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1. Introduction
Let S be a compact Hausdorff space and let ®: C(S)— E be a linear operator
defined on the space of real-valued continuous functions on S and taking values
in a (real) topological vector space E. Then ® is called exhaustive (7) if given
any sequence of functions f, € C(S) such that f, = 0 and

Q0

sup Zl f(s)< o

5 n=
then &(f,)—0. If E is complete then it was shown in (7) that exhaustive maps
are precisely those which possess regular integral extensions to the space of
bounded Borel functions on §; this is equivalent to possessing a representation

o(f) = I J()du(s)
S

where p is a regular countably additive E-valued measure defined on the o-
algebra of Borel subsets of S."

In this paper we seek conditions on E such that every continuous operator
®: C(S)—FE (for the norm topology on C(S)) is exhaustive. If E is a Banach
space then Pelczynski (14) has shown that every exhaustive map is weakly
compact; then we have from results in (2) and (16);

Theorem 1.1. If E is a Banach space containing no copy of ¢, then every
bounded &: C(S)— E is exhaustive.

Theorem 1.2, If E is a Banach space containing no copy of 1, then if S is
a-Stonian, every bounded ®: C(S)— E is exhaustive,

These results extend naturally to locally convex spaces, but here we study
the general non-locally convex case. We show that Theorem 1.1 does indeed
extend to arbitrary topological vector spaces; it seems likely that Theorem 1.2
extends also, but we here only prove special cases. In particular we prove
Theorem 1.2 when E is separable (generalising a result due originally to
Grothendieck (6)).

2. Operators on ¢,

We denote by (e,) the unit vector basis of ¢,. If M =N is an infinite subset,
then c,(M) is the subspace of ¢, of all sequences vanishing outside M. Let cqo
represent the subspace of all sequences which are eventually zero, and let

A, ={tecoo: |1l =1 t(y=1=...=1,_,=0}. (n22)
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Now let ®: c,—(E, 7) be a continuous linear operator mapping ¢, into a
metrisable topological vector space (E, t). Let (U,) be a base of closed balanced
t-neighbourhoods of O satisfying U, 4, +U,,,=U, forn = 1. Define

@

Vo= () (U, +®(4,)).

m=2
Lemma 2.1. (V) is a base for a metrisable vector topology y(®) on E.
Proof. Each V, is balanced since each U, and ®(4,,) is balanced. Since U,
is absorbent, V,, is absorbent. In view of K&the (10, p. 146), it is necessary only
to show that V,,,+ V,,, =V, for every n, in order to prove that (V,) defines a
vector topology.
Suppose x, y€ V,+,; then for any m
X = ul +(D(t),
where u, € U,,, and t€ 4,,. Since t € ¢y, there exists p such that ¢, = 0 for
i = p. Then

y = u2+(D(t,)5
where ¢'€ 4,. Thus

x+y=(u+u)+0(t+t)
and x+ye U,+®(4,,). Hence x+yeV,.

Now
N V= 0, N Wt
= 625@5 (closure in 1)
< T,
However ﬁ V, is a linear subspace of E, and, as @ is continuous, @(4,) is
bounded. Tl';:relzfore
A v=10,

and y(®) is Hausdorff.

Lemma 2.2. If {®(e,): n € N} is not ay(®)-precompact set, then for some infinite
subset Mc N, ®: co(M)—(E, ) is an isomorphism on to its image.

Proof. We may find k& € N such that for any y(®)-precompact subset S of E,
S+ V, does not contain {®(e,): n € N}. We then select by induction an increas-
ing sequence of integers p(n) such that for every n

() (D(ep(n))¢Vk+Tn—1 nzl

B) Dleymy) ¢Uisr + L1 +P(Apasry) n21
where T, = {0} and forn = 1

T, = { Z a®(e,i): |a; | 1}-

i=1
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Pick p(1) so that («) holds. Now suppose p(1)...p(r) have been selected so
that («) holds for 1 £ rn < rand (B) holds for 1 < n < r—1. Then by ()

e, EVi+ T,
Since T,_, is T-compact and symmetric we may have a finite symmetric subset
X,_, of T,_, such that

Ty <Xy + Uiy
Now ®(e,,y) ¢ Vi+Z,_,, and hence, for each g € Z,_, there is a g(o) such that

®(e,) €0+ U+ O(Ay())-
Thus there is a ¢ = max (g(¢): o € Z,_,) such that

De,))EZ, -1 + U +B(A).
Since T,_,<Z,_; + U4, we conclude that

®(e, )¢ T, 1+ Ups ) +0(4,).

Now pick p(r+1)>max (p(r), q) to satisfy (), using the fact that T, is
y(®)-compact. This completes the inductive construction.
Suppose (a;, ..., a,) is a sequence with max |a;|={a;|=1. Then
1sSisn

n ji—1 n

aj(D(ep(j)) = igl aicb(ep(i))—i ;l ai(D(ep(i))- =¥,+ . ai(D(ep(i))

(a summation over the empty set is taken to be zero), and therefore

a;0(e, )€ Zl a®(e,i)+ Tj—y + O(A,+1))-

Hence by (f)

. 21 a®(e,i) ¢ Upss-

Let M = {p(1), p(2), ...} and consider @: cooNco(M)—(E, 1). If ®(¢)—0 and
I £ ||, = £>0 for all n, then &(|| ¢™ ||;4™)»0. However
®()| 1™ |5 ™) ¢ Uy
for all n, and so we have a contradiction. Therefore if ®(¢")—0 then
™ || ,—0

and @ is an isomorphism. Clearly ® is also an isomorphism on the closure of
CooNco(M), ie. co(M).

Note that, since @ is continuous {}. ¢(e,): KN, K finite} is y(®)-bounded.

nek

Therefore if {®(e,): n € N} is y(®)-precompact then ®(e,)—0 in y(P).

Theorem 2.3. Suppose (E, 1) is a topological vector space and ®: ¢y —E is a
continuous linear map; then either

() ®(e,)—0(),
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or

(ii) there is am infinite subset M of N such that ®: co(M)—>E is an iso-
morphism onto its image.

Proof. Suppose neither (i) nor (ii) holds. Then we may find a metrisable
topological vector space (F, i) and a continuous linear map ¥: £— F such that
(i) does not hold for ¥®. Then (ii) also must fail for ¥®, and so we may reduce
consideration to the metrisable case for 1. We may also suppose that (E, 1) is
complete. As above, let (U,) be a base of neighbourhoods for 7.

Now by Lemma 2.2, ®(e,)—0 y(D). Let 7 be the finest vector topology such
that § < t and ®d(e,)—0(7) (7 is given by all t-continuous F-semi-norms which
make ®(e,) a null sequence). Then % is Hausdorff since y(®) is Hausdorff.
Now let 7 be the metrisable topology with a base of neighbourhoods (U,) (closure
in 9). Then if § = § the identity map in i: (E, 7)—(FE, 1) is almost continuous
and therefore by the Closed Graph Theorem (Kelley (9), p. 213), # = t. Since
we are assuming (i) to be false we conclude that <% < t. Therefore

D(e,)+0(7)

and so by Theorem 3.2 of (8), there is a subsequence (®(e,): n € M) which is a
regular basic sequence in (£, 7). (A sequence is regular if it is bounded away
from zero and basic if it forms a basis for its closed linear span in the completion
of (E, %))

Now if t e co(M) then Zt,d(e,) converges in (E, ) and hence in (E, 7).
Then as (®(e,): n € M) is j-regular it is equivalent to the unit vector basis of c,.
By a result of Arsove and Edwards (1), ®: ¢o(M)— G is an isomorphism where G
is the closed linear span of ®(e,) in (E, §). Then G is also closed in (E, 1) and
by the Open Mapping Theorem ® is also an isomorphism for the topology z.
This contradicts our assumption that (ii) was false.

Theorem 2.4. Let (E, t) be a topological vector space containing no copy of ¢,
Then any bounded linear map ®: c,— E takes the unit ball B of ¢, into a precompact
subset of E.

Proof. If O(B) is not precompact, we may find a neighbourhood U of zero
in E and a sequence ™ in coonB such that ®(t™)— (™) ¢ U for n # m.

By selecting a subsequence we may suppose (2™) is co-ordinatewise conver-
gentin /. Thus ™ —z®* 150 co-ordinatewise. We may then select a subse-
quence s of (1™ — ¢** 1) which is disjoint (i.e. if n # m s{.s™ = 0 for all k).
Define ¥: c,—F by

Lol
YY) = Y u¥(Y).
i=1

As Y(s™) ¢ U, we may conclude from Theorem 2.3 that E contains a subspace
isomorphic to c,.

w0
If E is complete then the hypotheses of Theorem 2.4 ensure that 3 ®(e,)
n=1

converges.
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3. Operators on /,,

Lemma 3.1. Let E be a separable metrisable topological vector space and
suppose ®: 1, — E is a continuous operator such that ®(c,) = 0. Then there is an
infinite subset M of N such that ®(l ,(M)) = 0.

Here I, (M) = {tel,: t;=0,i¢ M}.

Proof. We may assume that E is complete. Let (M,: x €.s/) be an un-
countable collection of infinite subsets of IV such that M,n M, is finite for each
a # B, see(19). Suppose if possible that for each a € o there exists 1 e /(M)
with [ 1@ ||, = 1 and ®(t™) # 0. Let &, = {a: ®() ¢ V,} where (V) is a
base of neighbourhoods of O in E. Then for some k, &, is uncountable;
however (®(r): « € ;) is separable and hence there is a sequence (,) in o,
such that

(D(t(’n))_’xo’
where x, # 0. Then for any p .
n+
@ ( Zp t(")) — pX,.

n+1

However since M,,nM,, is finite if i # j and ®(c,) = 0 we conclude that

@ (f t(“‘)) c O(B),

+1

where B is the unit ball of /.. Thus px, € ®(B) for any p and we have a contra-
diction.

Theorem 3.2. Let (E, t) be a separable topological vector space, and let
®: | —E be a continuous linear operator. Then ®(e,)—0.

Proof. Since E may be embedded in a product of separable metrisable
spaces, it is sufficient to assume that (E, 1) is metrisable and complete. Now
suppose ®(e,)—0 in (E, 7). Then there is an infinite subset M of N such that
®: c,(M)—(E, t) is an isomorphism onto a closed subspace G of E.

Let n: E—E/G be the quotient map; then n® = 0 on ¢,(M) and by Lemma
3.1 there is an infinite subset M, of M such that n® = 0 on /[ (M,), i.e.
O/, (My))=G. Now as G = ¢y, we may apply the theorem of Grothendieck
(6, p. 173), or Rosenthal (16) to deduce @ is weakly compact on I (M,) and

hence ) ®(e,) is weakly subseries convergent in G. By the Orlicz-Pettis
neMop

Theorem ®(e,)—0 (see e.g. (5) p. 318, (12) or (15)).

It is very possible Theorem 3.2 can be extended to topological vector spaces
containing no copy of /,. However, here we have only a partial result. The
technique of the following theorem is essentially found in Drewnowski (4). We
identify /, as C(BN) and thus we can define exhaustive operators as in the
introduction.

Theorem 3.3. Let ®: I, —(E, t) be a continuous linear operator, and suppose
there is a Hausdor[f vector topology p on E such (i) ®: I ,—(E, p) is exhaustive (ii)
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T is p-polar, i.e. has a base of p-closed neighbourhoods of 0. Then if ®(e,)—0 in 1,
there is an infinite subset M of N such that ®: I (M)—(E, t) is an isomorphism
onto its image.

Proof. By (8) Proposition 2.1, there is a 7-continuous F-semi-norm 7 of the
form

n(x) = sup (A(x): AeA)

where A is a collection of p-continuous F-semi-norms and such that for an
infinite subset M, of N

n(@(e,) 21 neM,.

By Theorem 2.3 we may suppose that for some subsequence M, of M,
®: co(M,)—(E, n,) is an embedding (where (£, n,) is the Hausdorff quotient of
(E, n)). Thusiftecy(M,),]|t|lo =1 then

n(9(1) 2 6>0.
We next select a sequence (m,: k= 1,2, ...) in N and a sequence
M k=1,2,..)

of infinite subsets of N by induction. First choose m; € M,. Next given
(my, ..., my) and (M, ..., M) let S, be a finite subset of

k

L,= { Y 1®(e,): max || = 1}
i=1

such that for x e L, there exists s € S, with

n(x—s) < §9.
For each s € S, pick A, € A such that

A5(5) 2 n(s)—40.

Now let M, = P, where (P,) is any sequence of disjoint infinite sets. Since ®
k Y, n

is exhaustive for p we may find n, such that for tel (P,), ¢, <1 and
se s,

A(0(1)) < $6.
Let M,,, = P,, and then choose m,,, € M, ,,. This constructs a set
M = (my, my, ..., my, ...)

such that (m, 4., My, 3, ...) M, for all k.
Now suppose t € [ (M) with [ t |, = 1. For &¢>0 there exists k such that
| .0, |>1—¢; thus there exists & with | 6 | <¢ and such that if t' = t+ e, then

4
Nt |l =]t |=1 Thenlett = .Zl 1;,.&m, and choose s € S, such that
i

n(®(t")—s) = 0.
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Then
n(®(1)) = A,(0(1)
2 A(D(")— 40
Z A(s)—16
Z n(s)—36
= £0.
Hence

'1((1)(’)) g io_ 'I(E(D(em,.)),
and therefore, as ¢>0 is arbitrary and (®(e,): n € N) is bounded,
n(@(0) = 36
It follows easily that @ is an isomorphism on [ (M).
4. Applications

In this section we collect together the main results of the paper, which are
deductions from the more technical results of Sections 2 and 3.

Theorem 4.1. Let E be a topological vector space containing no copy of ¢,
then every continuous linear operator ®: C(S)— E, where S is compact Hausdorff,
is exhaustive (and can therefore be represented in the form

o(f) = j f(s)du,
S

where u is a regular countably additive E-valued vector measure defined on the
Borel sets of S).

Proof. Let (f,) be any sequence of positive functions in C(S) such that

sup Y. f(s)<co.
s n=1
Then we can define ¥: ¢,— E by

() = @ (i tnf")
(

i.e. ®(f,)—0 and so ®@ is exhaustive.

Theorem 4.2. Suppose S is a o-Stonian compact Hausdorff space and that E
is a separable topological vector space. Then any continuous linear operator
®: C(S)—E is exhaustive.

Proof. Suppose f, € C(S), f,, = 0 and

sgp "21 J(s)<oo.

M8

t,f, converges in the norm topology of C(S)). By Theorem 2.3 ¥(e,)—~0
1

E.M.S.~—19/3—U
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Then since C(S) is o-order-complete we can define for tel, and ¢t = 0 the

[-2]
order-sum o— Y ft,f,=sup Y ff,. We can extend this definition to a
n=1 k=1

linear map I': I,—C(S) and I' is continuous. Now let ¥ = I'® and apply
Theorem 3.2.

Theorem 4.3. Suppose (E, 1) is an F-space containing no copy of I, and
®: C(S)>E is a continuous linear operator which is exhaustive for a weaker
Hausdorff vector topology p on E. Then @ is exhaustive for <.

Proof. Let y be the largest vector topology on E such that y £ 7 and ® is
y-exhaustive. Let 7 be the topology with a base of t-neighbourhoods consisting
of the y-closures of 7-neighbourhoods of 0.

Suppose now for some f, = 0 with sup =f,(s) <co that ®(f,)->0(3). Then

we may form the map W:/ — F asin Theorem 4.2 and by Theorem 3.3 there is
infinite subset M of NV such that ¥: /(M)—(E, 7) is an embedding. Hence
¥: Il (M)—(E, 1) is an embedding and this contradicts the hypotheses of the
theorem. Hence ®(f,)-0(7) and so ® is j-exhaustive. However, £ 7 and
therefore ¥ < y; thus the identity I: (E, y)—(E, t) is almost continuous and by
the Closed Graph Theorem (Kelley (9), p. 213) is also continuous, i.e. y = 1
and ® is T-exhaustive.

Remark. If E has the property that the continuous linear operators with

separable range separate points then a topology p can also be found to satisfy
the conditions of Theorem 4.3.

Next we mention two other applications. Qur first result generalises a
theorem of Diestel (3).

Theorem 4.4. Let E be a separable locally bounded F-space, and let & be a

o-algebra of subsets of a set S. Let u: ¥—E be a bounded (finitely-additive)
measure. Then p is exhaustive.

Note. A measure u is called exhaustive or strongly bounded if for any
sequence (S,) of disjoint sets u(S,)—0.

Proof. Since E is locally bounded, the topology may be given by a p-norm
|.] where 0<p < 1. Let

sup || u(S) | = 6.
Se?

We use a technique due to Robertson (15); u may be extended to a linear map
®, on the simple functions Z(¥) on &. Then Z(¥) is a normed space under

£l = sup [ f) s
suppose fe (&) and || f ||, £ 1. Then

0ulf) = 5, 27W(S)~u(T)
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where S;, T; € & (only finitely many of S;, T, are distinct). Then

921 +p

1-277

Thus ®,: I(¥)->E is continuous and extends to a continuous operator
®: B(¥)— E where B(¥) in the space of bounded &-measurable functions on S.
Using the techniques of Theorem 4.2 it follows that if (S,) is a disjoint sequence
in &, u(S,) = (x5, )—0 where xg, is the characteristic of S,. (Alternatively
B(%) is isometrically isomorphic to C(T) where T is o-Stonian.)

Clearly the preceding theorem generalises to semi-convex topological vector
spaces (i.e. spaces which can be embedded in a product of locally bounded
spaces).

A C-series is a sequence x, in a topological vector space such that Xz,x,
converges whenever ¢,—0. If E is a space such that every C-series converges,
then E is called a C-space (Schwartz (17), Thomas (18)). Clearly Theorem 2.3
yields

loN <20 ¥ 27 <

Theorem 4.4. A complete topological vector space is a C-space if and only if it
contains no subspace isomorphic to c,.

A topological vector space is said to have property (O) (Orlicz (13), Labuda
(10)) if every series Xx, in E such that the set {Z x,: AcN, A ﬁnite} is

neA
bounded, is also convergent. Again by Theorem 2.3 and a similar argument to
Theorem 4.3 we conclude

Theorem 4.5. A complete semi-convex topological vector space E has property
(O) if and only if E contains no subspace isomorphic to c,.
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