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HOMOMORPHISMS OF GROUP ALGEBRAS
WITH NORM LESS THAN V2

N. J. Karton aND G. V. WooD

We show that two locally compact abelian groups G, and G,
are isomorphic if there exists an algebra isomorphism T of
L'(G,) onto L'(G,) with |T| < V2. This constant is best
possible. The same result is proved for locally compact con-
nected groups, but for the general locally compact group, the
result is proved under the hypothesis || T| < 1.246. Similar
results are given for the algebras C(G) and L™(G) when G is
compact. In the abelian case, we give a representation theorem
for isomorphisms satistying || T|| < V2.

1. Introduction. In [13], Wendel proved that, for locally
compact groups G, and G,, if T is an algebra isomorphism of L'(G,) onto
L'(G,) with | T|| =1, then G, and G, are isomorphic. Similar results for
M(G), C.(G) and L?(G) have been proved in [3], [5], [6], [7], [11], [12],
[14] and [15]. For abelian groups, better results are known. In[8], it is
shown that two locally compact abelian groups G, and G, are isomorphic
if there exists an algebra isomorphism T of L'(G,) onto L'(G,) with
| T|l <4V5, and in view of a result of Saeki in [9], this can be improved to
the condition || T'|| < (1 +V?2), (see [8] 4.6.3 (c)). Saeki’s later paper
[10] makes it possible to extend the result even further to the condition
I T( < i1+ V17). _

We prove the result for abelian groups with the condition || T|| < V2
and this is the best possible constant, as Example 1 shows. In fact we
characterize all algebra isomorphisms T of L'(G,) onto L'(G,) with
IT|< V2 as follows:

Case 1. If 0<|T||<i(1+V3), then T has the form

(TH(x) = (x)f (s(x))

where s: G,— G, is a topological isomorphism and ¢ € Gz. In this case
T is an i1sometry.

Case 2. If (1+V3)=|T|< V2, then T has the form

(TH)(x) = v )21+ @) f(s(x)) +2(1 — @ (x)) f(s(x)u)}
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where s: G,— G, is a topological isomorphism, ¢, ¢ € G, with ¢ of odd
order n, and u € G, is an element of order 2. In this case |T|=
V2 cos m/4n.

Again i(1+7V3) is the best possible constant as Example 2
shows. It is interesting to note that the isomorphisms given in case (2)
above correspond to the idempotents characterized by Saeki in
{10]. We give similar results for homomorphisms. In [8] Chapter 4,
algebra homomorphisms of L'(G,) into M(G,) are represented by means
of piecewise affine maps from a subset of G, o G, (see [8] p. 78 for
definitions). Our proofs do not however use this representation. We
prove the result first for discrete groups by a computational argument,
and then use this to prove the general result. An advantage of our
method is that it generalises to give corresponding results in the
nonabelian case. We show that if G, and G, are locally compact
connected groups and T is an algebra isomorphism of L'(G,) onto
L'(G,) with |T||<V?2, then G, and G, are isomorphic. Without
connectedness, we can prove the result under the condition || T| < A,
where A, is the root of a cubic equation (A, ~ 1-247). In these cases we
cannot describe the form of the isomorphism, nor do we know whether
these constants are best possible. There are corresponding results in
each case for isomorphisms of the convolution algebras M(G), L*(G)
and C(G) (in the latter cases we assume G compact).

The idea for the paper came from the generalization of the Banach-
Stone theorem due to Cambern {2] and Amir [1] which states that, for
compact Hausdorff spaces X and Y, if T: C(X)— C(Y) is a linear
isomorphism with || Tl T"'|| < 2, then X and Y are homeomorphic. In
the event, we were able to bypass this result because the extra condition
we have when X and Y are groups, that T is a convolution algebra
isomorphism enables us to find the map from X to Y directly and under
the weaker hypothesis of | T| < V2.

NotaTtioN.  As usual, C(G), L'(G), L*(G) and M(G) will denote
the continuous functions, the integrable functions, the bounded measur-
able functions, and the bounded measures respectively on a locally
compact group G. To avoid confusion we will write [,(G) in place of
L'(G) when G is discrete. We will use f, g, etc. to denote elements of
[,(G)or LY(G) and x, y, z, u, etc. to denote elements of the group G or
the corresponding elements of 1,(G). G will denote the dual group of G
if G is abelian, and f the Fourier transform of f€ L'(G). If 5 is a
homomorphism of G, mto G,, then § will denote the induced
homomorphism of G, into G,.

We begin with some examples from finite groups. Let Z, denote
the cyclic group of order n.
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ExampLE 1. The group algebras of Z, and Z, X Z, are isomorphic
under the map defined by

Tx =3(1+i)y +3(1—i)z

where x is a generator of Z, and y, z are generators of Z,XZ,. Asa
map of [(Z,) (= L'(Z,) into (Z,XZ,) (or C(Z,) into C(Z,XxZ,))
IT|I=V2.

ExampLE 2. There is an isomorphism of /,(Z,) (or C(Z)) into itself
which is not induced directly by a group isomorphism. If x is a
generator of Z, define T by

Tx = —1x +Q2/—3x“.

Then || T| =3(1 ++/3) which is less than /2.

ExampLE 3. There is an algebra embedding of /(Z,) in [,(Z,) of
small norm which is not induced by a group map. If x generates Z, and
y generates Z,, define T by

Tx = i(1—-Dy +iy*+i(1+ i)y’

Then Tx*=j3e+i(1+i)y+i(1—i)y> which is an idempotent in
I(Z,). Also |[T|[=31(1+V2).

ExampLE 4. There exists an algebra epimorphism of /,(Zs) onto
1(Z,x Z,) which is induced by a group homomorphism which is not an
epimorphism. Let x generate Zq, y and z generate Z, X Z,, and define T
by

iVv3
2

Tx =}y — z.

Then Tx*= —ie—(iV3/2)yz and Tx’= —vy, and T is clearly an
epimorphism, but there is no epimorphism of Zs onto Z, X Z,. In this
case | T|=4(1+V3).

The dual map T* is a monomorphism of C(Z, X Z,) into C(Zs) which
is not induced by an epimorphism, (see Theorem 3.5).

2. Discrete abelian groups. In this section we shall study
algebra homomorphisms T: [,(G;)— [[(G;) which preserve the
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identity. Although we shall restrict attention to the abelian case, our
first result is true for any pair of groups G, and G,, and we shall use it
later in §4. We shall denote the identities of G, and G, by e, and e,
respectively.

ProrosiTiON 2.1. Let G, and G, be any two groups and suppose
T: 1(G,)— I(G,) is a bounded algebra homomorphism such that Te, =
e;. Then if x € G, and Tx =2, a,y, where y; € G, are distinct, then
there exists j, such that |a, | Z || T|"". If | T||< V2, then j is unique.

Proof. Let Tx™'=Z7, By + 27, v.z, where the (z;) are distinct and
disjoint from (y;'). Then e, = Tx * Tx ' andso identifying the coefficient
of e, we obtain 27_, @8, = 1. Hence

1 =suple|(Z|B:])
(suple D Tx |

fiA

so that sup|a,| = || T|[". Since a, —0, there exists j such that |q,| =
1T

Suppose || T{|<V?2, and k is another index such that |a,|=
(T, Then||Tx| = |e|+|a|Z2-| T2 V2, which is a contradic-
tion.

On [,(G), there is an involution defined by (2 e, x,)* =% ax;'. We
shall also define the [-norm by |2 a.x, |, = V(2 |a; [*) (where the (x,) are
distinct).

ProposITION 2.2. Suppose G, and G, are abelian groups and
T: 1(G,)— ,(G>) is a bounded algebra homomorphism such that Te, =
e,. Then Tis a *-map and for x € G, | Tx|,= 1.

Proof. Let x be any character on G,. Then y induces a multi-
plicative linear functional x: [,(G,)— C. x o T is multiplicative on [,(G;),
and hence for f € [(G))

X (Tf*) = x(Tf)

This is true for any y € G, and hence Tf* = (Tf)* (since I,(G,) is
semi-simple).

Now e, = Tx * Tx ™' = Tx *(Tx)*. Henceif Tx = 27, a,y,, we have,
identifying the coefficient of e,

1=3]a ] = [ Tx[.
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For the next three lemmas, we assume that G, and G, are abelian
and T: I,(G,)— 1,(G,) is an algebra homomorphism such that Te, = e,
and | T| < V2. We define, for x € G,, t(x)€ G, by

Tx = at(x) + Z B.y.
i=1

where || Z || T| " and t(x) # y, for any i. ¢ is then a well-defined map
by Proposition 2.1. It follows from the fact that T is a *-map that
t(x™)=(t(x))"". However, in general, ¢ is not a homomorphism. The
next two lemmas investigate the consequences of (x?) being equal or not
equal to (t(x)).

Lemma 2.3. Let x€ G, and t(x*)=(t(x)y. Suppose Tx =

at(x)+ fand Tx*= Bt(x*)+ g where f and g contain no terms in t(x) and
t(x?) respectively. Then | gll= Q/|TIPHIfI.

Proof. By multiplication
Tx?= a’t(x P+ 2at(x)*f + f*f
We consider two cases:
(@) If | = | T|"
2jellfl =11

Glaf=lITxDifl
= GITIH- I TIHIfI-

For 1=6 =2% let ¢(#)=360— 67, then since ¢"(8)= ~2, ¢ is concave
and so

iy

then lgl

©(8) = min(e(1), ¢(2%) for 1=6=2%
Hence 30-6°=2

(since ¢(1)=2, and ¢(2})=2(3.27"—~\/2)>2). Thus since 1=|T|=
v/2, and letting 0 = || T|f

. 2
I8l = prp A1

(b) Next suppose |a| < ||T|[* (note that this implies that || T|>
1). For convenience we shall let k =] T|[%. Then f*f will contain a
term in t(x)* of magnitude at least [B| — |aP= k*—|a?>0. Hence
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lgl=2lallfl = IfIF+k*~|a]
= k= (laf =1y

and, as [|f[[#0, lgl/Ifl = 1/1fll (k*=(la| = [If[)?) If we define

@(0)=07"(k’~(la| - 6)),
then

e'(0)=06"(alP—k?»)—1=0 for 6>0.

Hence as ||f|= [T - |e|

el = = o= lal - k)

where k?<|a| < k. If we write y =k?—|a|

lgll = 1 o (2 ny
“f“ (k (k2 =2y))

and k7 —k <y <k?—-k~
If P(0)=06"(k’—(k7*—20))
then $'(0)= 07k~ — k*)—4

and so ¢"(8)=0for 6 =0. Therefore ¢ is concave and so for k >— k <
vy <k?—-k?

¢(y) = min(f (k™= k), (k7= k?).

Now :

k= k) = e (K= @k — k7))

1 6 3 2
ZTCZ(T_k—S)(k —(2k*-1))

- & k- 1)

= 2k + 5 @k = )1 - k),
= 2k

since 27 < k <1.
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Similarly

(k™= k) = s (k2= QK= k)

_ 1 6__ 41\

- T (- k- 1)

_ 44 1 6__ 4_ 1V _AL6(1 _ L4
= 2K+ g (K @k = 17 - 2K(1 - k)
= 2k + 7(-2(11_——?3 (2"~ 1)(k— 2k* + 1)

= 2k*

since 2k*—1>0 and k°-2k*+1=(1-k)(1+k*-k*)>0.
Thus

2
I

M > 4 -
17 = 2

LemmA 2.4, Suppose t(x) # t(x?). Then
Tx = at(x)+ Bt(x)u +f

where u = t(x*)t(x)?> € G, has order 2, f € ,(G,) does not contain terms
in t(x) or t(x)u, and

o) la|+|B|>1.29

(ii) 1l <0.13

(iii) laB + aB| <0.017
i af

(iv) + B {’ < 0.60.

Proof. Writing u = t(x*)t(x)”? we can expand Tx in the form
at(x)+ Bt(x)u +f We have immediately

M lafP+]BP+|flE=1
) laf+[B]+fl =T}

using Proposition 2.2. In addition the coefficient of #(x?)=t(x)u in
(Tx) is at least || T{" and so
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3) 2[ap |+ flE= T

since if f=2,c6,v(y)y, then the coeflicient of #(x)u is

2af + YGZGZ y(y)y((Yuy™)

and [2,eq.y(y)y(t(xYuy )| = [f[} by Cauchy’s inequality.
First we note that from (1) and (3)
(Jal =By =1~[IT|"<0.30
so that
4) la|—|B|<0.55

Now let A =|a|+|B]|. Then from (1) and (3)

1
A+2llfFlE=z 1+ T > 1+ —=
If13 T 5
and as
Ifl.=Txll— A < V2- A,
we have
_ 1
A42(V2—AP > 1+ —,
( ) V2
_ 1
ie. 3A—4V2A +4>1 4+ —
V2
or 2V§>2 1 1
A -0 > o
( 3 3V2 9

Therefore either

22

> 2 (1:41) + 3 (105) = 1:29
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or

< % (1-42) — % (1-04) =

Since A > |a| > 0-70, we have A >1-29. Thus we have estab-
lished ().

For (it) note that ||f]| < || T|—1-29<1-:42-1-29 = 0-13 from (2).

Next, we note that since T is a *-map

Tx'=at(x) '+ Br(x)ut+ f*.

-1

Multiplying by Tx, we consider the coefficient of u™', which must be

zero. If u?# e,, we obtain that

laB = BN+ -1
0-70|8] = 0-13|B| + 0-02

from which we conclude |B| = 0-04.

However |a |+ |B|>1-29 and |a| — |B] < 0-55 so that | 3| > 0-37
and so we have a contradiction. Hence u’=e,. Again identifying
coeflicients of u

laB + Ba|=|fl-lf*|l < 0-017.

Finally
& af '
lal " 18] 81"
= la| - |B1+|B]"aB +aB]
- Q. 0-017
=055+ = 037 < 0-60.

Lemma 2.5. The set {t(x*)t(x)* x € G\} contains at most one
element u# e,.

Proof. Suppose t(x*)t(x)?=u#e, and t(y)t(y)?=v#e, with
v# u. Then write

Tx = a;t(x)+ Bit(x)u + yit(x)vo + 8t (x)uv + f
Ty = axt(y) + Bat(y)v + yat (y)u + 8ot (y)uv + g
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where the terms are disjoint (v;, ¥, 6; and 8, may be zero). By our
assumptions, £(x)t(y), t(x)t(y)u, t(x)t(y)v, t(x)t(y)uv are distinct (note
that u and v have order 2 by the preceding lemma). The sum of all
terms in the product

(nt(x)o + 8ut(x)uv + f)y* (y21 (y)u + 8ot (y)uv + g)

may be estimated by (0-13)°<0-017. Hence by considering each of the

four elements above, we obtain

” Txy ” = lalaf*' Biy.+ 71321 + ]a1y2+ Bia, + 6132' + "hﬁz‘*‘ B16;+ ’Y;az’
+ ’a182+ B Bz+ 6 azl - 0'017

z |aya,| (1 + Re (g-y— Lﬁ)) [Bivs| (1 T Re (Bxaz -—1§—2>>

[¢ 2744} ax; Blaz

ol (14 Re (B2 22 o g, (1 Re (524 2))
- 0-017

>(IO‘"+!Bl)(ta2‘+lﬁz‘)+Rey <’a1ale +la:§zl )

+Rey, (!.31012{ a, + f?azl B]) + Re 8, <1310‘2! B, + lﬁ B )

Blaz B Bz
+Res, (' a.fo| 5, 1BiB:] ,) - 0-017.

1Bz B B:
Now
|12 laxﬁzl 9_2_@_2 @
c, B.+ B, ’ ]azl A < 0.60

by Lemma 2.4, and we can estimate each term similarly.

Hence

“Txy “ = (1“11 + ’/31,)(]0‘2! + lel)-O'GO(M + "Yz’ + }51| + ’SZI)
- 0-017

= (1-29) — 0-60(0-26) — 0-017
> 1-66—0-16 — 0-02 = 1-48

which is a contradiction, since || Txy || < V2.
We now come to the basic theorem.
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THEOREM 2.6. Let G, and G, be abelian groups with identities e,
and e,, and let T: 1,(G,)— I,(G,) be an algebra homomorphism such that
Te,=e,. Suppose | T||<V2; then if

(@) |T||<3i(1+V3), T takes the form

Tx = (x)s(x)

where ¢ € G, and s: G,— G, is a homomorphism, and then T is an
isometry; N
or (b) |T||=zi(+V3), T takes the form

Tx = (x)G(A+ e (x))s(x) + (1~ @ (x))s(x)u)

where ¢, ¢ € G, and ¢ has odd order, s: G,— G, is a homomorphism and
u € G, is an element of order 2. In this case | T|| = V2 cos 7 /4n, where n
is the order of ¢. In both cases, if T is a monomorphism, then s is a
monomorphism, and if T is an isomorphism then so is s.

CoOROLLARY 2.7. If there is an algebra isomorphism T:
I(G,)— I(G,) with | T||<~\/2, then G, and G, are isomorphic.

ReMarRK. Example 1 shows that V2 is the best possible constant in
the Theorem and its Corollary. Example 2 shows that }(1 + V/3) is best
possible for (a). Example 4 shows that in case (b) T can be an
epimorphism while s is not an epimorphism.

Proof of Theorem 2.6. Let €, denote the identity character on
G,. Then €,° T is a nonzero character ¢ on G, (since Te, = e,). If we
define S: [(G,)— [(G)) by Sx = ¢ '(x)x then S is algebra automor-
phism, and so by considering TS in place of T we may reduce the problem
to supposing €,° T = €,.

Using the notation of the preceding lemmas, suppose first that
t(xy=t(x?) for all x € G,. Then by Lemma 2.3 if

Tx = at(x)+f
then Tx” =Bt(x)" +g

where gl = @/ TIP)"|f]]. Since 2 > | T|}, we conclude that f =0 and
hence Tx = at(x) where a = a(x). Since €,°T=¢€, a=1, ie. Tx=
t(x) and t is a homomorphism. We thus obtain the result of (a).
Next suppose {t(x)?t(x?): x € G} = {e,, u} where u is an element of
order 2. Let H ={e,u}, and let #:G,— G,/H be the quotient
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map. Denote by P:[(G,)— l,(G,/H) the induced algebra epimor-
phism, and consider PT: [(G,)— L(G,/H). As |PT||=||T||<V2, we
can appeal to the preceding lemmas. Let 7: G,— G,/H be the map
defined before Lemma 2.3. The mass of Tx concentrated in the coset
f(x) is at least || T|", and hence as 2||T|' > ||T|, it follows that
mt(x)=f(x). Thus #(x?)= mt(x?)=f(x) since u € H, and so by the
preceding paragraph

PTx = f(x)

and f: G,— G,/H is a homomorphism.
Thus for x € G,

Tx zli—g—(i)t(x)ﬂL—l—-—gi)—Qt(x)u +f

where f = (e,— u)* 27 v.y,, and there is precisely one y, in each coset of
H. Then |[[fl=2Z]v|<|T|l-1 and hence [ffi=22|yF<
(IT|—1). However

1+ 0+ |f

=1
so that

[0)P=z1-(|T|-1¢=2|T|- T
Now suppose
Tx? = Lt_g_ﬁx_) t(x?) + 1——_%)6—) t(x)u + g
Then

f*(————wzax t(x)+—4——21_29x t(x)u)

=P

HEE
and since f=13(e;—u)*f

el = 206 )y« fll = I fIP
=2|0)|IfIl = NIFIF
z|flevelTi-ITP)-ITi+1)
= K|f|
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Thus it follows that || Tx*" || = K" ||f||, and hence that f = 0,i.e. T has
the form

Tx =31+ 6(x))t(x)+3(1— 0(x))t(x)u
By multiplying out, it is easy to see that
f(xy)= =06(x)0(y)

and hence that 07 is a character on G,. Since | T|<V2, [6(x)*i|=
€ >0 for all x € G, and some € >0. Hence 6° has odd order, n,
say. Define ¢ = (6%)"*"?; then ¢ is also a character of order n, since
(n,(n+1)/2)=1. Now ¢(x)=0"""(x)= = 6(x), and hence by defining
s(x)=t(x) or t(x)u we may express T in the form

Tx =31+ e(x))s(x)+3(1— @ (x))s(x)u.

Since ¢ is a character it follows easily that s is a homomorphism. The
norm of T is then

sup 1+ )| +[1-e(x)])
ka)i( cos%—r‘ + }sin%‘)

k
ax \V2sin <—nlr + Z)

I
=4

i
)

:1n§1k§n 4
:\/Ecos%.
n
Ifn=3
T 1+V3
\/Ecosﬂ= > .

If T is a monomorphism in case (b) (case (a) is trivial), let M C G, be
the set such that s(M)=e,. Then Tm € lin(e,, u) for m € M, andso M
has at most two members. If M# {e,}, there exists v E M and v>=
e;.. Hence ¢(v)= +1 since ¢ is of odd order and so Tv = ¢ (v)e,,
contradicting the fact that T is a monomorphism.

If T is an isomorphism, let N = s(G,). If u& N then there must
exist x € G, such that s(x)u = u and 1 —¢(x)#0. But then s(x)=e,
and by the result for monomorphisms, x =e,, ¢(x)=1. Thus u €N
and so Tx € I,(s(G))) for x € G,. Thus s(G,)= G, since T is onto.
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3. General case. We now use the results for discrete groups
to establish the corresponding theorems for locally compact abelian
groups.

First consider homomorphisms from L'(G,) into M(G,). If I is
such a homomorphism, then T possesses a unique extension
T: M(G,)— M(G,) which is continuous on bounded sets from the strong
operator topology (of M (G,) operating on L'(G,)) to the weak*-topology
(of M(G,)= Ci(G,)*) (see [4] Theorem 4.1.1 and Remark afterwards).
We also observe that in the strong-operator topology, the unit ball of
M(G,) is the closed absolutely convex cover of the Dirac measures
{8.: x € G} (see [4] Lemma 1.1.3). Hence T is uniquely determined by
its behaviour on the atomic measures, which we identify with [,(G,).

THEOREM 3.1. Let G, and G, be locally compact abelian groups and
T: L'(G,)—> M(G,) be an algebra homomorphism such that || T||< V2
and T8, = 8,. Then B

() if |T|<3(1+V3), then |T||=1 and T takes the form

T =F60w) e

where ¢ € G, and s: G,— G, is a continuous homomorphism ;
Gi) if | TI=4( +V3), then T takes the form

/ Aoa .
T =fE0w) i x()=1
=fB0)ve) it x(u)=-1
where ¢, € Gy, ¢ is of odd order n, s: G,— G, is a continuous

homomorphism, and u € G, is an element of order 2. Then |T|=
V2 cos m/4n.

Proof. Let P: M(G,)— li(G,) be the natural projection; P is an
algebra homomorphism. Consider PT: [,(G,)— Ii(G,). Clearly | T| =
[T| and [P[=1, and so | PT||< V2. By Theorem 2.6, either

(1) PTSX = (ll(X)Ss(x)
or (i) PT8, = ¢(x)3(1+ @(x))dey +3(1— @ (x))ugan]-

Consider case (i). Then

T, = ¢ (x)8,0+
where p is nonatomic, and ||p || < V2-1.
T6:= Y (x)d,05+ v

where v is nonatomic and
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v = [2¢(x)8m*pmll — e *p
=z Q2= uDlel

=z (3-V2)|lu].

By iteration we obtain a contradiction (cf. 2.6) unless u =0, since
3-V2>1.
Thus
T8, = ¥ (x)8,).

On the Dirac measures, both the strong-operator and weak*-
topologies agree with the group topologies, so that s and ¢ are
continuous. The form of T now follows from the remarks preceding the
Theorem, and replacing ¢ by ¢

For case (ii) we compose with the quotient Q: M(G,)— M(G,/H)
where H = {e,, u} is a subgroup of G,. Then

P'OTS, = (x)8,ss

where P’ is the natural map P": M(G,/H)— /(G,/H), and = is the
quotient map 7: G,— G,/H. Asabove ¢ and s are continuous and

OT6X = (ll(x)S,,s(x).
Thus

Ts. = PTS, +

where p is nonatomic and satisfies u =1(5,,— 8,)* . Then
TS = PT6-+ v

where v is nonatomic and satisfies

v=¢()[(1+ o)) * 8T (1 - @(x)p * ]+ 1 *
=2 (X))@ (X)) * Oyt 1 * .
Thus
Iviiz2{pll -l
z3-V2)ul

and arguing as before u =0, i.e.

TS, = PTS..
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Now
T8, = ¢ (x)[J(1 + @ (x))8ury + 31~ 0 (x))8,0r1. ]

where ¢ is continuous. To prove ¢ continuous, since ¢ has finite order,
it is sufficient to establish that {x: ¢ (x) =1} is closed. Suppose x, — x
and ¢(x,)=1. Then

Ts,, = (X, )8
so that

T5, = ¢(x)8,

where s(x,)—z. Hence ¢(x)= =1; but ¢ has odd order so that
e(x)=1 and ¢ is continuous. It follows that s is also continuous.
The general form of T follows as above, again replacing ¢ by ¢,

The proof above clearly shows that a homomorphism T of M(G,)
into M(G,) with |T||<V2 and T§,= 8§, has the form on atomic
measures given by either

(1) T8, = ¢(x)d), O

@) T8 = p(x)B(1+ ¢ (X))o + (1= @(X))800]
with ¢, ¢, s and u as before.

However we cannot deduce that s is continuous or the form of T on
the nonatomic measures. For example, (see [8], 3.4.1) let G be a
compact infinite group and let G, be the same group with the discrete
topology. Then the algebra homomorphism P: M(G)— [(G)=
M (G,) as in the proof of the theorem has the above form, but the identity
map is not continuous.

CoroLLARY 3.2. Suppose T is an algebra isomorphism of L'(G,)
onto L(G,) [resp: M(G,) onto M(G,)] with || T||< V2. ThenG, and G,
are isomorphic.

Proof. By [8] 4.6.4 it is sufficient to prove the result in the
L'-case. In this case T is also an isomorphism and satisfies T8, =
8,. By Theorem 3.1 and Theorem 2.6 there is an isomorphism
s: Gi— G, and s is continuous.

Since T'is onto L'(G;), T™' has a unique extension to M(G,)
(without any continuity requirements). Thus T7' is the unique exten-
sion and is hence continuous for the strong operator and weak*-
topologies on bounded sets.

The form of T is either

(1) T8, = ¢(x)dir)
or (2) T8 = y(x)[i(1+ @(x)dn+3(1~ @ (X)) ]-
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Thus either
(1) T8, =¢7 (s (x))B8

or () T8 =¢7'(s"(x))
X[2(1+ @7 (s7(x))8:1 + 21— @77 (X))Br ew]-
[Note that ¢(s™(u))=1 since u’= e, and ¢ is of odd order.]
The continuity of s follows as in Theorem 3.1. :
Theorem 3.1 is false if T§,, # 8., (see Example 3). However with a
stronger condition on the norm, we have the following result, essentially

due to Saeki [9] (see [8] 4.6.3.).

THeEOREM 3.3. Let G, and G, be locally compact abelian groups and
T an algebra homomorphism of L'(G)) into M(G,) with |T|<
11+V2). Then |T| =1 and T has the factorization

LYG) > M(Gy/H:) 5> M(Gs)

where H. is a compact subgroup of G, s is a continuous homomorphism of
G, into Go/H,, ¢ € Gy, p € H,,

00 =160 (€ TIm)
and w: C(G,)—> Co(G,/H.,) is defined by

()€ = [ Fonpo dmay) (€= Hox),

Proof. Let T be the extension of T to M(G,) as in Theorem
3.1. Then T3, is an idempotent in M(G,) with || T8, < i(1+V2). By
Saeki [9], | Tée:|| = 1 and T8,, = pmy, where H, is a compact subgroup of
G, and p € H,, (see [4] Theorem 2.1.4). Since pmy, is the identity for
the image of T, T must factor through M(G,/H,).

Let L'(G)=> M(G,/H:)=> M(G,) be the factorization with 7 de-

fined as in the statement of the theorem. Then S8, = §, where ¢, is the
identity of Gy/H,, and since || w*|| = 1, || S||<}(1+V2). The result now
follows from Theorem 3.1.

Finally in this section, we give the corresponding results for C(G)
and L"(G) with G a compact group.

THEOREM 3.4. Let G, and G, be compact abelian groups and let T
be an algebra homomorphism of C(G,) into C(G,) with T one-to-one and
)< V2. Then there exists a group homomorphism s of G, into G, and
€ G, such that either

(1) |T|=1 and T has the form
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(TF)(x) = (x)f (s(x))

or (2) ||T|=V2cosm/4nforan odd numbern >1 and T has the form

(TH(x) = g ()2 + () f(s(x)) +2(1 ~ @ (x)f (s (x)u)]
for some ¢ € G, of order n and u € G,, of order 2.

Proof. The characters on a compact abelian group are the only
idempotents of norm less than 2. Thus T maps characters into
characters. It follows that (Tf)(e.) = f(e,) for all f € C(G,), and as in
[16] Theorem 2, T* is a homomorphism of M(G,) into M(G,). Since
T*6.,= &, and | T*|| < V2, the result follows from Theorem 3.1.

Note that s need not be an epimorphism (Example 4).

CoroLLARY 3.5. Suppose T is an isomorphism of C(G;) onto C(G,)
with |T|<V2. Then G, and G, are isomorphic.

Proof. This follows from Corollary 3.2.
Note that V2 is again the best possible constant (Example 1).

THEOREM 3.6. Let G, and G, be compact abelian groups and
T: L™(G,)— L*(G,) be a one-one. algebra homomorphism. Then
@ ifITI<ia+V3)

Tf (x) = (x)f(s(x))
where s: G,— G, is a continuous homomorphism and ¢ E_Gz
(i) if T is an isomorphism onto L*(G,) and | T||< V2 then G, and
G, are isomorphic.
Proof. As T maps characters to characters, T maps C(G,) to

C(G,). U T is an isomorphism then T: C(G,)— C(G,) is an isomorph-
ism and case (ii) follows from 3.5. For case (i) we observe by 3.4 that

Tf(x)=d(x)f(s(x)) fEC(GY

where ¢ € G, and s: G,— G, is a continuous homomorphism. Let
H = kers and consider P: L*(G,)— L”(G,/H) the natural projection

Pelm()] = | oG )dmi(h)

where my is the Haar measure on H, and 7 the quotient map.
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Then PT: L*(G,)— L*(G,/H) is an algebra homomorphism and
PT(C(G,)) = C(G,/H). Hence for g € C(G,/H), f € L*(G)),

PTf+g = PT(f+(PT)"g)=PTf*g
where

Tf(x) = Y(x)f (s(x)).

1t follows that
PTf = PTY

and hence that Tf = Tf + k where

[H k(xy)dmy(y)=0 (x € Gy).

Now T(f*f)= T(f*f) and so
2Tf*k +k*k =0.

Tf is constant on cosets of H and so Tf*k =0. Thus k *k =0 and
k =0 since G, is abelian.

4. Non-abelian groups. In the non-abelian case, we cannot
expect results about the form of near isometries. If G is compact, but
not abelian, there exist many isomorphisms of C(G) [or L'(G)] onto
itself with norms arbitrarily close to one. An isometry can be perturbed
in different ways by automorphisms of the minimal ideals. However we
can still ask whether isomorphisms of the algebras determine isomor-
phisms of the groups. Again we begin with the discrete case. Let G, and
G, be arbitrary groups and T: [,(G,)— [,(G,) be an algebra homomor-
phism with |[T||<V2 and Te,=e, By Proposition 2.1, the map
t: G;— G, is well-defined. But Proposition 2 is false in the non-abelian
case since T need not be a *-map. If we impose a stronger condition on
the norm of T, we get that ¢ is a homomorphism directly.

Lemma 4.1, If || T|| < Ao where A, is the largest root of the equation
A+ A*=21 —1=0, then t is a homomorphism.

Proof. Let Tx = at(x)+f and Ty = Bt(y)+ g where |a|=1/|T|,
[B|z1/|| T|, with f and g disjoint from #(x) and #(y) respectively. Then
the modulus of the coefficient of f(x)t(y) in Txy is greater than
lallBl=1flllgll. Now if t(x)t(y)# t(xy), this must be less than
IT{-1/]|T}|. Thus we must have
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1T~ gy = lel1B1 = 111l

zlal|Bl =TI TaDATI=18D
= (al+BDITI-ITIF
z2-|TI.

But this is impossible since || T| < A, and A, is the largest root of
A=1/A =2 A%
Thus t(xy) = t(x)t(y)forall x, y € G, and so ¢ is a homomorphism.

Note. Ay~ 1-247. 3
With the condition || T'|| < V2, we can show that ¢ is not too far from
a homomorphism in the following sense.

LemMA 4.2, For x € Gy, the set {t(y)t(z): yz = x} is finite,

Proof. It Ty =at(y)+f and Tz =Bt(z)+g with [a|Z= /| T],
|B1=1/||T| and f and g disjoint from t(y) and ¢(z) respectively, then
the modulus of the coefficient of t(y)t(z) in Tyz = Tx is greater than

lal|Bl=1flllgh=2~]T|" as before.

Since this is positive and |Tx]|<V2, it follows that the set
{t(y)t(z): yz = x} is finite.

These two lemmas give corresponding results for locally compact
groups. We give only the results for isomorphisms, though clearly there
are slightly more general results.

THEOEREM 4.3. Let G, and G, be locally compact groups and T an
algebra isomorphism of L'(G,) onto L'(G,) with | T|| < A, where A, is the
largest root of the equation A*+A*—2A —1=0, then G, and G, are
isomorphic.

Proof. By [4] §4, there is a unique extension T of T from M(G,)
onto M(G,) which will also be an isomorphism with || T|| < A,, and which
is continuous on bounded sets as a map from the strong operator
topology into the weak™ topology.

Now restricting to the atomic measures on G, and using Lemma 4.1,
we have an isomorphism ¢: G,—> G,. t is continuous by the continuity
of T as in Theorem 3.1, so it remains only to prove that ' is
continuous. Suppose not. Then there exists a compact neighborhood
V of e, in G, such that t(V) is not a neighborhood of e,. By taking U
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such that UU™ C V if necessary, we can assume that the measure of
t(V)is zero. Let y, denote the characteristic function of V and m, the
Haar measure on G;. Then yy € L'(G,) and by [4] Lemma 1.1.2,
(1/m(V))xv can be approximated in the strong operator topology by
elements in the convex hull of {5,: x € V}. Suppose 27, A,8,, is such an
element. Then for each i, T8, = a(x,)8,.,+ v where |a(x.)| >1/|T]|,
v({t(x)h) =0 and ||v. | = [| TlI- /]| T||.
Then

f(i /\‘8“‘> = i /\,»a(x,)ﬁ,(x,) + i /\, V.
1 1 1

Now (1/m,(V))Ty, 1s the w* limit of such elements. Thus
(1/m (V) Txy = p + v where supp(u) C1(V) and [|v|| = | T|| - /[ T].

Since t(V) has measure zero; p is a singular measure. But
Txv € LY(G,) and so |(UUm(V)Txy[|ZE|v||ZIIT|—-1/|| T|. But there
exists a net of such V such that (1/m,(V))x, tends to 8, in the strong
operator topology. Therefore (1/m,(V))Ty, — 6., in the w *-topology,
which is a contradiction, since || (1/m (V))Tx.|| = || T|| - 1/|| T|| < 1. Hence
¢! is continuous and the result is proved.

CororLArY 4.4. Let G, and G, be compact groups and T an
algebra isomorphism of C(G,) [L*(G,)] onto C(G,) [L™(G,)] with | T|| <
Ao. Then G, and G, are isomorphic.

Proof. By [12] p. 861, it is sufficient to prove the result for T
mapping C(G,) onto C(G,). The adjoint map T* is an algebra
isomorphism of M(G,) onto M(G,) which maps L'(G,) onto L'(G)) ({4}
Theorem 1). The result now follows from 4.3.

THEOREM 4.5. Let G, and G, be locally compact connected groups
and T an algebra isomorphism of L'(G)) onto L'(G,) with |T|<
V2. Then G, and G, are isomorphic.

Proof. As in the proof of 4.3, ¢ is a continuous one-to-one map
from G; onto G,. By Lemma 4.2, for x € G, {t(y)}(z): yz=x}is a
finite set. But it is the image of G, under the continuous map
y » t(y)t{(y 'x). Since G, is connected, it is a one point set, and since
t(e,) = e, this point is £(x). Thus ¢ is an isomorphism. The continuity
of ¢! follows as in 4.3 since | Tl|—1/|| T|| is still less than one.

CoROLLARY 4.6. Let G, and G, be connected compact groups and T
an algebra isomorphism of C(G,) [L*(G))} onto C(G,) [L™(G,)] with
[TI|<V2. Then G, and G, are isomorphic.
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