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1. Introduction

The aim of this paper is to establish a conjecture of Shapiro (10) that an
F-space (complete metric linear space) with the Hahn-Banach Extension
Property is locally convex. This result was proved by Shapiro for F-spaces
with Schauder bases; other similar results have been obtained by Ribe (8).
The method used in this paper is to establish the existence of basic sequences in
most F-spaces.

It was originally stated by Banach that every 5-space contains a basic
sequence, and proofs have been given by Bessaga and Pelczynski (1), (2),
Gelbaum (4) and Day (3). In (1) Bessaga and Pelczynski give a general method
of construction in locally convex F-spaces, but we shall show in Section 3 that
this construction can be modified to apply in any F-space (X, T) on which there
is a weaker vector topology p such that T has a base of p-closed neighbourhoods.
The basic result of the paper is Theorem 3.2, and this is a natural generalisation
of a locally convex version due to Bessaga and Mazur and given (essentially) in
Pelczynski (6), (7).

In Section 4 we study the problem of existence of a basic sequence in an
arbitrary F-space, and show that in fact repeated applications of Theorem 3.2
give a basic sequence in any F-space with a non-minimal topology. Since
the only example we know of a minimal F-space is the space a> of all
sequences (which has a basis) it seems likely that every F-space contains a basic
sequence.

The results of Section 5 do not depend on Section 4; in this section are
gathered together the applications of the existence theory of Section 3. We
show that if (X, T) is an F-space and p ^ T is a topology defining the same closed
linear subspaces as T, then p and z define the same bounded sets—a result
familiar in locally convex theory. The Shapiro conjecture follows immediately.
The final theorem is a generalisation of the Eberlein-Smulian theorem employing
techniques developed by Pelczynski (7).

The author would like to thank Professor J. H. Shapiro for several helpful
comments and supplying a copy of (8), and also the referee for pointing out
some serious mistakes in the first draft of the paper.



152 N. J. KALTON

2. Preliminary results

An F-semi-norm n on a vector space A1 is a non-negative real-valued function
defined on X such that

(i) ti

(ii) n(tx) rg >j(x) | t | ^ 1,

(iii) lim»/(fx) = 0 xeX.
<->o

If in addition n(x) = 0 implies that x = 0 then we call >; an F-norm. Any
vector topology on X may be defined by a collection of F-semi-norms; any
metrisable topology may be defined by one F-norm. From this point, unless
specifically stated, all vector topologies are assumed to be Hausdorff.

Now suppose (X, p) is a topological vector space and T is a vector topology
on X; we shall say that x is p-polar if x has a base of neighbourhoods which are
p-closed.

Proposition 2.1. If x is p-polar then x may be defined by a collection of F-
semi-norms (r\a: a. e A) of the form

where each Aa is a collection of p-continuous F-semi-norms. If x is metrisable
then T may be defined by one such F-norm.

Proof. Let (ya: a e A) be a collection of F-semi-norms defining x such that
every r-neighbourhood of 0 contains a set {x: yx(x) ^ e) for some a e A and
e > 0 ; let A be the collection of all p-continuous F-semi-norms. We define Aa

to be the collection of F-semi-norms of the form

k&x) = in

(Thus Aa = {X"s: 8e A}.) As X% ^ 5 each X% is p-continuous and an F-semi-norm
(X% g 5 implies condition (iii) in particular). Now define

Va(x) = sup(AS(x): <5eA).

Clearly t]x ^ ya and so is an F-semi-norm. Now if U is a t-neighbourhood of 0
we may find ax and e > 0 such that if x0 e {x: yXl(x) ^ s) (closure in p) then
x0 e U. Suppose now x0 e {x: t]Xi(x)<E}; then it is easy to show that x0 e
{x: yai (x) g e} and so (na: a. e A) defines x.

If T is metrisable, 4̂ may be taken to be a singleton and therefore T may be
defined by a single F-norm of the required type.

Proposition 2.2. Suppose (X, x) is an F-space (complete metric linear space)
and suppose p<x is a vector topology on X. Then
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(i) If the net xa-*O(p) but xa+->O(x), then there are vector topologies a, /? such
that

(a) p g <*<P ^ x;
(b) ft is metrisable and a-polar;

(c) *.->(>(«) but xa++O(p).

(ii) If U is a -[-neighbourhood of 0 but not a p-neighbourhood then there are
vector topologies <x, ft satisfying (a), (b) and (c)' U is a ^-neighbourhood
ofO but not an ^-neighbourhood ofO.

(iii) If x is locally bounded then there is a topology a such that <x<x but x is
<x-polar.

Proof, (i) Let a be the largest vector topology such that p ^ a ^ x and
xo-*0(<x) (it is easy to see that there is such a topology). Let ft be the vector
topology with a base of neighbourhoods consisting of the a-closures of
t-neighbourhoods of 0. Since a g x it follows that a :g /? ^ T. If a = /?
then the identity map /: (X, a)->(X, x) is almost continuous and so by the
Closed Graph Theorem (cf. Kelley (5), p. 213) a = x contrary to hypothesis on
the net (xa). Therefore <x</?; clearly also since x is metrisable so is P, and

(ii) (We are grateful to J. H. Shapiro for the following simplification of the
original proof.) By an application of Zorn's Lemma it may be shown that there
is a maximal vector topology a such that p :g a s£ x and C/is not an a-neighbour-
hood (we do not assert that a is the largest such topology). Then proceed as in
(0-

(iii) Follows from (ii) by considering a single bounded neighbourhood
03 = T).

Two vector topologies on X will be called compatible if they define the same
closed subspaces.

Proposition 2.3. Let x and p be compatible topologies on X; they define the
same continuous linear functionals.

Proof. / is T- or p-continuous according as its null space is x- or p-closed.
A sequence (*„) in a topological vector space X is called a basis if every

x e X has a unique expansion in the form

i = 1

In this case we may define linear functionals /„ such that

/„(*) = t.
and linear operators Sn by

n n

Sn{x) = X Uxi = Y, fi(x)Xi.
i = 1 i = 1

E.M.S.—19/2—L
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If X is an F-space then it is well known (cf. (10), (12)) that each/, is necessarily
continuous and the family {Sn} is equicontinuous.

Suppose now that X is metrisable but not necessarily complete; we shall call
a sequence (xn) in A' a basic sequence if it is a basis for its closed linear span in
the completion of X. We shall call (xn) a semi-basic sequence if we simply have
*„£Hn {xn+1) xn+2, ...} for every n.

We now give a useful and elementary criterion for a sequence (xn) to be basic
or semi-basic. Let (xn) be linearly independent and let E be the linear span of
(xn); then for xe E

CO

X = £ *;X;
i = 1

uniquely where (tt) is finitely non-zero. Define

and
n

Snx = X fi(x)xh

where Sn: E^E is linear.
Lemma 2.4. (i) (xn) is semi-basic if and only if each Sn is continuous or

equivalently eachfn is continuous.
(ii) (xn) is basic if and only if the family {Sn} is equicontinuous.
Proof, (i) If {xn} is semi-basic, let Nk be the null space offk; then Nk is a

maximal linear subspace of E. Then N1 = lin {xt: i ^ 2} and since xx <£NU

N± is closed and/ t is continuous; while if k ^ 2,

Nk = lin{xi: i ^ fc} = lin {x;: i<k) + lin {x;: i>k}.
Hence

Nk = lin {xt: i<k}+ lin {x{: i>k],

since the former space is finite-dimensional. Suppose xk eNk; then

i= 1

where j 6 lin {A:,-: />&}. Since xfc $ lin {xj: i>fc} we conclude that there is a
first index / such that t, # 0. Then we obtain xt e lin {xl+1, xt+2, •••} and a
contradiction. Hence xk $ Nk and by the maximality of A ,̂ Nk is closed and/t

is continuous.
The converse is trivial.

(ii) (Cf. Shapiro (12), Proposition C.)
It follows from the definition of basic sequence that if (xn) is basic then the

family {Sn} is equicontinuous (consider (xn) as a basis of its closed linear span
in the completion of X). Conversely, Sn(x)-+x for x e E and if the family is
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equicontinuous Sn(x)->x for x e E (closure in the completion of X), and it
easily follows that (xn) is a basis for E.

3. Construction of basic sequences

Lemma 3.1. Let E be a finite-dimensional space and suppose V is a closed
balanced subset of E. If V intersects every one-dimensional subspace of E in a
bounded set then V is bounded.

Proof. We may suppose E is normed; suppose xneV and || xn ||-><x>.
Then by selecting a subsequence we may suppose || xn \\~1xa-*z where || z || = 1.
Then for any N there is an m such that for n ^ m, || xn || ^ N and

II x I!"1* G II x \\~1V<zN~lV
II -*n II A n c II •*» II ' u " ' •

Therefore z s N~l V for all N and hence V=> lin {z}.
Theorem 3.2. Suppose (X, r) is a metric linear space and p is a vector topology

on Xsuch that z is p-polar. Suppose (xa) is a net such that xfl->0(p) but XO+->0(T);

suppose z1 ^ Oe X. Then there is a sequence (a(k): k 2; 2) such that

a(k+l)>a(k)

for all k 2; 2 and the sequence (zn)"= t is a basic sequence where zn = xaM n ^ 2.

Proof. We may suppose (Proposition 2.1) that (X, T) is normed by an
F-norm ||. || such that

|| x || =suPa(x): A e A),
where A is a collection of p-continuous F-norms. Let 6>0 be chosen such that

(i) || Z l || ^ 49.

(ii) For all a, 3a' ^ a such that || xa. || ^ 49.

Let V = {x: \\x\\ ^9}; then Knlin { z j is compact (since || z1 \\ ^ 49). We
shall construct the sequence (a(n): n ^ 2) by induction so that if

then ^ n F i s compact.
Suppose {a(2), ..., a(n)} have been chosen (this set can be empty at the first

step, the selection of a(2)) and let En = lin (zlt xfl(2), ..., xo(n)). By the inductive
hypothesis VnEn is compact.

For 1 g k g 2"+ 3 let

Each W"k is compact and so we may choose finite subsets Un
k so that for weW"k

there exists u e Un
k with

|| w-u || ^ 2 -

Let I/" = U l/J, and for ueUn choose AB e A so that
* = I

(1)
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Then choose b > a(n) so that if c ^ b then

Au(xc) :£2-<n+3>0 (2)

for we U" (possible since U" is finite and xa->0(p)).
Choose a subnet {xd: d e Z)) of (xc: c ^ 6) such that || xd || ^ 40, and sup-

pose for every such xd the set Fnlin (En, xd) is unbounded. By Lemma 3.1,
for every d there exists tdxd + ud # 0 where ud e En such that the linear span of
(tdxd + ud) is contained in V. Clearly ud / 0 and so we may normalize in such a
way that || ud\\ = 6 (since VnEn is compact). Then

II toll ^II to+ud 11 + 11 «Ji

so that 1^1 ^ 1. Hence since xd->0(p), tdxd-*O in (p). By selection again of a
subnet we may suppose ud-m in En (since Fnis,, is compact) and \\u\\ = 0.
Then for any t e R

|| fu || g l im in f || t(tdxd

so that lin {«} cz VnEn, a contradiction.
Hence we may choose a(n+l) ^ ft such that || xfl(n + 1) || ^ 46 and n + 1

is compact. This completes the construction of a(n); now let zn = xa(n)« ^ 2.
It remains to establish that by using (1) and (2) (zn) is a basic sequence.

For convenience we shall replace ||. || by an equivalent F-norm ||. || * given by

We next show that if tu ..., tn + 1 is a scalar sequence

n + l

i = 1

A
ll

n

I ttz,
i = 1

(3)

Choose the greatest integer k such that

Z u*i

Then O ^ y t ^ 2 n + 3 ; ifA: = O there is nothing to prove. If k ^ 1 then we may
choose a scalar 5 with | s \ < 1 such that

Z ^z,

Then choose u e t/J so that

u -
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If \stn+1\ g l then
u + stn+1zn+1 || ^ /tu(«)-/u(zn

by (1) and (2). If \stn+1 | ^ 1 then

Hence

s Z to

= (fc-3)2-(n+3)0

Z to
i

Hence since I s I < 1

and (3) follows.

n+lz
i = 1

+ l

Z to .Z to

From (3) it is clear that (z j is linearly independent for if Z to
1i = 1

then
n+l

Z
i = 1

n+lz
i = 1

^ -J0; thus if Z to = 0. t n e n f°r every s, s Z to
I < - i

>0

and so since VnEn is compact, £ f;Z; = 0. Let E be the linear span of {zn}
i= 1

and define Sk by
/ CO \ t

Z to = Z to
i = i / .• = i

where (r;) is finitely non-zero. Then by (3)

and therefore for x e E and n

Suppose || xm ||->0 but || .Stxm II++0; then since VnEk is compact we may, by
selecting a subsequence and multiplying by a bounded sequence of scalars,
suppose that || Skxm || = 0. Thus || xm || ^ ^0>O, and we have a contradiction.
Thus each Sk is continuous.

To establish equicontinuity of {Sm: m ^ 1} we must show that if p(m) is
any sequence and *m->0 then SP(m)xm-*0. Suppose not; then we may suppose

for all m. Then
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and as || xm ||*->0 we conclude that/?(w) is bounded. But then we may select a
constant subsequence and this contradicts the continuity of each Sn. Thus by
Lemma 2.4 we have established the theorem.

Corollary 3.3. Under the assumptions of Theorem 3.2 suppose \i is a pseudo-
metrisable topology on X such that n ^ p. Then (zn) may be chosen so that

An examination of the proof of Theorem 3.2 reveals that we can insist that
f7(zn)->-0 for any single p-continuous F-semi-norm.

Corollary 3.4. Suppose that (X, T) is an F-space and that p is a vector
topology on X with p<z. Suppose xa->0(p) but XO+->0(T), and that z^eX.
Then there is a sequence a(k) so that a(k+l)>a(k) k 2; 2 and such that the
sequence (zn) is a semi-basic sequence where zn = xa(n)n ^ 2.

Proof. Proposition 2.2 combined with Theorem 3.2 establishes that we may
choose (zn) to be a basic sequence in a weaker topology than T. This clearly
implies that (zn) is at least a semi-basic sequence in (X, T).

4. Existence of basic sequences

In this section we consider the question of whether an F-space need possess a
basic sequence. The results we obtain will not be used in Section 5, and this
section may be omitted. We shall call a topological vector space (E, T) minimal
if for every Hausdorff vector topology p ^ T we have p = x. It is well known
that co is minimal if we restrict to locally convex topologies.

Proposition 4.1. co is a minimal F-space.

Proof. Suppose p is a weaker vector topology on co and xo-*0(p) but
|| JCO || ^ 0 (where ||. || is an F-norm determining the topology of co). Then there
is a sequence (zn), with || zn || ^ 9, which is a basic sequence for some weaker
Hausdorff vector topology on co (Proof of 3.4). Let E be the closed linear span
of (zrt) in the original topology, then E ^ co. However, the dual functional of
(zn) induce on £ a weaker Hausdorff locally convex topology. It follows that
zn->0 contrary to assumption.

We do not know any other examples of minimal F-spaces; their existence is
crucial to the problem of basic sequences in view of the following theorem.

Theorem 4.2. Every non-minimal F-space contains a basic sequence.
Before proceeding to the proof of Theorem 4.2 we first prove a stability

theorem for basic sequences similar to a locally convex version given by Weill
(13) (cf. also Shapiro (11), p. 1085). A sequence in a topological vector space is
regular if it is bounded away from zero.
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Lemma 4.3. Suppose X is an F-space and (xn) is a regular basic sequence.
Suppose 21| un || < oo, and let yn = xn + un. If whenever

n = 1

then tn = 0, then (y^) is also a basic sequence.

Proof. Define a map S: lx^Xby

S(t)= t tnun.
n = 1

Since S|| un ||<oo, S is well defined and S is continuous by the Banach-
Steinhaus Theorem. Now suppose (/(n)) is a sequence in /«, such that

and
lim 4n) = 0 for each k.
n-*co

Then it is easy to verify that || S(tw) || ->0.
Let E be the closed linear span of {xn} and suppose/„ e E' is the bi-orthogonal

sequence. For xe E, lim fn{x) = 0, since (xJ is regular. We define R: E-*c0
n-»co

by R(x) = (fn(x)); R is continuous by the Closed Graph Theorem. Hence the
map T: E->X defined by T = I+SR is also continuous. Since T takes the
form

T(x) = t Ux)yn.
n = 1

T is injective. Now suppose (zn)czE is a sequence such that || T(zn) ||-»0;
suppose || zn || >£>0. We suppose at first

sup || R(zn) || 00< co.
n

Then by selecting a subsequence we may suppose R(zn)-+t co-ordinatewise in lx

and hence
S(R(zn))^S(t) in X.

Now
zn=T(zn)-S(R(zJ)->-S(t).

Therefore S(t) e E and
R(.zn) + RS(t)-+0 in lx.

i.e.
t+RS(t) = O

T(S(t)) = 0

so) = o
and so

lim z. = 0
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contrary to assumption. It follows that no subsequence of (|| Rzn || m) is bounded.
If, on the contrary, || Rzn || «,-»<», then we may consider (|| Rzn \Z?zi) an<i

obtain a similar contradiction. We establish that for such a sequence
II Rzn ll«1zn->0 a n d hence || Rzn \\^lRztt-y0 in /„ which is a contradiction.
Hence T is an isomorphism on to its image, and as Txn = yn, (yn) is a basic
sequence.

Proof of Theorem 4.2. Let Un be a base of neighbourhoods of 0 in (X, T);
We may assume, without loss of generality, that Ut is not a neighbourhood of 0
in some weaker vector topology. By Proposition 2.2 there are vector topologies
a, /? in X such that a < /? ^ T, /? is metrisable and a-polar and Ut is a ^-neigh-
bourhood. Then by Theorem 3.2 there is a basic sequence (w(

k
l)) in (X, /?).

Then let £ t be the r-closed linear hull of the sequence (wjj1') and let Ft be the
linear span; let yx = /?. Then by induction we construct sequences (h^), En,
Fn, yn such that Fn = lin {w(

k"
}: k = 1, 2, . . . } , -£"„ is the r-closure of FB and yn is

a metrisable vector topology on En such that (wk
n): k = 1, 2, ...) is a basis of

(£;,7n). Furthermore

(i) (wj>n)) is block basic with respect to (w "̂""1*) for n It 2, i.e. w£° takes
the form

Pk-l + l

where/>0 = 0</>1<p2---- Thus Fn<^Fn_x for n ^ 2 and En<=En_x n^.2.

(ii) The topology yB on En is finer than yn-± restricted to En for n ^ 2, and
coarser than T.

(iii) Vnr\En is a ^-neighbourhood of 0.

We now describe the inductive construction; suppose (wk
n)), En, Fn and yn

have been chosen. If Un+lr\En is a ^-neighbourhood of 0 then let yn+l = yn

and w£n+1) = w^n) for all k. Otherwise by Proposition 2.2 we may find topologies
a and yn + 1 on En such that yn ^ a<yn + 1 ^ T, yB+1 is a-polar and metrisable
and t/B+1nifB is a yn+i-neighbourhood of 0 but not an a-neighbourhood.

Since Fn is r-dense in En, Fn is also yB+1-dense and hence a < y n + 1 on Fn.
Thus by Corollary 3.3 we may determine a yn+l-regular basic sequence (zk) in
Fn such that zk-*0(yn). Thus

i = 1

where lim c M = 0 for each / (since the co-ordinate functionals for (w[n)) are

yn-continuous). It follows easily that we may find a subsequence (yk) and a

block basic sequence (wk
n+1)) such that £ || _yt — w£n+1) | |B+1<oo where | | . | | n + 1

is an .F-norm determining yn+1. If
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then

£ tA"+1) = O (yj
k = 1

and thus since the co-ordinate functionals for w\n) are yB-continuous tk = 0 for
all k. Thus (w£"+1)) is a yn+1-basic sequence, and we proceed by letting
Fn+1 = lin {w^n)}, £"„+! = Fn+1 (in T). This completes the inductive con-
struction.

Finally take the " diagonal sequence "

vn = w<">.

Then for each n, (vk: k ^ ri) is block basic with respect to (wk
n)). In particular

(vk) is block basic with respect to (wk
l)) and hence there are y1 -continuous linear

functionals (fk) defined on lin {vk} such that/,(#,•) = <5fj-. These are then also
T-continuous and extend to the closed linear span H of {vk}. Now suppose
x e H; we show

00

i = 1

For any n, (vk: k ^ n) is a basic sequence in (En, yn); let

K(x) = x-"z ft(.xyvt.
i = 1

Then Rn(x) is in the r-closure of lin {vk: k ^ «}, as this space is easily seen to
n-i

be (\ /f'CO)- Thus Rn{x) is in £„ and in the yn-closure of \in{vk: k 2: « } .
< = i

Therefore

*»(*) = I //(*)»« (Tn)
i = n

and so for some N and all m ^ N,

i = n

and

E f i ) t K
i = 1

00

Thus x = Y, fi(x)vi f ° r x e H, and (t);) is a basic sequence.
i = 1

If is is a minimal /"-space, then E may still possess a basic sequence (see
Proposition 4.1). The author does not know if every .F-space must possess a
basic sequence.

Theorem 4.4. Let (X,T) be an F-space; the following are equivalent:

(i) X contains no basic sequence.

(ii) Every closed subspace of X with a separating dual is finite-dimensional.
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Proof. Clearly (ii)=>(i) so we have to show (i)=>(ii). If E is a subspace of X
with a separating dual, then the weak topology a on E is weaker than x. If E
is infinite-dimensional, then by Theorem 4.2 a = x. But in this case E s cu,
and so has a basis. Therefore, if is finite-dimensional.

5. Applications

We now can apply basic sequences or rather semi-basic sequences to derive
many results familiar in locally convex theory.

Theorem 5.1.

(i) Let (X, T) be an F-space and suppose p ^ T is a vector topology on X
compatible with x. Then every p-bounded set is i-bounded.

(ii) Suppose X is a vector space and p ^ x are two vector topologies on X
such that p and x are compatible and x is p-polar. Then any p-bounded set is
x-bounded.

Proof, (i) It is enough to show that if xn-»0(p) and cn is a sequence of
scalars such that cn->0 then caxn-*0 (T). Suppose xn->0 (p); then choose
x0 * 0. For cn->0, cn # 0,

Suppose cn(xa + xo)+->0 (T); then by Corollary 3.4, there is a semi-basic sequence
(zn) with zx = x0 and

(n ^ 2),

where (wn) is an increasing sequence of integers. Then

Cm*Zn-**0 (P)

and hence x0 is in the p-closure of lin{zn: n ^ 2}. Thus x0 is also in the
T-closure of lin{zn: n ^ 2}, contradicting the fact that (zn) is a semi-basic
sequence. Thus since cnxo-*0, cnxn-+0 (T).

The proof of (ii) is somewhat similar; let n be a p-lower-semi-continuous
T-continuous .F-semi-norm and let N = {x: n(x) = 0}. Then XjNis metrisable
under n and may be given the quotient topology p of p (N is p-closed). Every
jj-closed subspace of X/N is ^-closed and so an argument similar to (i) may be
employed.

Corollary 5.2. Suppose (X, x) is an F-space and p ^ x is a metrisable vector
topology compatible with x. Then p = x.

Corollary 5.3. Let (X, x) be an F-space with the Hahn-Banach Extension
Property. Then X is locally convex.

Proof. Let a be the weak topology on N; then a ^ x and a and x are com-
patible by the HBEP. For suppose Y is a T-closed subspace and x $ Y; then
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by HBEP there is a continuous linear functional <j) such that <j>(Y) = 0 and
<j>(x) = 1. Let fi be the associated Mackey topology; then (see Shapiro (10),
Proposition 3) a ^ n ^ x and fi is metrisable. Hence by Corollary 5.2 \i = x
and T is locally convex.

Corollary 5.4. Suppose (X, x) W on F-space and p ^ x is a vector topology
compatible with x. Then x is p-polar.

Proof. Let y be the topology induced by the p-closures of x-neighbourhoods
of 0; then p ^ y ^ i and y is metrisable. Hence by 5.2, y = x.

Theorem 5.5. Let (X, x) be an F-space and let (xn) be a basis of X in a com-
patible topology p ^ x. Then (xn) is a basis of X.

Proof. By the previous corollary we may assume that x is defined by a
p-lower-semi-continuous F-norm ||.|| (see Proposition 2.1). Each xe JSf may
be expanded in the form

00

x = £ fi(x)xt (p)
i = 1

(the linear functionals /„ are not necessarily p-continuous). Now for each

( n \

Z fi(x)Xi 1 is p- and therefore r-bounded (Theorem 5.1)
i = i /

and so we may define = sup I /«(*>
Then lim || tx ||* = 0 since lim ty = 0 uniformly for y in a bounded set; hence

»->o t->o

||. ||* is an F-norm on X. Clearly also || x ||* 2: || x || by the p-lower-semi-
continuity of ||. ||.

It remains to establish that (X, ||. || *) is complete and then by the Closed
Graph Theorem it will follow that ||. || * and ||. || are equivalent. Let (yn) be a
||. ||*-Cauchy sequence; then since || yn-ym || ^ || yn-ym ||* for all m, n, (yn) is
r-convergent to y say. Furthermore, it can be seen that the sequences

are x-convergent uniformly in m; clearly lim fi(yn) = tt exists and
n~* oo

m m

lim £ fi(yn)Xi = E ';xi
n->co >= 1 i = 1

uniformly in w for the topology x. Thus working in the weaker topology p

m m

lim £ <,*( = lim lim £
rn~*co t = 1 n~*oo /n~*oo i = 1
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(The limits are interchangeable by uniform convergence.) Therefore it follows
that

I £ , (r)
n->oo i = 1 i = 1

uniformly in w and that || y—yn ||*->0. Hence ||.|| and ||.||* are equivalent,
and by an application of Lemma 2.4, (xn) is a basic sequence in (X, ||. ||). By
the compatibility of p, (xn) is a basis of X.

Shapiro (12) proves that the Weak Basis Theorem fails in any non-locally
convex locally bounded .F-space. With regard to this theorem we establish that
a weaker version of the Weak Basis Theorem holds always.

Proposition 5.6. Let (xn) be a weak basis of (X, T), where (X, x) is an F-space
with a separating dual. Then the associated linear functionals {/„} are continuous.

Proof. Let a be the weak topology and fi the (metrisable) Mackey topology.
Then (X, /t) is barrelled, for if C is a /^-barrel then C is r-closed and by the
Baire Category Theorem we may show C has T-interior. It follows easily that
C is a r-neighbourhood of 0 and thus a /i-neighbourhood ((10), Proposition 3).

Now let ||. || „ be a sequence of semi-norms defining n and let

x ||* = sup
m

m

i —
fi(x)Xj

1

{finite, since n and a have the same bounded sets). Let fi* be the topology
induced by the sequence ||. ||* and let £ be the /^-completion of X. Consider
the identity map i: (X, /i)->(^, /i*). Suppose zn e X, zn-*z (/x) and zn-+z' (n*).

( m J oo

Then < £ /j(zn)x; >• is uniformly jf-Cauchy for m = 1, 2, ...; thus in the
( . i = l J n = 1

topology a ^ fi
m m

lim lim £ Mzn)Xi = lim lim £ ft{zn)Xi
n-*oo m-»co i = 1 m-»oo n-*oo i = 1

and we conclude
lim /£(zn) = tt exists for each i
n-»oo

and 00

lim zn= z = £ f;Xf in a.
n —* oo i = l

Thus fi(z) = tj and therefore
m

lim £ fi(zn~z)xi = 0 Ai-uniformly in m.
n—*• oo i — 1

Hence zn->z in (A', /z*) and i has Closed Graph. By the Closed Graph Theorem
((9), p. 116), since (X, fi*) is complete and metric, /x ^ n* and it follows easily
that each/n is fi and hence T-continuous.

The idea of the next theorem is due to Pelczynski (7).
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Theorem 5.7. Let (X, T) be an F-space and suppose p g T is a compatible
vector topology. Let K be a subset of X; then the following are equivalent

(i) K is p-compact,

(ii) K is p-sequentially compact,

(iii) K is p-countably compact.

Proof. (i)=>(iii) and (ii)=>(iii) are well known. Let ||. || be an F-norm
determining x; by Corollary 5.4 we may suppose ||. || is p-lower-semi-continuous.

(iii)=>(i). It is easy to see that K is p-precompact; we show that K is also
p-complete. Let (X, p) be the p-completion of X and let YcX be the vector
space of all y e X such that there is a p-bounded net xae X such that xa-^y.
By Theorem 5.1 a p-bounded net is r-bounded. Let Bx = {x e X: || x [| ^ A};
then for y e Y we define

|| y ||* = inf {X: ye Bk, closure in p}.

Let y e Y and suppose xx is a r-bounded net converging to y in p; then

|| y II* ̂  sup || x. || <oo

and
lim || ty I* glim sup || txa \\
»->0 r->0 a

= 0

since the net {xa} is bounded (cf. Theorem 5.5). It follows without difficulty
that ||.||* is an .F-semi-norm on Y, and that ||.||* is /5-lower-semi-continuous;
also from the definition, || x || = || x ||* for xs X, since each Bx is p-closed.
Next if ye Y and || y ||* = 0 then for each A>0 and V a neighbourhood of 0
in (X, p) we may find xxv e X such that xkv—y e V and || xky || g X. The
set {(X, V): X>0, V a. ^-neighbourhood of 0} is directed in the obvious way
[(1, V) ^ (X', V) if and only if X g X' and V<= V'~\; then the net xky converges
to 0 in (X, T) and xxv->0 in (X, p). However xxy-+y in 0L, p) and so y = 0
Thus Y is a metrisable vector space under ||.||* and ||.||* is pMower-semi-
continuous.

Now suppose xa e K is a p-Cauchy net; then xa-+y in (X, p) and y e Y.
Suppose at first || xx—y ||*->0; then by the completeness of (X, i) y e X, and
there is a sequence (a(«)) such that xaW-*y(i). Thus y is the sole p-cluster point
of {xa(n)} in X; since K is countably compact, y e K, and xx->y in (K, p).

Now suppose || x^—y ||*+->0 and that y $ X; since y # 0 we may suppose
xa $ Ffor all a, where Kis a p-neighbourhood of 0. Then by Theorem 3.2 there
is a basic sequence (zn) in (7, ||. || *) such that:

0) *i = y-
(ii) zn = wn—y, n ^. 2 where wn = xa(n) for some increasing sequence.

(iii) i n f | | z J | *>0 .
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Let Z be the closed linear span of {zn}"= t and let Wbe the closed linear span
°f {wn}™= 2- Since zt £ X and WcX, W is a closed subspace of co-dimension
one in Z. Let <f> be the continuous linear functional on (Z, ||. || *) such that
<£0i) = 1 and <t>(W) = 0; we define A: Z^Z by Az = z-(j)(z)z1. Then for
n ^ 2

= wn.
Similarly define 5 : Z-^Z by

( 00 \ CO

1 till = I to-
i = l / i = 2

men

It follows that BAzn = zn, n ^ 2 and hence that 4̂ is an isomorphism of
lin {zn: n ^ 2} on to its image. In particular (wn: n ^ 2) is a basic sequence
in (A', ||. ||). However wn e K for n ^ 2, and so (wn) possesses a p-cluster point.
Now suppose w0 is a p-cluster point; then w0 is in the T-closed linear span of
(wn) by compatibility. It follows that

i = 2

where i/'j is the dual sequence of x-continuous linear functionals on W. Each
xj/i is also p-continuous by compatibility and hence

Therefore w0 = 0. This contradicts the original choice of xa $ V, where V is a
p-neighbourhood of 0. Thus we have a contradiction.

Finally suppose || xa—y ||*+>0 and y e X; determine the basic sequence
(zn: n ^ 2) satisfying (ii)-(iii). In this case if w0 is a p-cluster point of
(wn: n ^ 2) then vv0— >> is a p-cluster point of (zn: n ^ 2). Since W Q - J E J
and z , £ l w e conclude that vv0—y is in the T-closed linear span of {zn: « ^ 2}
by compatibility and it follows as usual that wo-y = 0. Hence yeK. We
conclude that any p-Cauchy net converges in K and so K is complete and there-
fore compact.

(iii)=>(ii). Let (xn) be a sequence in K and let x0 be a p-cluster point. Then
there is a net (zj in A" such that each zx is some xn and za->;c0 (p). If zx->x0 in T
then there is nothing to prove, as it will follow that some subsequence of
(xn) converges to JC0. Otherwise we may find a basic sequence (un) of the
form un ~_zaM — x0. Let w be a p-cluster point of (z^) in K; then clearly
w—xoe lin {«„} and since T and p are compatible it follows as in (iii)=>(i) that
w—x0 = 0. Hence x0 is the sole cluster point of (za(B)) and so za(n)-*x0. How-
ever zaW is simply a subsequence of On) (a(n)-»oo since the za(n) are distinct).
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[ADDED IN PROOF: The problem of determining conditions under which the
Hahn-Banach Extension Property is equivalent to local convexity was originally
posed by Duren, Romberg and Shields (14) p.59.]
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