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1. Introduction. Consider a differential game of survival governed by the differential
equation

dx
%’ =f(t: x,Y, Z),
x(to) = %

in &2™, with pay-off
tp
P = | ht,2(t), y(t),2(t)) dt + g(tp, (tr)),

ts
where {5 is the entry time of the trajectory (£, x(¢)) into a given terminal set #. Under
suitable conditions on f, g, » and the terminal set F, it was shown in (3) that the
question of existence of value of such a game can be approached by considering a certain
pair of partial differential equations called the Isaacs—Bellman equations.
Suppose for all pe Z™ we have
min max (p.f+k) = max min(p.f+hk)
zeZ yeX yeY zeZ

=H (¢, P)
(the Isaacs condition), then the two Isaacs~Bellman equations reduce to one:

L0=%+H@%V®=O

in #m+l — F and 0(t,z) = g(¢,z) for (¢, x)€dF.
In (3) it was shown that if there exist C'-functions ¢ and ¥ on Z™+! such that

Lé>03 Ly
in Zmt1_F and
¢(ta z) = lll‘(t, z) = g(t: ) (1)

for (t,x)edF, then the game has value ¥V and furthermore ¢(ty,z,) < V < ¥(ty, 2y)-
Indeed only a local version of these conditions near dF is required. The main result
of this paper is that if a one-sided version of (1) is available (for example if only ¢ can
be determined to fit the conditions of (1)) then the game has extended value in the
sense described in (2) (see also the work of Friedman (9), (10), (11) on generalized values).
This extends the result of (2), both in dropping the ‘reverse Isaacs condition’ and also
in the fact that a generalized pursuit-evasion automatically leads to a one-sided version
of (1) with ¢ = 0.
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It turns out that in order to obtain results on generalized values it is necessary to
study another type of differential game, one in which we assume that the minimizer
has the option of stopping the game at any time 7 prior to the entry time into the
terminal set {5, and then accepting a pay-off depending on the time 7. Such games we
call games of optional stopping and we develop for them a theory completely analogous
to the theory developed in (3) for games of survival.

2. Values in evolutionary games. Suppose ¥ and Z are two fixed compact metric
spaces. For 0 < ¢, < oo we define My ({,) as the set of all functions y: [y, 00) = ¥ which
are measurable in the sense that if ¢ C(Y) then poy is Lebesgue measurable; we
identify functions equal almost everywhere in My (¢,). Similarly we define 3,(f,). We
also define, for s > 0, the set M%(t,) as the set of Lebesgue measurable functions
y: [y, to+8) — Y (again identifying functions equal almost everywhere); we similarly
define M%(¢,).

A map a: My,(t,) - My(t,) is called a strategy for the player Ji (who controls the

Y -variable) if whenever 2(t) = 2(l) a6 fa<i<T

then az,(t) = az,(t) ae. fH<E<T.

The set of all such strategies is denoted by I'; . For s > 0 we define I'; (s) as the set of

all ¢ eIy such that if z(t) = 2,(t) ae t,<t<T

then az,(t) = azy(t) ae. t<t<T+s.
We define I, (s|y)for y e M%(¢,) as the set of « € Ty (s) such that, in addition,

az(t) =y(t) ae. t,<t<ty+s
for any ze M(t,).
The corresponding sets for J; are denoted by Ay, A, (s) and A, ().
Now let P: My (t)) x My(t,) > % be any pay-off function; then P determines an
evolutionary game in which we assume that Jy is the maximizer and J, the minimizer.

For ael', we define w(@) = inf (P(az, 2); z€ My(t,))
and for f€A,, v(f) = sup (P(y, By); y € My ().
Then we define the following values:
V = inf(o(8): feAy,),
U = sup(u(x): z€ly),
Vi =inf@(f): fe U Aufs),

V- = sup(u(a): e U T} (s)),
8>0
QFf = sup inf  v(B),

2€ Mits) B lfsl2)

@ = inf  sup wa),
V€ M¥(t,) aeT:(sly)

Qt= inf @f,
8>0
@~ = sup ;.

8>0
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It is easy to verify that:
QF | e
Q1€
Q+ > V+,

NS0
+ o+ T
vV Vv A
K'QT«‘
vV v o~
T

We say that the game has value if
Vt=7V-

@ =q-

Throughout this paper the evolutionary game under consideration will be governed
by adifferentialequation controlled by Jy,and J,. In sections 2—-6 we consider a particle
whose position in ™11 is given by co-ordinates (z, £) (xe %™, £ € %) controlled by an
equation

and strong value if

“Z; =ft. y,2),
(2)
7 = h(t,z,y,2),
where [ [0,0)x B x Y x Z - ™
and h:[0,00)x B x Y xZ — A.

The functions f and & are assumed to be continuous and obey Lipschitz condition in
(t, ) thus,
”f(tl’ 1Y, z) —f(tz: T2, Y, Z) ”

K ([t —t,] +||x1—x2|]),} (3)
”h(tlr Ty Y, z) - h(tm Ze Y z)”

K|ty —to] + |l — 2.

AN/

(We shall adopt the convention of labelling the Lipschitz constant of a function ¢ by
K,.) For convenience we also make the assumption that both f and % vanish outside
some fixed compact set [0,7] x {z:|z|| < B} x ¥ x Z; there is no loss of generality in
this (see (1), section 9).
We also introduce the following Hamiltonian functions
B+(t,z,p,q) = min max (p.f+gh), }
z€eZ ye¥

H-(t,z, p,q) = max min (p.f+qh),
€Y geZ
for (¢,z) €[0, 00) x ™ x %, and !

H+(l»x:p) = H+(t: z,P, 1),
H-(t,z,p) = H-(t,z,p, 1).}

3. Fized time games. We now assume that the differential game is governed by (2)
subject to z(t,) = z,, &(f,) = £, and the pay-off is given by

P = g(«(T), &(T)) (6)

(3)
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where T' > ¢, and g: Z™*1 > Z is continuous and satisfies a Lipschitz condition

|g(y, §1) — (%2, &) < KF |2y —2al| + K5 1€, - &y
By Rademacher’s Theorem g is differentiable almost everywhere and satisfies

Vel < Kg,
dg ¢
’ag < G

In (3)itis shown that a game of this type satisfies @+ = V+and @— = V—. Theresults
of (1) show that the condition
B(t,2,p,9) = A-(t,z,p,9) (7
(which we shall call the extended Issacs condition) is sufficient to ensure that V+ = V-
(Theorem 9-2). We shall show in this section that if -

9
ag >0 a.e.

then (7) may be replaced by the Isaacs condition
H*(t,2,p) = H (¢, 2, p). (8)

A similar problem was met in (2) where a condition similar to (7) was assumed;
later Friedman (10) showed that (8) only was necessary, although his results referred
to a slightly different concept of value. However, Friedman’s arguments form the
basis of this section.

Levma 3-1. Suppose § = 0 and
(i) HHt,2,p)—H(t,z,p) < 4,|p| + 4,
(ii) |ht z,y,2)| < By,
(111) ag —4d a.e.
for ty <t < T.Then

Vt—V- < e(T—t){Bp+ A, Ki+ A,(K,+ K;,) exp [2(K;+ K,) (T —to)1}.

Proof. Suppose first that g is 3 and § > 0; assume without loss of generality that
g vanishes outside some compact set (this is permissible since § > 0). We consider the
Cauchy problems:

€2—2(V2 +%)+a +H(t z, Vuw, ag) 0, 9
(V%+Zzg)+aw+ﬂ(t 2, Vo, ag) 0, (10)

subject to w(t, z, &) = g(z, £). Then by results of Friedman ((7), (8), p. 205) and Fleming
((5), (6)) the Cauchy problems (9) and (10) have unique solutions W7}, W in the strip
t, <t < T, which vanish at infinity. Furthermore

V+ =Hm WZk(ty, 2o, &)»
e—0
V- = lim W7 (¢, %4, &)
—0
by the results of (4). )



Differential games with optional stopping 267

For 4 > 0 we define
W:,-p(ts x, g) = W:.(t: xag"'.”')

Then W, satisfies (9) subject to

w(T,x,8) = g(x,E+p).
However g(x, £+ p) 2 9(x, ) —/»8
by (iii) and equally gz, E+p) < g, 8)+ K

Then by a standard comparison argument, using the fact that A+ is independent

of £ we obtain
Wbz, 8)—pd < Whyt,z,8) < Witz &)+ K5p

for ¢ty < t < T'. A similar argument is also used later so we will not justify this step (cf.
Friedman (8), pp. 201-202). Thus we have

owF
2 < K¢
oW,
o¢

—-0<

and similarly -8 < < K&,

Now consider the function
0@, %,8) = MW —-W7)

for some AeZ. Asin Lemma 6-2 of (1) € is bounded and approaches zero at infinity for
to <t < T. Hence 6 must obtain its maximum at a point (Z,%, £) where ¢, < £ < 7.

At this point we have
6 e > 0%0
at (Ve agz) <0
20
6—g=V0=0.
_ _ oWF | _ _ 3. WO
Letp:VWjandg:a_gzat(t,x,g).Thenp=VWS andg = o
oW? e (O*W, oW, e (W}
AT eWH) Ll 2 W+
Ab+e [at+ (agz VW) id 2(at +VW6)]<0
ie. A6 < A+, 7,5,9) ~H-(,7,5,7)).

By Lemma 6-1 of (1)
17| < (K,+K}) exp (2(K,+ K,) (T —1t,)) = K* say
and by the preceding remarks
la] < K3
Thus if § > 0, A0, %, E) < eX¥(4, K* + 4,K¢)
whileifg < 0, then —8 < g < 0, and
A0, %, E) < eX¥(4,K* + B,5).
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In general 0, %,E) < A4, K*+ B, 0 + 4, K%)

and 0@, z,£) < A1\ T(4,K*+ B, 8+ A, K%)
for all (¢, z, £). Thus
Wi—W; < A% ~+(4, K*+ B, 6+ 4, K5).
Taking A = (T —¢,)~! we obtain the result (for g in C8).
For g Lipschitz but not C® and & > 0, we define, fore > 0, g,,: Z™ > Z by

ga (%) = g(z, n€)
n=0,+1, +2,....

For each » choose a C3-function y,, with

V7.l < K3
and |90(@) —Va(@)| < 362 (wER™).
Let 7 be a function 7: Z — £ such that 7 is C® and
mg) =0, [£>1
7(0) =1,

o7 <1, £€2,
m(§) =m(—§) £€X,
nE)+m(1-£ =1, 0<E<,
O0gs7a(§)<1+e, £<0.

Then we define
V) = 3 mleE—n)7,)
and y e C® with
ly(x, &) —g(x,8)| < K, €+%€2,
IVy| < K

everywhere. Also

F= 3 o)y,
= U (= 1) 7y(2) 47 (= 1= 1) Ve,

where ne < € (n+1)¢. Hence

gg e (' (67 — 1) V(@) = 7' (n+ 1 — €)Y ()}
= 7' (e — 1) (Val®) — Ynsa(®))
> —e (1 +¢) (€2 + )
= —(14¢)(d+e€).

At the same time
K% < (1+€) (K% +e).

Hence applying the first part to y, we obtain the lemma. Similarly we obtain the result
for & = 0 by approximation from the case § > 0.
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THEOREM 3-2. Suppose ¢ is continuous (but not necessarily Lipschitz) and increasing
in & and that the Isaacs condition (8) holds. Then V+ = V-,

Proof. For g Lipschitz this is Lemma 3-1. In general the result follows by uniform
approximation of g.

4. Optional stopping games. In this section we describe a rather more complicated
type of differential game which we call an optional stopping game. We first define
stopping time 7 as a map 7: My (,) x My(ty) - [to, o0) such that

¥1(8) = yo(t) ae. to <t<7(y(-), (7))
z(t) = 2,(t) ae. to <t <7(Y(),2("))
together imply 7(yy(-), 2)(+)) = 7(ya(*), 2o(*))-

Suppose now that ¢: [0,00) x Zm+1 —» Z and : [0, c0) x Z™+L > Z are any two real
functions and that F is a closed subset of [0, c0); we define a game G, y(t,, %o, £; 9, ¥)
with dynamics (2), initial condition xy(ty) = x,, £(%) = &, and pay-off,

P = min (B, B,),

where P, = ¢(7, (1), (7)), (11)
-P2 = 3££ ¢.(0'9 x(a), g(O’)),
teSo<T

where 7 = T(y(-), 2(+)).

We shall regard F and ¢ as initially fixed, but allow differing choices of 7 and ¢. Thus
we shall refer to the various values of G, g(ty, %o, &5 @, ¥) by Vi, %, £o; ), ete.,
suppressing mention of £ and .

Suppose F is a closed subset of [0, c0) x Z™+! such that for some 7' > 0

[T,00) x #™tl < F,

Then we candefine a particular stopping time ¢ as the least timesuch that the trajectory
(t,z(t),£(t)) e F; F is called the terminal set. Suppose g: [0,00) x Z#™+1 - Z is a fixed
continuous function. In the special case 7 = ¢z, ¢ = g we shall suppress mention of ¢
and 7 and refer to G(t,, z,, &,) and V+(ty, 2y, §,), etc. Thus the functions V+, V-, ete
defined on [0, c0) x Z™t! are the value functions of this particular game.

Before proceeding with the formal discussion of optional stopping games, it might be
helpful to describe a particular example, to be discussed in detail in section 7. Suppose
a differential game has dynamics

z = f(t,2,9,2)
subject to z(t,) = z,. Suppose that it is the object of J, to force (¢, x) as close as possible
to some terminal set F before time 7°, but that J, is restricted by a fuel limitation

3h(t, z,94,2) £ A

to

(where usually % > 0). This game can be described as follows: it has dynamics

dx
E =f(t,x,?/,2),

d
E Mz,
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subject to z(t,) = z,, £(t,) = 0, and pay-off

ti<t<ty,
where p(t, z) is the distance of (¢, 2) from F and the terminal set F} is given by {(¢, , £),
wheret > T or £ > A}.

Thisis a particular case of an optional stopping game, which besides being of interest
in its own right, can be used to study pursuit-evasion games; in such games the fuel
consumption between hitting the terminal set is the pay-off.

In this section our objective is simply to generalize the dynamic programming
theorems of (3) to this new setting. In fact the proofs are identical and so we shall
restrict ourselves to the statement and one sample proof.

THEOREM 4-1. Suppose T 15 a stopping time on My(ty) x My(ty) such that T < tp
everywhere. Then

(1) U (tos %9, €05 U) = Ultg, %os &)
Volbo, %o, o3 V) = V(to, os £o)-
(ii) VF(to %0805 V) < VH(o 20, &o)s
V7 (to: %0, E05 V) 2 V{80, o £o)-
(iii) If further 0 < s < T everywhere:
Qs (b0, %o E03 @3F) = @ (to, %o, &),
Q5 +(to, %o, §0; Q7)< Q5 (o> Tos o),
Qi (8, %o, 05 U) < @i (0, %o, £o)s
@5, (b, %o, 803 V) = Q5 (b9, %o, £o)-
Proof. We shall prove the first inequality of (iii). For ¢ > 0 and
(t,z,£)e[0,00) x Z™+1 and z=2z(-)eM%(t)
there is a strategy £ = B(,z, £, 2) for J, such that feA,(s|z) and
v(B) < Q7 (t,2,£) +e,

where v(f) is the value of £ in G(t, z, £). Now suppose f*eAy(s) and y(-) e Myp(t,); let
(x(2), £(t)) be the Zm+1-trajectory corresponding to (y, #*y) andlet o = o(y) = T(y, B*y).
We define 8'e A, (s) by

Byt) = B*yt) (ty<t<o+s)

= B(o,%(0),£(0), B*y)7(t) (T+s <t <00),

where 7 € My (o) is defined by

S gty =yt) > o0)
and f*ye M%(o) by
Bry(t) = B*ylt) (0 <t< o+s)

We must check g€ A (s); suppose

1(t) = yo(t) ae. (L <E<L).
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If ¢, < o(y,) then ¢, < o(y,) and it follows that
B'y(t) = £*y.(t)
= f*y,(t)
= f'y,(t) ae. t,<t<t+s.

Ift, > o(y,) = o then o = o'(y,) and ¥y, = B*y,. Hence

(o, 2(0),8(0), f*y1) = B(o,(0),&(0), f*y,) = B say.
Now T.(t) = Fot) ae. o<t<t
and so L7.(t) = f7.(t) ae. o<ttt +s
and so B’ €A, (s).

Now suppose ¥ = y(+) € My (t,) and let P be the pay-off P(y, 8'y). Then
P = min(B, B),

where P, =gty z(tp), £(tx))
P,= inf ¥(p,x(p), E(p))-
peE
L<p<tp
Now P, = min (B, R),
where P= inf;} U(p, 2(p), &(p))
pe
tLh<p<o
and P, = lnf ¥(p, z(p), §(p))-
V<p<ti

Let P’ = min (B, P,); then P’ is the pay-off in G(o,z(o), (o)) corresponding to
(7, z) where 7 and Z are the restrictions of y and 8’y to My (o) and M,(c). Now
2(t) = (o, (0),&(0), B*Y)g(t) (o +s<t)
= B*y(t) (0 <t<o+s).

Since f(o, z(0), £(0), F*y) € Ao(s|B*y)

z = f(0,2(0), £(0), F*) 7
Hence P’ < @QF(o,x(0),£(0)) +€
and P = min (P', P,)

< min (F;, @5 (0, 2(0), §(0))) +e.

However min (B, Q7 (o, z(c), §(v))) is the pay-off of (y, 8'y) or (y, B*y) in the game with
stopping time 7 and ¢ = @;. Thus the value v'(#*) of #* in this game satisfies

v'(B*) 2 v(f') e,
where v(f£’) is the value of £’ in G(t,, 2y, &,)-

If f* €A, (s]2) then B’ €A, (s|z) and so we obtain the desired inequality, since §* is
arbitrary.
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5. Optional stopping game of fixed duration. Continuing with our study of optional
stopping games, we now impose some restrictions; we assume that g and ¥ are con-
tinuous functions and that the terminalset F' takesthe form [7',c0) x #™+1 where T > 0.
In this case, the pay (11) takes the form

P = p(x(-), &),

where x4 is a continuous functional on the Banach space of Z™t1-valued continuous
functions on [¢;, 7']. Using this observation, it follows as in Lemma 2-2 of (3) that

Levma 5-1. If F = [T, 00) x Z#™t, and g and Y are continuous then

Q*(, %,£) = V(2. §),

@ (t,2,6) = V-(t,2,8)
Jor 0 < tand (x,£) e A™+L.

Lemma 5:2. (i) Under the assumption of Lemma 5-1, for each fixed t, the functions
QF, V+, V, U, V-, @ are all continuous in (x, §).
(ii) Suppose in addition yr and g are Lipschitz in (z, £) and
max (K§, K7) = K=,
max (K%, K%) = K&,
Then for 0 = QF, V+, ..., Q5 , we have
§ < (K*+ KK, K7') exp (Ky(T —4y)),
K5 < K.

QDI D

Proof. Each result is proved by a simple comparison of the effects of an identical pair
of control functions with respect to ranging initial conditions; we omit the simple
calculations. We establish by a similar argument:

Levma 5-3. Under the assumptions of Lemma 51, suppose also that g and yr are each
monotonically increasing in & for each fixed (t,x). Then the functions V+ and V— are
monotonically increasing in & for fixed (t,z).

LemMA 5-4. Under the assumptions of Lemma 5-1 suppose ty, < 1. We define a constant
stopping time T = t; then we have
V(ty, %o, £o) = V{te s £03 V),
V=(to, @0, &) = V7 (to, g, Eo; V7).

Proof. By Dini’s Theorem and Lemma 5-2 we have @} (7, z, §) - Q*(Z, z, £) uniformly
on compacta in Z™+1. Hence by Theorem 4-1

VH(ty, %o, &) = @ (tg, %o, &o)
< Q5 (%, Zo, &)
< @ (b, %o, &0 @F)
<

Q;,--r(tm xo: go; Q+) + 77(8),
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where lim#(s) = 0. Hence
- V(0. %o, £0) < @7 (b0, Zo, £o3 @)
= Vi{to. %0, §0; V)
by applying Lemma 5-1 to the fixed time game with 7' = {. Hence by Theorem 4-1 we
obtain the result.

THEOREM 5-5. Suppose
(1) ¢,y are Lipschitz functions in (x, §) and continuous in t,
(ii) g, ¥ are monotonically increasing in £,
(iti) H+(,,p)—H(t,7,p) < 4, || + 4.
Then for 0 < t, < T

V*(to, %o &o) = V(to, To, &) < e(T —£0) (A, KX+ Ay(K, + K,) 2EWENT),
where max (K5, K3) = K¢,

Proof. First we observe that it is sufficient to prove the result for £ finite (or £ n [0,T']
finite). For in the general case there is a sequence E,"of finite subsets of E such that

lim sup inf |e—¢'| =0.
n—>o e€E ¢ €By
esT

If P, denotes the pay-off in the game with optional stopping on £, then we can easily
show, using the continuity of ¢, that

lim B, (y(-),2(+)) = P(y(-), ("))

n—wo

uniformly on (y(-), 2(+)) € My (t,) x My(t,). Using this the Theorem will follow for £ from
the result for each E,,.

If E n[0,T] is finite we proceed by induction. Let |E| be the number of points of
En(t, T]. If |E| = 0 and t,¢ E then @ is a game with no optional stopping and the
result follows from Lemma 3-1 directly. If ¢, £ the pay-off is of the form.

P = min (lﬁ(toa ZLo» g0)9 g(T» x(T): g(T)))

and again Lemma 3-1 yields the result.
Suppose now the result is proved for |E| < k, where k > 0. Suppose |E| = k+1and
let { = inf(£\[0,,]); thenif 7 =1¢

V+(t0’ o> go) = V:-(to’ Ly, go; V),
V=(,, Zos go) = Vr_(to; Lo, goQ Vo).

Now V(o 2o 05 V) = Vi (tg, 2o, &5 V)
<e(f—ty) (A Ko+ + A(K,+ K,)exp (2(K, + K,) (E—1,))

by Lemma 3-1 (again we treat the cases t,€ £ and {,¢ E separately). By Lemma 5-2
we deduce

Vito. g, Egs V) — Vi (b, %o, Eg; VF) < e(f—1ty) (A K2+ A (K ,+ K ) eXERtEPT),
18 PSP 76
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Therefore
VF(to, %o, Eo3 V) = V7 (t0, %o, £0; V)
< e(f—ty) (A KE+ A (K + K,) eXEstEPT) 4 sup (V*(@E 2, &)= (V- =,£))
< e(T—tp) (A, K8 +4,(K,+K;) eAER+ENT)

by the inductive hypothesis since |E n (f, T']| < K. Then the induction is complete.

For later use we require a modification of Theorem 5-5, in which we relax the
Lipschitz assumption on %; we shall assume instead that % is continuous. We shall
write K; = coif & is continuous but not Lipschitz.

THEOREM 56. If K, < o0, and A, = 0, then under the assumptions of Theorem 5-5
VH(to, %o, £o) — V= (ty, 29, £0) < Ape(T —1o) KE.
Proof. For each n choose 4, with K, < co and such that

sup lk(t’ Y, Z) - hn(t! x,Y, Z)I < ;&.
(Recall that % is zero outside a compact set.)
Then min max (p.f+h,) —maxmin (p.f+5,) < A2+§,
z v ¥y 2 ]

for all pe #™. Hence by Theorem 5-5
2
V?T(to’ o, go) - V‘;(tm Zo» go) < (Az + ;,;/) e(T - to) KE’

where the subscript n refers to the game ¢, with &, replacing 4.
If (y(-),2(-))is a pair of controls inducing trajectories (x(- ), £(+))in G and (z(+), £,(+))
in G, then
|£(t) — £.(0)] < (T—to) t<t<T)

and |P-B,] < 2Tty K,
where P, P, are the pay-offs in ¢ and G,. Thus

V*(to, 2, £0) — V(to, %o, &) < (eA +— + ) (T —t,) K&.
Letting n - o0 we obtain the theorem.

THEOREM 5'7. Suppose now K, < o0, K, < © and K, < oo, and that the Isaacs
condition holds (i.e. 4, = 4, = 0). Then

VH(tos 29 £) = V(tg, 4, §)-

Proof. For K, < o0, K, < o this is a special case of Theorem 5-6; by approximating
g and ¢ by Lipschitz functions uniformly on compact sets the general result follows
easily (note that the approximations must be chosen to satisfy (i) and (ii) of Theorem
5-5; this is, however, quite simple).

Finally, we observe that similar argument to that of Theorem 5-5, using the results
of (4) shows that without any assumptions on the Hamiltonians H+ and H~ we can
deduce that ¥+ = U and V- = V. In this case we can again assume K, < o0, K, < o0
and K, < oo asin Theorem 5-7.
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6. Games of survival with optional stopping. Suppose now that the terminal set
satisfies only the condition F' > [T, 00) x Z#™+1, 50 that G ceases to be a fixed time game.
We suppose now that iy = g and that g is continuous (i.e. K, < 00) so that the pay-off
takes the form

P =inf(g(o,2(0),&(0)): 0 < tp,0€E or o = iy).
We shall now call @ a game of survival with optional stopping. Following section 6 of (3)
we introduce @} on #m+! by
QF(t,z,8) = lim sup QF(t,z,&)
W,z £)—~ (¢, z,5)
and say (g, %y, &) € F is @ -regular if

(i) 11_13 Q:(to’ T &) = 9(bg, %o, go),‘l

(12)
(ii) U is continuous at (£y, Zy, &o)- J
Similarly we define N
Q—(t, z, g) hm ln'f Qs (t z, g)
¥, &) >tz
and say that (£, 2y, &) € F is Q-regular if
(i) LHm Q5 (to, %o, &) = g(to, o, 50)’1
s—0 (13)

(ii)" V is continuous at (£y, 2, &,)- J

We say that F is Q+- (or Q—-) regular if every point of F is Q*- (or Q—-) regular.

Let p(t, x, &) = dist ((¢, z, §); F).

THEOREM 6-1. Suppose G is a game of survival with optional stopping with K, < oo and
Fis Qt-regular. Then @ 18 continuous in (z, §) and Iim QF = @ uniformly on compacta
for each fixed ty. Dually if F is Q—-regular then Q—is contmuous in (z,£) and hm @ =Q-
uniformly on compacta for each fixed t,.

Proof. This is Theorem 6-3 of (3) generalized to this new setting.

Let B, = {(x,£)e #Z™*1:||z|| +|£| < #}, for 7 > 0. Then there is an R > r such that
every trajectory with initial pointin B, is containedin Bpfor¢, < ¢ € 7. By Lemma 6-1
of (3) there is the function #,: (0, 00) - (0, c0) with lim %(8) = 0 such that for

8—0
(t: Z, g) € [t07 T] X BR’

Qs (.2, ) < 9,2, &) +mls +p(t, 2, £)]- (14)
Since g is uniformly continuous on [y, 7] x By we can find a similar 7, so that if
2y — x| < 8and |&,—&,| < &and (z,,£)), (¥, &) By thenforty <t < T

|g(t, %y, &) —9(t, o, 52)1 < 7,(6)- (15)
Similarly, using the regularity of F we can find #, so that if
pt,z,E)<é and t,<t<7T, (x,)eBy
then g(t,2, &) < U(t, =, &) +75(0). (16)
The functions f and % are bounded

everywhere.

18-2
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Finally, we note that A is uniformly continuous so that there is a function
6: (0,00) - (0, 0)
such that }’1_13 6(6) = 0 and
(¢, 2,9, 2) — h(t, 2, 9,2)| < 0|z, —,]).
Now suppose (z;, £;), (22, £2) € B, with [z, — 2, +|£, =&, < 8.
Let o = min (p(ty, %1, &), pto, %3, £5))-

Suppose (y(-),z(-)) e My (ty) x My(t,) and let (z,(t), &()), (zo(t), £5(t)) be the corre-
sponding trajectories subject to the initial conditions =z,(f)) = ,, &(t,) = &, and
Zy(ty) = X4, E(ty) = &, respectively. Then

[1(t) — 2o(t)]] < SeXCHD (¢, <t < T)
< 8eET (tostgT)
and 60~ £0] < 0+ [ 0l -ay0])
< 8+ TO(3KT),
Thus [l (8) —2o(8)|| < 6’ 8),

|6:(8) —£&;(8)] < 6
where 8'(8) - 0 as § —> 0.
Now define a stopping time 7: My (£,) x My(t,) > Z by 7 = 7(y(* ), 2(*)), where ris the
least time such that
min (p(7, (1), £(7)), p(7, 24(7), Ex(7))) = O.

If o > 0 then 7 > M0 and so for s < M 10 we have, by Theorem 4-1,
Qi (b, 21, £3) < Q3 (b, %1, 615 QF)

< Qs, 'r(tO: xl: gl; g) + 771[3 + 01(8)]
by (14), since,
max (p(T: xl(T): g](T)): p(T’ La» §2(T))) < 0’(8)

Now QF (o, 1, £1) < QiF (8, 2, 25 9) + 7[5 +60'(8) ] +72(6'(9))
using (15). Then

Qi (P> 2y £33 9) < QiF (8o, %o, £25 U) +95(0'(8))
using (16). Finally, for s < M~'o- we obtain
Q7 (b, %1, &) < Qi 1t %o, &5 U) +77a[8+0'(8)]+7,[6"(8)1 + 7,[6'(8)).
By Theorem 4-1 again
Qs (o, 71, &1) — @F (b, T, &) < M8 +0'(8)] +72[0'(8)] +775[6"(9)] (17)
and by symmetry letting s — 0
[Q* (80, %1, &1) — @F (b, @3, £2)| < 75 [0°(8)]+7[0"(8)] +75[6'(8)]

and this equation is clearly also valid if we have o = 0. Thus it follows that @+ is
continuous in B,.
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Now let Cye) = {(z,£) e B,: @F (tg, x, &) — Q*(to, 2, &) > €},
and suppose (2, &) € n Cy(¢) for some € > 0. If p(ty, %y, &) > O then for small enough
& > 0 and s > 0 we can find (2, £,) €C,(€) with

llzy— ol + 81— 4] <& and s< Mo,
Then by (17)
Q5 (20, Zos §0) — @ (0, s §o) = €~ 715 +0'(8)) —75(6"(8)) — 75(6'(9)).
Letting 8, s — 0 we obtain
ling Q5 (b0 o, £0) = @F (%0, %o, Eg) +€

contradicting the definition of @+. Using directly the definition of regularity (12), we can
also similarly exclude the possibility p(ty, %o, §,) = 0. Therefore N C,(¢) = &, and by

8>0

compactness s > 0 such that C,(¢) = @, and so @F - @* uniformly on B,.

THEOREM 6-2. Let G be a game of survival with optional stopping. Suppose F is Q+- and
Q—-regular and that the extended Isaacs condition holds. Then for any (t,x, £)

Q*(t,z,8) = Vi(t,2,8) = V-(t,2,8) = @~(4, %, §).

This generalizes the Theorems 6-4 and 8-1 of (3) combined. We omit the proof as a
similar argument is employed later in a more special case.

7. Restricted fuel games. A game of survival with optional stopping will be called a
restricted fuel game if

(i) F={(t=8&¢t>Tor&> A}forsome (A,T),

(ii) ¢ is monotonically increasing in £ for each fixed (¢, x),

(iif) B = [0,00) (i.e. optional stopping is allowed at any time). We interpret such
games as allowing the minimizer J, to stop at any time before this ‘fuel’ £ or time £ is
exhausted.

Lemma 7-1. If G is a restricted fuel game and if
lilré Q5 (g, @os £0) = g(to, o, £o)
then (ty, 2o, o) 18 @+- and @~ -regular.

Proof. For s > 0
Q5 (t,x,8) < 9(t, %, §)

and so hm QF (o, g, £0) < glto %o, £o)s
and this combined with the hypothes1s forces (12) and (13).
THEOREM 7-2. Suppose G is a restricted fuel game with K < oo in which
lim G5 (6, 2,€) = 9(t,,8) |

for (t,x,E) e F. Suppose also that the Isaacs condition is satisfied; then we have

Q+(t0’ Zo5 go) = Q_(to: Lo, go)
fOT ‘my (to, xo’ go)
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Proof. Suppose
Q+(t0: xo’ go) = Q——(toa x0> go) + 07

where 0 > 0; clearly (¢, z,, £,) € [0, c0) x Z™+ — F. Let B, be a bound for |4| and B, for
|| f]l- We define inductively a sequence {(¢,,, ¢, £,)n > 0} with ¢, < T, £, < A. Suppose
(tn, %, £,,) has been determined; then we let

tn+1 =t,+
<7T.

On ¢t =t,,,, @+ is continuous and @; - @+ uniformly on compacta (Theorem 6-1).
Arguing as in Lemma 5-4 we may show that

Q (tn: ne gn) = Q;i-(tn’ xn’ gn’ Q+)’

where 7 = t,,,,. It is easy to check further that @+ is increasing in £ for fixed (¢, Z); for
identical controls with the initial conditions (¢, %, £) and (Z, Z, £ + %) induce trajectories
(x(t), £(8)) and (x(2), £(¢) + 7). The latter trajectory hits the terminal set earlier than the
former provided # > 0, and

g(¢, 2(t), E@B)+7) > g(t, x(t), §(2)).
Thus we can quote Theorem 5-7, concerning the fixed time game given by
T=tlyy Y=g
and terminal pay-off @+. We deduce
QF (> T £ns @) = Q5 (b 70 £55 Q7).
Similarly Q7 by Ty £33 @7) = @ (85,25, 8)

and so

1 .
S+ B (A=§,,T—t,)

QT ( n? n’ gn? Q+) Q_‘(tn’ xn’ gn; Q_) = Q+(tn’ xn: gn) - Q_(tn’ xn’ gn)‘
Therefore there exists a trajectory (x(t), £(t)) with
x(tn) =Z, g(tn) = gni x(tn+1) = Zpy1s g(tn-f-]) = §n+1

and
0
Q+(tn+1’ Lpt1s n+1) - Q_(tn—H’ Tnt1s gn-}—l) Q (tn’ s n) - Q_(tm Ty n) - m .
Clea’ﬂy |§n+1 gnl Bh n+1 - tn) (A - gn)
so that £or1 S A

Hence we deduce
Q+(tn: n? gn) - Q (tn’ xn: g ) %

for all n, and since t,, < TV n,t, — { for some {. Since also

”xn+k - xn” = f(tn+k ~t )

_ |Enir—Enl < Balbnir—1a)
z, >Tand £, > £ Now

£y —t min (A —£,,T—t,) > 0.

1
"= 2(1+B,)
Hence either z = T or £ = A.

n+1
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Now by the regularity of the boundary, condition (12),

9(t,%,%) = lim @ (,%, )
s§—0

> lim lim Q:(tny Ty €n)

§—0 n—w

> lim Q*(t,, z,, £,)
Whﬂe g(-’ E,E) = ]:_13(1) QS—(Z’ E’ Z)

< lim lim Q5 (8, %, £,)

=0 n—>wo

< lim @—(¢,,2,,&,)

n—>wo

and we deduce 6 < 0, contradicting our initial assumption.

8. Quasi-pursuit-evasion games. We now give some applications of the theory, which
we have developed in the preceding sections. We shall consider a differential game of
survival G with no optional stopping. The game has dynamics

dx
& _ feny, z),} (18)
z(ty) = %o
and pay-off
p_ J‘:p h(t, x(t), y(t), z(t)) dt + ’}’(tF, .’L‘(t}«")), (19)

where F' is the terminal set, and F o [T, 00) x #™ for some T. We introduce an extra
co-ordinate § given by

d§
37'— (t’x’y’z)’} (20)
£(f) =0
and then the pay-off may be given as
P = g(tp) +y(tp (tr)) = 9(tr, 2(tr. E(tr))) (21)

say.
An approximate strategy, A for Jy (see (2)) is a sequence («,) of delay strategies
(ie.a,e U T (ty)); asimilar sequence B = (£,,)is an approximate strategy for J,. Then
8>0

(4, B) induce a unique sequence (y,(*), 2,(*)) in My (t;) x M;(t,) such that

An2p = Yns ﬂnyn =Zn.

The pairs (y,,2,) induce trajectories (z,(t), £,(t)) and the sequence of trajectories
(%,(+), £,(*)) can be shown to be relatively compact in the Banach space of all #m+1-
valued trajectories on [t,, 7"]. We define P[4, B] to be the set of all pay-offs P(z(-), &(+))
corresponding to cluster points (Z(-), &(-)) of this sequence. Here

P@E(-), &(*)) = 9(r Z(Er), E(ER)).
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We then define the extended values
V# = infsupsup P[4, B],
B 4

Vo = supinfinf P[4, B]
4 B

and we say that @ has extended valueif Vi = V.

@ is called a generalized pursuit-evasion gameify = 0 and b > 0. It was shown in (2)
that under the extended Isaacs condition (7), that a generalized pursuit-evasion game
has extended value. Later Friedman(11) improved this by requiring only the Isaacs
condition (8), although his formulation of extended value is different in general.

We shall say that G is a quasi-pursuit-evasion game if

h*(t,z) = max mink(t,z,y,2) = 0
andy = 0. v.oF

Lemma 8-1. Let G, and G, be differential games of survival with dynamics (18) and

pay-offs )
P, = f holt, 2(0), y(8), () dt,

P, = f holt, 2(t), y(£), 2(t)) dt
where |Ry(t, 2, 4, 2) — ho(t, 2,9,2)| < €
SJor all (¢,x,y,2). Then [Vi— Vi < e(T—t,),

| Va1—Vaal < (T —t,).

Proof. Let A and B be any pair of approximate strategies inducing sequences of
trajectories (,(-),£5(+)) and (z,(+), £2(-)) respectively. Let (Z(-), E1(-)) be a cluster
point of the former sequence; then there is a sequence (z,,(-),&2,(*)) - @(+), EX(+))
uniformly. By selection of subsequence we may suppose £2,(-) — £2(+ ) uniformly. Then

IEa@) —Eat)] < et—ty) (o< t<T)

and so |E2(t) —EX(t)] < e(t—ty) (to<t<T).
Therefore |B@(), BX(-)) — BE(-), ()| < e(T —ty).
It follows that

sup P[4, B] < sup B[4, Bl +¢(T —t,)
and by symmetry
|sup P[4, B]—sup P[4, B]| < e(T —t,)

and the result follows quickly.
We now define the associated restricted fuel game of @, which for A > 0 we call G5.
Let F% = {(¢,2,£),£ > Aort > T}. Then G has dynamics

dx
dg
7 = M 2,9.2),

x(ty) =z, &(ty) =0,
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and pay-off P = min p{t,z(t)), (23)

L<t<tp?

where p(t,z) = dist [(¢, z), F]. This is clearly a restricted fuel game as in section 7. We
first apply Lemma 7-1.

Lemma 8-2. If G is a quasi-pursuit-evasion game in which

inf A*(t,x) = A > 0,
i, z)

then in the associated restricted fuel game G, F} is both Q*- and Q—-regular.
Proof. By Lemma 7-1, it is only necessary to show that
hn& Qs_(f: z, E) = g(f, z, z) = P(f’ z)
8->
for (¢,%,E)e F5.
Suppose B, and B, are bounds for | f|| and |||, and let C be a bounded subset of

[0, T} x ™+, By Theorem 5-1 of (3) there is a funection 7: (0,0) - (0,00) with
lim#(s) = 0 such that whenever (f;,z;,£,)€C and y(-)e M%(t,) then there exists
8—0

a €Ty (s|y) such that for any (z(-), §(-)) with
Bt 2(0), a2(0), (1) > BH(t, () —7(s) ae.
fort; +s <t < T.Then
2
[ 1t 0t ast0,210) &t > Aty= ) =106) - By,
b
If 7 = tz4, then we deduce
A—& > A7 —1t;)—9(s)— Bys
and therefore T—t, < A YA =& +5(s) + By s).
Therefore fort, <t <7
ot z(8)) = p(t, 2())| < (T—4) (1+By)
S A_l(l +Bf) (A—§1+"7(8) +Bh3)-
Clearly the value of a, u(e), in G satisfies
u(e) = p(t, 2) — A1+ By) (A— £, +79(s) + Bys)

and equally u(ee) = p(ty, ;) — (1+ B,) (T —t,).
Therefore

@5 (t1, 21, 81) = pty, ;) — (1 + B,y min (T —t,, A7Y A — £, +9(s) + B, 8)).
Hence for (£,7,€)eint O n F¥

@ (1.%.2) 2 p(t, %)~ (1+B,) 12 (7(s) + By3)
and therefore lim Q5 (%, &) > p(t, %)
8—0

and this implies lim @; (£, %, £) = p(f, ), as required.
8—0
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THEOREM 8:3. Let G be a quasi-pursuit-evasion game satisfying the Isaacs condition.
Then G has extended value.

Proof. Suppose first
infha*¢,x) = A > 0.

For A > 0, by Lemma 8-2, F§ to @*- and Q~-regular. Hence by Theorem 7-2 G* has
value V¥ say (i.e. QT(G%) = VHGE) = V-(G%) = @Q—(G%)). The map A — V% is clearly
monotonically decreasing and so if

Ay = inf(A, V¥ = 0)

then for A > Ay, V% = 0. Hence for ¢ > 0, there is a delay strategy 8, for J, whose
value in G, is less than 1/n. Let B = (£,) be the induced approximate strategy for
Jz in ¢, and let 4 = («,) be any approximate strategy for Ji. Then («,, f,) induce
a sequence (x,(-),&,(-)) of trajectories, such that for each » there exists ¢, with

ty < T’ and £.() < Mgts (E<ty)

Pt Ta(tn)) <

S

If (Z(-), &(+)) is any accumulation point of the sequence then for some f < T
Et) < Aote (E<i),
@), EE) = o.
The hitting time £, of (Z(+), £(-)) satisfies

tp <1,
E(ly) < Agte.
Hence sup P[4,B] < Ay+e€
and so Vi< Agte

As € > 0is arbitrary we conclude V} < A,,.
Conversely VX _, = 8 > 0, so that for some delay strategy o for Jy, the valueof o in
Gr,—.is at least £0. If 4 = () (i.e. the constant sequence a) then we may show easily

(cf. (2)) that for any B
inf P[4,B] > Ay+e.

Hence V; = Ajandso V, = Vi = A,.

Now suppose A = 0; for each ¢ > 0 we may replace % by 2, = 2+ ¢ to obtain a game
@, in which the Isaacs condition still holds, and V;, = V},. By Lemma 8-2 we obtain
that

Vi—-Vs <2
for any e > 0.

9. General games of survival. We conclude with our main theorem on games of
survival, of which Theorem 8-3 is a special case.
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THEOREM 9-1. Suppose G is a differential game of survival given by (18) and (19)
satisfying the Isaacs condition and such that there is a C*-function Y (t, x) such that

Ly =aai/;+H(t,x,V1/f) >0 (t,z)eZ™H—F

and Y =y on OF. Then G has extended value. (Equally the same result holds if

L0 (t,x)eBmH—F,
by symmetry.)

Proof. Let k= aai/tf +Vir.f+h.

Then %, is continuous and
kY (t,xz) = minmaxh, = Ly > 0
2 v

everywhere. However along any trajectory (x(t): ¢, <t < T)

ot 2(0), (1), 2(8)) dt = f bt b, 0) o 0

to
= P —y(to, 7o)
by (19). Therefore except for the constant yr(¢y, z,), @ is equivalent to a quasi-pursuit
evasion game given by (18) with pay-off P = f hy(t, x,y,2)dt.

Now minmax(p.f+k1)=minmax(%ﬁ+h+(p+vw).‘f)
z v 2 v

=W e mp YY)
¥ Bt

= maxmin (p.f+h,).
v z

Hence it follows that @ has extended value by Theorem §-3.

As pointed out in the introduction, the curious feature of this result is that the
existence of two functions ¢ and Y with L¢p > 0 > Lyon ™ —-Fand ¢p = ¢y = yon
OF implies the existence of value, not just extended value. This result therefore fits the
idea of extended value into context as a first step towards the existence of value. In
a quasi-pursuit-evasion game the function ¢ = 0 satisfies the hypotheses.
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