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1. Introduction

In recent years there has been considerable interest in Banach spaces with the
Radon-Nikodym Property; see (1) for a summary of the main known results on this
class of spaces. We may define this property as follows: a Banach space X has the
Radon-Nikodym Property if whenever T E ££(L,, X) (where L, = L,(0, 1)) then T is
differentiable i.e.

Tf=( f(x)g(x) dx
Jo

where g:(0, 1)-»X is an essentially bounded strongly measurable function.
In this paper we examine analogues of the Radon-Nikodym Property for quasi-

Banach spaces. If 0 < p < 1, there are several possible ways of defining "differenti-
able" operators on Lp, but they inevitably lead to the conclusion that the only
differentiable operator is zero. For example, a differentiable operator on L\ has the
Dunford-Pettis property; operators on L\ with the Dunford-Pettis property map the
unit ball of L«, to a compact set (cf (12)). However any operator on Lp (p < 1) with
this property is zero (4).

Thus we define a quasi-Banach space X to be p-trivial if J£(LP, X) = {0}. The
concept of p-triviality is then hoped to be an analogue of the Radon-Nikodym
property amongst locally p-convex quasi-Banach spaces. It turns out that this hope is
fulfilled to some extent. Our main results in Sections 4 and 5 demonstrate an analogue
of Edgar's theorem (2) and of the Phelps characterisation of the Radon-Nikodym
Property ((1), (9)) to this setting. Precisely we show that a locally p-convex quasi-
Banach space is p-trivial if and only if every closed bounded p-convex set is the
closed p-convex hull of its "strongly p-extreme points". Our analogue of Edgar's
theorem is that if C is a bounded closed p-convex subset of a p-trivial quasi-Banach
space then every x E C may be represented in the form

CO

x = 2 anun
n = l

where an &0, 1 a"n = 1, and each un is a p-extreme point of C. We observe in this
connection that a similar Choquet-type theorem for compact p-convex sets was
proved in (5).

In our final Section 6 we briefly discuss the associated super-property. Here there
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is a slight divergence between the Radon-Nikodym Property for Banach spaces and
p-triviality for quasi-Banach spaces. A Banach space with the super-Radon-Nikodym
property is super-reflexive (11); thus there is a space X such that (\ is not finitely
representable in X but which fails the Radon-Nikodym Property (3). However if £p

(0<p < 1) is not finitely representable in a quasi-Banach space then it is p -trivial.

2. Notation

A quasi-norm on a real vector space X is a map JCI—*• ||JC|| such that

(1) ||*|| > 0 if x*0.
(2) ||rx|| = |r||M| l £ R , x £ X .
(3) ||x + y||**(|M| + ||y|D x,yGX.

where k is the modulus of concavity of the quasi-norm. If k = 1, || • || is a norm. In
general the quasi-norm is r-subadditive (0< r=£ 1) if

(4) ||x + y | | '«Wr + ||y|r *,yGAT.

The sets {x:||.x||<a} define the base of neighbourhoods for a Hausdorff vector
topology on X. If X is complete, we say that X is a quasi-Banach space; if the
quasi-norm is also r-subadditive then X is an r-Banach space.

The Aoki-Rolewicz theorem (10, p. 57) asserts that every quasi-norm is equivalent
to a quasi-norm which is r-subadditive for some r > 0. Here || • || and || • ||* are
equivalent if there exists 0 < m =£ M < oo such that

m||*H||x||*=£M||x|| XGX.

A subset C of X is p-convex (where 0 < p « 1) if given x, y G C and 0 ss a, b « 1
with a" + bp = \, then ax + by G C. Observe that if 0 < p < 1 and C is a closed
p-convex set then C contains 0. We say that X is (locally) p-convex if there is a
bounded p-convex neighbourhood of zero; this is equivalent to the existence of an
equivalent p-subadditive quasi-norm on X.

If C is a p-convex subset of X then a point x of C is p-extreme if x = axX\ + a2x2

with xt, x2 G X and 0< aua2<l, a? + a? = 1 implies that x = x, = x2.
A point JC G C is strongly p-extreme if whenever y , , z , £ C , 0«a n , bn*£l, a"n +

b"n = \ and anyn + bnzn^*x then max(an, bB)-» 1. According to our definition 0 is never
strongly p-extreme, although it may well be p-extreme. We regard strongly p-extreme
points as an analogue of denting points.

The set of p-extreme points of C is denoted dpC._U. A is any set its p-convex hull
is denoted by copA and its closed p-convex hull by copA.

3. p-trivial spaces

We define a quasi-Banach space X to be p-trivial ( 0 < p < l ) if i£(Lp, X) = {0},
where Lp = Lp(0, 1). As we observed in the introduction, this is the appropriate
generalisation, to the case p < 1, of the Radon-Nikodym property for Banach spaces.
In this section, we observe some examples of p-trivial quasi-Banach spaces.
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Theorem 3.1. Suppose X satisfies either of the following conditions:
(a) For any closed infinite-dimensional subspace Y of X there exists q> p and a

q-convex quasi-Banach space Z such that Z£{Y, Z) ^ {0}.
(b) For any closed infinite-dimensional subspace Y of X there exists an F-space

and a non-zero compact linear operator T :Y -> Z.
Then X is p-trivial.

Proof. We prove only (b). Suppose 5 £ S£(LP, X) and S*0. Then since L* = {0},
Y = S(LP) is infinite-dimensional. Let T: Y -> Z be a non-zero compact operator on
Y. Then TS is a non-zero compact operator on Lp, contradicting the results of (4).

A quasi-Banach space X is pseudo-dual if there exists a Hausdorff vector
topology T on X such that the unit ball of x is relatively compact (cf (8)).

Theorem 3.2. Let X be a p-trivial quasi-Banach space and let Y be a closed
subspace of X which is either q-convex for some q> p or isomorphic to a pseudo-dual
space. Then XIY is p-trivial.

Proof. In either case a linear operator S:LP^*XIY may be lifted to a linear
operator S:LP^>X (see (8)).

Theorem 3.3. Let X be a quasi-Banach space, and let Y be a closed p-trivial
subspace of X such that XIY is p-trivial.

Then X is p-trivial.

Proof. Immediate.

Theorem 3.4. Let X be a quasi-Banach space which possesses no infinite-
dimensional subspace isomorphic to a Hilbert space. Then X is p-trivial.

Proof. This is immediate from (4) Theorem 3.4.

The author has recently constructed a non-p-trivial space which is p-convex, but
contains no copy of Lp; details will appear elsewhere.

Theorem 3.5. Suppose X is a subspace of Lp. Then X is p-trivial if and only if X
has no subspace isomorphic to Lp.

Proof. By the results of (6), if T G 2{LP, Lp) and T* 0, there is a subspace Y of
Lp, such that Y = Lp and T\Y is an isomorphism.

4. Edgar's theorem for p-trivial spaces

Our first main result generalises Edgar's theorem (2) on Banach spaces with the
Radon-Nikodym property.

Theorem 4.1. Suppose 0 < p < 1 and that X is a p-trivial quasi-Banach space.
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Suppose C is a closed bounded p-convex subset of X and that xEC. Then there exists
a sequence un G dpC and an5*Q such that 2 a"n =£ 1 and

00

X = 2 a»Un-
n = l

Proof. We shall assume the contrary and produce a contradiction. Let 08 be the
<r-algebra of Borel subsets of [0,1]. For a sub-o--algebra si of 93 let Lp(s4) denote the
closed subspace of Lp[0,1] = Lp(98) of all jtf-measurable functions. Let il denote the
first uncountable ordinal. We shall construct, by transfinite induction, an increasing
transfinite sequence of o--algebras S8a ( l « a < f l ) and of linear operators
Ta:Lp(9&a)^>X such that

(1) S8i = {[0,1], <f>} and Ti(c.l) = ex where 1 denotes the characteristic function of
[0, 1].

(2) If a < (3 and / E Lp(®a) then Trf = TJ.
(3) If / G Lp(®a), f s= 0 and ||/||p =s 1 then Tf E C.
(4) If eo = inf{E:=1A(Bn)"p:BnGS8o; L C , B. = [0,1]} then { C a : l « a < f l } is

strictly decreasing.
Of course if we can satisfy (1), (2), (3), (4) then we have an immediate contradic-

tion since any well-ordered subset of R is countable.
Define S9|, Tt as above. Now suppose 1 < a <fl and that 2ftp, Tp have been defined

for /3 < a. If a is a limit ordinal, let S8a be the a -algebra generated by U (38̂  :fi < a).
Since

||r/l||«2fcsup|M| P<a
yec

we can define Ta to be the unique extension of each Tp to Lp(98a). Then conditions
(2), (3), (4) are immediate.

Next suppose a = y + 1. Let (BJ:j G / ) be a maximal family of disjoint atoms of
Py i.e., k(BJ) > 0 and B E 9By, B C Bj implies either y(B) = \(BJ) or \(B) = 0. / is at
most countable; let B* = [0, l]\UyJS/. Since X is p-trivial we have Ty\Lp(B*, S8T) = 0.

Let a, = A(fi/)"p and t;, = aJxT\B-, (jE J). Then

Hence by assumption there exists / such that u,^ 3PC i.e.,

Vj = SU + tW

where u, w E C, s, t > 0 and s" + t" = 1.
Choose A £ S such that A C BJ, and A 04) = (saj)p.
Let S8Q be the a -algebra generated by adjoining A to S8r. Extend Ty by defining

Then

and conditions (2), (3) follow easily. For (4), observe that
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ey = 2 a,

while

ea — 2 Oj + (s + f)fl< < *r

This completes the proof.

Remark. It is easy, given Theorem 4.1, to modify the representation of x so that
S a ! = l. This follows from the fact that 0 6 C (see (5) for the details).

5. Geometric characterisations of p -trivial spaces

Suppose that C is a bounded p -convex set with 0 as an interior point (this implies
that X is p-convex). Denote by Co the interior of C. Then if x G C and 0 =s t < 1,
tx G Co- Let us define a function <p : Co-» R by

oo

(p(jt) = inf 2 a*

where the infimum is taken over all non-negative series 2 an such that 2 a'n = 1 and
there exist un G Co with

Let us observe that the infimum may be taken instead over all non-negative series
2 an such that 2 a"n =s 1 and

For if

n = l

where an s= 0 and 2 a^ ^ 1, then for any N, we may write

* = X an«n + a(0 + 0 + - • +0)
n = l

where a" = JV"'(1 - 2 a"n), and there are N zero terms. Thus

<p(x) ^ 2 fln + Na

Letting TV -»oo we see that

() 2 a,
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For x G C, we define

<p*(x) = lim inf <p(y).
y—x

<p*(x) = lim sup <p(y).
y—x

Thus (p* is lower-semi-continuous and <p* is upper-semi-continuous on C and <p* ^ <p*.
Let

Then V is closed and IV is a G«-set; also W C K Clearly any member of W is
strongly p -extreme for C.

The following lemmas prepare our main theorem. We assume that X is p-trivial.

Lemma 5.1. / / x G Co, there exist vm G V and a m ^ 0 sucfi f/iaf S ap
m « 1 and

S amvm = x.

Proof, (cf. Theorem 4.1). Suppose x e Co. Let 38, = {(0,1), <£} and define
Ti:Lp(S8|)-»X by Ti(c.l) = ex By induction we construct an increasing sequence of
atomic sub-cr-algebras &&„ of 38 and a sequence of linear operators Tn :Lp(98n)-» A"
such that

(1) rn+1|Lp(S8n) = Tn. n^2,
(2) Tn{f:f<=Lp(®n); f& 0, ||/||p ^ 1}C Co.

Indeed suppose S8n has atoms (5":y'GJ) where / is at most countable. Let
yl,jeJ and

Then H, G CO. Then write

where wij&Cf>,'L a^= 1

2 ai,«5(l + <p(«/))

(the sum may, of course, be finitely non-zero). Split each B" into atoms {B"j-.i =
1,2,...} where A(B?) = a'N- Let S8n+, = (T{B\:) G /, I = 1, 2,...} and define Tn+, on
Lp(S8n+l) so that

It is easy to verify the conditions.
Now let 38^= a(U™=i S8n) and let T be t h e unique continuous extension of each Tn

to Lp(S8oo). Then 58,. has atoms {B,,:j G /„} and since X is Lp.lriviai
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X =

where a, = A(J3;)"
P and t>, = d j 'T l j - Clearly v, G C and 2 a? *£ 1. It remains to show

that Vj G V.
For each n, let A? be the atom of 58n including Bh Then Dn A? = B,; let

Then 2" E Co and z" -» w,-. Now for each n,

{(I + ?(z7))3s

and hence (p(z")-^ 1. Thus t;, e V.
Since X is necessarily p-convex we can assume that the norm on X is p-

subadditive. We also choose S > 0 such that {x : ||JC|| *£ 5} is contained in C.

Lemma 5.2. Suppose x G Co and 0 «£ / < 1. Then

Proof. Suppose e > 0, and

Then there exists M, ||U|| < e such that i - a £ C c and

Hence

x - u =

where xn G Co, an 3= 0, 2 a {! = 1 and

Thus

and

By the remark at the beginning of the section,

Now let e-»0,
<p(tx)
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Lemma 5.3. Suppose xn G C, an ^ 0 and 2 ap
n == 1. Then

n = l / n = l

Proof. For e > 0, there exist un G Co such that

and

= 1

where vnk G Co, cnk ̂  0, 2 c"nk « 1 and

Thus

and

2 2 a«c'"* ^ S an(«p*(A:n) + e)
n = l ~1 n=l

Letting e-»0 we obtain the result.

Lemma 5.4. W is dense in V.

Proof. Let

M = sup ||jr||.
xec

Fix n G N and let

Wm={xBC:q>m(x)>l-lln}.

Then Wn is relatively open in C. We shall show that Wn D V is dense in V. Fix
and e > 0.

Choose o > 0 such that

(\-vyn'p-v>l-lln.

and

op + Affo" + (1 - (1 - o)1"-")" + (1 - (1 - v)"11-")] < e".

Since x G V there exists y £ C 0 with
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and

Since y G Co> there exists T, 1 < T < 1 + v such that ry 6 Co and then we have

<P*(ry) > 1 - u

by Lemma 5.2.
Now by Lemma 5.1

W - 2 a">Vm
m = l

where vmEV,am»O and S a ^ l . Then by Lemma 5.3
oo

2 am<P*(l>m) > 1 - O
m = l

and in particular

2 « - > J -u-
Suppose ai & a2 3=... ; then

and hence

2 aS ,< l - ( l -u ) p / ( 1

Thus

ai*>*("i)> 1 -w- 2
m=2

>(l- i>)p / ( 1 -p ) -

In particular

so that v, e Wn; also

« u" + u'M" + ((1 - a,)" + 2 <

= u' + M"to" + [1 - (1 - u)""-"']'' + 1 - (1 - o)

Thus it follows that Wn D V is dense in V. Since V is closed in X and Wn n V is
relatively open in V, we may deduce from the Baire Category Theorem that
(0^=1 Wn) D V is dense in V i.e., W is dense in V.
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Lemma 5.5. C = coj W.

Proof. cop W = cop V D Co by Lemma 5.1. Since Co = C, we have the result.

The next theorem is our main result of the section, and may be regarded as a
p-convex analogue of the characterisation of the Radon-Nikodym property for
Banach spaces given by Phelps (9 Theorem 5).

Theorem 5.6. Let X be a p-convex quasi-Banach space. Then X is p-trivial if and
only if every closed bounded p-convex subset of X is the closed p-convex cover of its
strongly p-extreme points.

Proof. Suppose X is not p -trivial and that T: Lp -> X is a bounded linear
operator. Let U be the unit ball of Lp and consider T(U). Suppose x is strongly
p-extreme for T(U). Then there exists /„ G U with Tfn-*x. However for each /„ we
may write (by splitting the interval)

where gn, hn G U. Thus 2~ilpTgn +2~UpThn^x and so we have a contradiction. Hence
T(U) has no strongly p-extreme points.

Conversely suppose X is p-trivial and D is a closed bounded p-convex subset of
X. Let S be the set of strongly p -extreme points for D.

Let B be the closed unit ball of X and for^S > 0 let C = Cs = cop (D U SB). Using
the notation of the preceding lemmas, C = cop W. However W is contained in the set
Ts of strongly p-extreme points for C.

Suppose x £ Ts and ||jtj| > 5. Then there exist y . E D and, wn G SB, 0 *£ an =£ 1, such
that

Hence max(an, (1 - a£)"")-» 1. It is easy to see that since ||x|| > S we have an -* 1 and
hence xG.D. This implies that x £ S.

Now suppose z G D and zf£ cop S. Let

8 = \ d(z, co7 S) = i inf(||z - t>||: v G co7 S).

Then since A co7 5 C co7 S for 0 « A =£ l,_we have z£ co7 (S U SB).
However S U SB D Ts and hence zf£ cop Ts, and we have a contradiction.

Corollary 5.7. X is p-trivial if and only if every closed bounded p-convex set has a
strongly p-extreme point.

6. Remarks on super-properties

For the purposes of this section we shall restrict our comments to quasi-Banach
spaces X which have a quasi-norm which is r-subadditive for some r > 0. We say that
a quasi-Banach Y is finitely representable in a quasi-Banach space X if given any
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e > 0 and any finite-dimensional subspace L of Y there is a subspace M of X with
dim M = dim L such that there is an isomorphism T:L->M with ||T\\ ||T~'|| < 1 + e.

If (P) is a property of quasi-Banach spaces, then we say that X has the property
super-(P) if any space finitely representable in X has property (P).

Theorem 6.1. If 0<p < \, the following conditions on X are equivalent:
(1) X is super-p-trivial.
(2) €p is not finitely representable in X.
(3) X is q-convex for some q > p.

Proof. (2)O(3) is proved in (7). (3)=M1) is obvious. For (l)4>(2) observe that if
€p is finitely representable in X then so is Lp.

The interest in the above theorem is that the analogy with the Radon-Nikodym
Property breaks down at this point. Pisier (11) has shown that X has the super-Radon-
Nikodym property if and only if X is super-reflexive. An example of James (3) shows
that this is not the same as "€\ is not finitely representable in X" (i.e., X is
Z?-convex).

The author is grateful to the referee for the following comments.
From our remarks in the introduction, the class of p-trivial spaces may also be

regarded as a generalisation to quasi-Banach spaces of the class of Banach spaces X
such that every T £ SS(LU X) has the Dunford-Pettis property. This class is strictly
larger than the class of spaces with the Radon-Nikodym Property.

The referee also calls our attention to a paper of W. Fischer and U. Scholer (13)
who study a (different) generalisation of the Radon-Nikodym Property in quasi-
Banach spaces. It is not clear at present how their work relates to the content of this
paper.
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