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1. Introduction. Consider a differential game of survival governed by the differential
equation

dx

x(t0) = x0

in Mm, with pay-off

P = CFh(t,x(t),y(t),z(t))dt + g(tF,x(tF)),

where tF is the entry time of the trajectory (t, x(t)) into a given terminal set F. Under
suitable conditions on / , g, h and the terminal set F, it was shown in (3) that the
question of existence of value of such a game can be approached by considering a certain
pair of partial differential equations called the Isaacs-Bellman equations.

Suppose for all peSt™ we have

min max (p. f+h) = max mm(p.f+h)
zeZ yeY yeY zeZ

= H(t,x,p)

(the Isaacs condition), then the two Isaacs-Bellman equations reduce to one:

in ^ m + 1 - F and 6{t, x) = g(t, x) for (t, x) e 8F.
In (3) it was shown that if there exist (^-functions 0 and ft on 3$m+1 such that

L<[> Ss 0 > L\]r
in@™+i-F, and

${t,x) = #{t,x) = g(t,x) (1)

for (t,x)e8F, then the game has value V and furthermore <f>{to,xo) =* V < ^"(^^o)-
Indeed only a local version of these conditions near dF is required. The main result
of this paper is that if a one-sided version of (1) is available (for example if only (f> can
be determined to fit the conditions of (1)) then the game has extended value in the
sense described in (2) (see also the work of Friedman (9), (10), (11) on generalized values).
This extends the result of (2), both in dropping the ' reverse Isaacs condition' and also
in the fact that a generalized pursuit-evasion automatically leads to a one-sided version
of (1) with 0 = 0.
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It turns out that in order to obtain results on generalized values it is necessary to
study another type of differential game, one in which we assume that the minimizer
has the option of stopping the game at any time r prior to the entry time into the
terminal set tF, and then accepting a pay-off depending on the time T. Such games we
call games of optional stopping and we develop for them a theory completely analogous
to the theory developed in (3) for games of survival.

2. Values in evolutionary games. Suppose Y and Z are two fixed compact metric
spaces. For 0 ^ t0 < oo we define Mr(t0) as the set of all functions y: [t0, oo) -y Y which
are measurable in the sense that if <j>eC(Y) then <j>oy is Lebesgue measurable; we
identify functions equal almost everywhere in MT(t0). Similarly we define Mz(t0). We
also define, for s > 0, the set 31s

Y(tQ) as the set of Lebesgue measurable functions
y: [t0, to + s) -> Y (again identifying functions equal almost everywhere); we similarly
define M"z(t0).

A map a: Mz(t0) -*• MT(t0) is called a strategy for the player JY (who controls the
Y-variable) if whenever ... ... , _ . „

' zx(t) = z2(t) a.e. t0 < t ^ T

then <xzx(t) = az2(t) a.e. t0 < t < r.

The set of all such strategies is denoted by rto. For s > 0 we define Fto(s) as the set of
all a 6 r t o such that if ^ = ^ ^e' to<t^T

then az-^t) = cczs(t) a.e. t0 < t < T + S.

We define rto(s\y)for ye M T{h) as the set of a e I\0(s) such that, in addition,

az(t) = y(t) a.e. t0 ^ t < t0 + s
for any zeMz(t0).

The corresponding sets for Jz are denoted by Atg, Ato(s) and Ato(s|z).
Now let P: Mr(t0) x Mz(t0) -+ 3% he any pay-off function; then P determines an

evolutionary game in which we assume that JY is the maximizer and Jz the minimizer.
For aerto we define u{a) = inf(P(ocz,z); zeMz(t0))

and for fie Ato v(fi) = sup (P(yjy); yeMT(t0)).

Then we define the following values:

U = ^(()

«>o
F - = sup(tt(a):ae (J r , (a)),

a>0 °

Q+ = sup inf v(fi),

Qj = inf sup u(oc),

Q+= inf Q+,

Q- = sup Q~.
8>0
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It is easy to verify that:

QtlQ+,
Q7\Q~,

Q+ > v+,

Q- < V-,

v+ ^ u > v~
V+ > V ̂  V~.

We say that the game has value if
y+ = y-

and strong value if
Q+ = Q--

Throughout this paper the evolutionary game under consideration will be governed
by a differential equation controlled by JY, and Jz. In sections 2-6 we consider a particle
whose position in &m+1 is given by co-ordinates (x, £) (xelffl1", £,£&) controlled by an
equation

-£=f(t,x,y,z),
(2)

-j- = h{t,x,y,z),

where / : [0, oo)

and k:[0,co)x32mxYxZ->@.

The functions / and h are assumed to be continuous and obey Lipschitz condition in
(t, x) thus,

(We shall adopt the convention of labelling the Lipschitz constant of a function <f> by
KQ.) For convenience we also make the assumption that both /and k vanish outside
some fixed compact set [0, T]x{x: \\x\\ < i?} x Y xZ; there is no loss of generality in
this (see (l), section 9).

We also introduce the following Hamiltonian functions

S+(t,x,p,q) = min max (p.f+qh),\
zeZ yeY I ( 4 )

3~(t, x, p, q) = max min (p./+ qh),
yeY eeZ I

for {t, x) e [0, oo) x ^ » x Si, and

(5)
H+(l,x,p) = S+(t,x,p,l),\
H-(t,x,p) = 8-(t,x,p,l).j

3. Fixed time games. We now assume that the differential game is governed by (2)
subject to x(t0) = x0, £(<0) = £0 and the pay-off is given by

P = g(x(T), £{T)) (6)
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where T ^ t0, and g: &m+1 -»• & is continuous and satisfies a Lipschitz condition

By Rademacher's Theorem g is differentiable almost everywhere and satisfies

INI < Kf,

In (3) it is shown that a game of this type satisfies Q+ = V+ and Q~ = V~. The results
of (l) show that the condition

S+(t,x,p,q) = S'(t,x,p,q) (7)
(which we shall call the extended Issacs condition) is sufficient to ensure that V+ = V~
(Theorem 9-2). We shall show in this section that if

| > 0 a.e.

then (7) may be replaced by the Isaacs condition

H+(t,x,p) = H-(t,x,p). (8)

A similar problem was met in (2) where a condition similar to (7) was assumed;
later Friedman(10) showed that (8) only was necessary, although his results referred
to a slightly different concept of value. However, Friedman's arguments form the
basis of this section.

LEMMA 3-1. Suppose 8^0 and
(i) H+(t,x,p)-H-(t,x,p)
(ii) \h{t,x,y,z)\ ^ Bh,

(iii) %>-& a.e.

for to^t ^T. Then

V+-V- ^ eiT-toKB

Proof. Suppose first that g is C3 and 8 > 0; assume without loss of generality that
g vanishes outside some compact set (this is permissible since 8 > 0). We consider the
Cauchy problems:

subject to w(t, x, £) = g(x, g). Then by results of Friedman ((7), (8), p. 205) and Fleming
((5), (6)) the Cauchy problems (9) and (10) have unique solutions Wf, W~ in the strip
t0 < t ^ T, which vanish at infinity. Furthermore

e->0

V- = Mm
e->0

by the results of (4).
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For /i > 0 we define

Then W+i/t satisfies (9) subject to

However g(x,g+/i) Ss g(x,£) -/id

by (iii) and equally g(x, f + (i) < g(x, f) + K\ii.

Then by a standard comparison argument, using the fact that 8+ is independent
of £ we obtain

for t0 < t ^ T. A similar argument is also used later so we will not justify this step (cf.
Friedman(8), pp. 201-202). Thus we have

->

dW~
and similarly — S ^ e ^

Now consider the function

for some A e ^ . As in Lemma 6-2 of (l) 6 is bounded and approaches zero at infinity for
t0 ^ t ^ T. Hence 9 must obtain its maximum at a point (t, x, f) where t0 ^ i < T.
At this point we have

86 <

8W
Letp = VPF+ and^ = - ^ at (t,x,E). Thenp = VW~ &ndq =

e2 /82W

i.e. A^ ^ e^(B+(t, x, p, q) -£-(f, x, p, q)).
By Lemma 6-1 of(l)

Up! < (Kf+Kh)exv(2(Kf + Kh) (T-t0)) = K* say

and by the preceding remarks

Thus if q > 0,

while if g < 0, then - 5 < q < 0, and
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In general 6{t,x,l) < \-*ex\AxK* + Bh

and 6(t, x, g) ^ \-hW(A{K*+Bh8+A2K!)
for all («,#,£). Thus

Taking A = (T -1^-1 we obtain the result (for g in C3).
For g Lipschitz but not C3 and 8 > 0, we define, for e > 0, gn: StiV1 -> 01 by

9n(x) = 9(x,ne)
n = 0, ±1, ±2 , . . . .

For each n choose a Cf3-function yn with

and b»(*)-r«(*)|<4€* ( «
Let 77 be a function TT: ^ -> & such that ?r is C3 and

»r(D = 0, | g | > l ,

ir(0) = 1,

Then we define

and y e C3 with

everywhere. Also

£ ) T n() (£ - n -

where we < a; < (n + 1) e. Hence

= e-W(e-i£-n) (7n(x) -yn+1(x

At the same time

Hence applying the first part to y, we obtain the lemma. Similarly we obtain the result
for 8 = 0 by approximation from the case 8 > 0.
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THEOREM 3-2. Suppose g is continuous (but not necessarily Lipschitz) and increasing
in £ and that the Isaacs condition (8) holds. Then V+ = V~.

Proof. For g Lipschitz this is Lemma 3-1. In general the result follows by uniform
approximation of g.

4. Optional stopping games. In this section we describe a rather more complicated
type of differential game which we call an optional stopping game. We first define
stopping time T as a map T: Mr(t0) x Mz{t0) -> [t0, oo) such tha t

yi(t) = y2(t) a.e. to^t^T(y(-),z(-))

Zl(i)=22(<) a.e. to^t^T(y(-),z{-))

together imply T(yi(•), zx( •)) = T(y2( •), z2(•)).
Suppose now that 0: [0, oo) x ^ m + 1 -> 01 and rjr: [0, oo) x {%m+1 -+ & are any two real

functions and that E is a closed subset of [0, oo); we define a game GTE{tQ, x0, £0; <j>, rjr)
with dynamics (2), initial condition xo(to) = x0, £(t0) = £0 and pay-off,

P = min (PltPa),

where P± = 0(T, X(T),£(T)),

P 2 = inf
O-EE

where r = T{y{-), z(-)).
We shall regard E and rjr as initially fixed, but allow differing choices of T and <j>. Thus

we shall refer to the various values of GTiE(t0,x0,£0; 0,rjr) by V+{to,xo,£0; (j>), etc.,
suppressing mention of E and rjr.

Suppose F is a closed subset of [0, oo) x ^m+1 such that for some T > 0

F.

Then we can define a particular stopping time tF as the least time such that the trajectory
(t, x(t), £(*)) eF; F is called the terminal set. Suppose g: [0, oo) x ^ m + 1 -+ £% is a fixed
continuous function. In the special case T = tF,<j> = (7 we shall suppress mention of 0
and T and refer to G{t0, x0, £0) and V+(t0, x0, E,Q), etc. Thus the functions V+, V~, etc.
defined on [0,oo) x ^ m + 1 are the value functions of this particular game.

Before proceeding with the formal discussion of optional stopping games, it might be
helpful to describe a particular example, to be discussed in detail in section 7. Suppose
a differential game has dynamics

x = f(t, x, y, z)

subject to x(t0) = x0. Suppose that it is the object of Jz to force (t, x) as close as possible
to some terminal set F before time T, but that Jz is restricted by a fuel limitation

h{t, x, y, z) < A
JU

(where usually h ^ 0). This game can be described as follows: it has dynamics

dx

•jt = h{t,x,y,z)
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subject to x(t0) = x0, £(<„) = 0, and pay-off

P= inf p(t,x(t)),

where p(t, x) is the distance of (t, x) from F and the terminal set F% is given by {(t, x, E),
where t^ T or £ ^ A}.

This is a particular case of an optional stopping game, which besides being of interest
in its own right, can be used to study pursuit-evasion games; in such games the fuel
consumption between hitting the terminal set is the pay-off.

In this section our objective is simply to generahze the dynamic programming
theorems of (3) to this new setting. In fact the proofs are identical and so we shall
restrict ourselves to the statement and one sample proof.

THEOREM 4-1. Suppose r is a stopping time on My(t0) x Mz(t0) such that r < tF

everywhere. Then

(i) UT(t0,x0,£0; U) = U{t0,x0,£0),
VT(t0,x0,£0; V)= V(to,xo,£o).

(ii) F+(«o, *„,£„; V+) ^ V+(to,xo,go),
V-(t0lx0,£0; V~)> F-ftj.Zo.go).

(iii) If further 0 < s ^ T everywhere:

G£T(*O.*O.£>; Qt) > Qt(to,xo,£o),
HJs, rt^O'^O'feO' Qs ) ^ Qs V'O'^O'^OI'

Proof. We shall prove the first inequality of (iii). For e > 0 and

(t, x , £) e [ 0 , oo) x ̂ m + 1 a n d z = z ( - ) e M8
z(t)

there is a strategy /? = /?(£, x, £, z) for Jz such that fie At(s|z) and

where v(/?) is the value of fi in 6r(«, x, £). Now suppose yff* G At(s) and y( •) eMr(t0); let
(x{t),E,{t)) be the^m+1-trajectory corresponding to («/,/?*y)andleto- = o-(?/) = r(y,/S*y).
We define /J 'eAJs) by

* < oo),

where ^eilfF(cr) is denned by
y{t)=y(t) (t>ar)

and/3*yeMz{o-) by
p*y{t) = /S*y(t) (

We must check /?' e At (s); suppose

(«) a-e-
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If tx ^ o-(2/i) then tx < <r(y2) and'it follows that

fi'y® = p*y

a.e. t0 sj t

If tx > o-(2/1) = o- then <r = o-(y2) and /3*yx = fi*y2- Hence

/?(er, x(cr), H<r),fi*yi) = /?(cr, x((r), a<r),fi*y2) = P say.

Now ^x(f) = y2(0
 a-e- °" ^ t ^ *i

and so fiViff) = fiVz^) a-e- c ^ f ^ ^ + s
andsoy?'eAto(s).

Now suppose y = y{-)eMT{t0) and let P be the pay-off P(y,fi'y). Then

P = min (PVP2),

where Px = g(tF, x(tF), g(tF))
P 2 = inf

peE

Now P2 = min (P3,P4),

where P3= inf f{p,x{p),£,(p))

and P 4 = inf r/r(p,x(p),£(p)).
pe E

Let P' = min(P1)P4); then P ' is the pay-off in G(cr,x(cr), £(cr)) corresponding to
(y, z) where y and z are the restrictions of y and fl'y to ifr(cr) and ^ ( c ) . Now

z(t) = /?(o-, x(o-), a<r),

= fi*y{t) (cr < f < a + s).

Since /?(o-; x(a), £,{<?),jFy~)e\{s\Wy)

Hence P ' < Q+(<r, x{a), £{<r)) + e

and P = min (P',P3)

< min (P3, Q+(<r, x{a), g(a))) + e.

However min (P3, Q "̂(cr, x{a), £,{<?))) is the pay-off of (y,fl'y) or {y,P*y) in the game with
stopping time T and <j> = Q£. Thus the value v'(fi*) of /?* in this game satisfies

where v(/?') is the value of/?' in G(t0, x0, g0).
If /?*eAt (s|z) then /?'e Af (s|z) and so we obtain the desired inequality, since /?* is

arbitrary.
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5. Optional stopping game of fixed duration. Continuing with our study of optional
stopping games, we now impose some restrictions; we assume that g and i/r are con-
tinuous functions and that the terminalset-FtakestheformfT.oo) x^ m + 1 , where J1 > 0.
In this case, the pay (11) takes the form

P=/t(a:( •),£(•)),

where /i is a continuous functional on the Banach space of ^m+1-valued continuous
functions on [t0, T]. Using this observation, it follows as in Lemma 2-2 of (3) that

LEMMA 5*1. If F = [T, oo) x &m+1, and g and ijr are continuous then

Q+(t,x,E.) = V+(t,x,£),

Q-(t,x,g) = V-(t,z,£)
forO ^t and (x, £) e@m+1.

LEMMA 5*2. (i) Under the assumption of Lemma 5-1, for each fixed t0 the functions
Q+, V+, V, U, V~, Qj are all continuous in (x, £).

(ii) Suppose in addition \jr and g are Lipschitz in (x, £,) and

Then for $ = Q+, V+,..., Q~, we have

Proof. Each result is proved by a simple comparison of the effects of an identical pair
of control functions with respect to ranging initial conditions; we omit the simple
calculations. We establish by a similar argument:

LEMMA 5-3. Under the assumptions of Lemma 5-1, suppose also that g and rjr are each
monotonically increasing in E, for each fixed (t,x). Then the functions V+ and V~ are
monotonically increasing in £ for fixed (t,x).

LEMMA 5-4. Under the assumptions of Lemma 5-1 suppose t0 < i. We define a constant
stopping time T = i; then we have

V+(t0,x0,£,0)=V+(t0,x0,£0;V+),

Proof. By Dini's Theorem and Lemma 5-2 we have Q£(t, x, £) -> Q+(i, x, £) uniformly
on compacta in 3%m+1. Hence by Theorem 4-1
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where lim?/(s) = 0. Hence

= FT
+(<o,zo,£o; V+)

by applying Lemma 5-1 to the fixed time game with T = I. Hence by Theorem 4-1 we
obtain the result.

THEOREM 5-5. Suppose
(i) g, ifr are Lipschitz functions in (x, £) and continuous in t,
(ii) g, rjr are monotonically increasing in £,
(iii) H+(t,x,p)~H-(t,x,p) ^ Ax\\p\\+A2.

Then for 0 ^ t0 < T

V+(t0,x0, £0) - V~(t0!x0,£0) < e(T-

where max {K\, K\) = KK

Proof. First we observe that it is sufficient to prove the result for E finite (or E n [0, T]
finite). For in the general case there is a sequence EJof finite subsets of E such that

lim sup inf |e — e'\ = 0 .
n—>°o eeE e'eEn

If Pn denotes the pay-off in the game with optional stopping on En, then we can easily
show, using the continuity of i/r, that

uniformly on (?/(•), z( •)) e Mr (t0) x M2(t0). Using this the Theorem will follow for E from
the result for each En.

If E n [0, T] is finite we proceed by induction. Let \E\ be the number of points of
E n (t0, T]. If \E\ = 0 and to$E then 0 is a game with no optional stopping and the
result follows from Lemma 3-1 directly. If toeE the pay-off is of the form.

P = min(^0 >x0 )g0) ; g(T,x(T),

and again Lemma 3-1 yields the result.
Suppose now the result is proved for \E\ ^ 1c, where Tc > 0. Suppose |.E| = k +1 and

let i = inf (#\[0, t0]); then if T = t

Now V+(t0, x0, g0; F+) - FT-(«0, *o> lo!

by Lemma 3-1 (again we treat the cases toeE and to$E separately). By Lemma 5-2
we deduce

18 PSP 76
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Therefore

FT
+(«o.

(i-

F + ) - FT(^,a;o.

N. J.

F-]

K A L T O N

I

sup

e(T-

by the inductive hypothesis since \E n (t, T]\ ^ K. Then the induction is complete.
For later use we require a modification of Theorem 5-5, in which we relax the

Lipschitz assumption on h; we shall assume instead that h is continuous. We shall
write Kh = oo if h is continuous but not Lipschitz.

THEOREM 5-6. If Kh ^ oo, and Ax = 0, then under the assumptions of Theorem 5-5

Proof. For each n choose hn with Khn < oo and such that

snp\h(t,x,y,z)-hn(t,x,y,z)\ < - .
it

(Recall that h is zero outside a compact set.)
2

Then min max (p .f+hn) — max min (p .f+hn) < A2 + -.
z V y z n

for all p e &m. Hence by Theorem 5-5

where the subscript n refers to the game Gn with hn replacing h.
If (y( •), z( •)) is a pair of controls inducing trajectories {x( •), £( •)) in G and (x( •), E,n( •))

in On then „
\mUt)\^{Tt) (t^t^T){

and \P-Pn\$l(T-t0)Kl,

where P, Pn are the pay-offs in G and Gn. Thus

V+(to,xo,£o)- V-(to,xo,^) ^ (eA2 + -+l) (T-to)Kt.

Letting »->oowe obtain the theorem.

THEOREM 5-7. Suppose now Kg < oo, K^ < oo and Kh < oo, and that the Isaacs
condition holds (i.e. Ax = A2 = 0). Then

V+(t0,x0,£0)= V-(to,xo,io).

Proof. For Kg < oo, ̂  < oo this is a special case of Theorem 5-6; by approximating
g and rjr by Lipschitz functions uniformly on compact sets the general result follows
easily (note that the approximations must be chosen to satisfy (i) and (ii) of Theorem
5-5; this is, however, quite simple).

Finally, we observe that similar argument to that of Theorem 5-5, using the results
of (4) shows that without any assumptions on the Hamiltonians H+ and H~ we can
deduce that F + = U and V~ = V. In this case we can again assume Kh =% oo, Kg < oo
and Kp < oo as in Theorem 5-7.
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6. Games of survival with optional stopping. Suppose now that the terminal set
satisfies only the condition F => [T, oo) x &m+1, so that G ceases to be a fixed time game.
We suppose now that \jr = g and that g is continuous (i.e. Kg ^ oo) so that the pay-off
takes the form

P = inf(g(a,x((x),E,(a)): a < tF,creE or a = tw).

We shall now call G a game of survival with optional stopping. Following section 6 of (3)
we introduce Q+ on &m+1 by

Q+(t,x,£) = Urn sup Qi(t,x,l)

and say (t0, x0, £0) e F is Q+-regular if

(i) lim Q+(t0, x0, £0) = gr(t0, x0, £„),]
s-*o I (12)

(ii) £/ is continuous a t (t0, x0, f0). J
Similarly we define

«-(*,&,£)= Urn inf &•(«,*,£)
(l',i',f')-.(!,it,J)

and say tha t (t0, x0, £0) e J1 is Q~ -regular if

(i)' Urn<£-(<„,x0, £0) = g{t0, x0,£0),]
s^o I (13)

(ii)' V is continuous a t (t0, x0, £0). J
We say that F is Q+- (or Q~-) regular if every point of F is Q+- (or Q~-) regular,
letp(t, z,£) = disb{{t,x,g}; F).
THEOREM 6-1. Suppose Gisa game of survival with optional stopping with Kh < oo and

F is Q+-regular. Then Q+ is continuous in (x, E) and lim Qf = Q+ uniformly on compacta
s—*-0

for each fixed t0. Dually ifF is Q~-regular then Q~ is continuous in (x, £) and lim Q~ = Q~
uniformly on compacta for each fixed t0.

 s~i'0

Proof. This is Theorem 6-3 of (3) generalized to this new setting.
Let Br = {(a;, i) e@m+1: \\x\\ + |g| < r}, for r > 0. Then there is an B > r such that

every trajectory with initial point in Br is contained in BB for t0 ^ t ̂  T. By Lemma 6-1
of (3) there is the function ^ : (0, oo) -> (0, oo) with lim 7/(8) = 0 such that for

«o

,£)]. (14)
Since ^ is uniformly continuous on [t0, T] x BB we can find a similar ij2 so that if
IK-S2II < s a n d I^i-Sal < * and (xx, ̂ ) , (a;2, g2) e 5 B then for «0 ̂  < ̂  T

\g(t,x1,g,)-g(t,xt,gt)\ <^2(«). (15)

Similarly, using the regularity of F we can find 1/3 so that if

p(t, x,£)<8 a n d to^t^T, (x, £)eBR

then g(t,x,£)^U(t,x,£) + ris(8). (16)

The functions / and h are bounded
11/11 * M,
\h\ ^M

everywhere.
18-2
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Finally, we note that h is uniformly continuous so that there is a function

6: (0,oo) -> (0,oo)
such that lim 6(8) = 0 and

\k(t,x,y,z)-h(t,x,y,z)\ < 0(||aj,-Sj||).

Now suppose (x1,g1),{x2,£2)eBrwith\\z1-z2\\ + \gJ-£!t\ < 8.

Let cr = min (p(t0, xx, &),/>(«„, x2, £2)).

Suppose (y(-),z(-))eMY(t0)xM2(t0) and let («,(*), £(*)), {xt(t), £,(<)) be the corre-
sponding trajectories subject to the initial conditions x±(t0) — xlt £j(£0) = £x and
x2(t0) = x2, g2(t0) = £2 respectively. Then

(to<t$ T)

and |£i(*)-S»(0| f'
f'^(||aa(0-*8

Thus K(«)-*»(0||<^'(*),

where <9'(5) -> 0 as 5 -> 0.
Now define a stopping time T: MT(t0) x M2(t0) ->• ^ by T = r(y( •), z( •)), wherer is the

least time such tha t
(T,a;1(T),^(T)),p(T,a;2(T))^(T))) = 0.

If cr > 0 then r ^ M~xa and so for s < M~1cr we have, by Theorem 4-1,

by (14), since,

NOW Q
using (15). Then

using (16). Finally, for s < Jfcf-1^ we obtain

#(*o,*i,£i) < «.tr(«o,a:a.g8

By Theorem 4-1 again

W o > * i , £ i ) - W o , * 2 > £

and by symmetry letting s -> 0

and this equation is clearly also valid if we have cr = 0. Thus it follows that Q+ is
continuous in Br.
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Now let Cs(e) = {{x,E,)eBr: Q+(to,x,£)-Q+(to,x,£) > e},

and suppose (x0, £0) G n Gs(e) for some e > 0. If p{t0, x0, £0) > 0 then for small enough
8 > 0 and s > 0 we can find (xv £j) eC8(e) with

I
Then by (17)

&+(*o>*<»£o)
Letting S, s -> 0 we obtain

contradicting the definition of Q+. Using directly the definition of regularity (12), we can
also similarly exclude the possibility p(t0, x0, £0) = 0. Therefore f] Gs(e) = 0, and by

s>0

compactness 3 s > 0 such that Os(e) = 0 , and so Q+ -> Q+ uniformly on Br.

THEOREM 6-2. Let Gbea game of survival with optional stopping. Suppose F is Q+- and
Q- -regular and that the extended Isaacs condition holds. Then for any (t, x, £)

Q+(t,x,£) = V+(t,x,g) = V~{t,x,i) = Q-{t,x,£).

This generalizes the Theorems 6-4 and 8-1 of (3) combined. We omit the proof as a
similar argument is employed later in a more special case.

7. Restricted fuel games. A game of survival with optional stopping will be called a
restricted fuel game if

(i) F = {(t, x, £) t> T or £ > A} for some (A, T),
(ii) g is monotonically increasing in £ for each fixed (t, x),
(iii) E — [0, oo) (i.e. optional stopping is allowed at any time). We interpret such

games as allowing the minimizer Jz to stop at any time before this 'fuel' £ or time t is
exhausted.

LEMMA 7-1. If G is a restricted fuel game and if

lim Q-(t0, x0, £0) = g(t0, x0, £0)
8-*0

then (t0, x0, £0) is Q+- and Q~-regular.

Proof. For s > 0
QHt^^^git^i)

and so lim Q+(tQ, x0, £0) ^ g(t0, x0, £0),

and this combined with the hypothesis forces (12) and (13).

THEOREM 7-2. Suppose G is a restricted fuel game with Kh < oo in which

for (t, x, £) eF. Suppose also that the Isaacs condition is satisfied; then we have

forany(t0,x0,£0).
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Proof. Suppose

where d > 0; clearly (tf0, z0> g0) e [0, oo) x &tm+1 - F. Let £ft be a bound for | h | and Bf for
11/11 • We define inductively a sequence {(^, xTO, £„) n > 0} with <ra ^ T,£n ^ A. Suppose
(<n, ccTC, £n) has been determined; then we let

On t = £ra+1, Q+ is continuous and Qt -> Q+ uniformly on compacta (Theorem 6-1).
Arguing as in Lemma 5-4 we may show that

where T = tn+1. I t is easy to check further that Q+ is increasing in £ for fixed (i, x); for
identical controls with the initial conditions (I,x,|) and (I,x,\ + nj) induce trajectories
(x(t), £(£)) and (x(t), £>{t) + rj). The latter trajectory hits the terminal set earlier than the
former provided tj > 0, and

Thus we can quote Theorem 5-7, concerning the fixed time game given by
T = *»+i» f = 9

and terminal pay-off Q+. We deduce

Q+(tn,xn,£n; Q+) = Q-(tn,xn,£n; Q+).

Similarly Q~(tn,xn, £n; Q-) = Q~(tn,xn, in)
and so

Q~{tn,xn, gn; Q+)-Q~(tn,xn,in; Q~) = Q+{tn,xn, £n)-Q~(tn,xn, gn)

Therefore there exists a trajectory (x(t), £(<)) with
x{tn) = xn £ (U = in' *(*«+l) = Xn+U ZVn+l) = £n+l

and

Q+(tn+l> xn+l> L+l) - Q~(tn+1> Xn+V L+x) > Q+K xn, U ~ Q~{ln, xn, L) ~

Clearly |£n+1 - gn\ < Bh(tn+1 - tn) ^ \{A - U

so that E,n+1 ̂  A .
Hence we deduce

Q+(tn, xn, U - Q~(tn, xn, U > \d

for all n, and since tn ^ TV n,tn->ifor some I. Since also

II x xn\ < Bf

xn^-x and £n -*• £. Now

tn+1-tn = 2{1^B^min(A-£n,T-tn) ^ 0.

Hence either X = TOT£ — A.
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Now by the regularity of the boundary, condition (12),

g(t,x,l)= lim Qt(t,x,l)
s-M)

s—*0 n—>oo

> UmQ+(tn,xn,£n)

while g(i, x,l) = lim Qj(t, x, | )
8-*0

^ l im ]imQ-(tn,xn,£n)
s—>0 n-»-oo

and we deduce 6 < 0, contradicting our initial assumption.

8. Quasi-pursuit-evasion games. We now give some applications of the theory, which
we have developed in the preceding sections. We shall consider a differential game of
survival G with no optional stopping. The game has dynamics

dx , )

Tt=f{t'x'y'zn
x{t0) = x0

and pay-off

P= {hh(t,x(t),y(t),z(t))dt + y(tF)x(tF)), (19)

where F is the terminal set, and F :=> [T, oo) x 8%™ for some T. We introduce an extra
co-ordinate £ given by

dt ' (20)

S(*o) = 0

and then the pay-off may be given as

say.
^4» approximate strategy, A for J F (see (2)) is a sequence (an) of delay strategies

(i.e.ane (J Ts(t0)); a similar sequence B = (/?n) is an approximate strategy for Jz. Then

{A, B) induce a unique sequence (yn( •), zre( •)) in ifF(«0) x Mz(t0) such that

«nzn = Vn> PnVn = zn-

The pairs (yn,zn) induce trajectories (xn(t), £„(*)) and the sequence of trajectories
(xn( •), £n( •)) can be shown to be relatively compact in the Banach space of all ^m + 1-
valued trajectories on [t0, T\. We define P[A,B] to be the set of all pay-offs P(x( •),!(•))
corresponding to cluster points (x( •),!( ')) of this sequence. Here



280 N. J. KAI/TON

We then define the extended values

V+ = infsupsupP[^,5],
B A

V- = supinfinfP[4,JB]
A B

and we say that G has extended value if Vf = Vj.
G is called a generalized pursuit-evasion game if y = 0 and h ^ 0. It was shown in (2)

that under the extended Isaacs condition (7), that a generahzed pursuit-evasion game
has extended value. Later Friedman(n) improved this by requiring only the Isaacs
condition (8), although his formulation of extended value is different in general.

We shall say that G is a quasi-pursuit-evasion game if

h*(t, x) = max min h(t, x, y, z) ^ 0
and y = 0. y

LEMMA 8-1. Let Gx and G2 be differential games of survival with dynamics (18) and
pay-offs ctF

P 1 = \{t,x{t),y{t),z{t))dt,

rtF
P2 = h2(t,x(t),y(t),z(t))dt,

Jt,
where \hx{t,x,y,z)-lii,{t,x,y,z)\ ^ e
for all (t, x, y, z). Then , y+ _ y+, ^ £^T _ f^

Proof. Let A and B be any pair of approximate strategies inducing sequences of
trajectories (£„(•)>£»(')) a n d (xn(')> £»(')) respectively. Let (^(•)>I1(')) be a cluster
point of the former sequence; then there is a sequence (%ni.('),£kh(-)) -*• ( ^ ( O J ^ * ) )

uniformly. By selection of subsequence we may suppose £%k( •) -> |2( •) uniformly. Then

and so

Therefore
It follows that

s u p ^ 0
and by symmetry

I s u p P ^ . ^ - s u p P ^ . B ] ! < e(T-t0)

and the result follows quickly.
We now define the associated restricted fuel game of G, which for A ^ 0 we call (?*.

Let F% = {(t, x,£),£> Aort^ T}. Then G% has dynamics

J =/(*,*,*,,*),

*(«o)=«o.

(22)
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and pay-off P = min p{t,x{t)), (23)

where p(t, x) = dist [(t, x), F~\. This is clearly a restricted fuel game as in section 7. We
first apply Lemma 7-1.

LEMMA 8-2. / / G is a quasi-pursuit-evasion game in which

inf h*(t,x) = A> 0,

then in the associated restricted fuel game (?*, F^ is both Q+- and Q~-regular.

Proof. By Lemma 7-1, it is only necessary to show that

lim Q~(t, x, I) = g(t, x, g) = p{i, x)
s->0

for(t,x,£)eF*.
Suppose Bj and Bh are bounds for ||/|| and \h\, and let C be a bounded subset of

[0,T]x@m+1. By Theorem 5-1 of (3) there is a function r\: (0,oo) -> (0,oo) with
limTJ(S) = 0 such that whenever (t^x^gJeC and ^(^eJlfVCi) t n e n there exists

0s0

a e Tt (s\y) such t h a t for a n y (z( •)>£(*)) w i th

h(t,x(t),az(t),z(t)) > h*(t,x(t))-V(s) a.e.

for«j+s < ( < T. Then

[Uh{t,x(t),az{t),z{t))dt > A^-tJ-Tj^-B

If T = <j.«, then we deduce

A-^Z^T-tJ-T/W-B^
and therefore r —1± ^ A~x(A — £j + TJ(S) + Bh s).

Therefore for tx < t ̂  T

Clearly the value of a, u(a), in 6?* satisfies

and equally u(oc) ^ p{tJt x-^) — (
Therefore

Q7(h> xv Si) ^ P(h>xi)~(l + By) min (T —

Hence for (i, x, %) 6 int G n F*^

Q^(i,x,g) ^ p($,x) — {l+Bf)\-
1(Ti(8) + Bh8)

and therefore lim Qj(i, x, | ) > />(?, x)
S-M)

and this implies lim Qj(t, x, I) = p(i, x), as required.
8-.-0
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THEOREM 8-3. Let Gbe a quasi-pursuit-evasion game satisfying the Isaacs condition.
Then G has extended value.

Proof. Suppose first
izrfh*(t,z) = A > 0.

For A ^ 0, by Lemma 8-2, F£ to Q+- and ^--regular. Hence by Theorem 7-2 £* has
value F* say (i.e. Q+(G*) = V+(G%) = V~(G*) = Q~(GD). The map A ̂  F* is clearly
monotonically decreasing and so if

A0 = inf(A0F£ = 0)

then for A > Ao, F* = 0. Hence for e > 0, there is a delay strategy fin for Jz whose
value in (?* is less than 1/n. Let B = (fin) be the induced approximate strategy for
Jz in G, and let A = (an) be any approximate strategy for JY. Then (an,fln) induce
a sequence (£„(•)>£»(')) °f trajectories, such that for each n there exists tn with

IV

If (x( •), | ( •)) is any accumulation point of the sequence then for some I < T

p(x(t),l(t)) = 0.

The hitting time tF of (x( •), £( •)) satisfies

tp ^ t,

l(iF) ^ A0 + e.

Hence sup P[A, B~\ ^ Ao + e

and so Vf < Ao + e.

As e > 0 is arbitrary we conclude V} < Ao.
Conversely F^0_e = (J > 0, so that for some delay strategy a for Jr, the value^of a in

6r*0_e is at least £#. If A = (a) (i.e. the constant sequence a) then we may show easily
(cf. (2)) that for any B

] ^ A0 + e.

Hence Vj ^ Ao and so Vj = Vf = Ao.
Now suppose A = 0; for each e > 0 we may replace h by he = h + e to obtain a game

Ge in which the Isaacs condition still holds, and Vje = VftC. By Lemma 8-2 we obtain
that

for any e > 0.

9. General games of survival. We conclude with our main theorem on games of
survival, of which Theorem 8-3 is a special case.
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THEOREM 9-1. Suppose G is a differential game of survival given by (18) and (19)
satisfying the Isaacs condition and such that there is a ^-function xjr{t, x) such that

8t

and ijr = y on dF. Then G has extended value. (Equally the same result holds if

Li/r^O (t,x)e@m+l-F)
by symmetry.)

Proof. Let \ = -^- + Vi/r.f+h.

Then hx is continuous and
: °

S y
everywhere. However along any trajectory (x(t): t0 < t ^ T)

(hh1(t,x(t),y(t),z(t))dt= f'J' hdt + f{tF,x{tF))-ir{t0,xQ)

= P-f{to,xo)

by (19). Therefore except for the constant rjr(t0, x0), G is equivalent to a quasi-pursuit
evasion game given by (18) with pay-off P = (hj (t, x,y,z)dt.

Now . , , , . . (dtlr 7 . „ .. A
mm max (p./+ hx) = mm max I -^- + h + (p+ vyr) ./I

z y z y \ot }

Hence it follows that G has extended value by Theorem 8-3.
As pointed out in the introduction, the curious feature of this result is that the

existence of two functions <j> and r/r with L(j> > 0 > Ltfr on ^m+1 — F and <j> = i/r = y on
dF implies the existence of value, not just extended value. This result therefore fits the
idea of extended value into context as a first step towards the existence of value. In
a quasi-pursuit-evasion game the function \jr = 0 satisfies the hypotheses.
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