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1. Introduction
Let S be a compact Hausdorff space and let O: C(S)-*Ebe a linear operator

defined on the space of real-valued continuous functions on S and taking values
in a (real) topological vector space E. Then O is called exhaustive (7) if given
any sequence of functions /„ e C(S) such that/n ^ 0 and

00

SUP £ fn(s)<CO
s n = 1

then <t>(/n)-»0. If E is complete then it was shown in (7) that exhaustive maps
are precisely those which possess regular integral extensions to the space of
bounded Borel functions on S; this is equivalent to possessing a representation

where JI is a regular countably additive £-valued measure defined on the a-
algebra of Borel subsets of S.

In this paper we seek conditions on E such that every continuous operator
<&: C(S)-+E (for the norm topology on C(S)) is exhaustive. If E is a Banach
space then Pelczynski (14) has shown that every exhaustive map is weakly
compact; then we have from results in (2) and (16);

Theorem 1.1. If E is a Banach space containing no copy of c0, then every
bounded®: C(S)->E is exhaustive.

Theorem 1.2. If E is a Banach space containing no copy of lx, then if S is
a-Stonian, every bounded®: C(S)->E is exhaustive.

These results extend naturally to locally convex spaces, but here we study
the general non-locally convex case. We show that Theorem 1.1 does indeed
extend to arbitrary topological vector spaces; it seems likely that Theorem 1.2
extends also, but we here only prove special cases. In particular we prove
Theorem 1.2 when E is separable (generalising a result due originally to
Grothendieck (6)).

2. Operators on c0

We denote by (en) the unit vector basis of c0. If Me N is an infinite subset,
then co(M) is the subspace of c0 of all sequences vanishing outside M. Let c00

represent the subspace of all sequences which are eventually zero, and let

An = {tec00: || ML ^ 1 h = h = ... = tn_l = 0}. (n ^ 2)



292 N. J. KALTON

Now let O: c0->(£•, x) be a continuous linear operator mapping c0 into a
metrisable topological vector space (E, r). Let ((/„) be a base of closed balanced
T-neighbourhoods of 0 satisfying Un+1 +Un+lcUB for n ^ 1. Define

0
m = 2

Lemma 2.1. (Fn) w a base for a metrisable vector topology y(O) on E.
Proof. Each Fn is balanced since each Un and O(/4m) is balanced. Since Un

is absorbent, Fn is absorbent. In view of Kothe (10, p. 146), it is necessary only
to show that Vn+1 + FB+1 c: Vn for every n, in order to prove that (FB) defines a
vector topology.

Suppose x, ye Vn+1; then for any m

where wt e C/o+1 and t e Am. Since t e c00, there exists p such that f,- = 0 for
i ^ /?. Then

y
where t' e Ap. Thus

x+y = (u
and x + y e C/n + O(^m). Hence x+ye Vn.

Now

n Fn= n n
n = l m = 2 n = l

= f) * K 5 (closure in T)
2m = 2

However (°) Fn is a linear subspace of E, and, as O is continuous, <t>(/42) is
n = 1

bounded. Therefore

(1 ^ = {0},
n = 1

and y(Q>) is HausdorfT.
Lemma 2.2. //"{O(en) :neN}isnota y(<S>)-precompact set, then for some infinite

subset MczN, O: co(M)-*(E, T) W an isomorphism on to its image.
Proof. We may find ke N such that for any y(O)-precompact subset S of E,

S+ Vk does not contain {O(en): n e N}. We then select by induction an increas-
ing sequence of integers p(n) such that for every n

00 o(cP(n,)
where Jo = {0} and for n ^
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Pickp(l) so that (a) holds. Now suppose p(l)...p(r) have been selected so
that (a) holds for 1 g n ^ r and ifi) holds for 1 ^ n ^ r-1. Then by (a)

Since T^ ! is r-compact and symmetric we may have a finite symmetric subset
£,_! of TT-y such that

Now O(eP(r)) £ Kk+ £,_!, and hence, for each a e S,_! there is a ^(a) such that

Thus there is a 9 = max (#(CT): CT e I,-!) such that

<S(Cp(r))*Sf_1 + t/

Since 7",_ x cSr_ x + i/fc+1 we conclude that

Now pick p(r+ l)>max (p(r), q) to satisfy (a), using the fact that TT is
y(O)-compact. This completes the inductive construction.

Suppose (a,-, ..., an) is a sequence with max | at \ = | ay-1 = 1. Then
1 g i g n

Z Z Z
(a summation over the empty set is taken to be zero), and therefore

Hence by (fi)

LetAf = {p(l),/?(2), ...} and consider <&: c00nc0(M)^(E,z). If 3>0(n>)->0 and
|| f(n) IL ^ e>0 for all n, then O(|| /(n) \\Zltw)^O. However

for all n, and so we have a contradiction. Therefore if O(f)-»0 then

II '(n) IL-o
and O is an isomorphism. Clearly $ is also an isomorphism on the closure of
coonco(M), i.e. co(M).

Note that, since O is continuous { £ < (̂en): KdN, K finite} is y(0)-bounded.

Therefore if {<t>(en): n e N} is y(O)-precompact then O(eB)->0 in y($).

Theorem 2.3. Suppose (E, T) is a topological vector space and<S>: co-*E is a
continuous linear map; then either

(i) «D(^)
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or
(ii) there is an infinite subset M of N such that O: co(M)-*E is an iso-

morphism onto its image.
Proof. Suppose neither (i) nor (ii) holds. Then we may find a metrisable

topological vector space (F, /i) and a continuous linear map *¥: E-^F such that
(i) does not hold for <F<J>. Then (ii) also must fail for *P<5, and so we may reduce
consideration to the metrisable case for T. We may also suppose that (E, T) is
complete. As above, let (Un) be a base of neighbourhoods for T.

Now by Lemma 2.2, ®(en)->0 y(<l>). Let y be the finest vector topology such
that y ^ T and tf>(eB)->O(y') (y is given by all r-continuous /"-semi-norms which
make <J>(en) a null sequence). Then y is Hausdorff since y(<J>) is Hausdorff.
Now let y be the metrisable topology with a base of neighbourhoods (Un) (closure
in y). Then if y = y the identity map in /: (E, y)->(E, T) is almost continuous
and therefore by the Closed Graph Theorem (Kelley (9), p. 213), y = T. Since
we are assuming (i) to be false we conclude that y < y ^ T. Therefore

and so by Theorem 3.2 of (8), there is a subsequence (<b(en): n e M) which is a
regular basic sequence in (E, y). (A sequence is regular if it is bounded away
from zero and basic if it forms a basis for its closed linear span in the completion
of(2?,y).)

Now if / e co(M) then T.tn<b(en) converges in (£, T) and hence in (E, y).
Then as (O(en): n e M) is y-regular it is equivalent to the unit vector basis of c0.
By a result of Arsove and Edwards (1), O: co(M)->G is an isomorphism where G
is the closed linear span of O(en) in (E, y). Then G is also closed in (E, T) and
by the Open Mapping Theorem <D is also an isomorphism for the topology T.
This contradicts our assumption that (ii) was false.

Theorem 2.4. Let (E, T) be a topological vector space containing no copy ofcQ

Then any bounded linear map <D: co-*E takes the unit ball B ofc0 into aprecompact
subset of E.

Proof. If <!>(B) is not precompact, we may find a neighbourhood U of zero
in E and a sequence f(n) in coonB such that O(/(ll)) - 0>(f(m)) $ U for n # m.

By selecting a subsequence we may suppose (/(n)) is co-ordinatewise conver-
gent in lm. Thus /<n) — r(n+1)->0 co-ordinatewise. We may then select a subse-
quence sw of (tw- r(n+ ])) which is disjoint (i.e. if n ^ m s[n).sim) = 0 for all k).
Define ^ : co^E by

¥(«)= £ Ui¥(s(°).
i = 1

As *P(5(n)) ^ [/, we may conclude from Theorem 2.3 that E contains a subspace
isomorphic to c0.

00

If E is complete then the hypotheses of Theorem 2.4 ensure that £ <P(en)
n = 1

converges.
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3. Operators on /„

Lemma 3.1. Let E be a separable metrisable topological vector space and
suppose <&: lx-*E is a continuous operator such that O(c0) = 0. Then there is an
infinite subset M of N such that <!>(/„, (M)) = 0.

Here IJ.M) = {tslK: /,- = 0, i $ M}.

Proof. We may assume that E is complete. Let (Ma: a e s/) be an un-
countable collection of infinite subsets of N such that ManMff is finite for each
a ^ P, see (19). Suppose if possible that for each xesf there exists t(a) e /^(A/J
with || tix) ||„ = 1 and d>(/(c°) ^ 0. Let s/k = {a: <S>(tM) $ Vk} where (Vk) is a
base of neighbourhoods of 0 in E. Then for some k, sik is uncountable;
however (<D(fw): aes#k) is separable and hence there is a sequence (aB) in s/k

such that

where x0 # 0. Then for any p
/n + p

However since MainMXj is finite if i # y and $(c0) = 0 we conclude that

(n + p \E *(ai)

n+l /

where B is the unit ball of lx. Thuspx0 e O(5) for any/? and we have a contra-
diction.

Theorem 3.2. Lef (£, T) be a separable topological vector space, and let
<&: lm-*E be a continuous linear operator. Then O(pB)-+0.

Proof. Since E may be embedded in a product of separable metrisable
spaces, it is sufficient to assume that (E, z) is metrisable and complete. Now
suppose O(en)-+0 in (E, T). Then there is an infinite subset M of N such that
<b: co(M) ->(£•, T) is an isomorphism onto a closed subspace G of E.

Let n: E-*E/G be the quotient map; then rcO = 0 on co(M) and by Lemma
3.1 there is an infinite subset Mo of M such that rcO = 0 on lx(M0), i.e.
^ C » W ) c G. Now a s f f s c0, we may apply the theorem of Grothendieck
(6, p. 173), or Rosenthal (16) to deduce O is weakly compact on 1X(MO) and
hence ^ ^ ( O ' s weakly subseries convergent in G. By the Orlicz-Pettis

Theorem <£(en)-»0 (see e.g. (5) p. 318, (12) or (15)).
It is very possible Theorem 3.2 can be extended to topological vector spaces

containing no copy of lx. However, here we have only a partial result. The
technique of the following theorem is essentially found in Drewnowski (4). We
identify lm as C(pN) and thus we can define exhaustive operators as in the
introduction.

Theorem 3.3. Let O: lx-*(E, T) be a continuous linear operator, and suppose
there is a Hausdorff vector topology p on E such (i) O: lx-+(E, p) is exhaustive (ii)
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T is p-polar, i.e. has a base of p-closedneighbourhoods ofO. Then if$>(en)-*0 in T,
there is an infinite subset M of N such that <5>: la>(M)-*(E, T) is an isomorphism
onto its image.

Proof. By (8) Proposition 2.1, there is a r-continuous F-semi-norm r\ of the
form

>,(*) = sup (;.(x): AeA)

where A is a collection of p-continuous /"-semi-norms and such that for an
infinite subset Mo of N

r,(<t>(en)) ^ l neM0.

By Theorem 2.3 we may suppose that for some subsequence Mx of Mo,
<D: co(Mj)-»(£, f/j) is an embedding (where (£, f/J is the Hausdorff quotient of
(E, if)). Thus if t e c^M,), \\t |L = 1 then

We next select a sequence (mk: k = 1, 2, ...) in N and a sequence

(Mk: k = 1, 2, ...)

of infinite subsets of N by induction. First choose mxtMx. Next given
(mu ..., mk) and (Mlt ..., Mk) let Sk be a finite subset of

_^ JjO(cm.): max | *,-1 =

such that for x e Lk there exists s e Sk with

For each s e Sk pick A s eA such that

GO

Nowle tM»= \J Pn where (Pn) is any sequence of disjoint infinite sets. Since O
n = 1

is exhaustive for p we may find n0 such that for t e l^P^), II * II oo =
seSk

Let Mk+l = Pno and then choose mk+ie Mk+1. This constructs a set

M = (mu m2, ..., mk, ...)

such that (mk+1, mk+2, ...)<=Mk+l for all k.
Now suppose t e ^(Af) with || f |l» = 1. For e > 0 there exists k such that

| tmu | > 1 — e; thus there exists 5 with | <51 < e and such that if t' = t+5emit then

' ' II = I C I = 1- Then let /" = X! 'mfemj and choose seSk such that
i = 1
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Then

Hence

and therefore, as e>0 is arbitrary and (O(eB): n e N) is bounded,

,,(0(0) 110-
It follows easily that O is an isomorphism on

4. Applications
In this section we collect together the main results of the paper, which are

deductions from the more technical results of Sections 2 and 3.

Theorem 4.1. Let E be a topological vector space containing no copy of c0;
then every continuous linear operator®: C(S)^E, where S is compact Hausdorff,
is exhaustive (and can therefore be represented in the form

-L
where fi is a regular countably additive E-valued vector measure defined on the
Borel sets of S).

Proof. Let (/„) be any sequence of positive functions in C(S) such that

CO

sup £ /n(s)<oo.
s n = 1

Then we can define *F: co-+E by

( Z fnfn converges in the norm topology of C(S) j . By Theorem 2.3 *F(eB)-»O

i.e. <&(/n)->0 and so O is exhaustive.

Theorem 4.2. Suppose S is a o-Stonian compact Hausdorff space and that E
is a separable topological vector space. Then any continuous linear operator
O: C(S)->E is exhaustive.

Proof. Suppose/, e C(S),fn ^ 0 and

sup £
S 7 1 = 1

E.M.S.—19/3—U
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Then since C(S) is a-order-complete we can define for t e lx and t ^ 0 the
oo n

order-sum o— £ tnfn = sup J] ft/t. We can extend this definition to a
n = 1 n * = 1

linear map F: ln-*C(S) and F is continuous. Now let *P = FO and apply
Theorem 3.2.

Theorem 4.3. Suppose (E, x) is an F-space containing no copy of lx and
<I>: C(S)-*E is a continuous linear operator which is exhaustive for a weaker
Hausdorff vector topology p on E. Then O is exhaustive for z.

Proof. Let y be the largest vector topology on E such that y ^ T and <b is
y-exhaustive. Let y be the topology with a base of t-neighbourhoods consisting
of the y-closures of T-neighbourhoods of 0.

Suppose now for some/B ^ 0 with sup I/n(s)<oo that Q>(fn)->O(y). Then
5

we may form the map *P: lm-*E as in Theorem 4.2 and by Theorem 3.3 there is
infinite subset M of N such that f: /̂ (Af)-*•(£•, y) is an embedding. Hence
*F: la>{M)-*{E, T) is an embedding and this contradicts the hypotheses of the
theorem. Hence <&(fn)->O(y) and so <t> is y-exhaustive. However, y ^ T and
therefore y ^ y; thus the identity /: (E, y)->(E, T) is almost continuous and by
the Closed Graph Theorem (Kelley (9), p. 213) is also continuous, i.e. y = T
and 0 is r-exhaustive.

Remark. If E has the property that the continuous linear operators with
separable range separate points then a topology p can also be found to satisfy
the conditions of Theorem 4.3.

Next we mention two other applications. Our first result generalises a
theorem of Diestel (3).

Theorem 4.4. Let E be a separable locally bounded F-space, and let Sf be a
a-algebra of subsets of a set S. Let /i: SP-+E be a bounded (finitely-additive)
measure. Then ji is exhaustive.

Note. A measure n is called exhaustive or strongly bounded if for any
sequence (Sn) of disjoint sets fi(Sn)-+O.

Proof. Since E is locally bounded, the topology may be given by a p-nona
\\.\\ where 0<p ^ 1. Let

sup || M S ) II = e.

We use a technique due to Robertson (15); \i may be extended to a linear map
4>0 on the simple functions S(5^) on SS. Then 2(5") is a normed space under

11/11= sup |/(s)

suppose fe Z(^) and \\f\\x ^ 1. Then

*o( / )= S 2
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where Sh Tt e £f (only finitely many of Sh T, are distinct). Then

Thus O0: HSf)-*E is continuous and extends to a continuous operator
O: B(£f)->E where 5(5^) in the space of bounded ^-measurable functions on 5.
Using the techniques of Theorem 4.2 it follows that if (Sn) is a disjoint sequence
in y, n(Sa) = 0fen)~*O where %Sn is the characteristic of Sn. (Alternatively
B(S?) is isometrically isomorphic to C(T) where T is a-Stonian.)

Clearly the preceding theorem generalises to semi-convex topological vector
spaces (i.e. spaces which can be embedded in a product of locally bounded
spaces).

A C-series is a sequence xn in a topological vector space such that £/„*„
converges whenever tn-*0. If E is a space such that every C-series converges,
then E is called a C-space (Schwartz (17), Thomas (18)). Clearly Theorem 2.3
yields

Theorem 4.4. A complete topological vector space is a C-space if and only if it
contains no subspace isomorphic to c0.

A topological vector space is said to have property (O) (Orlicz (13), Labuda

(10)) if every series Ixn in E such that the set \ £ xn: AcN, A finiteite > is

Jbounded, is also convergent. Again by Theorem 2.3 and a similar argument to
Theorem 4.3 we conclude

Theorem 4.5. A complete semi-convex topological vector space E has property
(O) if and only if E contains no subspace isomorphic to c0.
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