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1. Introduction
A basts of a locally convex topological vector space E is a sequence (z,,)
such that for every = € E there is a unique sequence («,) of scalars such

[=e]
that z = 3 a,2,; if, further, the linear functionals f,(z) = o, are con-
n=1

tinuous then (z,) is said to be a Schauder basis. The theory of Schauder
bases has been developed in considerable detail in Banach spaces, but
comparatively little is known about bases of more general types of spaces
(see [1] and [2]).

When F is a normed space, an alternative Schauder basis is given by
Y, = x,/|l2,|; this basis is normalized so that ||y, | = 1. In topological
terms this means that (y,,) is bounded and ‘bounded away from zero’ in
the sense that there exists a neighbourhood V of 0 such that y, ¢ V for
all n. These two properties are extremely useful in the theory of bases in
Banach spaces. The purpose of this paper is to consider these properties
for bases of general locally convex spaces.

DeriNiTiON 1.1. A sequence (z,) is said to be regular if there exists a
neighbourhood V of 0 such that z, ¢ V for all n.

Even if E is a Fréchet space, it does not necessarily follow that a
basis (z,) can be ‘regularized’. If w denotes the space of all real (or
complex) sequences, and ¢ is the space of all real sequences eventually
equal to zero, then w and ¢ form a dual pair of sequence spaces and
(w, o(w,p)) is an F-space. If e, denotes the sequence taking 1 in the nth
place and zero elsewhere, then (e,) is a Schauder basis of w; but for every
sequence (a,) of scalars, «,¢, - 0. Hence, for every sequence (o,) with
o, # 0 for all n, («,e,) is not a regular basis.

DeFiniTION 1.2. A bounded regular sequence is called a normalized
sequence.

DerinitioN 1.3. If (z,) is a sequence, such that there exist scalars o,

with («,z,) normalized, then (z,) is said to be normal.

n
In §2, we shall consider the elementary properties of regular bases, and
in §3 regular bases will be related to bounded bases. An important use
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of regular bases is shown in §4, where a regular basis is ‘deformed’ into an
equivalent regular basis. In §5, we show an important link between
normality of basic sequences and Montel spaces; finally in §6, these
results are applied to certain problems about equivalence of basic
sequences.

2. Regular bases
If (z,) is a Schauder basis of #, the dual sequence will always be denoted

by (f.); also P, will denote the continuous projection given by
n n

Px =3 f(x)x;, and P, will denote the projection P, f = Y, f(z)f, in E'.
i=1 i=1

In general, the regularity of (z,) is very closely related to the equi-

continuity of (f,,).

Prorosition 2.1. If (f,) s equicontinuous, then (z,) s regular.
Conversely, if E is a Mackey space (i.e. the topology on E is the Mackey
topology) and 7(&', E) (the Mackey topology on E') is sequentially complete,
then if (x,) is regular, (f,) s equicontinuous.

Proof. If (f,) is equicontinuous, then let V = {’c sup|f.(x)| < %}; 14

is a neighbourhood of 0 with z,, ¢ V for all n.
Conversely, if (z,,) is regular, since, for all z € ¥,

z= 3 f, (@),

n=1

limf,(z)x, = 0
n->00
and so
limf, (z) = 0,

N0

limf,, = 0 in the topology o(£’, E).
Thus (f,) is 7(E’, E)-bounded, and so, if 7(E’, E) is sequentially complete
and §|°‘i| < o0, then Y a,f; converges in v(E’, E). We define 7': [ - B’
i=1

=1

by T(a) = Y oyf,. Let z e E; then
=1

T()(w) = Sadiz)

and since lim f,(z) =0 for all z € E, T is a continuous map from
Nn-0

(1%, a2, cp)) to (B', o(E', K)). Let B be the closed unit ball of I!; then B is
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o(l, ¢,)-compact, and so 7T(B) is o(E', E)-compact. However, if
A{f,: n =1,2,...} denotes the absolutely convex hull of {f,: n = 1,2, ...},
then A{f,:n=1,2,..} < T(B); hence A{f,:n=12,..} is o' E)-
compact. Thus, if ¥ is a Mackey space, (f,) is equicontinuous.

It may be noted that the conditions of Proposition 2.1 always hold
when ¥ is barrelled.

Prorosition 2.2. If B is a Mackey space and 7(E', E) is sequentially
complete, and if B has a basis (x,,), then the following assertions are equivalent.

(1) There exist scalars o,, # 0 such that (o,x,) is regular.

(i1) There exist scalars B,, # 0 such that (B,.f,) 18 equicontinuous.

(iii) There exists on E a continuous norm.

Proof. That (i) implies (ii) is immediate from Proposition 2.1 since
(B,.f,) is the dual sequence of («,z,) when B, = 1/«,. If (ii) holds then,
if p(z) =sup|B,fo(x)], » is a continuous norm on ¥; and if p is a

n

continuous norm on ¥, and «, = 1/p(x,), then («,z,) is a regular basis
of E.

If E is an F-space, Proposition 2.2 can be strengthened considerably,
improving on a result of Bessaga and Pelczynski ([3]), who proved the
equivalence of conditions (i) and (iv) of Theorem 2.3. Any basis of an
F-space is a Schauder basis.

THEOREM 2.3. Let E be an F-space with a basis (x,), then the following
assertions are equivalent.

(1) There exist o, # 0 such that (x,x,) is regular.

(i1) There exists a continuous norm on K.

(iii) There is no complemented subspace isomorphic to w.

[= o]
(iv) There is no subsequence (x,,) of (%,) such that ’21%967” exists for all
=
o€ w.

Proof. Of course w has the topology o(w,p). That (i) and (ii) are
equivalent is immediate from Proposition 2.2; certainly (ii) implies (iii)
since there is no continuous norm on w. The proof is completed by
showing that (iii) implies (iv), and (iv) implies (ii).

[+ o]
Suppose (z,,) is a subsequence of (z,) such that ¥ o, converges for
i=1

m:*

[e o]
all x € w, and let W = {an-xnj: o€ w}; define the maps 7),: E - W by
j=1

T@) = 3 fof@)z,
j=1
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Then each 7}, is continuous and 7'(z) = lim 7},
m-c0

hence, by the Banach-Steinhaus theorem, 7 is a continuous projection
of E onto W, and since (%) is a basis for W, equivalent to the usual basis
of w, W is isomorphic to w (see [1]).

As F is barrelled, the set of operators (F,) is equicontinuous (i.e. (,,) is
an equi-Schauder basis of £ as defined in [4]). Thus the topology on E
may be defined by an increasing sequence of semi-norms (p,) such that

P,(%) = Suppn(me)'
m
Now suppose that there is no continuous norm on E. Let
X'n = {1}! Pu(®) = O};
then X, is an infinite-dimensional subspace of E, since, if not, there
exists a continuous semi-norm g, on F which restricts to a norm on X,
and p, +¢, is a continuous norm on E. Let Z,, = {m: 3z € X, f,,(x) # 0};

then, since X, is infinite-dimensional, Z, is infinite. If m € Z, and
z € X,, are such that f, (z) # 0 then

pn(fm(x)xm) s p*n(Rnx—Rn—lx) s zp'll(x) = 0'
Therefore p,(z,,) = 0.
Thus Z,, = {m: p,(z,) = 0}; thus we can choose an increasing sequence

(z) exists for each z € F;

[>o]
n; € Zy, and, if j > &, py(z,) < p;(x,) = 0. Hence, for all « € w, j}‘,loc,-x"’

converges.
To conclude this section, we consider regularity in terms of the
sequence spaces determined by the basis (z,). The sequence space

. =2}
{a: « € wand Y oz, converges; will be denoted by A, and the sequence
n=1

=]
space {a: c € wand Y «a,f, converges in o(E',E)} will be denoted by u.
n=1

Obviously (A, u) forms a dual pair of sequence spaces isomorphic to the
dual pair (#, £').

ProrosiTioN 2.4. Let (,,) be a basts for K, where E is a Mackey space;
then (f,) ts equicontinuous if and only if

i) A Scyand

(i) I* < p.

Proof. If (f,) is equicontinuous, then p(x) = sup|f,(x)| is a continuous
n

[>2]
norm on F, and so, if 3 o;x; converges,
i=1

limp( §; aixi) =0

n-0 \it=n-+1
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ie.
lim sup|e,,| = 0.
N-=0 M>N

Thus « € ¢y and A < ¢,.

n 0
If o € I, then ( 20 fz) is contained in the closed absolutely convex
=1 n=1

cover of (f,)2_,, which is o(£’, E)-compact, since (f,) is equicontinuous.
Hence there exists a cluster point f of the sequence, and f(x;) is a cluster

point of (%aifi(xj))
i=1

Therefore I' < u.
Conversely, suppose A < ¢y and I* < u; define J: B — ¢, by

J(@)); = fi(=).

o [eo]
If « € !, then, since I! < u, the linear functional z — X o, fi(x) = ¥ oy(J(2)),
i=1 =1

for each j; thus f(z;) =o;, and f= ¥ of;.
1 i=1

n=

is continuous; hence J: (B, o(E, E')) - (c,, o(cy, 1)) is continuous. E is a

Mackey space, and so J: E — (cy, 7(cy, 1Y) is continuous; but =(c,, ') is

the norm topology with | «| =sup|e;|. Thus p(x) =sup|f,(z)| is a
n n

continuous norm on £, and so (f,,) is equicontinuous.

3. Bounded and normalized bases
Simple Schauder bases were introduced in [4]; a Schauder basis (z,) is

simple if for each f € E’ the sequence ( 27}‘, f(z;) fi)
i=1

is strongly bounded.
1

It is shown in [4] that in this case (f,)?_, is an equi-Schauder basis for its
closed linear span in (£, B(E’, £)). A sequence (y,) which is a (Schauder)
basis for the closure of its linear span, lin(y,,), is called a (Schauder) basic
sequence.

Prorosrrion 3.1. If (x,) ts a simple basis for E, then (x,,) vs bounded if
and only if (f,) ts a reqular Schauder basic sequence in (E',B(E’', E)).

Proof. If (z,) is bounded, then p( f)’= sup|f(z,)] is a continuous

semi-norm on (£',B(E’, E)), and p(f,) = 1 for all »n; thus (f,) is B(&’, E)-
regular.
Conversely, suppose (f,) is regular; then there exists a bounded set 4

in K with
sup|f,(@)| > 1 for all n.
ac A

Hence there exist a,, € A with |f,(a,)| > 1. However

fn(a"n)xn = Pn,(a‘n) - Bn-—l(an)'
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If P(4) = GPn(A), then f,(a,)x, € P(A)—P(A); since (z,) is simple, for

n=1
any f e E',
supsup | P7 f(a)] < oo,
aced n

ie.

supsup |f(P,a)| < oo,

aed n

and so P(4) is bounded. Hence (f,(a,)z,)%2, is bounded and |f,(a,)| > 1
for all n; therefore (z,)®_; is bounded.

The analogous result to Proposition 2.4 is the following.

ProrosiTioN 3.2. Let E be sequentially complete; then a Schauder basis
(z,) of E is bounded if and only if I' < A.

@0
Proof. Certainly if (z,) is bounded and « € I*, then 3 «,z, converges.
n=1

Conversely if I* = A, then p = I®, and so, if fe E', sup|f(z,)| < oo, i.e.
(z,) is bounded. '

In §2 it was shown that if,  is an F-space, a basis (z,) might fail to be
regular for all sequences «,x, with «, # 0; however, for boundedness this
is not the case.

ProrosiTioN 3.3. If E is an F-space with a basis (z,,), then there exist
a, > 0 with («,x,) bounded.

nen
It is, in fact, an elementary property of metrizable locally convex

spaces that if (y,) is any sequence there exists a sequence «,, > 0 such that
Y, = 0.

CoroLLARY. A DF-space with a simple Schauder basis (x,) admits a
CONLLNUOUS NOTM.

Proof. Since (x,,) is simple, (f,,) is a basis for its closed linear span H in
(E',B(E',E)). Then H is an F-space, and so there exist «, # 0 such that
(et fr) is bounded in H ; but every strongly bounded sequence in the dual
of a DF-space is equicontinuous, so that («,f,) is equicontinuous, and
p(x) = sup| e, f,(®)] is & continuous norm on E.

Finally we consider normalized bases.

TrEOREM 3.4. Let E be a locally convex space such that every strongly
bounded sequence in E' is equicontinuous (e.g. E is quasi-barrelled); then a
simple Schauder basis (x,,) of K s normalized if and only if (f,) is a normal-
tzed basis with respect to B(E', E).

Proof. By Proposition 3.1, (z,) is bounded if and only if (f,) is regular.

If (f,) is bounded then (f,,) is equicontinuous and so by Proposition 2.1
(z,) is regular.
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If (z,) is regular and 4 is a bounded set in &, then since (z,) is simple
B =P(4)—P(A) is bounded; for each a€ A, f,(a)x,€ B. Thus
{fula)r,: a € A, n € Z} is bounded; but (x,) is regular and so

supsup|, ()| < co.
n a€ed

Therefore (f,) is B(E’, E)-bounded.

4. Deformations of basic sequences

«©
Two basic sequences (y,) and (z,) are said to be equivalent if ¥ oy,
n=1

o
converges if and only if ¥ «,y, converges. In [5], Bessaga and Pelczynski
n=1

describe a particular way of perturbing a basic sequence of a Banach
space to obtain an equivalent basic sequence, and add, without proof,
extensions of these results to F-space with continuous norms. In this
section it will be shown that the same method may be applied to basic

sequences (z,) whose dual sequence (f,,) is equicontinuous.

Let E be a locally convex space and let (x,) be a Schauder basis for a
closed subspace E, of E; suppose the dual sequence (f,) in Ej is equi-
continuous, and that p, is a continuous semi-norm on E with
[fn(®)] € po(z) for all n, and all x € E,. Suppose (u,) is any sequence in £
such that

e
(i) Y u; converges absolutely (i.e. for all continuous semi-norms
i=1

pon B,’S, pluy) < ),

il
(i) g}lpo(u,;) =K, < 1.
Then the sequence (y,, = z,, +u,) will be called a deformation of (z,,).

Prorosition 4.1. If E is complete, then a deformation (y,,) of (z,) is a
Schauder basic sequence equivalent to (x,), and whose closed linear span E,
18 1somorphic to .

[}
Proof. Let p be a continuous semi-norm on X, and let K, = ¥ p(u,).
i=1
Let x € E; then

SIf@) | p(w) < K, pola).

i=1

0 0
E is complete, and so 3, f,(x)u, converges. Therefore ¥ f;(x)y, converges.
i=1 =1

5388.3.22 D
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Define the map A: E, - E, by
Az = T fi@)ys;

=1

then
pld=) < plo) +5( E ) < 26)+ Ky (0)

Therefore A4 is continuous. Also
Po(Az) 2 po(x) — Kypo(z) = (1 — Ky)po(®),
p(z) < PlAz) + K,pyfz) < p(Az) + K, (1~ K)p,(42)
Thus 4 is injective, and an isomorphism onto its image; in particular

A(E,) is complete, and so closed. Hence A(E,) = E,, and since 4z, = v,
(y,) is a Schauder basis for £, equivalent to (z,,).

Prorosition 4.2. If E, is complemented in E and T: E - E, is a
continuous projection of E onto E, with Kyp(T'z) < 8po(x), where 8 < 1, then
E, is also complemented in E.

Proof. We use the same notation as in 4.1. If z € E,
p(x—Az) < K,po(®).
Let §: E — E be defined by Sx = Tx — ATx. Then
p(Sz) < K,po(T2) < K, Kg*3py(%)-

Hence
p(8"x) < K, K518 po(S"w) < K,K718"py().

Thus, for each z € B, 3 8S™(z) = R(x) converges absolutely and

n=1
K,
p(Bz) < mpo(x)'

R is continuous, and R(I—S8) = (I —8S)R = I, where I is the identity
map I: E - E. Let @ = (I-S)TR; then @ is a continuous projection
on k.

I-8T=(I-T+AT)T = AT.
Thus Q@ = ATR and Q(F) < E,.

If x € E,, then z = 4y for some y € E,. Hence x = ATy, and since R
is an isomorphism on E, x = ATRz for some z € E. Therefore @ is a
continuous projection of £ onto X,.

The next theorem is stated without proof in {5]. We recall that, if (z,,)
is a Schauder basis of E, a block basic sequence (2,,) of (x,) is a sequence of
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My

the form z, = ¥ &z, where (m,) is a strictly increasing sequence,
1=y 1+1

with m, = 0, and each z, is non-zero. It is trivial to check that (z,) is a

Schauder basic sequence in X.

THEOREM 4.3. Let E be an F-space with a basis (x,), and let (y,) be any

sequence such that vy, does not tend to zero, but lim f, (y,) = 0 for each m.
m—ao0

Then (y,) contains a subsequence (ynj) whwh 18 a reqular basic sequence
equivalent to a block basic sequence (z,) of (x

Proof. By taking a subsequence of (?/n) if necessary, we may assume
that there exists a continuous semi-norm p, on E such that there exists
¢ > 0 with p,(y,) > ¢ and sup p,(F,x) = p,(x), and that the topology on £

n

is given by an increasing sequence of semi-norms (p,,).
We may choose inductively increasing sequences (n;) and (m;) such that

ny— .
( Elfm y?l} ) (é)]+4;
and
v 3 ftone) < etars
’L—’nlj-"
where n, = 1 and m, = 0.

Let 2z, = E filyn)z;; then (z;) is a block basic sequence and

i=my_1+1
[oo]

2 (Yn,—7;) converges absolutely. Let (k;) be the dual sequence of (z;)
i=1
defined on the closed linear span G of (z;). If z e @,

z = 3 hi(2)z;,
i=1

W= 3 fie)e = Bye)~ P (2),

i=mj_1+1 " i
pl(hj(z)z') < 2py(2).
However, p,(z;) > ¢/2. Therefore |h;(z)| < (4/¢)p,(2); and taking
Do(2) = (4/€)py(2)

we have

© * .

Z PolYny %) 4/6 Pi(Yn,—2;) < 4 Zl(%)’+3 =14,

J= =
and so, by Proposition 4.1, (y,,) is a basic sequence equivalent to (z;), and
is regular as required.
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If, in addition, G is complemented, then let 7' be a continuous projection
of E onto G. As @ is an F-space (z,) is an equi-Schauder basis for @, and
[+
so the projections @, ( oz ) = Y o,z; are equicontinuous on K,. Let

i=1 i=n

o) = max(po(x), sup(@ Tx)); then p, is a continuous semi-norm on £.

Therefore 2 Po(Yn, —2;) < 00; thus there exists k£ such that
i=1

Zpo(?/n, z;) < 1.
ij=k

Then G, = lin(z, )2 is complemented in E, and @,7 is a continuous
projection on Gy. Proposition 4.2 may then be applied with p; replacing
Po, and Gy, replacing K, ; the conclusion is that lin(y,, )52 1s complemented
in . It follows that hn(yn) @ , is complemented ; thls fact will be used in
a future paper.

THEOREM 4.4. Let (E,7) be an F-space with a basis (x,) and let E, be a
closed subspace of E; if E, is not a Montel space, then E, contains a
normalized basic sequence.

Proof. Let 7 be the topology on E given by the semi-norms x — |f,(x)|
for each n. Suppose that, for every 7-bounded sequence (y,) in E, if
Yp —> 0 (m) then y, — 0 (7). Then 7 and = coincide on 7-bounded sets in E,,
and, as every r-bounded set is 7-precompact, E, is a Montel space. Thus
there is a sequence (y,) which is 7-bounded and such that y,, - 0 (=) but
Y+ 0 (7); the result follows by Theorem 4.3.

Theorem 4.4 should be compared with the similar results of §5.
5. Normal hasic sequences

A basic sequence (z,) was defined to be normal if there exist scalars
o, # 0 such that («,z,) is normalized (Definition 1.3). We now define:

DeFiNiTION 5.1. A basis (z,) of a locally convex space is completely
normal if every block basic sequence of (z,) is normal.

DEerFINITION 5.2. A basis (z,) of a locally convex space is completely
normal if no block basic sequence of (z,) is normal.

It will be shown in this section that these two cases characterize two
extreme types of F-spaces: Banach spaces and Montel spaces.

THEOREM 5.3. Let E be an F-space with a basis (x,). Then (x,) is
completely normal if and only if E is a Banach space.
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Proof. Clearly any basis of a Banach space is completely normal.
Conversely, suppose £ is not a Banach space, and that (p,) is a strictly
increasing sequence of continuous semi-norms defining the topology on £,
so that, if m > n,

Pm(2)
sup =2 =
2ok Pu(®)
Without loss of generality, it may be assumed that sup p,,(P,x) = p,,(x)
n

for all m and all x € X, as (z,)) is an equi-Schauder basis; also that each p,,
is a norm, for as (z,) is a normal basis there exists a continuous norm on
E (Theorem 2.3).

Let F, = lin(z,,...,%,) and let @, =lin(z,,;, 2,2 ...); then since F,
is finite-dimensional

p,(x)
fgﬁfi ;(@)

Suppose ¢ > j and sup p,(z)/p;(x) < 0; then if x € E
zel,

< oo forall 4, j.

24(®) < py(Bx) +py(x — Fx)
< K(p;(Px) +pi(x — Fx))
< 3K pj(),
where K = squ »x)/p;(x). This contradicts the fact that (p,) is

xzeFp,U
strictly increasing ; hence

P4(%)
su
)
Let n <> (¢, k,) be a bijective correspondence between the positive
integers and the set of triplets (¢, 4, k) of positive integers with 7 > j. Let

m, = 0; then we may define inductively

=00 whenever i > g, for all n.

(i) ¥, such that:  (a) p;(y,) =1,
(b) ¥y € G,y
(©) PiYn) > ks
(ii) m, such that p, (y, —F, maYn)) < 3.
Let 2, = F, (y,); then p, (z,) > k, -3, and p, (2,) < 1. Hence
% > kb — .

Thus (2,) is a block basic sequence with respect to (z,), and so if (z,) is
completely normal, there exist «, # 0, with («,z,) normalized. Given ¢
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and j > 1,
s%pp;(zn)/p,-(zn) =00
Thus
Supp; 'n)/.pz OpZp) = 00
and
Sup.pj(anzn) < 00,
n
therefore

inf p;(a,2,) = 0 for all <.
n

Therefore (a,2,) is not regular; thus we have reached a contradiction.

We now consider completely abnormal bases; if a basis of a locally
convex space F is completely abnormal, then it is completely abnormal
for the weak topology on E. If (f,) is a Schauder basis of (', B(E’, E)),
then (z,) is said to be shrinking.

THEOREM 5.4. Suppose (z,,) is a simple Schauder basis of E then (x,) is
completely abnormal for the weak topology on E if and only if (x,) ts shrinking.

Proof. Suppose (y,) is a weakly normalized block basic sequence
of (z,); then there exist g;, gy, ..., ¢,, in E’ such that
Z]gi(yn)l >¢>0 foralln,
=1

and so there exists k, 1 < k < m, such that
|9:(y,)| > &¢/m for infinitely many n,
and sup|g,(y,. — By,)| > ¢/m for all I since (y,) is a block basic sequence.
n
Hence, if P; is the adjoint map to P,
sup|gu(¥n) — Pigu(ya)| > &/m  for all i.
n
As (y,,) is bounded, Pjg,+> g, in the strong topology on E’; thus (z,) is
not shrinking.
Conversely suppose (xn) is not, shrinking; then there exists g € E’ such

that P,g-+>gin B(E’, E). Hence (P,g)is not a Cauchy sequence, and there
exists a B(E', B bounded set 4 in F, and an increasing sequence () such
that

SupIP nd@) =Py gla)]>e>0

for all j, and some ¢ > 0.
Choose a; € 4, such that

I jg( ]) P'n’_lg l > 6/2
|9(Fua; — By, _a5)| > &/2.
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Then y; = P, a;—F, _a; is a weakly regular block basic sequence; but,

o
since (z,,) is simple, the set P(4) = |J P,(4) is bounded, and hence (y,,) is
n=1
bounded. Thus (y,,) is a weakly normalized block basic sequence.
Lemma 5.5. Let (E,7) be a locally convex space with a simple Schauder
basis (x,); if = and the weak topology o(H,E') do not define the same
convergent sequences, then there exists a normalized block basic sequence.

Proof. Let (y,) be a sequence such that

(i) ¥, = 0 weakly,

(ii) there exists an absolutely convex r-neighbourhood V of 0 with y,, ¢ V
for all n.

Then lim P, (y,) = 0 for all m. Hence, if m, = 1, we may choose increasing
n-w

sequences (m;), (n;) with the properties:
(a') ym_,_'Pn,ym, € %V,

(b) Pnjym,“ € %V

Hence, if z; = By, — B,,_ Y, Where ng = 0, then z; ¢ §V. Since (x,,)

is simple and (y,,) is bounded, then (z;) is bounded and hence a normalized

block basic sequence.

If (z,) is an equi-Schauder basis for E, and = and oy(Z,E’) (the
topology of uniform convergence on the sets {P,f:n=1,2,...} for
f e E’; see [4]), define the same normalized block basic sequences, then
they define the same convergent sequences. For if not, the sequence (y,,)
of the lemma may be chosen such that y, - 0 in oy(E, E'), and since
(B)%_, is oy(E, E')-equicontinuous, it follows that z, - 0 in oy(E, E’),
and so (z,) is not oy(Z, E')-normalized.

THEOREM 5.6. Let E be sequentially complete and let (x,) be a Schauder
basts of E; then the following are equivalent.

(i) (z,) is completely abnormal.

(ii) Every Schauder basic sequence in K is abnormal.

(i) E is a semi-Montel space (i.e. every bounded set is relatively compact).

Proof. Suppose E is a semi-Montel space and (y,,) is a bounded Schauder
basic sequence in E. Then (y,) has a cluster point y and y € lin(y,,); thus

[+ o]
y = X9:(y)y; where (g;) is the dual sequence of (y;), and g,(y) is a cluster
i=1

point of g,(y,). Hence g,(y) =0 for all 4, and y =0; so (y,) is not
normalized. Therefore (iii) implies (ii), and (ii) obviously implies (i).

Suppose (z,) is completely abnormal; since E is sequentially complete,
(z,) is simple and, by Lemma 5.5, the original topology and the weak
topology define the same convergent sequences. Using Theorem 6 of [6],
we see that 7 and o(Z, E') define the same compact sets.
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Suppose that («,) is a sequence of scalars such that the sequence

n ]
(Zaixi) is bounded, but does not converge. Since E is sequentially
i=1 n=1

complete, there exists a neighbourhood V of the origin and an increasing
sequence (n;) of integers with n, = 0 such that

74
Y= 2 am ¢ V.

Nj~141
Then (y;) is a normalized block basic sequence, contradicting the complete
abnormality of (z,).

Thus (z,) is y-complete or boundedly complete, and, by Theorem 5.4,
is also shrinking; hence, by a theorem of [8], £ is semi-reflexive, i.e.
the bounded sets of E are weakly relatively compact. However,  and
o(E, E’) define the same compact sets, and so E is a semi-Montel space.

6. Affinely equivalent basic sequences

If (z,) is a basis for E, (y,,) is an equivalent basis for E,, and E,and E,
are F-spaces, then there exists an isomorphism 7': E, - E, with Tz, = v,
for each ¢ (see [1]); thus (z,) is normalized if and only if (y, ) is normalized.

In [7] Pelczynski and Singer introduce the notion of affine equivalence:
(z,,) is affinely equivalent to (y,) if there exists a sequence of scalars o, # 0
such that (z,) and (,y,) are equivalent. It follows at once that, if (z,) is
affinely equivalent to (y,) and (z,) is normal, then so is (y,,).

The two main theorems on equivalence and affine equivalence of bases
in Banach spaces are Theorems 6.1 and 6.2 due to Pelezyriski and
Singer ([7]).

THEOREM 6.1. 4 Banach space with a basis possesses two non-equivalent
normalized bases, one of which is conditional.

THEOREM 6.2. Let E be a Banach space with an unconditional basis such
that all unconditional basic sequences are affinely equivalent. Then E ~ 12,

Combining these with the results of §5, we obtain similar results for
F-spaces.

THEOREM 6.3. Let E be an F-space with a basis such that all basic
sequences in E are affinely equivalent. Then either E is a Montel space or
E is a Banach space with no unconditional basis.

Proof. It is in fact only necessary to assume that all block basic
sequences with respect to the given basis are affinely equivalent; for the
basis is then either completely normal or completely abnormal. In the
first case E is a Banach space by Theorem 5.3 and by Theorem 6.1 has no
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unconditional basis; in the second case by Theorem 5.6 E is a Montel
space.

THEOREM 6.4. Let E be an F-space with an unconditional basis such that
all uncondstional basic sequences are affinely equivalent. Then either E is a
Montel space or E = I2.

Proof. This follows in exactly the same way by Theorems 5.3, 5.6, and
6.2.
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