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ISOMORPHISMS BETWEEN SPACES OF VECTOR-VALUED
CONTINUOUS FUNCTIONS

by N. J. KALTON*
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1. Introduction

A theorem due to Milutin [12] (see also [13]) asserts that for any two uncountable
compact metric spaces Qt and Q2>

 t n e spaces of continuous real-valued functions C ^ )
and C(Q2) are linearly isomorphic. It immediately follows from consideration of tensor
products that if X is any Banach space then QQ^X) and C(Q2;X) are isomorphic.

The purpose of this paper is to show that this conclusion is false for general non-
locally convex quasi-Banach spaces. In fact, it fails in a quite strong manner. We shall
show that if X is a quasi-Banach space containing no copy of c0 which is isomorphic to
a closed subspace of a space with a basis and C(/;X) = C(A;I), (where / is the unit
interval and A is the Cantor set) then we can conclude that X is locally convex.

The proof requires building some machinery concerning operators on spaces of
continuous functions. The locally convex analogues of these results are to be found in
the work of Batt and Berg [1] or Brooks and Lewis [2].

Operators on spaces C(ft) into general non-locally convex spaces have been treated in
an important paper of Thomas [19]. Unfortunately this paper has not been published.
Thomas's main result can be expressed in the language of this paper as follows

Theorem. (Thomas) Let X be a quasi-Banach space and let fi be a compact Hausdorff
space. If T: C(il)-*X is an exhaustive linear operator then there is a regular X-valued
measure fi on the Borel sets ofQ such that

Here "T is exhaustive" means that if (j>n is a sequence bounded in C(fl) with disjoint
supports then T#n->0. This may be regarded as a generalisation of the Riesz
Representation Theorem. We shall refer to it as the Riesz-Thomas theorem.

We derive here a similar representation for operators on spaces C(Q;X) (Theorem
4.3). We give the proof in some detail partly because Thomas's theorem is not easily
accessible. Schuchat [18] obtained some results in this direction.

Our other main weapon is a version of Liapunoff's theorem for non-locally convex
vector-valued measures (Theorem 3.1). The absence of local convexity requires some
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tricks in the proof not usually necessary for the corresponding results in locally convex
spaces (cf. [5]).

Throughout this paper a quasi-Banach space will be a real vector space equipped
with a complete quasi-norm topology. (See [10], p. 159). The quasi-norm will always be
assumed p-subadditive for some p, 0<p^ 1, i.e.

||x,+X2|Nlh||p + N | p xux2eX.

If X is a quasi-Banach space and Q is a compact Hausdorff space then C(Q; X) is the
space of continuous X-valued functions quasi-normed by

= m « ||/(ai)||
aeii

If x e X and <f> e C(Q) then 0(g)x e C(Q; X) is given by

lffeC(Q;X) and <j>eC(Q) then 4>feC(Q;X) is given by

4>f{w)=#»)/(©).

We shall have need of the concept of a compactly determined quasi-Banach space. We
say X is compactly determined (or has a compactly determined topology) if it may be
equivalent quasi-normed so that

||x|| = sup(||/Cx||:/CeJf)

where 3f is some collection of compact operators into a quasi-Banach space Z. The
easiest examples are spaces embeddable in a space with a basis. However there are
examples of such spaces with trivial duals. We shall assume that the quasi-norm on a
compactly determined space satisfies the above criterion.

2. Submeasures

Let Q be an abstract set and let X be a er-algebra of subsets of Q. We recall that a
(continuous) submeasure p on (O, Z) is a map p:L->R satisfying

A, Bel. (2.0.1)

P(0) = O (2.0.2)

If 4 , | 0 then p(An) 10. (2.0.3)

It is an unsolved problem posed by Maharam [10] whether every submeasure has an
equivalent measure, i.e. given a submeasure p does there exist a positive measure
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A:Z-»R so that p(A) = 0 if and only if /(/4) = 0. See Christensen and Herer [4],
Christensen [3] and Popov [15].

A set AeZ is a p-atom if p(A)>0 and whenever Bel. with Be ,4 then p(B) = O or
p{A\B) = 0. The set of atoms is at most countable. We say p is diffuse if there are no p-
atoms. The following lemma will be required later.

Lemma 2.1. Let p:£-»R be a non-zero diffuse submeasure. Then there exists e > 0 and
{An: n = 1,2,...} c £ so that p(At AAJ) Si e whenever i =£j.

Proof. Let N be the cr-ideal of p-null sets and let E/N be the quotient Boolean
algebra. It is easy to verify that T./N is a complete metric space when equipped with the
metric

d(lAl[_B]) = p(AAB) A, Be?..

If the conclusion of the Lemma fails, then (Z/N,d) becomes a compact abelian
topological group under the group operation of symmetric difference. As H/N is a 2-
group this implies that there is a continuous character x:£/W->Z2 with x([^]) = l> where
Z2 = {0,1} is the discrete group of order 2. Hence there is some <5>0 so that p(A)<3
implies #(D4]) = 0-

Suppose (Bi.iel) is a maximal collection of disjoint sets in I so that 0<p(B()<<5.
Then / is countable (this follows from condition (2.0.3)). Let B = u(B;:ie/); then x([S])
=0. Let A — Q\B; then x(D4])=l and so p(A)^.5. Since p is diffuse we may find a
descending sequence Anel. with AX = A, p(An)>0 and p(^n\>4M+1)>0, for n= l ,2 , . . . .
Clearly p(An\An+l)^.d, by the maximality of {B;:ie/}. However if A^ = r\An, then
pt/lnX/looHO and we have a contradiction.

Now suppose Q is a compact Hausdorff space and let 88 denote the a-algebra of
Borel subsets of Q. We shall say that a submeasure p:^->(R is regular if given Be& and
£>0 there exists a compact K<=B and an open V=>B so that p(K\K)^a. In this setting
it can be shown that if AeSS is a p-atom then there exists cue A with p{a>} = p(A) (cf.
[6]).

We shall require the following lemma; a very similar result is given by Dobrakov ([6]
p. 29).

Lemma 2.2. Let Q be a compact Hausdorff space and let V be the collection of open
subsets ofd. Let Q-.i^-^U be a map satisfying:

9(0) = 0 (2.2.1)

(2.2.2)

(2.2.3)

For V'ef and e>0, there exists a compact Kc=V with 6{V\K)^s. (2.2.4)

Then there is a regular submeasure p:3S^U such that p(V) = 6(V)for Ve"V.
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Proof. The proof is a more or less standard construction. We sketch the ideas only.
Define for every subset A c Q,

p(A) = M{9(V):V=>A). (2.2.5)

Then p(A) — 9(A) if Ae'V. Then define a set BcQ to be p-measurable if given £>0 there
exist an open U and a closed K with U=>B=>K with p(U\K) = 9(U\K)<^e. The class ^
of p-measurable sets is easily seen to be an algebra of sets containing V, and p satisfies
conditions (2.0.1) and (2.0.2). The proof is completed by showing that p satisfies (2.0.3)
and that J( is a cr-algebra; then certainly Jl^SD.

For (2.0.3), if BneJl and B n |0 select, for given e>0, Kn<=Bn compact with
p{Bn\Kn)^e/2". For some N, Kt n .. .n KN = 0; if n^N then

To show Jl is a a-algebra, suppose now (£„) is a descending sequence in M and let B
= nBn. Choose compact Kn and open Kn so that Kn<=BnczVn and 0(Kn\/Cn)^e/2" + 1.
Then

n ... n

and so if WN = Ft n . . . n KN, K = n KN,

lim p{K1n...nKN\K)
N-oo

By the above argument

and so

Hence for large enough N,K^B^WN and 9(WN\K)^e.
Suppose now that X is a quasi-Banach space. Denote by C(Q;X) the space of

continuous X-valued functions on Q and by B(Q;X) the space of bounded Z-valued
Borel functions on Q. with separable range. On both spaces we let

||/|L = sup||/M||.
aeil

The topology of convergence in ^-measure on B(Cl; X) is defined to be the topology with
a base of neighborhoods of the form F£ = {/:/?(aj:||/(Gj)||>e)<£} for e>0. This is a
pseudo-metrizable topology. We shall require the following lemma.
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Lemma 2.3. Suppose feB{Q;X) and H/H^gl. Then there is a sequence gneC(Q;X)
such that HgnllooS 1 and gn-*f in p-measure.

Proof. Given s > 0, we may find a countable-valued function fx e fl(fi; X) with
1 | | o o g l a n d | | / - / 1 | | o o < £ . Let

where BneS8 are disjoint with u f l , = Q and xneX satisfy | |xn | |^l . There exists N<co
such that

^ oo \

(J B, )<e/2.

Select compact sets K,<=B; for l^i^N so that p(Bi\Ki)<e/2N.
Now let £ c X be the linear span of {x1;...,xN}. By the Tietze extension theorem there

is a continuous map g:Q->E so that

g(co) = xi

Let

Then /i e C(fi, X), \\h\\m ^ 1 and

h(co) = xi

Hence

||/(co)-/i(co)||

and p(Q\(K: t U . . . U /CJV)) < e.

3. Vector measures

Again first let Q be any set and I be a a-algebra of sets on il. Let X be a quasi-
Banach and let fi:I.->X be a vector measure (a countably additive set-function). Then it
is well known ([16], [20]) that co/z(£) is a bounded set and so if 0:fl->R is a bounded
^-measurable function we may define \fydy. by the standard procedure of
approximating by simple functions.

A submeasure p:£->R controls n if p(A) = 0 implies p,(A) = 0. p is said to be a control
submeasure for \i if whenever AB"L satisfies fi{B) = 0 for every Bel. with Be A then p(A)
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= 0. Every such vector measure has a control submeasure defined by

p(A) = sup \\fi(B)\\", (3.0.1)

where p is associated with the quasi-norm as in the introduction.
A set A e 1 is a \i-atom if p.(A) ± 0 and whenever Be £ with Be A then either p.(B) = 0

or fi(A\B) = 0. It is easy to show that A is a p-atom if and only if it is a p-atom for any
control submeasure p for p.. ^ is said to be diffuse if it has no //-atoms; this is equivalent
to the statement that some diffuse submeasure controls p..

The measure p. is said to be compact if p(l) is a relatively compact set. The following
theorem is a Liapunoff-type result. The chief point here is that p. need not have a
control measure, otherwise a proof like that given in [5] could be reproduced. It may be
worth conjecturing that every compact vector measure has a control measure.1

Theorem 3.1. Suppose p:l.->X is a compact diffuse vector measure. Then p(l) is a
convex set.

Proof. It will suffice to show that jp(Q)ep(l). For then it will follow that if A el.
then %n(A)e(p.(B):B<=A, Bel) and hence if A, Be1 then \p{A)e(p(B):Bc A, Bel.) and
hence if A, Bel, then

MA) + p(B)) = p(A n B) + \p{A AB)

belongs to pJ(l.) (simply find Cn<= AAB with fi(Cn)^p.(AAB), and then

Define a control submeasure p for p. by (3.0.1). Then p is diffuse. For each A el
define v(A) to be the infimum of all d>0 such that there is a finite collection of sets
Bu..., Bn e 2 with B( <= A (1 ^ i ̂  n) and min p{CABj) < S wherever C <= A.

Fix e > 0. Then by induction we may define a sequence (£n)™= t of disjoint sets in Z so
that

(3.1.1)

U ) (3.1.2)

Indeed suppose {£,: 1 ^ i ^ 2 n —2} have been determined where n ^ l ; if n=\ this
collection is empty. Then there is an infinite collection (Bn)™=1 of subsets of
(n\(J,?=72£,-)sothat

'Added in proof: this conjecture is true, see N. J. Kalton and J. W. Roberts, Uniformly exhaustive
submeasures and nearly additive set functions, TVans. Amer. Math. Soc, to appear.
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Since (i(L) is relatively compact, there exist j =/= k so that

Let E2n_l = BJ\Bk and E2n = Bk\By Then (3.1.1) and (3.1.2) are satisfied.
Let F = Un°°=, £2«-1 and G = (Jn°°= i £2n- Then

However p(£ 2 n - ! u£2 n)->0 and so by (3.1.2) v(Q\(J,^72 £,-)->0 and hence v(fi\(FuG))
= 0. Now we can apply Lemma 2.1 to deduce that p(Q\(FuG)) = 0 and hence H(FKJG)

= p(n). Thus

Now suppose again that O is a compact Hausdorff space and 38 is its collection of
Borel subsets. We say that a vector measure [i:&->X is regular if its associated control
submeasure is regular. We shall require the following simple lemma whose proof we
omit:

Lemma 3.2. / / fx:3S-*X is a regular vector measure and $(j>dn = O for every </>eC(O)
then n = 0.

We shall also need to observe that an atom of a regular measure may be taken to be a
single point.

4. The Riesz-Thomas theorem for C(Sl; X)

Let fi be an abstract set and £ be a a-algebra of subsets of Q; let X and Y be quasi-
Banach spaces. Then an additive map A:£-+Jz?(.Y, Y) will be called a totally a-additive
operator measure if

For xeX, A[+ A(A)X is a y-valued vector measure. (4.0.1)

Whenever {xn} is a bounded sequence in X and {An} is a disjoint
sequence in Z then L A{An)xn converges. (4.0.2)

It follows simply from (4.0.2) that ||A(/ln)||-*0 for any disjoint sequence {An}. Here the
quasi-norm on S£{X, Y) is defined exactly as for normed spaces. By (4.0.1) we obtain:

Lemma 4.1. / / A:Z-»J5f(X, Y) is a totally a-additive operator measure then fi is a-
additivefor the topology of 2?(X, Y).

Now let p be a control submeasure for A:Z-»J^(X, Y) defined by

) = sup(||A(B)||': B e A, B e l ) . (4.1.1)
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Define also p':I->IR u {00} by

p'(^) = sup /lei (4.1.2)

where the supremum is taken over all disjoint Bl,...,Bne'L with BtcA (l^i^ri), all
x,eAT with | | x | ^ l ( l ^ i ^ n ) and all neN.

Lemma 4.2 p' is a submeasure on I equivalent to p (i.e. p'(A) = 0 if and only if p{A)
= 0). In particular p'(Q)<oo.

Proof. Conditions (2.0.1) and (2.0.2) are immediate. Suppose Anl$. Then we claim
that for each n there exists m^n , a finite disjoint collection B1,...,Bk of subsets of
An\Am in I and xl,...,xkeX with | |x, | |^l ( l^ i^fc) so that

(4.2.1)

Indeed given n we may choose disjoint Cu...,Ck subsets of An in I and x1,...,xkeX
with | k | | ^ l (1 f^i^n) so that

±A(CinAJxi

Now for each m > n

Hence for large enough m, (4.2.1) holds with Bi = Ci\(Cin Am).
Now (4.2.1) may be used to determine an increasing sequence m(k), a disjoint sequence

{B,,}, xneX with ||xn||^ 1 so that for some increasing sequence q(k)

, p'(AmW))

Hence by (4.0.2) p'(Am{k))^>0 and so p'(An)->0.
Next we show p'(Q)<co, so that p' is indeed a submeasure. This will complete the

proof as p'^p but p(A) = 0 implies p\A)=0.

If p'(fi) = 00 we construct a decreasing sequence An so that p'(An) = 00 for all n, but

n

Let A = r\An. We note p'(/l) = oo; indeed p'(An\A)->0 and hence as p'(An) g p'{A)
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+ f>'(An\A), p'(A)=<x>. Next if BcA then either p'(B)=co or p'(A\B) = co. If p'(B)=co,
then

p(Aa\B)^2p(An\An+1)-+0 asn^oo.

Hence p{A\B) = 0. Similarly if p'(A\B) = 00, p(B) = 0. Thus A is a p-atom; but then p{A)
= p'(^) < 00 as can be immediately seen.

Now if/:fi->.Y is a countably simple bounded Z-measurable function say

n= 1

where ||xn||^l and Ane2. are disjoint, we can define

J/dA= £ A(/ln)xn

and

By continuity we can then extend the definition of J / d A to all of B(Q;X), and if BeE,

\fdA

Now suppose fi is a compact Hausdorff space and T: C(Q; X)-*Y is a linear operator.
We say T is exhaustive if Tfn-*0 whenever /„ is a uniformly bounded sequence with
supp/.nsupp/) = 0 for i±j (supp/={co:||/(co)||>0}).

If A:&-*y(X, Y) is a totally a-additive operator measure then

Tf = \fdA feC(Q;X)

defines an exhaustive operator. This follows easily from (4.2.1).

Theorem 4.3. Suppose T:C(Q;X)-*Y is an exhaustive linear operator. Then there is a
unique regular totally a-additive operator measure A:^-*£C(X, Y) so that

Tf = \fd\ feC(Q;X).

Proof. Define for each open VcQ

e(V) = sup(\\Tf\\p:feU, supp fc V) where U is the unit ball of C(Q:X) (4.3.1)

We claim 9 satisfies the conditions of Lemma 2.2. Condition (2.2.1) and (2.2.2) are
immediate.
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For (2.2.3) suppose Vu Vz are open and that F = supp/cK!U V2 where feU. Then
there are continuous real functions <p, \\i with <p^0, t /^0 s u p p l e Vl, suppt/fcrj^ and

{(o) = 1 for COBF. Then \\T{^f)\\p ^{V^) and \\T(iPf)\\p ̂ d(V2), so that

If (2.2.4) fails to be true for some e > 0 then by induction we can find a sequence /„ e U
with (supp/„)"=! disjoint and contained in V so that ||7Jn||^7e. This contradicts the fact
that T is exhaustive.

Thus there is a regular submeasure p:^->R so that p(V) = d{V) for Ve-T. If {/„} is a
uniformly bounded sequence in C(QX) such that/n-»0 in p-measure then for every
£ >0, 0 K H O and 0(Bn)-O where ^n = {a>:||/»||>£} and Bn = {oj:\\fn{co)\\>^}. Let
«AneC(fi) satisfy l ^ ^ i S lBn- Then

where M = sup||/n||. Hence

i.e. T/n-^0.
Now if {/„} is a Cauchy sequence in p-measure which is uniformly bounded, then

lim,,^^ Tfn exists. By Lemma 2.3 we can define for f eB(Q.;X)

TJ=\imTgn

where gneC(Q;X) is a uniformly bounded sequence with gn-*f in p-measure. By an
interlacing argument this limit is unique for every choice of such a sequence.

Now T1:B{Q;X)->Y satisfies TJ = Tf for feC(Q; X) and

Suppose/„eB(Q;X), Wf^-^l and/n->0 in p-measure. Then we may choose gneC(Cl;X)
so that ij^nlloo^l, gn — /n-»0 in p-measure and Tgn->0; hence Txfn^Q. Thus Tt is
continuous in p-measure on bounded sets.

Now for Ae8, define A(/4)eJSf(X, Y) by

Clearly for each xeX A[+ A(A)(x) is a Y-valued measure. If {xn} is a bounded sequence
in X and {An} is a disjoint sequence in SB then

ooz
n = l

Thus A is a totally cr-additive operator measure.
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Note that if V is open

Be V

and so A is controlled by p and is thus regular.
Clearly

Tf=\fdK feC(Q;X).

in the sense that the integral is defined following Lemma 4.2.
We shall say that an exhaustive operator T:C(Q;X)->Y is diffuse if its representing

measure A is diffuse. We then have:

Corollary 4.4 Suppose T:C(Q;X)-*Y is an exhaustive operator. Then there is a
sequence {Ln} in $£(X, Y), and a sequence {con} in Q so that

Tf=t WK)) + Sf, fe C(fi; X). (4.4.1)

where S is a diffuse exhaustive operator. Here | |Ln| |^| |T| | and £L n x n converges for every
bounded sequence xn in X. If U is the unit ball of C(Q.;X) then S(U) and (T-S){U) are
contained in T(U).

Proof. Let (con) be the atoms of A and let Ln = A{a>n}. Let B = Q\{a>n:n= 1,2,...}.
Then

Tf = Uf. \axB) + 7i(/. lB)=t W K ) ) + Sf
n = l

where

As S is controlled by the submeasure

which is diffuse, S is also diffuse.
Finally we note the following:

Theorem 4.5. Suppose Y is a quasi-Banach space containing no copy of c0. Then every
bounded linear operator T: C(Q;X)^>Y is exhaustive.

Proof. If {/„} is a sequence in C{C1;X) with disjoint supports and | |/n | |= 1, then {/„}
is a basic sequence equivalent to the usual basis of c0. As shown in [8], if T: C(Cl;X)->Y
is a bounded linear operator then 7/n->0.

Note also that every compact operator on C(Q; X) is exhaustive.
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5. Diffuse operators

Theorem 5.1. Suppose T: C(Q; X)-> Y is a compact diffuse operator. Then T(U) is a
convex set, where U is the unit ball ofC(Q;X).

Proof. Suppose fltf2e U, suppose T is represented by the diffuse regular totally a-
additive measure A:&->J?(X, Y). Then define measures k{:3S-*Y, k2:&->Y by

kl{B) = \fldA Be®

Then the measure k:3$^>Y®Y given by l{B)=(Xl{B),X2{B)) is a regular diffuse measure.
By Theorem 3.1, given e>0, there exists Bet% so that

Now geB{Q;X) and ||^||oo^l- Hence jgdu belongs to the closure of T(U). Thus

is also in the closure of T(U).

Corollary 5.2. Suppose X* = {0}. Then every compact operator T:C(Cl;X)->Y is of the
form

Tf=t Ln(/K)) / e C(fi; X) (5.2.1)
n = l

where (a>n) is a sequence of points in Q, and Ln e JS?(X, Y) are compact operators.

Proof. We use Corollary 4.4. Write T in the form (4.4.1) and observe first that as Ln

= A{con}, each Ln is compact.
Now S:C(Q.;X)-*Y is compact and diffuse. By Theorem 5.1, S(co U) is bounded. If

S^O, we conclude co U^= C(Q; X), i.e., there exists ueC(Q;X)* with u^O. Now by
Theorem 4.3,

da feC{Q;X)
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where a: 38^>&{X, U) is a vector measure. However i f (X, U) = X* = {0}, so u = 0, contrary to
assumption.

Theorem 5.3. Suppose Y has a compactly determined topology and T:C(Q;X)->Y is a
diffuse exhaustive operator. Then

\\Tf\\^\\T\\ fecoU.

Proof. We may suppose that there is a quasi-Banach space Z so that if y e Y

where K runs through all compact operators K: Y-+Z with | | K | | ^ 1 .
If K:Y->Z is compact with | |X| |^1 then KT:C{Q;X)^Z is diffuse and compact.

Hence if/ e co U

by Theorem 5.1, and the result follows.

6. A converse to Milutin's theorem

In general it is an unsolved problem whether, for any compact Hausdorff space and
any quasi-Banach space X, C(Q)®X is dense in C(Q;X) (see [9], [17], [21], [22]).
However Schuchat has shown that this conclusion is true under certain hypotheses on
either Q or X. We shall use the fact that it is true if Q is zero-dimensional, e.g. fl = A,
the Cantor set ([17]).

Proposition 6.1. Suppose Ci is a compact metric space and that X is a separable quasi-
Banach space. Then C(Q; X) is isomorphic to a subspace of C(A; X) and thus is separable.

This is a simple deduction from the fact that there is a continuous surjection of A
onto Q.

Before proceeding to our main result we shall need some preparatory lemmas. Let /
denote the unit interval. We say that a quasi-Banach space X is a factor of a space Y if
X is isomorphic to a complemented subspace of Y.

Lemma 6.2. Suppose £1 is a compact metric space and there is a non-constant
continuous map n:I-*Q. Then for any quasi-Banach space X, C(I;X) is a factor of
C(Q;X).

Proof. There is a homeomorphic embedding of / into Q (cf. [23] p. 19). Since / is an
absolute retract there are thus continuous maps n:I->Q, £,:£1^>1 so that £,°r\ is the
identity on /. Thus if we define S:C(I;X)-*C(Q;X) and T:C(Q;X)->C(I;X) by Sf(co)

) and Tf(t) = f(ri(t)) then TS is the identity on C(I;X) and the result is proved.
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Lemma 6.3. Let E be a closed subset of I and let RE:C{I;X)->C{E;X) be defined by

seE.

Then there exists an operator JE:C(E;X)^C(I;X) with \\jE\\^2llp~l and REJE is the
identity on C (E; X).

Proof. Define JEf for feC(E;X) by linear interpolation on I\E (which is a
countable union of open intervals).

For any quasi-Banach space X and compact metric space Q, let Jl{£l; X) be the space
of regular X-valued Borel measures on Q equipped with the topology induced by the
maps

for <peC(Cl).
For any open subset V of Q we define

over all (p, \peC(Q) whose supports are disjoint and contained in V, and such that 0̂ </>,

Also let

Pv(n) = sup\\fi{(o)\\p( =1
coeK \ meV

Lemma 6.3. xy is lower-semi-continuous and fiv is of Baire class one.

Proof. The first statement is clear. For the second let Fn be an increasing sequence
of closed subsets of Q with \jFn=V. For each n, let <£„ 1;...,</>n>t(n) be a finite collection
of functions in C(Q) satisfying ()?£</>„ j^l, supp </>„ j c v; diam(supp</)njJ)^n"1 and

max (pnjco) = l coeFn.

Let

fiCHu) = max

Then each jSj?' is continuous and we shall see that p^y\p)^fiv{n) for every fieJ?(Q;X).
For each coe V, there exists NeN with caeFn for n^N. For n^N, lety(n) be such that
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Then

so that

On the other hand if

for m(l)<m(2)<m(3)..., there exist ^>m(n),j(n) so that

By passing to a subsequence we may suppose

m{n),Hn) <

where we V, and £n-»0.
Now it follows from the regularity of fi that

Hence w e K and | |/i{oj}| |^

Theorem 6.4. Suppose:
X is a separable quasi-Banach space with a compactly determined
topology (e.g. suppose X has a basis), which does not contain a copy of c0. (6.4.1)

Q is an uncountable compact metric space containing no homeomorphic

image of I (e.g. Cl is the Cantor set A). (6.4.2)

Then the following conditions are equivalent:

C(I; X) is isomorphic to C(fi; X) (6.4.3)

C(/; X) is a factor of C(Q; X) (6.4.4)

X is locally convex. (6-4.5)

Remark. For example if 0 < p < l , C(A,lp) is not isomorphic to C(I;lp).

Proof. That (6.4.5) implies (6.4.3) follows from Milutin's theorem according to which



44 N. J. KALTON

and the fact that C(Q;X) is simply the e-tensor of C(fi) and X. Clearly (6.4.3)
implies (6.4.4).

Suppose (6.4.4) holds. Thus there are bounded linear operators T:C(QX)-*C{r,X)
and S:C{I;X)-*C(QX) so that

TSf = f feC(I;X).

For each t e /, the map

Tt:C(Q;X)->X

given by Ttf = Tf{t) satisfies | |7j| |^| |T|| and is exhaustive.
Thus we can write T, in the form (4.4.1) or

TJ = £ Up, t)(f(co)) + DJ (6.4.6)

Here L(a>; t) e S£{X) for (a>, t), and the set F, = {<u: L{co; t) 410} is countable for each t. The
operator D, is diffuse, Dte^(X) and Dt(U)c T(U). By Theorem 5.3

(6.4.7)

Fix an/eC(fl;X) and consider the operators M,:C(fi)->X defined by

Mt{4>)=Tt{4>f).

M, is exhaustive and by using Thomas's theorem,

where fi, is a regular X-valued measure. Clearly

M,4>= £
tosil

and </> \-> Dt((p. f) is controlled by a diffuse submeasure and is thus diffuse. Hence the
atoms of /x, are those a> e F, such that L{co, t)(/(co)) ̂  0.

Let {Vk} be a base for the open sets of Q. Noting that the map t (-> /x, is necessarily
continuous from / into J((£l; X), we have that the maps ak, pk are Baire class one, where

Hence there is a dense G^-subset of /, G = G(f), say, so that each ak, fik is continuous at
every point seG. (See Kuratowski [11] p. 394).
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Suppose seG and that co is an atom of /zs. We shall show that there is a
neighborhood V of s such that a> is also an atom of /x, for t e K Suppose

Fix k so that (oeVk and if <peC(Q) with | 0 | g 1 then

Then at, fik are continuous at s. Clearly

<To-

while it is easy to calculate that

Pick a neighborhood / 0 of s in /, which is a closed interval so that

telo.

For each t e Io there is exactly one to = co(t) so that co(t) e Ĵ  and

We claim t|-»a)(t) is a continuous map. It suffices to consider the case tn->t0,
co(tn)-Kj)0j=(o(t0). Let 4> be a continuous function with s u p p l e Kk and suppose 0^<£g 1.
Let <̂  = 1 o n a neighborhood of aj(t0) and let 0 = 0 on a neighborhood of OJ0. For large
enough n, 0 = 0 on a neighborhood of co(tn). We may choose a continuous function i/f
with O^i / '^ l so that supp i// c K\supp </> and

Thus

Let /i-»oo; thus

and letting supp <j> contract to {a)(t0)} we obtain

contrary to assumption. Hence a>(t) is constant on /0, i.e. w is an atom of p, for t e / 0 .
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If we repeat this for a dense countable subset (/„) of C(Q; X) we can find one single
dense G^-set H in / so that the sets {tsH:L{(o, 0 ^ 0 } are open relative to H for every
coeQ. Since H has a countable base of open sets it follows that \J(Ft:teH) is again
countable. Denote this set by {oii,(o2,co3,...}. Then we may rewrite (6.4.6), for teH, as

(6.4.8)

Now for any / e C(Q; X) the maps

t h 1 Hcon,t)f(con)
n=k + l

are Borel maps on /. This is most easily seen by noting that

where Ak = {cak+1,...} and A, is the totally c-additive operator measure corresponding
to Tt.

Hence by the separability of C(Q; X), the maps

yk(t)= sup
ll/lisi

L(con,t)f(con)

are also Borel on /. From Lemma 4.2 it follows that yk(t)->0 pointwise on H and hence
there is an uncountable compact subset E of H such that

lim sup yk(t) = 0.
k-oo teE

(e.g. apply Egoroff's theorem for some diffuse measure on H).
Now suppose {(/>„} is a sequence in C(£) with 0^</>ngl and supp </>„ n supp <j)m = 0 for

m=fn. Let x1 , . . . ,x J veX be such that | |x;| |gl. Define (/„ k: 1 ^ n < o o , lgfc^iV)i
by

If P is any finite subset of the positive integers

and hence, as X contains no copy of c0, for any fixed coeQ

Km||/1.lk(fl))||=0 k=l,2,...,JV.



VECTOR-VALUED CONTINUOUS FUNCTIONS 47

If teE

Ucoj,t)fn,k(a>j)
7 = 1

for any r. As ||L(«j,£)||^||T|| for ally, we conclude

lim sup =0.

Now by (6.4.7)

A £ /,.,
k=l

and so we have

lim sup /„,

i.e.

or

As this is true for any xl,...,xN in the unit ball of X we conclude that X is locally
convex.

7. Problems

Here we list three problems that appear to be of interest.

Problem 7.1. (Klee [9]) Is C(fi)® X dense in C{Sl;X) in general?

Problem 7.2. Is C(A; Lp) s C(7; Lp) for 0 < p < 1?

Problem 7.3. Is C(7; /„)s C(/2, /„)?
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