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INTERPOLATION OF COMPACT OPERATORS BY THE
METHODS OF CALDERON AND GUSTAVSSON-PEETRE

by M. CWIKEL* and N. J. KALTONf
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Let X = (X0,A'i) and \ = {Y0, V,) be Banach couples and suppose T:X-»Y is a linear operator such that
T:X0-+ Yo is compact. We consider the question whether the operator T:[X0, A'1]fl->[T0> y , ] e is compact and
show a positive answer under a variety of conditions. For example it suffices that Xo be a UMD-space or that
Xo is reflexive and there is a Banach space so that X0 = [W,Xl~\I for some 0<ot< 1.

1991 Mathematics subject classification: 46M35.

1. Introduction

Let X=(X0,Xi) and \ = (Y0,Y1) be Banach couples and let T be a linear opeator
such that T:X->Y (meaning, as usual, that T:XQ + X^ YO+ 7, and T:Xj-*Yj boun-
dedly for y=0,1). Interpolation theory supplies us with a variety of interpolation
functors F for generating interpolation spaces, i.e. functors F which when applied to the
couples X and Y yield spaces F(X) and F(Y) having the property that each T as above
maps F(X) into F(Y) with bound

for some absolute constant C depending only on the functor F. It will be convenient
here to use the customary notation ||T||x_v=max(||7'||Xo,||T||;ri). Further general
background about interpolation theory and Banach couples can be found e.g. in [1],
[3] or [5].

In this paper we shall be concerned with the following question.

Question 1. Suppose that the operator T:X->Y also has the property that T:X0-*Y0

is compact. Let F be some interpolation functor. Does it follow that T:F(X)-»F(Y) is
compact?

The first positive answer to a question of this type was given by Krasnolsel'skil [17]
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in 1960 in the special context of Lp spaces. Since then Question 1 has been answered in
the affirmative in many particular cases:

In 1964 Calderon [8, Section 9.6, 10.4] gave partial results for the case where F is the
functor F(X) = [X0,Xl~\e of his complex method [8]. In the same year Lions-Peetre [18,
pp. 36-37] obtained results which apply under suitable conditions to the complex
method, to their real method, and to certain other methods also.

In 1992 one of us gave the complete answer for the real method [12], using results
and methods suggested by the work of Hayakawa [15] and Cobos-Peetre [10].

Question 1 is still open in the case where F is the functor of Calderon's complex
method [8]. Among the partial solutions which have been given to date, in addition to
the work of Calderon referred to above, we mention results of Persson [21], Cwikel
[12], Cobos-Kuhn-Schonbek [9] and a forthcoming paper of Mastylo [19]. In this
paper we present some further partial results for this functor. We are able to answer
Question 1 in the affirmative in each of the following four cases:

(i) if Xo has the UMD property,

(ii) if Xo is reflexive and is given by X0 = [W,Xl~\ll for some Banach space W and
some a e(0,1),

(iii) if YQ is given by Y0 = [Z, Yj]a for some Banach space Z and some <xe(0,1),

(iv) if Xo and Xl are both complexified Banach lattices of measurable functions on a
common measure space.

Our result (iv) strengthens Theorem 3.2 of [9] where both X and Y are required to be
such couples of complexified lattices with some other mild requirements. We obtain (iv)
as a corollary of the result that T:(XO,XU9)->[YO, Yi]e is compact for arbitrary
Banach couples X and Y. Here <,X0,Xi,8} = G3e(X) denotes the interpolation space
defined by Gustavsson-Peetre [13] and characterized as an orbit space by Janson [16].
Mastylo [19] has obtained an alternative proof of (iv) as a consequence of other results
of his which answer Question 1 in the cases where F is the Gustavsson-Peetre functor,
or other related functors introduced by Peetre and by Ovchinnikov.

We now recall the definitions of the main interpolation functors to be used in this
paper:

J. Calderoris complex method [•,•]»

For each Banach couple X = {X0,X1) we let JV = JV(X) denote the space of all
Xo + ^j-valued functions which are analytic on the open annulus Q = {z: 1 <|z|<e} and
continuous on the closure of Q. This space is normed by ||/||jp = maxren||/(z)||Xo+Xl.

The space #"=^"(X) is defined to be the subspace of i f which consists of those
functions / which are X0-valued and X0-continuous on the circle |z| = l and X,-valued
and Xrcontinuous on the circle \z\ = e. We define | | / | |^ = maxJ=01(maX|2|=e>||/(z)||Xj).
For each 0e[0,1] the interpolation space [X0»-^i]e generated by Calderon's complex
method is the set of all elements x e X 0 + X , of the form x=f(ee) where fe3F. Its norm
is given by ||x||xo=inf{||/|| i ir:/eisr,/(ee) = x}. In fact this definition differs slightly from
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the one given in Calderon's classical paper [8] where the unit strip {z:0<9?z<l}
replaces the annulus Cl but, as shown in [11], the two definitions coincide to within
equivalence of norms.

We will sometimes use the notation Xe = [X0,X1']g when there is no danger of
confusion. Actually this could be ambiguous for the (sometimes forgotten) endpoint
values 0=y=O, 1 since then [•Xo.-X'iJ,- is the closure of XonXt in Xj (see [3, Theorem
4.2.2, p. 91] or [8, Sections 9.3 and 29.3, pp. 116, 133-^].)

The couple X is said to be regular if X o n X , is dense in Xo and also in Xt. If X is
regular then the dual spaces X% and X\ also form a Banach couple. Calderon's duality
theorem ([8, Sections 12.1, 32.1]) states that for regular couples and 0e(0,1) the dual of
[X^X^Q coincides with the space [^*.-^*]8 obtained by applying a variant of
Calderon's construction to the couple (X$, ATf). We refer to [8] for the exact definition
of this second Calderon method [•, ]9.

2. Peetre's method <•, ->9

For each Banach couple X and each 06(0,1) the space <Ar
0,A

r
1>9 is the set of all

elements xeAr
0 + A'1 which are sums of the form x = ̂ fceZxfc where the elements

xkeXonXl are such that Y,keze~ekxk is unconditionally convergent in Xo and
Yjkeze(lB)Xxk is unconditionally convergent in Xt. <Ar

0,A
r
1>9 is normed by

l|x||<xo.x,>»=infmaxsuP
keZ

where the supremum is taken over all complex valued sequences (Ak) with \^k\ = 1 f°r a 'l
k, and the infimum is taken over all representations as above x = X*ez**- We refer to
[20] and [16] for more details.

3. Gustavsson-Peetre's method <•, -,0>

This is a variant of Peetre's method (see [13] and [16]). The space (X0,Xud) is
defined like <A'0,X1>fl except that the series ^kezeU~e)kxk need o n 'y be weakly
unconditionally Cauchy in Xj. The norm is accordingly given by

keF \\Xj;=o,i

where the supremum is over all Xk's as before and over all subsets F of Z.

Finally, we discuss the class of UMD-spaces. Let AT be a Banach space and let T
denote the unit circle with normalized Haar measure dt/2n. If / e L2(T, X) we denote its
Fourier coefficients
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Then the (formal) Fourier series of / is /~£|[ez/(fc)z1'. We recall that X is a
UMD-space if the vector-valued Reisz projection &:L2(T,X)-*L2(T,X) is bounded
where @f ~Yjk*oJ{k)zk. 1° fact UMD-spaces were introduced by Burkholder in [6]
with a different definition, but the above characterization follows from results of
Burkholder [7] and Bourgain [4].

It is perhaps important to stress that although the condition of being a UMD-space
is fairly stringent many of the well-known spaces used in analysis are in fact UMD. The
spaces Lp and the Schatten ideals <€p for l<p<oo are UMD; further examples are
reflexive Orlicz spaces and the Lorentz spaces L(p, q) where 1 < p, q < oo (see [14]). The
class of UMD-spaces is closed under quotients, duals and subspaces. All UMD-spaces
are superreflexive but the converse is false even for lattices [4].

2. Some preliminary results

We will make repeated use of the following simple lemma.

Lemma 1. Let X and Y be Banach spaces and suppose T:X -*Y is a compact
operator. Suppose (/„) is a bounded sequence in L2(T, X). Let H be the subspace of all
elements y* e Y* which satisfy

n-»oo 0 •'ft

Suppose H is weak*-dense in Y* (i.e. H separates the points of Y). Then

n-oo 0 l n

Proof. Let (y*) be a sequence in Hr\BY. such that (T*y*)®=1 is norm dense in
T*(H nBy). Then any bounded sequence (xn) in X such that limn_ao<Txn,_y*> = 0 for
each m must satisfy limn_0O<Txn,y*>=0 for all y*eH. Consequently, by compactness,
lim||Txn||y = 0. From this it follows easily that for every e>0 there exists a constant
C = C(e) such that

||Tx||?ge||x||i + C X 2-»\(Tx,yZ}\2

m = l

for every xeX. Now the lemma follows easily. •

We shall need the following properties of the complex interpolation spaces Xg, most
of which are well known.
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Lemma 2. (i) For each O<0< 1 there is a constant C = C(d) such that, for all feP,

| | | | g y ( j | | ^ J (1)
In particular, for all xeXonXi,

llvll <rllvll1-9llvllfl n\
\\x\\xo^^\\x\\x0 \\x\\xr \z)

(ii) For each 0 < 9 < 1, Xo n X, is a dense subspace of Xe.

(iii) Let X° denote the closed subspace of Xj generated by X o n X t . Then, for all
Oe [0,1],

[_Xo, X\ \e = [Xo, X * ] e = [X°o, X x ] e = \_X0, X! j f l

(iv) (reiteration formulae)

[[*o, * i ] * , [*o, * i L , L = IX 0, XJ. (3)

wit/i equivalence of norms, for each 0o, 0x and a in [0,1], where s = ( l — o^Q + aQy. Also

Proof. Part (i) follows easily from the above-mentioned equivalence of complex
interpolation in the annulus with complex interpolation in the unit strip, by applying
the estimate (ii) of [8, Section 9.4, p. 117] to the function F(z)=f(ez)ez\

For parts (ii) and (iii) we refer to [3, Theorem 4.2.2, p. 91] or [8, Sections 9.3 and
29.3, pp. 116, 133-4]. For part (iv) the formula (3) is proved in [11, pp. 1005-1006], and
also in [16, Theorem 21, pp. 67-68]. Its variant (4) follows from (3) if X o n X ! is dense
in Xy. But it can also be shown in general by slightly modifying Janson's proof of the
reiteration formula ([16, Theorem 21, pp. 67-68]): One of the things to bear in mind for
that proof is that simple estimates with the K-functional show that [.X^XJ^nXiC
[Jfo,Jf1](1_<,)eo+(I. (Cf. [11]). The proof of (5) is exactly analogous. •

For each f&Jf we write /(z) = Xkez/(^)z* a nd we let &f denote the analytic
function on Q defined by ^/(z) = X*2o/(fc)z*- We set 9t_f=f-^f. It is easy to see
that /extends to an X0 + AT,-valued analytic function on the open disk \z\<e and
similarly ^ _ / is analytic on the open set |z |>l . It thus follows that 01f extends to an
element of Jf and that H^/H^gcH/Hjr for some absolute constant C.
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For each positive integer N and fe J? we define £fNfby the formula

\k\SN N<|*|S2Ar

By the uniform L,-boundedness of the de la Vallee Poussin kernels there exists a
constant C such that | | ^ / | | ^ g C | | / | | ^ for all /eJ5" and all JV>0.

Now let \=(Y0,Yl) be another Banach couple and let T:X-* Y be a linear operator
with the further property that T:X0-* Yo is compact. We may assume that | |T | |X- .Y^ 1-
In fact T will be assumed to have these properties throughout the remainder of this
paper.

Lemma 3- (a) The set {Tf(k):feB#, keZ} is relatively compact in Yo.

(b) We have l im*^ sup/eB^ ||r/(fe)||yo=0.

(c) For each <5>0 there exists an integer L = L(5) so that for each feB^ the set
{k:\\Tf(k)\\Yo>5} has at most L members.

(d) For each 0 < 6 < 1 we have

Km sup ||77(fc)e*
8||,,,=0.

|t|-oo feBp

Proof, (a) We simply observe that

(b) Since T:X0-*Y0 is compact, there exists a function n: [0, oo)-»[0, oo) with
mi^on(S) = n(0) = 0 such that if J|x||Xogl then ||Tx|Lo^f/(||x||Xl) whenever ||x||Xl<c».
Now for feB? we have \\?(k)\\Xo£l and ||/(*)«»||Xl^l. Hence \\T?(k)\\,0£t,(e-k).

(c) Since T is compact we can pick a finite set of functional {y*,--.,ys) in Bri such
that for x e Xo we have

£ max

Now suppose /eBjf and that y4 = {fc:||7y%(fc)||i'0><5}. Then for each keA we have

Summing over all k and applying Parseval's identity, we obtain
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j = l 0 27T 4

Thus |/4|^4/V(5~2 from which the result follows immediately,

(d) First we observe, using (2), that

and so we obviously have from (b) that

lim sup ||77(fc)e*°||yo=O.
k->oo

It remains to establish a similar result as k-* — oo. Suppose then that this is false.
Then we can find <5>0, a sequence (fn)eB^ and a sequence kn->co such that fcn >2fcn_ t

and ||7fn( — kn)e~knO\\yg'^:S for all n. Now, given n and any e>0, we can use (a) to find
integers m and p such that m>p^n and ||T(/m(-fcm)—/p( —/cp))||y0^e. However
WU-kJe-^Wy^l and \\Tjp{-kp)e-

k%x^ek'-k-^\. Hence, again by (2),

where C depends only on 9. It follows that

Hence

and this is a contradiction since e > 0 and kn are arbitrary. •

Lemma 4. For O < 0 < 1 and each fixed JVeN the set {S^NTf(ee):feB^} is relatively
compact in Ye.

Proof. Suppose /„ e By, then by Lemma 3(a) we can pass to a subsequence (#„) such
that for |/c|g2/V we have

\\TgM-Tgn+ . W H ^ - " .

Thus

for |z| = 1. Also, for |z| = e, we have
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for some suitable constant Cj. Thus, by (1)

and so SfNTgn(e
e) is convergent. •

Let S be a subset of P. We shall say that S is effective if it is bounded in !F and if for
some absolute constant X and every fs& and every neN we have f — S?nfeX£. For
each 06(0,1) let Se={f(d):feS}. We shall say that S is d-effective if it is effective and if
S9 n yBXa is norm dense in yBXo for some positive constant y (which may depend on 6).
Of course Bf is ^-effective, but there are also clearly smaller sets with the same
property, for example the set of those / in B? with finitely many non-zero coefficients
f(k). (Cf. [8, Section 9.2 and 29.2].)

Lemma 5. Let S be an effective subset of #" and let 6e(0,1). Then the following
conditions are equivalent:

(a) T(Se) is a relatively compact subset of Ye.

(b) Every sequence (fa) in <f satisfies

\im\\Tfn(e
e)-^nTfn(e

e)\\Yo = O.

n-* oo

If S is d-effective then the preceding two conditions are also equivalent to

(c) T: Xo-> Yo is compact.
Proof. First suppose that (a) holds. If (/„) is a sequence in & we observe that for a

suitable constant C depending on 9 we have

\z\=e

Combining this with a similar estimate for ^_ ( / n — Sfnf){e°) we have

Hence

Using the fact that fn(e
e) — £^nfn{eB) e XSe for each n and condition (a) we deduce that we

also have convergence in Yo, establishing (b).
Conversely, notice that if (b) holds then \imll^oo\\Tf{e0)-^'nTf{el>)\\Yo = O uniformly for

/€(?. It then follows from Lemma 4 that the set {Tf{ee):feS} is relatively compact in
YB and so (a) holds.

Obviously (c) implies (a). The reverse implication is also trivial whenever S is
^-effective. . •
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3. The main results

The following theorem will imply the compactness result when the domain space is
<.Y0,.X\>e or <Xo,X1,0> or when X is a couple of lattices.

Theorem 6. Suppose that X and Y are Banach couples and that T: X -*• Y is such that
T:X0-*Y0 is compact. Let S be the subset of B#(X) consisting of those elements f for
which the series X*ezgJ*/('c) converges unconditionally in Xj for j=0,l and
||£*eZAJke>'I/(/c)||Xj<l for every sequence of complex scalars (Xk) with |A t | ^ l for all k.
Then T{SB) is relatively compact in Ye for every 0<6< 1.

Proof. We may suppose that ||T'||Xj_yJ^ 1 for j = 0,1. Consider an arbitrary
sequence (/„) in & such that fn(k)=O for |/c|gn. Fix any O < 0 < 1 . Clearly S is effective,
so by Lemma 5 it will suffice to show that l im , ,^ ||7yn(c

8)||y() = 0.
For any JVeN let us pick a subset An(N) of Z so that |Xn(N)| = N and ||Tfn(fc)||y0^

||T/B(/)||y0 whenever k$An(N) and leAn(N). Appealing to Lemma 3(d) we see that for
any fixed N we must have

n~a>\\keAn(N)
E TUk)e"> = 0.

It is therefore possible to pick a non-decreasing sequence of integers Nn with lim Nn = co
so that

lim =0.
Yo

We define gn(z)=Yk^An(Nn)fn(k)^. Then it is easy to check that gnsB9. Further, if
fcn = supteZ||7gn(/c)||y0, then limn_QObn=0 by Lemma 3(c). It remains only to show that

l l^ll
To this end suppose y* e BYi. Then,

*eZ

fceZ
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Now by Lemma 1,

n-oo 0

Finally we can appeal to Lemma 2(i) to obtain limB^oo||Tgn(c
9)||y(, = 0. This completes

the proof. •

Corollary 7. For X, Y and T as above,

(a) T: <X0, X t >«,-• Ye is compact,

{b) T: <A"0,Xt,0>-» Yg is compact.

Furthermore if X is a couple of complexified Banach lattices of measurable functions on
some measure space then

(c) T: Xe-* Ye is compact.

Proof. As pointed out in [20] and in [16], <X0,X!>9 is contained in Xe. More
specifically, we observe that for each series x = £keZxk arising in the definition of an
element xe(_X0,Xl'}6 we have limJV_oosup||J]|k|gArAte

t'~fl)'Ixt||^ = 0 for j = 0,1 where
the supremum is over all choices of kk with moduli ^ 1 . Thus the function /(z) =
Yjceze~ekxkzk ^ ^-continuous on \z\ = ei and so it is an element of ^(X). Consequently
<ffl is the open unit ball of <X0,X1>fl. This immediately implies (a).

For (b) let x be an arbitrary element in the open unit ball of <Xo,X1,0>. Then there
exists a representation x=Y,kezxk f°r which the elements uN = x = Y,\k\$Nxk a re all in SB.
So by Theorem 6 there exists a subsequence of (TuN) which converges in the norm of Y8

to some element in the closure of T(Se). Since uN-*x in X0 + Xt this element must be
Tx and we deduce that (b) holds.

If X is a couple of complexified Banach lattices then <AT0,Xl}e = Xe, as follows from
[8, Section 13.6(ii), p. 125] and [22, Lemma 8.2.1, p. 453]. This of course establishes (c).

•
Before providing the next theorem we will need a preliminary lemma.

Lemma 8. Let X be a UMD-space and let V.X^Y be a compact linear operator for
some Banach space Y. Then there exists a function n:[0,oo)->[0,oo) with lim,5_0>/(<5) =
>/(0) = 0, such that | | ^_ V<t>\\Ll(T,r)^r,(\\Vct>\\L2(T<r)) for all <t>eL2(T,X) with | | |

Proof. If the result is false then there is a sequence (#„) for which ||</>B||L2(T X ) ^ 2 ,
Hm||K0B||L2(T,y) = 0 but such that for some e > 0 we have ||^_K<^n||t2(T,Y) = £- However
for all y* e Y* we have
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and ||£?_</>n||t2(T-jr) is bounded by the UMD-property of X. Hence by Lemma 1 we
obtain a contradiction. Q

Theorem 9. Suppose that X=(X0,X1) and Y=(Y0, Yt) are Banach couples and Xo is
a UMD-space. Let T:X-»Y be such that T:X0^>Y0 is compact. Then T:Xg->Yg is
compact for every 0 < 0 < 1.

Proof. Using Lemma 2(iii) we see that we may assume without loss of generality
that both of the couples X and Y are regular. This ensures that the dual spaces also
form Banach couples. In particular we will make use of the fact that (Jo+^i)*-
Y% n 7? (cf. [3, p. 32]) and so this space separates points of Yo.

As in the proofs of preceding theorems, it will suffice to consider a sequence fneBf,
satisfying the conditions /n(/c)=0 for \k gn and show that lim,,^^ ||7Jn(c

9)||y(,=0. We
may of course suppose as before that ||T| X-Y = 1-

We first consider &fn. We note that for |z| = l we have an estimate ||^/n(z)||XlgCe~n

and, by the UMD-property of Xo, the sequence dtfn is bounded in L2(T,X0). For each
y*zY\r\Y% we see that (K3tTfn,y*y is uniformly convergent to 0. So we can apply
Lemma 1 to deduce that

lim ||^T/n||L2(T,yo) = 0. (6)

Let us fix e>0. Since T:X0-*Y0 is compact and Xon Xt is dense in Xo we can find a
finite set {xl,x2,...,xN} in BXor\X1 so that if ||x||Xo^l then there exists l^j^N with
\\Tx — TXj\\Yo^e. Thus for each n we can find a measurable function Hn:T-*{xu...,xn}
so that \\Tfn{e") — THn(e")\\ro£e for all t. By convolving with a suitable kernel we can
obtain a C°°-function hn:T-*F (where F is the linear span of {xu...,xn}) so that
\\Tfn(e")-Thn(e")\\Yo^2e and ||/in(c'')||Xogl for all t. Let us expand hn in its Fourier
series

neZ

We will define

for z 2;1. This defines an F-valued function which is analytic for |z |>l and continuous
for z ^ 1 since hn is C00.

Now 0 _ / n - g n = z~"^_(z"/B-zngB) = z~"^_(z'I/n-z
JIJ!,I). Also clearly the functions

<t>n=z"ftt-z"hn satisfy ||<£„(*") Xo^2 and so ||^.|l|,ifr.x0)^2. Thus we can apply Lemma 8
to obtain that \\@-Tfn-Tgn LI(T.Y0)

=\\®-T<l>n\\L*(T,Yo) = rl(2£) f o r s o m e function n which
depends only on T and satisfies lims^on(8)=0. Combining this with (6) we obtain that
lim supn^ „ || Tfn - Tgn\\Li(r< Yo} ̂  n(2e).
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Now consider (gn) on the circle \z\ = e. For a suitable constant Ct we have

Since gn is F-valued there is a constant C2, depending only on F and thus on e, such
that ||x||XlSC2||x||Xo for all xeF. Thus we have limn_<JomaX|z|=e||^n(z)||Xl=0. From this
we conclude that l imsup^^ maxw = e ||Tfn(z)- Tgn(z)\\Yi S1 .

Now we can deduce, using Lemma 2(i), that

lim sup || TUe9)- Tgm(S)\\,,£ C3(rj(2e))e

for a constant C3 which depends only on 6.
However we can also estimate ||gn(

eS)|Uo = ^-4e"e anc* again using the fact that all gn
have range in F we have lim||^n(e

9)||Xo=0. Thus we are left with the estimate

Since e > 0 is arbitrary this completes the proof. •

Remark. See the introduction for a discussion of the class of (UMD)-spaces.

Theorem 10. Let X be a Banach couple such that Xo is reflexive and is given by
-̂ o = [W>-^iL for some 0 < a < 1 and some Banach space W which forms a Banach couple
with Xt. Suppose T:X->Y is such that T:X0-*Y0 is compact. Then T:Xe-+Yg is compact
for O<0<1.

Proof. Letting the notation A'0 now mean the closure of W r\Xx in X, we observe
that [W°,X\'\t=[.W,Xl']i for all <5e(0,l) (<* Lemma 2(iii)). Consequently we may
assume without loss of generality that W o,X1 is dense in W and also m Xl.

For each 0e(0,1) we have

where <5 = (1 -0)a + 0. (Cf. Lemma 2(iv).)
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Let 8 be the set consisting of all functions in B#{X) which can be extended to
functions / on the closed annulus {z:e~"5£|z|^e} where /?=a/(l— a) in such a way that
/ is analytic into W+Xt on the open annulus, W+A\-continuous on the closed
annulus, W-continuous on |z| = e~" and maX|Z|=(,-,i||/(z)||Hrgl. Clearly S is effective.
Furthermore it is also 0-effective for every 0e(O, I). This can be shown readily using the
above reiteration formula together with the observation [11] that the complex
interpolation method yields the same spaces on annuli of different dimensions, even if
they are not conformally equivalent. (The spaces defined using the strips {z:0^SRzgl}
and {z: — /J^SSRz^l} are obviously identical. Now simply "periodize" the functions on
both of these strips with period 2ni as in [11].)

We will apply Lemma 5. Consider a sequence fnsS. Let £„=/„—^nfn- Suppose
x*eW*nXf. Then

2n

I |
kS-n

By our density assumption W* nX% =(W + XJ* so this space separates points of
XQCW+XI. It follows that the set U of x*eXg such that

2* rft
lim j |<gn(e")>x*>|2;^~ = 0
n-»oo 0 ^

is a closed weak* dense subspace of X%. Since Xo is reflexive (/ = X*, and so
T*(Y$)c:U. By Lemma 1 we obtain that limn-.00||Tg,I||i_2(T ,.o) = 0 and then an appli-
cation of Lemma 2(i) gives that lim,,-.^ ||TgB(e')||rfl = 0. D

Remark. The reader may care to note that if the preceding theorem can be proved
without the requirement that Xo is reflexive then Question 1 is completely answered for
the complex method, by using the reduction of this problem given in [12, p. 339] to the
case where X=(/1(FL,),/i(FLl(e

v)) and Y=(/0O(FL0O),/0O(FL0O(cv)). In this case we can of
course take W=l1(FLi{e~py) for /? as above.

Here is a sort of "dual" result to Theorem 10. Note that it does not require any
reflexivity conditions. But unfortunately it is still not sufficient to give a complete
answer to Question 1 (cf. the preceding remark) since [/0O(FZto(c"^v),/oo(FL0O(cv)]a is
strictly contained in i

Theorem 11. Suppose T.X-+Y where T:X0-*Y0 is compact. Suppose that for some



274 M. CWIKEL AND N. J. KALTON

Banach space Z,(Z, Yt) forms a Banach couple and Y0 = [Z, Yt1a for some ae(0,1). Then
T: Xe-> Ye is compact for each 9 e(0,1).

Proof. We begin by showing that we can reduce the proof to the case where a
number of density conditions are satisfied. First, using Lemma 2(iii) and rather similar
reasoning to before, we can suppose without loss of generality that X is regular, and
similarly, that Yon Yx is dense in Yx. (The hypotheses already ensure that YonY1 is
dense in Yo.) In fact we can furthermore suppose that Zc\ Y{ is dense in Ylt since if that
were not so we could replace the couples X = (X0,Xi) and ¥ = (70,7,) by (X0,Ya) and
(Yo, Yff) for some number oe(0,1). By several applications of Lemma 2(iv) these latter
couples also satisfy all the other required hypotheses of the theorem and we will be able
to deduce the original desired conclusion for T:Xe->Ye since Ar

9 = [X0,X(T]e/B and
Yg = [Y0, Ya]e/a. Finally, given that all the above density conditions hold, we can now, if
necessary, replace Z by Z°, the closure of Z n Yx in Z without changing any of the other
spaces. Also of course Z° n Yl is dense in Yt. In other words, we can also assume that
Z n y, is dense in Z.

Let r*:(yg + y?)->(Arg + A'5t) be the adjoint of T i ^ n l ^ y o n y , . Clearly T*
maps y? to X% boundedly to yg to X% compactly. This means that T*:[Z*, YX]X-+X%
is compact, since by Calderon's duality theorem Y% = [Z*,Y%Y and [Z*, y?]a is a
closed subspace of [Z*, y*]a. (See [2].) Thus the operator T* satisfies all the hypotheses
of Theorem 10, (T* replaces T, Z* plays the role of W, and instead of the original
couples X and Y we have Z*=([Z*, Y*\, yf) and \*={X^,X^) respectively) except
that [Z*, yf ]„ is not necessarily reflexive.

We now define & exactly analogously to the definition in the proof of Theorem 10, i.e.
it is the subset of B^a.) of functions which are extendable to Z* + Y\-valued continuous
functions on the annulus {z:e~pS|z|^£} which are analytic in the interior of the
annulus and are continuous into Z*, respectively Y\ on the inner, respectively outer
components of the boundary. Again we consider the sequence gn=fn — ̂ nfm where /„ is
an arbitrary sequence in S.

This time we let U be the set of all y e Yo such that

lim Tl<>'.^'')>|2^=0.

Using estimates similar to those in the proof of Theorem 10 we obtain that ZnYlaU.
Since U must be closed in Yo it follows that U = YQ. Consequently,

for all xeX0. We can now apply Lemma 1 to T*:[Z*, Y\~\t-+X% to obtain that
limB^0O||T^n||i.2(r,xg)=0. Then Lemma 2 gives that l i m ^ j r ' ^ H ^ ^ O . By
Lemma 5 we deduce that r*:[[Z*, Yfl,, Y\]9^>[X%,XX]8 is compact.
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As already remarked above [Z*, y j ] , is a closed subspace of yg. Furthermore,
[Z*, Ff ]a contains Z* n y?]a densely and so obviously it is also the closure in yg of the
larger space [Z*, Yft2n yf. So Lemma 2(iii) yields that [[Z*, y?],, yf] e = [yS,^T]e-

Let z* be an arbitrary element of the open unit ball of [yg, y?]fl. Thus z* = /i'(0)
where /i is an element of the unit ball of the space &{Y%, y?) (of analytic functions on
the unit strip as defined in [8]). If we set hn(z) = n eiz2 ~ 1)ln(h(z + l/n)-h(z)), and y* = hn(9)
then it is easy to see that (y*) is a sequence in the unit ball of [yg, y*L which
converges to z* in Y$ + Y^. (Cf. [11, p. 1006].) In view of the compactness of
T*:[Y$, y*]e->[XS,XJ]fl we can suppose that (some subsequence of) the sequence
{T*y*) is Cauchy in [Xg,Xf]fl. Thus its limit in [Xg.XTL is also its limit in Xg+A"?,
namely T*z*. This shows that T* maps the unit ball of [yg, y?]9 into a relatively
compact subset of [Xg, *?]„<= [Xg,*?]9. Consequently T*:[yg, Ytf^lX&XW is
compact. This, together with Calderon's duality theorem and the classical Schauder
theorem, completes the proof. •
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