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1. Introduction
A basis of a locally convex topological vector space E is a sequence (xn)
such that for every x e E there is a unique sequence (<xn) of scalars such

00

that x = 2 &nxn > if> further, the linear functionals fn{x) = ixn are con-
n=l

tinuous then (xn) is said to be a Schauder basis. The theory of Schauder
bases has been developed in considerable detail in Banach spaces, but
comparatively little is known about bases of more general types of spaces
(see [1] and [2]).

When E is a normed space, an alternative Schauder basis is given by
yn = aJ7l/||a?J|; this basis is normalized so that \\yn\\ = 1. In topological
terms this means that (yn) is bounded and 'bounded away from zero' in
the sense that there exists a neighbourhood V of 0 such that yn $ V for
all n. These two properties are extremely useful in the theory of bases in
Banach spaces. The purpose of this paper is to consider these properties
for bases of general locally convex spaces.

DEFINITION 1.1. A sequence (xn) is said to be regular if there exists a
neighbourhood V of 0 such that xn $ V for all n.

Even if E is a Frechet space, it does not necessarily follow that a
basis (xn) can be 'regularized'. If o» denotes the space of all real (or
complex) sequences, and cp is the space of all real sequences eventually
equal to zero, then a> and <p form a dual pair of sequence spaces and
(OJ, a(oj,<p)) is an .F-space. If en denotes the sequence taking 1 in the nth
place and zero elsewhere, then (en) is a Schauder basis of at; but for eveiy
sequence (an) of scalars, <xnen -> 0. Hence, for every sequence (an) with
<xn # 0 for all n, {<xnen) is not a regular basis.

DEFINITION 1.2. A bounded regular sequence is called a normalized
sequence.

DEFINITION 1.3. If (xn) is a sequence, such that there exist scalars <xn

with {ocnxn) normalized, then (xn) is said to be normal.

In § 2, we shall consider the elementary properties of regular bases, and
in § 3 regular bases will be related to bounded bases. An important use
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of regular bases is shown in § 4, where a regular basis is 'deformed' into an
equivalent regular basis. In §5, we show an important link between
normality of basic sequences and Montel spaces; finally in §6, these
results are applied to certain problems about equivalence of basic
sequences.

2. Regular bases
If (xn) is a Schauder basis of E, the dual sequence will always be denoted

by (/»); a l s o Pn will denote the continuous projection given by
n n

Pn
x — 2J/<(^)*<»

 a n d P'n will denote the projection P'nf = y£if(x)fi in E'.
i i

In general, the regularity of (xn) is very closely related to the equi-
continuity of ( /J .

PROPOSITION 2.1. / / (fn) is equicontinuous, then (xn) is regular.
Conversely, if E is a Mackey space (i.e. the topology on E is the Mackey
topology) and T(E',E) (the Mackey topology on E') is sequentially complete,
then if (xn) is regular, (fn) is equicontinuous.

Proof. If (fn) is equicontinuous, then let V = \x: sup\fn(x)\ < i l ; V

is a neighbourhood of 0 with xn $ V for all n.
Conversely, if (xn) is regular, since, for all x e E,

lim/n(a;)a:B = 0

and so

lim/n = 0 in the topology a(E',E).
n-*ao

Thus (fn) is r(E', ^/)-bounded, and so, if T(E', E) is sequentially complete
00 00

and E k J < oo, then I X / f converges in r(E',E). We define T: I1 -> E'
i=i i=i

00

by T(u) = SatA- Let x e E; then

T{*){x) = ictJiix)
i=l

and since lim/?l(a;) = 0 for all xeE, T is a continuous map from
n-»oo

{I1, o(lx, c0)) to (Ef, a(E', E)). Let B be the closed unit ball of I1; then B is
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CT^1, c0) -compact, and so T(B) is o{E', ,£7)-compact. However, if
A{fn: n — 1,2,...} denotes the absolutely convex hull of {fn: n = 1,2,...},
then &{fn:n = l,2,...}^T(B); hence A{/n: ra = 1,2,...} is a(E',E)-
compact. Thus, if E is a Mackey space, (fn) is equicontinuous.

It may be noted that the conditions of Proposition 2.1 always hold
when E is barrelled.

PROPOSITION 2.2. If E is a Mackey space and T(E',E) is sequentially
complete, and if' E has a basis (xn), then the following assertions are equivalent.

(i) There exist scalars an ^ 0 such that (ocnxn) is regular.
(ii) There exist scalars jSn # 0 such that (flnfn) is equicontinuous.
(iii) There exists on E a continuous norm.

Proof. That (i) implies (ii) is immediate from Proposition 2.1 since
(PiJn) *s the dual sequence of {<xnxn) when j87l = l/otn. If (ii) holds then,
if p(x) = sup|jSM/n(x)|, p is a continuous norm on E; and if p is a

n
continuous norm on E, and an = l/p(xn), then (anxn) is a regular basis
of E.

If E is an jP-space, Proposition 2.2 can be strengthened considerably,
improving on a result of Bessaga and Pelczynski ([3]), who proved the
equivalence of conditions (ii) and (iv) of Theorem 2.3. Any basis of an
.F-space is a Schauder basis.

THEOREM 2.3. Let E be an F-space with a basis (xn); then the following
assertions are equivalent.

(i) There exist <xn # 0 such that (<xnxn) is regular.
(ii) There exists a continuous norm on E.
(iii) There is no complemented subspace isomorphic to a>.

00

(iv) There is no subsequence (xn) of (xn) such that 2ctjXn exists for all

a. E (x).

Proof. Of course cu has the topology CT(O>, <p). That (i) and (ii) are
equivalent is immediate from Proposition 2.2; certainly (ii) implies (iii)
since there is no continuous norm on w. The proof is completed by
showing that (iii) implies (iv), and (iv) implies (ii).

oo

Suppose (xn) is a subsequence of (xn) such that Sa^n , converges for

all at e a>, and let W = I 2oc,jXn.: a e col; define the maps Tm: E -> W by

3=1
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Then each Tm is continuous and T{x) = lim Tm(x) exists for each x e E;
m-»oo

hence, by the Banach-Steinhaus theorem, T is a continuous projection
of E onto W, and since (xnj) is a basis for W, equivalent to the usual basis
of a), W is isomorphic to co (see [1]).

As E is barrelled, the set of operators (Pn) is equicontinuous (i.e. (xn) is
an equi-Schauder basis of E as defined in [4]). Thus the topology on E
may be defined by an increasing sequence of semi-norms (pn) such that
pn{x) = svppn{Pmx).

m

Now suppose that there is no continuous norm on E. Let
Xn = {x:pn(x) = 0};

then Xn is an infinite-dimensional subspace of E, since, if not, there
exists a continuous semi-norm qn on E which restricts to a norm on Xn,
and p n + qn is a continuous norm on E. Let Zn = {m: 3 x e Xn, fm{x) ^ 0};
then, since Xn is infinite-dimensional, Zn is infinite. If m e Zn and
x e X.n are such that fm{x) # 0 then

Pn(f,n(x)xm) < Pn(Pmx ~ Pm-lx) < 2Pn(x) = 0.
Therefore pn(«m) = 0.

Thus Zn = {m: pn(xm) = 0}; thus we can choose an increasing sequence
oo

n,j G Zp and, if j ^ k, p,c(xnj) ^ Pj{xVi) = 0. Hence, for all a e w , S a ^

converges.
To conclude this section, we consider regularity in terms of the

sequence spaces determined by the basis (xn). The sequence space
f co 1
lot: oc e to and 2 <*nxn converges} will be denoted by A, and the sequence
I 71=1 j

f )
space {a: a e co and 2 a,,/™, converges in o-(i?',$)} will be denoted by /A.
Obviously (A, fx) forms a dual pair of sequence spaces isomorphic to the
dual pair {E, W).

PROPOSITION 2.4. Let (xn) be a basis for E, where E is a Mackey space;
then (fv) is equicontinuous if and only if

(i) A ^ c0 and
(ii) I1 £ /x.

Proof. If (fn) is equicontinuous, then p(x) = sup \fn(x) \ is a continuous
n

co
norm on E, and so, if £ o ^ converges,

?i-»co \£=n+l /
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i.e.

Thus ctecn and A cr cn.

limsup|aj = 0.
?i-»oo m>n

If a E I1, then I £ aifi I is contained in the closed absolutely convex

cover of (fn)n=i> which is a(E',E)-compact, since (fn) is equicontinuous.
Hence there exists a cluster point/ of the sequence, and/(xJ) is a cluster

( n \ oo oo

I><Xifi(Xj)) for each j ; thus / ( a ) = ay, and / = 2aJ<.
Therefore I1 £ ^

Conversely, suppose Agc 0 and Z1 9 ^; define J: E -> cohy
(J(x))i=fi(x).

oo oo

If a 6 Z1, then, since Z1 ^ /x, the linear functional x -> 2 Uifiiz) = S ai(^(^))i

is continuous; hence J : (E,a(E,E')) -> (c0, CT(C0,^)) is continuous. i£ is a
Mackey space, and so J: E ->• (c0,T(C0,Z

1)) is continuous; but T(C0,Z
1) is

the norm topology with ||a|| = sup |a j . Thus p{x) = sup \fn{x) \ is a
n n

continuous norm on E, and so (fu) is equicontinuous.

3. Bounded and normalized bases
Simple Schauder bases were introduced in [41; a Schauder basis (xn) is

( n \oo

Tif{xi)fi) is strongly bounded.
i=l /n=l

It is shown in [4] that in this case (/n)"=1 is an equi-Schauder basis for its
closed linear span in (E',fS(E',E)). A sequence (yn) which is a (Schauder)
basis for the closure of its linear span, lm(yn), is called a (Schauder) basic
sequence.

PROPOSITION 3.1. / / (xn) is a simple basis for E, then (xn) is bounded if
and only if (fn) is a regular Schauder basic sequence in (E',f3(E',E)).

Proof. If (xn) is bounded, then p(f) — swp\f(xn)\ is a continuous

semi-norm on (E',p(E',E)), and p{fn) = 1 for all n\ thus (fn) is P(E',E)-
regular.

Conversely, suppose (fn) is regular; then there exists a bounded set A
in E with

sup \fn{a) | > 1 for all n.
aeA

Hence there exist an e A with \fn(an)\ > 1. However

fn(an)xn = Pn{an) — Pn^i(an).
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If P(A) = l)Pn(A), then fn(an)xn e P(A)-P(A); since (xn) is simple, for
n=l

any/e #',
supsup|P;/(a)| <oo,
aeA n

i.e.
supsup|/(Pwa)| < oos
aeA n

and so P(A) is bounded. Hence {fn{
aidxiifn=i *s bounded and \fn{an)\ > 1

for all n; therefore (#n)n=i *s bounded.
The analogous result to Proposition 2.4 is the following.

PROPOSITION 3.2. Let E be sequentially complete; then a Schauder basis
(xn) of E is bounded if and only if I1 c: A.

00

Proof. Certainly if (xn) is bounded and a 6 I1, then £ ocnxn converges.

Conversely if I1 c= A, then [x c= Z00, and so, if f e E', sup | / (x j | < oo, i.e.
n

(xn) is bounded.
In § 2 it was shown that if, E is an .F-space, a basis (xn) might fail to be

regular for all sequences <xnxn with ocn # 0; however, for boundedness this
is not the case.

PROPOSITION 3.3. If E is an F-space with a basis (xn), then there exist
ocn > 0 with {ocnxn) bounded.

It is, in fact, an elementary property of metrizable locally convex
spaces that if (yn) is any sequence there exists a sequence <xn > 0 such that

COROLLARY. A DF-space with a simple Schauder basis (xn) admits a
continuous norm.

Proof. Since (xn) is simple, (fn) is a basis for its closed linear span H in
(E',fl(E',E)). Then H is an .F-space, and so there exist <xn ^ 0 such that
(<xnfn) is bounded in H; but every strongly bounded sequence in the dual
of a DP-space is equicontinuous, so that (unfn) is equicontinuous, and
p(x) = sup | <xnfn(x) | is a continuous norm on E.

Finally we consider normalized bases.

THEOREM 3.4. Let E be a locally convex space such that every strongly
bounded sequence in E' is equicontinuous (e.g. E is quasi-barrelled); then a
simple Schauder basis (xn) of E is normalized if and only if (fn) is a normal-
ized basis with respect to f3(E',E).

Proof. By Proposition 3.1, (xn) is bounded if and only if (fn) is regular.
If (fn) is bounded then (fn) is equicontinuous and so by Proposition 2.1
(xn) is regular.
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If (xn) is regular and A is a bounded set in E, then since (xn) is simple
B = P(A)-P(A) is bounded; for each a e A, fn(a)xneB. Thus
{fn(a)xn: a e A, n e Z} is bounded; but (xn) is regular and so

supsup| /Ja) | <oo.
n aeA

Therefore (/„) is j8($', ^-bounded.

4. Deformations of basic sequences
00

Two basic sequences (yn) and (zn) are said to be equivalent if £ u-nVn
oo

converges if and only if 2 ^nt/n converges. In [5], Bessaga and Pelczynski

describe a particular way of perturbing a basic sequence of a Banach
space to obtain an equivalent basic sequence, and add, without proof,
extensions of these results to i^-space with continuous norms. In this
section it will be shown that the same method may be applied to basic
sequences (xn) whose dual sequence (fn) is equicontinuous.

Let E be a locally convex space and let (xn) be a Schauder basis for a
closed subspace Eo of E; suppose the dual sequence (fn) in E'o is equi-
continuous, and that p0 is a continuous semi-norm on E with
\fn(x) | ^ Po(%) for all n, and all x e Eo. Suppose {un) is any sequence in E
such that

00

(i) S w i converges absolutely (i.e. for all continuous semi-norms
00

p on E,' S PK) < oo),

(ii) ^ o W = ^ D < 1 -

Then the sequence (yn = xn + un) will be called a deformation of (xn).

PROPOSITION 4.1. If E is complete, then a deformation (yn) of (xn) is a
Schauder basic sequence equivalent to (xn), and whose closed linear span Ex

is isomorphic to Eo.

00

Proof. Let p be a continuous semi-norm on E, and let Kv =

Let x G Eo; then

h ) ^ Kpp0(x).

E is complete, and so Tifi(%)ui converges. Therefore TifiitfVi converges.
i=i <=i

5388.3.22 D
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Define the map A: EQ -> Ex by

Ax =

then

Therefore J. is continuous. Also

Thus 4̂ is injective, and an isomorphism onto its image; in particular
A(E0) is complete, and so closed. Hence A(E0) = Ev and since Axn = yn,
(yn) is a Schauder basis for E1 equivalent to (xn).

PROPOSITION 4.2. If Eo is complemented in E and T:E^E0 is a
continuous projection ofE onto EQ with KQp0(Tx) ^ 8pQ{x), where S < 1, then
Ex is also complemented in E.

Proof. We use the same notation as in 4.1. If x e Eo,

p{x-Ax) ^Kpp0{x).

LetS:E-*Ebe defined by Sx = Tx-ATx. Then

p(Sx) < KpPo(Tx)
Hence

p(S-x)

Thus, for each x G E, 2 Sn(x) = R(x) converges absolutely and
7 1 = 1

A0(l-dj

R is continuous, and R(I — S) = (I — S)R = I, where / is the identity
map I: E -*E. Let Q = (I-S)TR; then Q is a continuous projection
on E.

(I-S)T = (I-T + AT)T = AT.
Thus Q = ATR and Q{E) c Ex.

If x e Ev then x = Ay for some y e Eo. Hence x = ATy, and since R
is an isomorphism on E, x = ATRz for some z e E. Therefore Q is a
continuous projection of E onto Ev

The next theorem is stated without proof in [5]. We recall that, if (xn)
is a Schauder basis of E, a block basic sequence (zn) of (xn) is a sequence of
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the form zn = 2 aixi where (raj is a strictly increasing sequence,

with ra0 = 0, and each zn is non-zero. It is trivial to check that (zn) is a
Schauder basic sequence in E.

THEOKEM 4.3. Let E be an F-space with a basis (xn), and let (yn) be any
sequence such that yn does not tend to zero, but lim.fm(yn) = 0 for each m.

m-»oo

Then {yn) contains a subsequence (yn) which is a regular basic sequence
equivalent to a block basic sequence (zn) of (xn).

Proof. By taking a subsequence of (yn) if necessary, we may assume
that there exists a continuous semi-norm px on E such that there exists
e > 0 with px{yn) > e and sup^>1(P7lic) = p^x), and that the topology on E

n

is given by an increasing sequence of semi-norms (pn).
We may choose inductively increasing sequences (?&,,•) and (ra3) such that

. 1 = 1

and

Jfj I AJ J i
\i=mj+l

where nx = 1 and ra0 = 0.

Let ẑ- = 2 fi(ynj)
xi'> * n e n (zj) is a block basic sequence and

00

S (2/n; ~ zj) converges absolutely. Let (h^) be the dual sequence of (z5)

defined on the closed linear span 0 of (z^. If z e G,
00

»_ v j M?
3 = 1

However, px{Zj) ^ e/2. Therefore \hj{z)\ ^ (4/e)p1(z); and taking
/V) [ o» \ —— f 4. / c l /M ( 7 1
/y 0 V / — V / / Jr 1 \ /

we have

3 = 1 3 = 1 3 = 1

and so, by Proposition 4.1, (yni) is a basic sequence equivalent to (z3), and
is regular as required.
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If, in addition, G is complemented, then let T be a continuous projection
of E onto G. As G is an .F-space (zn) is an equi-Schauder basis for G, and

( oo \ oo

£ afc I = 2 Ufa are equicontinuous on Ev Let
p'0(x) = maxima;), swp(QnTx)I; then ^ is a continuous semi-norm on E.

\ n I
00

Therefore £ p'^{yn, ~
 zj) < °° \ thus there exists k such that

Then (-r& = lin(zn)£L& is complemented in E, and #fcT is a continuous
projection on Gk. Proposition 4.2 may then be applied with p'o replacing
pQ, and Gk replacing Ĵ O ; the conclusion is that l i n ^ ) ? ^ is complemented
in E. It follows that \in{yn )f=x is complemented; this fact will be used in
a future paper.

THEOREM 4.4. Let (E, T) be an F-space with a basis {xn) and let Eo be a
closed subspace of E; if Eo is not a Montel space, then Eo contains a
normalized basic sequence.

Proof. Let TT be the topology on E given by the semi-norms x -+ \fn(x) \
for each n. Suppose that, for every r-bounded sequence (yn) in Eo, if
yn -» 0 {TT) then yn -> 0 (T). Then T and TT coincide on T-bounded sets in Eo,
and, as every T-bounded set is 7r-precompact, Eo is a Montel space. Thus
there is a sequence (yn) which is T-bounded and such that yn -> 0 (TT) but
yn++0 (T); the result follows by Theorem 4.3.

Theorem 4.4 should be compared with the similar results of § 5.

5. Normal basic sequences
A basic sequence (zn) was defined to be normal if there exist scalars

otn # 0 such that (anzn) is normalized (Definition 1.3). We now define:

DEFINITION 5.1. A basis (xn) of a locally convex space is completely
normal if every block basic sequence of (xn) is normal.

DEFINITION 5.2. A basis (xn) of a locally convex space is completely
normal if no block basic sequence of (xn) is normal.

It will be shown in this section that these two cases characterize two
extreme types of .F-spaces: Banach spaces and Montel spaces.

THEOBEM 5.3. Let E be an F-space with a basis (xn). Then (xn) is
completely normal if and only if E is a Banach space.
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Proof. Clearly any basis of a Banach space is completely normal.
Conversely, suppose E is not a Banach space, and that (pn) is a strictly
increasing sequence of continuous semi-norms denning the topology on E,
so that, if m > n,

Without loss of generality, it may be assumed that s\uppm(Pnx) = pm{x)
n

for all m and all x e E, as (xn) is an equi-Schauder basis; also that each pn

is a norm, for as (xn) is a normal basis there exists a continuous norm on
E (Theorem 2.3). _

Let Fn = lin{xv...,xn) and let Gn = \in(xn+1,xn.n,...); then since Fn

is finite-dimensional

Pi(X) r n • •
sup ; : < oo for all i, i.

FP(x)Suppose i > j and sup Pi(x)/Pj{x) < oo; then if x e E
xeGn

<K(Pi(Pnx)+Pi(x-Pnx))

^ ZKPi{x),

where K = sup Pi(x)/pAx). This contradicts the fact that {pt) is
xeFnUGn

strictly increasing; hence

sup , . = oo whenever i > j , for all n.
GP{x)

Let n<-+(in,jn, kn) be a bijective correspondence between the positive
integers and the set of triplets (i,j, k) of positive integers with i > j . Let
m0 = 0; then we may define inductively

(i) yn such that: (a) pjn{yn) = 1,

(b) y n G Oinn_v

(c) PiSVn) > K>

(ii) mn such that pin{yn-
pmn(yn)) < i

Let zn = Pnjiyn); then Pin(zn) > kn-\, and pjn{zn) < 1. Hence

A) n 2'
Thus (zn) is a block basic sequence with respect to (xn), and so if (xn) is
completely normal, there exist uu ^ 0, with {ocnzn) normalized. Given i
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and j > i,
p^(j/^(j = co.

n
Thus

pp3KJMKzJ = oo
n

and

therefore
Xnzn) = ° for all *.

Therefore {ocnzn) is not regular; thus we have reached a contradiction.

We now consider completely abnormal bases; if a basis of a locally
convex space E is completely abnormal, then it is completely abnormal
for the weak topology on E. If (fn) is a Schauder basis of (E',P(E',E)),
then (xn) is said to be shrinking.

THEOREM 5.4. Suppose (xn) is a simple Schauder basis of E; then {xn) is
completely abnormal for the weak topology on E if and only if (xn) is shrinking.

Proof. Suppose {yn) is a weakly normalized block basic sequence
of {xn); then there exist gv g2, ..., gm in E' such that

m

2119i(yn) | > £ > 0 for all n,
i=l

and so there exists k, 1 ^ k ^ m, such that

I QkiVn) I > £ / m for infinitely many n,
and sup | gk(yn — Piyn) \ > e/m for all I since (yn) is a block basic sequence.

n
Hence, if P[ is the adjoint map to Ph

sup | g,c(yn) - P[gk{yn) \ > e/m for all I.
n

As (yn) is bounded, P'lg,.+^gk in the strong topology on E'; thus (xn) is
not shrinking.

Conversely suppose (xn) is not shrinking; then there exists g e E' such
that P'ng++g in P(E',E). Hence {P'ng) is not a Cauchy sequence, and there
exists a fi{E',E)-bounded set A in E, and an increasing sequence (nj) such
that

aeA

for all j , and some e > 0.
Choose ttj e A, such that
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Then y$ = Pnaj — Pna3- is a weakly regular block basic sequence; but,
oo

since (xn) is simple, the set P(A) = \J Pn{A) is bounded, and hence (yn) is
n=l

bounded. Thus (yn) is a weakly normalized block basic sequence.
LEMMA 5.5. Let {E,T) be a locally convex space with a simple Schauder

basis (xv); if r and the weak topology a(E,E') do not define the same
convergent sequences, then there exists a normalized block basic sequence.

Proof. Let (yn) be a sequence such that
(i) yn -+ 0 weakly,

(ii) there exists an absolutely convex T-neighbourhood V of 0 with yn $ V
for all n.

Then lim Pm{yn) = 0 for all m. Hence, if mx = 1, we may choose increasing
n->oo

sequences (m3-), (n^) with the properties:
(a) ym,--P«^By6$F,
(b) Pnjymj+1 e *F .
Hence, if zj = P^^-P^^y^ where n0 = 0, then zj $ $V. Since (xn)

is simple and (yn) is bounded, then (Zj) is bounded and hence a normalized
block basic sequence.

If (xn) is an equi-Schauder basis for E, and T and ay(E,E') (the
topology of uniform convergence on the sets {P'nf: n = 1,2,...} for
f e E'; see [4]), define the same normalized block basic sequences, then
they define the same convergent sequences. For if not, the sequence (yn)
of the lemma may be chosen such that yn -> 0 in ay(E,E'), and since
(Pn)n=i i s oy(^, ̂ ")-equicontinuous, it follows that zn -^ 0 in ay{E,E'),
and so (zn) is not <ry(E, JS/')-normalized.

THEOEEM 5.6. Let E be sequentially complete and let (xn) be a Schauder
basis of E; then the following are equivalent.

(i) (xn) is completely abnormal.
(ii) Every Schauder basic sequence in E is abnormal.
(iii) E is a semi-Montel space (i.e. every bounded set is relatively compact).

Proof. Suppose E is a semi-Montel space and (yn) is a bounded Schauder
basic sequence in E. Then (yn) has a cluster point y and y 6 \m.(yn); thus

00

y = Jjgi(y)Vi where (g^ is the dual sequence of {y^, and g^y) is a cluster

point of g.i{yn). Hence g^y) = 0 for all i, and y = 0; so (yn) is not
normalized. Therefore (iii) implies (ii), and (ii) obviously implies (i).

Suppose (xn) is completely abnormal; since E is sequentially complete,
{xn) is simple and, by Lemma 5.5, the original topology and the weak
topology define the same convergent sequences. Using Theorem 6 of [6],
we see that T and a(E,E') define the same compact sets.
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Suppose that (an) is a sequence of scalars such that the sequence

is bounded, but does not converge. Since E is sequentially

complete, there exists a neighbourhood V of the origin and an increasing
sequence (rij) of integers with nQ = 0 such that

Vj = E <*& <£ V.
nj-i+l

Then (y^) is a normalized block basic sequence, contradicting the complete
abnormality of {xn).

Thus (xn) is y-complete or boundedly complete, and, by Theorem 5.4,
is also shrinking; hence, by a theorem of [8], E is semi-reflexive, i.e.
the bounded sets of E are weakly relatively compact. However, T and
a(E,E') define the same compact sets, and so E is a semi-Montel space.

6. Affinely equivalent basic sequences
If (xn) is a basis for Eo, (yn) is an equivalent basis for Ev and Eo and Ex

are .F-spaces, then there exists an isomorphism T: EQ-> E1 with Txi = yi

for each i (see [1]); thus (xn) is normalized if and only if (yn) is normalized.
In [7] Pelczynski and Singer introduce the notion of affine equivalence:

(xn) is affinely equivalent to (yn) if there exists a sequence of scalars <xn # 0
such that (xn) and (<xnyn) are equivalent. It follows at once that, if (xn) is
affinely equivalent to (yn) and (xn) is normal, then so is (yn).

The two main theorems on equivalence and affine equivalence of bases
in Banach spaces are Theorems 6.1 and 6.2 due to Pelczyriski and
Singer ([7]).

THEOBEM 6.1. A Banach space with a basis possesses two non-equivalent
normalized bases, one of which is conditional.

THEOREM 6.2. Let Ebea Banach space with an unconditional basis such
that all unconditional basic sequences are affinely equivalent. Then E ^ I2.

Combining these with the results of §5, we obtain similar results for
.F-spaces.

THEOREM 6.3. Let E be an F-space with a basis such that all basic
sequences in E are affinely equivalent. Then either E is a Montel space or
E is a Banach space with no unconditional basis.

Proof. It is in fact only necessary to assume that all block basic
sequences with respect to the given basis are affinely equivalent; for the
basis is then either completely normal or completely abnormal. In the
first case E is a Banach space by Theorem 5.3 and by Theorem 6.1 has no
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unconditional basis; in the second case by Theorem 5.6 E is a Montel
space.

THEOREM 6.4. Let E be an F-space with an unconditional basis such that
all unconditional basic sequences are affinely equivalent. Then either E is a
Montel space or E £ P.

Proof. This follows in exactly the same way by Theorems 5.3, 5.6, and
6.2.
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