AN ANALOGUE OF THE RADON-NIKODYM PROPERTY FOR NON-LOCALLY CONVEX QUASI-BANACH SPACES

by N. J. KALTON (Received 1st November 1977)

1. Introduction

In recent years there has been considerable interest in Banach spaces with the Radon-Nikodym Property; see (1) for a summary of the main known results on this class of spaces. We may define this property as follows: a Banach space X has the Radon-Nikodym Property if whenever $T \in \mathcal{L}(L_1, X)$ (where $L_1 = L_1(0, 1)$) then T is differentiable i.e.

$$Tf = \int_0^1 f(x)g(x) \ dx$$

where $g:(0, 1) \rightarrow X$ is an essentially bounded strongly measurable function.

In this paper we examine analogues of the Radon-Nikodym Property for quasi-Banach spaces. If 0 , there are several possible ways of defining "differenti $able" operators on <math>L_p$, but they inevitably lead to the conclusion that the only differentiable operator is zero. For example, a differentiable operator on L_1 has the Dunford-Pettis property; operators on L_1 with the Dunford-Pettis property map the unit ball of L_{∞} to a compact set (cf (12)). However any operator on L_p (p < 1) with this property is zero (4).

Thus we define a quasi-Banach space X to be p-trivial if $\mathcal{L}(L_p, X) = \{0\}$. The concept of p-triviality is then hoped to be an analogue of the Radon-Nikodym property amongst locally p-convex quasi-Banach spaces. It turns out that this hope is fulfilled to some extent. Our main results in Sections 4 and 5 demonstrate an analogue of Edgar's theorem (2) and of the Phelps characterisation of the Radon-Nikodym Property ((1), (9)) to this setting. Precisely we show that a locally p-convex quasi-Banach space is p-trivial if and only if every closed bounded p-convex set is the closed p-convex hull of its "strongly p-extreme points". Our analogue of Edgar's theorem is that if C is a bounded closed p-convex subset of a p-trivial quasi-Banach space then every $x \in C$ may be represented in the form

$$x=\sum_{n=1}^{\infty}a_{n}u_{n}$$

where $a_n \ge 0$, $\sum a_n^p = 1$, and each u_n is a *p*-extreme point of *C*. We observe in this connection that a similar Choquet-type theorem for compact *p*-convex sets was proved in (5).

In our final Section 6 we briefly discuss the associated super-property. Here there

N. J. KALTON

is a slight divergence between the Radon-Nikodym Property for Banach spaces and p-triviality for quasi-Banach spaces. A Banach space with the super-Radon-Nikodym property is super-reflexive (11); thus there is a space X such that ℓ_1 is not finitely representable in X but which fails the Radon-Nikodym Property (3). However if ℓ_p (0) is not finitely representable in a quasi-Banach space then it is <math>p-trivial.

2. Notation

A quasi-norm on a real vector space X is a map $x \mapsto ||x||$ such that

- (1) ||x|| > 0 if $x \neq 0$.
- (2) ||tx|| = |t| ||x|| $t \in \mathbf{R}, x \in X$.
- (3) $||x + y|| \le k(||x|| + ||y||)$ $x, y \in X$.

where k is the modulus of concavity of the quasi-norm. If k = 1, $\|\cdot\|$ is a norm. In general the quasi-norm is r-subadditive $(0 < r \le 1)$ if

(4)
$$||x + y||' \le ||x||' + ||y||' \quad x, y \in X.$$

The sets $\{x: ||x|| < \alpha\}$ define the base of neighbourhoods for a Hausdorff vector topology on X. If X is complete, we say that X is a *quasi-Banach space*; if the quasi-norm is also r-subadditive then X is an r-Banach space.

The Aoki-Rolewicz theorem (10, p. 57) asserts that every quasi-norm is equivalent to a quasi-norm which is r-subadditive for some r > 0. Here $\|\cdot\|$ and $\|\cdot\|^*$ are equivalent if there exists $0 < m \le M < \infty$ such that

$$m\|x\| \leq \|x\|^* \leq M\|x\| \quad x \in X.$$

A subset C of X is *p*-convex (where $0) if given x, <math>y \in C$ and $0 \le a, b \le 1$ with $a^p + b^p = 1$, then $ax + by \in C$. Observe that if 0 and C is a closed*p*-convex set then C contains 0. We say that X is (locally)*p*-convex if there is abounded*p*-convex neighbourhood of zero; this is equivalent to the existence of anequivalent*p*-subadditive quasi-norm on X.

If C is a p-convex subset of X then a point x of C is p-extreme if $x = a_1x_1 + a_2x_2$ with $x_1, x_2 \in X$ and $0 < a_1, a_2 < 1$, $a_1^p + a_2^p = 1$ implies that $x = x_1 = x_2$.

A point $x \in C$ is strongly *p*-extreme if whenever $y_n, z_n \in C$, $0 \le a_n, b_n \le 1$, $a_n^p + b_n^p = 1$ and $a_n y_n + b_n z_n \to x$ then $\max(a_n, b_n) \to 1$. According to our definition 0 is never strongly *p*-extreme, although it may well be *p*-extreme. We regard strongly *p*-extreme points as an analogue of denting points.

The set of *p*-extreme points of *C* is denoted $\partial_p C$. If *A* is any set its *p*-convex hull is denoted by $co_p A$ and its closed *p*-convex hull by $\overline{co_p} A$.

3. p-trivial spaces

We define a quasi-Banach space X to be *p*-trivial $(0 if <math>\mathcal{L}(L_p, X) = \{0\}$, where $L_p = L_p(0, 1)$. As we observed in the introduction, this is the appropriate generalisation, to the case p < 1, of the Radon-Nikodym property for Banach spaces. In this section, we observe some examples of *p*-trivial quasi-Banach spaces.

Theorem 3.1. Suppose X satisfies either of the following conditions:

(a) For any closed infinite-dimensional subspace Y of X there exists q > p and a q-convex quasi-Banach space Z such that $\mathcal{L}(Y, Z) \neq \{0\}$.

(b) For any closed infinite-dimensional subspace Y of X there exists an F-space and a non-zero compact linear operator $T: Y \rightarrow Z$.

Then X is p-trivial.

Proof. We prove only (b). Suppose $S \in \mathcal{L}(L_p, X)$ and $S \neq 0$. Then since $L_p^* = \{0\}$, $Y = \overline{S(L_p)}$ is infinite-dimensional. Let $T: Y \to Z$ be a non-zero compact operator on Y. Then TS is a non-zero compact operator on L_p , contradicting the results of (4).

A quasi-Banach space X is *pseudo-dual* if there exists a Hausdorff vector topology τ on X such that the unit ball of x is relatively compact (cf (8)).

Theorem 3.2. Let X be a p-trivial quasi-Banach space and let Y be a closed subspace of X which is either q-convex for some q > p or isomorphic to a pseudo-dual space. Then X|Y is p-trivial.

Proof. In either case a linear operator $S: L_p \to X/Y$ may be lifted to a linear operator $\tilde{S}: L_p \to X$ (see (8)).

Theorem 3.3. Let X be a quasi-Banach space, and let Y be a closed p-trivial subspace of X such that X/Y is p-trivial. Then X is p-trivial.

Proof. Immediate.

Theorem 3.4. Let X be a quasi-Banach space which possesses no infinitedimensional subspace isomorphic to a Hilbert space. Then X is p-trivial.

Proof. This is immediate from (4) Theorem 3.4.

The author has recently constructed a non-*p*-trivial space which is *p*-convex, but contains no copy of L_p ; details will appear elsewhere.

Theorem 3.5. Suppose X is a subspace of L_p . Then X is p-trivial if and only if X has no subspace isomorphic to L_p .

Proof. By the results of (6), if $T \in \mathcal{L}(L_p, L_p)$ and $T \neq 0$, there is a subspace Y of L_p , such that $Y \cong L_p$ and T|Y is an isomorphism.

4. Edgar's theorem for *p*-trivial spaces

Our first main result generalises Edgar's theorem (2) on Banach spaces with the Radon-Nikodym property.

Theorem 4.1. Suppose 0 and that X is a p-trivial quasi-Banach space.

N. J. KALTON

Suppose C is a closed bounded p-convex subset of X and that $x \in C$. Then there exists a sequence $u_n \in \partial_p C$ and $a_n \ge 0$ such that $\sum a_n^p \le 1$ and

$$x=\sum_{n=1}^{\infty}a_{n}u_{n}.$$

Proof. We shall assume the contrary and produce a contradiction. Let \mathscr{B} be the σ -algebra of Borel subsets of [0, 1]. For a sub- σ -algebra \mathscr{A} of \mathscr{B} let $L_p(\mathscr{A})$ denote the closed subspace of $L_p[0, 1] = L_p(\mathscr{B})$ of all \mathscr{A} -measurable functions. Let Ω denote the first uncountable ordinal. We shall construct, by transfinite induction, an increasing transfinite sequence of σ -algebras \mathscr{B}_{α} $(1 \le \alpha < \Omega)$ and of linear operators $T_{\alpha}: L_p(\mathscr{B}_{\alpha}) \to X$ such that

(1) $\mathcal{B}_1 = \{[0, 1], \phi\}$ and $T_1(c, 1) = cx$ where 1 denotes the characteristic function of [0, 1].

(2) If $\alpha < \beta$ and $f \in L_p(\mathcal{B}_\alpha)$ then $T_{\beta}f = T_{\alpha}f$.

(3) If $f \in L_p(\mathcal{B}_{\alpha}), f \ge 0$ and $||f||_p \le 1$ then $Tf \in C$.

(4) If $\epsilon_{\alpha} = \inf \{ \sum_{n=1}^{\infty} \lambda(B_n)^{1/p} : B_n \in \mathcal{B}_{\alpha}; \bigcup_{n=1}^{\infty} B_n = [0, 1] \}$ then $\{ \epsilon_{\alpha} : 1 \le \alpha < \Omega \}$ is strictly decreasing.

Of course if we can satisfy (1), (2), (3), (4) then we have an immediate contradiction since any well-ordered subset of **R** is countable.

Define \mathscr{B}_1 , T_1 as above. Now suppose $1 < \alpha < \Omega$ and that \mathscr{B}_{β} , T_{β} have been defined for $\beta < \alpha$. If α is a limit ordinal, let \mathscr{B}_{α} be the σ -algebra generated by $\cup (\mathscr{B}_{\beta}: \beta < \alpha)$. Since

$$\|T_{\beta}\| \leq 2k \sup_{\mathbf{y} \in C} \|\mathbf{y}\| \qquad \beta < \alpha$$

we can define T_{α} to be the unique extension of each T_{β} to $L_{p}(\mathcal{B}_{\alpha})$. Then conditions (2), (3), (4) are immediate.

Next suppose $\alpha = \gamma + 1$. Let $(B_i^{\gamma}; j \in J)$ be a maximal family of disjoint atoms of β_{γ} i.e., $\lambda(B_i^{\gamma}) > 0$ and $B \in \mathcal{B}_{\gamma}$, $B \subset B_i^{\gamma}$ implies either $\gamma(B) = \lambda(B_i^{\gamma})$ or $\lambda(B) = 0$. J is at most countable; let $B^* = [0, 1] \setminus \bigcup_J B_i^{\gamma}$. Since X is p-trivial we have $T_{\gamma} | L_p(B^*, \mathcal{B}_{\gamma}) = 0$. Let $a_i = \lambda(B_i^{\gamma})^{1/p}$ and $v_i = a_i^{-1} T 1_{B_i^{\gamma}}$ $(j \in J)$. Then

$$x = T_{\gamma}(1) = \sum_{j \in J} a_j v_j$$

Hence by assumption there exists i such that $v_i \not\in \partial_p C$ i.e.,

$$v_i = su + tw$$

where $u, w \in C$, s, t > 0 and $s^{p} + t^{p} = 1$.

Choose $A \in \mathcal{B}$ such that $A \subset B_i^{\gamma}$, and $\lambda(A) = (sa_i)^p$.

Let \mathscr{B}_{α} be the σ -algebra generated by adjoining A to \mathscr{B}_{γ} . Extend T_{γ} by defining

$$T_{\alpha} \mathbf{1}_{A} = s a_{j} u.$$

Then

$$T_{\alpha} \mathbf{1}_{B^{\gamma} \setminus A} = t a_i w$$

and conditions (2), (3) follow easily. For (4), observe that

$$\epsilon_{\gamma} = \sum_{j \in J} a_j$$

while

$$\epsilon_{\alpha} = \sum_{j \neq i} a_j + (s+t)a_i < \epsilon_{\gamma}$$

This completes the proof.

Remark. It is easy, given Theorem 4.1, to modify the representation of x so that $\sum a_n^p = 1$. This follows from the fact that $0 \in C$ (see (5) for the details).

5. Geometric characterisations of *p*-trivial spaces

Suppose that C is a bounded p-convex set with 0 as an interior point (this implies that X is p-convex). Denote by C_0 the interior of C. Then if $x \in C$ and $0 \le t < 1$, $tx \in C_0$. Let us define a function $\varphi: C_0 \rightarrow \mathbf{R}$ by

$$\varphi(x)=\inf\sum_{n=1}^{\infty}a_n$$

where the infimum is taken over all non-negative series $\sum a_n$ such that $\sum a_n^p = 1$ and there exist $u_n \in C_0$ with

$$x=\sum_{n=1}^{\infty}a_{n}u_{n}$$

Let us observe that the infimum may be taken instead over all non-negative series $\sum a_n$ such that $\sum a_n^p \le 1$ and

$$x=\sum_{n=1}^{\infty}a_{n}u_{n}.$$

For if

$$x=\sum_{n=1}^{\infty}a_{n}u_{n}$$

where $a_n \ge 0$ and $\sum a_n^p \le 1$, then for any N, we may write

$$x=\sum_{n=1}^{\infty}a_nu_n+\alpha(0+0+\cdots+0)$$

where $\alpha^{p} = N^{-1}(1 - \sum a_{n}^{p})$, and there are N zero terms. Thus

$$\varphi(x) \leq \sum a_n + N\alpha$$
$$= \sum a_n + N^{1-1/p} \left(1 - \sum a_n^p\right)^{1/p}.$$

Letting $N \to \infty$ we see that

 $\varphi(x) \leq \sum a_n$

For $x \in C$, we define

$$\varphi_*(x) = \liminf_{y \to x} \varphi(y).$$
$$\varphi^*(x) = \limsup_{y \to x} \varphi(y).$$

Thus φ_* is lower-semi-continuous and φ^* is upper-semi-continuous on C and $\varphi_* \leq \varphi^*$. Let

$$V = \{x \in C : \varphi^*(x) = 1\}$$
$$W = \{x \in C : \varphi_*(x) = 1\}.$$

Then V is closed and W is a G_{δ} -set; also $W \subset V$. Clearly any member of W is strongly p-extreme for C.

The following lemmas prepare our main theorem. We assume that X is p-trivial.

Lemma 5.1. If $x \in C_0$, there exist $v_m \in V$ and $a_m \ge 0$ such that $\sum a_m^p \le 1$ and $\sum a_m v_m = x$.

Proof. (cf. Theorem 4.1). Suppose $x \in C_0$. Let $\mathcal{B}_1 = \{(0, 1), \phi\}$ and define $T_1: L_p(\mathcal{B}_1) \to X$ by $T_1(c,1) = cx$ By induction we construct an increasing sequence of atomic sub- σ -algebras \mathcal{B}_n of \mathcal{B} and a sequence of linear operators $T_n: L_p(\mathcal{B}_n) \to X$ such that

(1) $T_{n+1}|L_p(\mathcal{B}_n) = T_n$. $n \ge 2$,

(2)
$$T_n\{f: f \in L_p(\mathcal{B}_n); f \ge 0, \|f\|_p \le 1\} \subset C_0.$$

Indeed suppose \mathscr{B}_n has atoms $(B_j^n: j \in J)$ where J is at most countable. Let $b_j = \lambda(B_j^n)^{1/p}, j \in J$ and

$$u_j = b_j^{-1} T_n \mathbf{1}_{B_i^{n-1}}$$

Then $u_i \in C_0$. Then write

$$u_j = \sum_{i=1}^{\infty} a_{ij} w_{ij}$$

where $w_{ij} \in C_0$, $\sum a_{ij}^p = 1$

$$\sum_{i=1}^{\infty} a_{ij} \leq \frac{1}{2}(1+\varphi(u_j))$$

(the sum may, of course, be finitely non-zero). Split each B_i^n into atoms $\{B_{ij}^n: i = 1, 2, ...\}$ where $\lambda(B_{ij}^n) = a_{ij}^p b_j^p$. Let $\mathcal{B}_{n+1} = \sigma\{B_{ij}^n: j \in J, i = 1, 2, ...\}$ and define T_{n+1} on $L_p(\mathcal{B}_{n+1})$ so that

$$T_{n+1} \mathbf{1}_{B_{i}}^{n} = b_{j}^{-1} a_{ij}^{-1} w_{ij}$$

It is easy to verify the conditions.

Now let $\mathscr{B}_{\infty} = \sigma(\bigcup_{n=1}^{\infty} \mathscr{B}_n)$ and let T be the unique continuous extension of each T_n to $L_p(\mathscr{B}_{\infty})$. Then \mathscr{B}_{∞} has atoms $\{B_j : j \in J_{\infty}\}$ and since X is $L_{p-\text{trivial}}$

$$x=\sum_{j\in J_{\infty}}a_{j}v_{j}$$

where $a_i = \lambda(B_i)^{1/p}$ and $v_i = a_i^{-1}T \mathbf{1}_{B_i}$. Clearly $v_i \in C$ and $\sum a_i^p \leq 1$. It remains to show that $v_i \in V$.

For each *n*, let A_j^n be the atom of \mathcal{B}_n including B_j . Then $\bigcap_n A_j^n = B_j$; let

$$z_j^n = \lambda (A_j^n)^{-1/p} T \mathbf{1}_{A_j^n}.$$

Then $z_i^n \in C_0$ and $z_i^n \to v_i$. Now for each n,

$$(1 + \varphi(z_i^n)) \ge (\lambda(B_i)/\lambda(A_i^n))^{1/p}$$

and hence $\varphi(z_i^n) \rightarrow 1$. Thus $v_i \in V$.

Since X is necessarily p-convex we can assume that the norm on X is p-subadditive. We also choose $\delta > 0$ such that $\{x : ||x|| \le \delta\}$ is contained in C.

Lemma 5.2. Suppose $x \in C_0$ and $0 \le t < 1$. Then

$$\varphi(tx) \leq t\varphi_*(x).$$

Proof. Suppose $\epsilon > 0$, and

$$\epsilon \leq \delta t^{-1} (1-t^p)^{1/p}.$$

Then there exists $u, ||u|| < \epsilon$ such that $x - u \in C_0$ and

$$\varphi(x-u) < \varphi_*(x) + \epsilon$$

Hence

$$x-u=\sum_{n=1}^{\infty}a_nx_n$$

where $x_n \in C_0$, $a_n \ge 0$, $\sum a_n^p = 1$ and

$$\sum a_n \leq \varphi_*(x) + \epsilon.$$

Thus

$$tx = \sum_{n=1}^{\infty} ta_n x_n + \frac{t\epsilon}{\delta} \left(\frac{\delta u}{\epsilon} \right)$$

and

$$\sum t^p a_n^p + t^p \epsilon^p \delta^{-p} \leq 1.$$

By the remark at the beginning of the section,

$$\varphi(tx) \leq t\left(\sum a_n\right) + t\epsilon\delta^{-1}$$
$$\leq t(\varphi_*(x) + \epsilon) + t\epsilon\delta^{-1}.$$

Now let $\epsilon \rightarrow 0$,

$$\varphi(tx) \leq t\varphi_*(x).$$

Lemma 5.3. Suppose $x_n \in C$, $a_n \ge 0$ and $\sum a_n^p \le 1$. Then

$$\varphi_*\left(\sum_{n=1}^{\infty}a_nx_n\right) \leq \sum_{n=1}^{\infty}a_n\varphi_*(x_n).$$

Proof. For $\epsilon > 0$, there exist $u_n \in C_0$ such that

$$\|x_n-u_n\|\leq\epsilon.$$

and

$$u_n = \sum_{k=1}^{\infty} c_{nk} v_{nk}$$

where $v_{nk} \in C_0$, $c_{nk} \ge 0$, $\sum c_{nk}^p \le 1$ and

$$\sum_{k} c_{nk} \leq \varphi_{*}(x_{n}) + \epsilon$$

Thus

$$\left\|\sum_{n=1}^{\infty}a_nx_n-\sum_{n=1}^{\infty}\sum_{k=1}^{\infty}a_nc_{nk}v_{nk}\right\|\leq\epsilon.$$

and

$$\sum_{n=1}^{\infty}\sum_{k=1}^{\infty}a_{n}c_{nk} \leq \sum_{n=1}^{\infty}a_{n}(\varphi_{*}(x_{n})+\epsilon)$$
$$\leq \sum_{n=1}^{\infty}a_{n}\varphi_{*}(x_{n})+\epsilon.$$

Letting $\epsilon \rightarrow 0$ we obtain the result.

Lemma 5.4. W is dense in V.

Proof. Let

$$M = \sup_{x \in C} \|x\|.$$

Fix $n \in \mathbb{N}$ and let

$$W_n = \{x \in C : \varphi_*(x) > 1 - 1/n\}.$$

Then W_n is relatively open in C. We shall show that $W_n \cap V$ is dense in V. Fix $x \in V$ and $\epsilon > 0$.

Choose v > 0 such that

$$(1-v)^{p/1-p}-v>1-1/n$$

and

$$v^{p} + M^{p}[v^{p} + (1 - (1 - v)^{1/1 - p})^{p} + (1 - (1 - v)^{p/1 - p})] < \epsilon^{p}.$$

Since $x \in V$ there exists $y \in C_0$ with

 $\varphi(y) > 1 - v$

and

 $\|x-y\| < v.$

Since
$$y \in C_0$$
, there exists τ , $1 < \tau < 1 + v$ such that $\tau y \in C_0$ and then we have

$$\varphi_*(\tau y) > 1 - v$$

by Lemma 5.2.

Now by Lemma 5.1

$$\tau y = \sum_{m=1}^{\infty} a_m v_m$$

where $v_m \in V$, $a_m \ge 0$ and $\sum a_m^{\rho} \le 1$. Then by Lemma 5.3

$$\sum_{m=1}^{\infty} a_m \varphi_*(v_m) > 1 - v$$

and in particular

 $\sum a_m > 1 - v.$

Suppose $a_1 \ge a_2 \ge \ldots$; then

$$a_1 > (1-v)^{1/(1-p)}$$

and hence

$$\sum_{m=2}^{\infty} a_m^p < 1 - (1 - \nu)^{p/(1-p)}$$

Thus

$$a_1 \varphi_*(v_1) > 1 - v - \sum_{m=2}^{\infty} a_m$$

> $(1 - v)^{p/(1-p)} - v.$

In particular

$$\varphi_*(v_1) > (1-v)^{p/(1-p)} - v$$

so that $v_1 \in W_n$; also

$$\begin{aligned} \|x - v_1\|^p &\leq \|x - y\|^p + \|\tau y - y\|^p + \|\tau y - v_1\|^p \\ &\leq v^p + v^p M^p + \left((1 - a_1)^p + \sum_{m=2}^{\infty} a_m^p\right) M^p. \\ &= v^p + M^p [v^p + [1 - (1 - v)^{1/(1 - p)}]^p + 1 - (1 - v)^{p/(1 - p)}] \\ &< \epsilon^p. \end{aligned}$$

Thus it follows that $W_n \cap V$ is dense in V. Since V is closed in X and $W_n \cap V$ is relatively open in V, we may deduce from the Baire Category Theorem that $(\bigcap_{n=1}^{\infty} W_n) \cap V$ is dense in V i.e., W is dense in V.

Lemma 5.5. $C = \overline{\operatorname{co}_p} W$.

Proof. $\overline{\operatorname{co}_p} W = \overline{\operatorname{co}_p} V \supset C_0$ by Lemma 5.1. Since $\overline{C_0} = C$, we have the result.

The next theorem is our main result of the section, and may be regarded as a p-convex analogue of the characterisation of the Radon-Nikodym property for Banach spaces given by Phelps (9 Theorem 5).

Theorem 5.6. Let X be a p-convex quasi-Banach space. Then X is p-trivial if and only if every closed bounded p-convex subset of X is the closed p-convex cover of its strongly p-extreme points.

Proof. Suppose X is not p-trivial and that $T: \underline{L_p} \to X$ is a bounded linear operator. Let \underline{U} be the unit ball of L_p and consider $\overline{T(U)}$. Suppose x is strongly p-extreme for $\overline{T(U)}$. Then there exists $f_n \in U$ with $Tf_n \to x$. However for each f_n we may write (by splitting the interval)

$$f_n = (\frac{1}{2})^{1/p} g_n + (\frac{1}{2})^{1/p} h_n$$

where $g_n, h_n \in U$. Thus $2^{-1/p}Tg_n + 2^{-1/p}Th_n \to x$ and so we have a contradiction. Hence $\overline{T(U)}$ has no strongly *p*-extreme points.

Conversely suppose X is p-trivial and D is a closed bounded p-convex subset of X. Let S be the set of strongly p-extreme points for D.

Let B be the closed unit ball of X and for $\delta > 0$ let $C = C_{\delta} = \overline{co_p}$ $(D \cup \delta B)$. Using the notation of the preceding lemmas, $C = \overline{co_p} W$. However W is contained in the set T_{δ} of strongly p-extreme points for C.

Suppose $x \in T_{\delta}$ and $||x|| > \delta$. Then there exist $y_n \in D$ and, $w_n \in \delta B$, $0 \le a_n \le 1$, such that

$$a_n y_n + (1 - a_n^p)^{1/p} w_n \to x.$$

Hence $\max(a_n, (1 - a_n^p)^{1/p}) \to 1$. It is easy to see that since $||x|| > \delta$ we have $a_n \to 1$ and hence $x \in D$. This implies that $x \in S$.

Now suppose $z \in D$ and $z \notin \overline{co_p} S$. Let

$$\delta = \frac{1}{2} d(z, \overline{\operatorname{co}_p} S) = \frac{1}{2} \inf(||z - v|| : v \in \overline{\operatorname{co}_p} S).$$

Then since $\lambda \overline{\operatorname{co}_p} S \subset \overline{\operatorname{co}_p} S$ for $0 \leq \lambda \leq 1$, we have $z \notin \overline{\operatorname{co}_p} (S \cup \delta B)$.

However $S \cup \delta B \supset T_{\delta}$ and hence $z \notin \overline{co_{\rho}} T_{\delta}$, and we have a contradiction.

Corollary 5.7. X is p-trivial if and only if every closed bounded p-convex set has a strongly p-extreme point.

6. Remarks on super-properties

For the purposes of this section we shall restrict our comments to quasi-Banach spaces X which have a quasi-norm which is r-subadditive for some r > 0. We say that a quasi-Banach Y is finitely representable in a quasi-Banach space X if given any

 $\epsilon > 0$ and any finite-dimensional subspace L of Y there is a subspace M of X with dim $M = \dim L$ such that there is an isomorphism $T: L \to M$ with $||T|| ||T^{-1}|| < 1 + \epsilon$.

If (P) is a property of quasi-Banach spaces, then we say that X has the property super-(P) if any space finitely representable in X has property (P).

Theorem 6.1. If 0 , the following conditions on X are equivalent:

(1) X is super-p-trivial.

(2) ℓ_p is not finitely representable in X.

(3) X is q-convex for some q > p.

Proof. (2) \Leftrightarrow (3) is proved in (7). (3) \Rightarrow (1) is obvious. For (1) \Rightarrow (2) observe that if ℓ_p is finitely representable in X then so is L_p .

The interest in the above theorem is that the analogy with the Radon-Nikodym Property breaks down at this point. Pisier (11) has shown that X has the super-Radon-Nikodym property if and only if X is super-reflexive. An example of James (3) shows that this is not the same as " ℓ_1 is not finitely representable in X" (i.e., X is *B*-convex).

The author is grateful to the referee for the following comments.

From our remarks in the introduction, the class of *p*-trivial spaces may also be regarded as a generalisation to quasi-Banach spaces of the class of Banach spaces X such that every $T \in \mathcal{L}(L_1, X)$ has the Dunford-Pettis property. This class is strictly larger than the class of spaces with the Radon-Nikodym Property.

The referee also calls our attention to a paper of W. Fischer and U. Scholer (13) who study a (different) generalisation of the Radon-Nikodym Property in quasi-Banach spaces. It is not clear at present how their work relates to the content of this paper.

REFERENCES

(1) J. DIESTEL, Geometry of Banach spaces – selected topics (Springer Lecture Notes No. 485, Berlin, 1975).

(2) G. A. EDGAR, A non-compact Choquet theorem, Proc. Amer. Math. Soc. 49 (1975), 354-358.

(3) R. C. JAMES, A nonreflexive space which is uniformly nonoctrahedral, *Israel J. Math.* 18 (1974), 145-155.

(4) N. J. KALTON, Compact and strictly singular operators on Orlicz spaces, Israel J. Math. 26 (1977), 126-136.

(5) N. J. KALTON, Compact p-convex sets, Quarterly J. Math. (Oxford). 28 (1977), 301-308.

(6) N. J. KALTON, The endomorphisms of L_p , $0 \le p \le 1$, Indiana Univ. Math J. 27 (1978), 353-381.

(7) N. J. KALTON, The convexity type of a quasi-Banach space, to appear.

(8) N. J. KALTON and N. T. PECK, Quotients of $L_p(0, 1)$, $0 \le p \le 1$, Studia Math. to appear.

N. J. KALTON

(9) R. R. PHELPS, Dentability and extreme points in Banach spaces, J. Functional Analysis 17 (1974), 78-90.

(10) G. PISIER, Martingales with values in uniformly convex spaces, *Israel J. Math.* 20 (1975), 325–350.

(11) S. ROLEWICZ, Metric Linear Spaces (Warsaw, 1972).

(12) J. J. UHL, Completely continuous operators on L_1 and Liapounoff's theorem (Altgeld Book, 1976).

(13) W. FISCHER and U. SCHOLER. On the derivatives of vector measures into $l_p(x)$, 0 , Comm. Math. 20 (1977) 53-56.

DEPARTMENT OF PURE MATHEMATICS UNIVERSITY COLLEGE OF SWANSEA SINGLETON PARK SWANSEA SA28PP Department of Mathematics Michigan State University East Lansing Michigan 48824 U.S.A.