T is a regular
integral.

COROLLAPY. / / X is locally convex then O is exhaustive if and only if
<D is weakly compact.

Proof. (This result is due to Pelczynski ([20]) by a different proof;
note that 'exhaustive' is the same as 'unconditionally converging'.)

If <D is weakly compact it is easy to show, using the Orlicz-Pettis
theorem, that O is exhaustive. Conversely, let W be the regular integral
extension of <E> and let U be the unit ball of B{T). Suppose / e X' and
suppose

m = s u p / ( ¥ » ) .
ueU

For u e U, let 6(u) = m— f(?¥(u)). Then we have, for ulfu2 e U,

ux v u2 + % A u2 = ux + u2
and so

and, in general,

As T" is a regular integral, that is, Fatou-continuous, for any sequence
(un) with un E U

Now choose un with 6(un) < 2~n and let wn = V£n+i ui- Then 6{wn) < 2~n

and wn\w in U, and we have, again by Fatou continuity, 6(w) = 0.
Thus / assumes its supremum on XF( V) and, by the James-Pryce theorem
([12] and [19]), W(V) is relatively weakly compact.

In this section we have restricted attention quite naturally to a vector-
valued measure. If, however, the space T is stonean (that is, the closure
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of every open set is again open) then the space C(T, Z) of continuous
integer-valued functions is rich enough to consider group-valued measures.
There is then available an entirely analogous theorem to Theorem 10
for group homomorphisms O: C(T, Z) -> G, where G is an abelian topo-
logical group.

Postscript. After the initial preparation of this paper, the author learned
that Theorem 7 has been independently obtained by I. Labuda ([19]).
Labuda's proof is quite different to that presented here and is attained
by reducing the theorem to the countably additive case and applying
the results of [16]. In this connection it should also be mentioned that
L. Drewnowski ([8]) has recently given a shorter proof of the main
results of [16].
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