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1. Introduction. Suppose (en) is a basis of a Banach space E, and that (e'n) is the dual
sequence in E'. Then if (e'n) is a basis of E' in the norm topology (i.e. (en) is shrinking)
it follows that E' is norm separable: it is easy to give examples of spaces E for which
this is not so. Therefore there are plenty of spaces which cannot have a shrinking basis.
This leads one to consider whether it might not be reasonable to replace the norm
topology on E' by one which is always separable (provided E is separable). Of course,
the weak*-topology cr(E', E) is one possibility (Kothe (17), p. 259); then it is trivial that
(e'n) is a weak*-basis of E'. However, if the weak*-topology is separable, then so
is the Mackey topology T(E', E) on E', and so we may ask whether (e'n) is a basis of
(E',r(E',E)).

These observations lead us to define an almost shrinking basis (en) as one such that
(en) is a basis of E' in its Mackey topology. A number of questions naturally arise
concerning almost shrinking bases, and it is these questions which we investigate in
this paper. As a spin-off of this study, we obtain some interesting examples in the
theory of bases in locally convex spaces.

In section 2 we give some results concerning the structure of compact sets in the
Mackey dual of a Banach space; in particular, we show that if E' is norm separable,
then the Mackey topology and the norm topology define the same compact sets and
convergent sequences. In general, the Mackey topology restricted to compact sets is
the finest of all separable polar topologies on E'. Thus we obtain that if (e J is almost
shrinking, then (e'n) is a basis for E' in any separable polar topology.

In section 3 we switch to problems concerned with bases and give some alternative
conditions equivalent to the condition that (en) is almost shrinking (Theorem 1). We
then give conditions under which an almost shrinking basis is shrinking, and obtain
examples of locally convex spaces which are not Banach spaces, but such that every
Schauder basis is completely normal. We conclude the section by giving an example
of a locally convex space having no basis but having a weak Schauder basis, and an
example of a space with no almost shrinking basis.

In section 4 we give a result similar to the classical result of James relating re-
flexivity to the properties of a given basis (Theorem 3). This leads naturally to the
consideration of the problem: in which Banach spaces is every basis almost shrinking?
This is solved in Theorem 4, and as a consequence we find that the statement, ' every
weak Schauder basis of (E', r(E',E)) is a basis', can only occur when it reduces to
already known results (either T(E', E) has the same convergent sequences as its weak
topology or {E', T(E', E)) is a Banach space).
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2. Compact sets. We suppose that E is a Banach space. The results that follow could
be stated in more generality and most will hold for a locally convex space. We shall
say a subset K of E' is limited if whenever xn ~> 0 weakly then

lim sup|/(*B)| = 0 ,

(see Grothendieck(9), K6the(i6) and Webb(24)).
The topology on E' of uniform convergence on weakly null sequences will be denoted

byv.
We will denote by p the topology of uniform convergence on subsets of E which are

absolutely convex, bounded and weakly metrizable. It is clear that all such sets are
weakly precompact, and therefore have the property that every sequence contains a
Cauchy subsequence. Let us also point out that by an easy application of Grothen-
dieck's criterion ((7), (17), p. 269) for completeness (E',v), (E',T(E',E)) and (E',p)
are all complete; therefore precompact sets are relatively compact in these topologies.

PROPOSITION 1. Let Kbea subset ofE'; the following are equivalent:
(i) K is limited.
(ii) K is v-relatively compact.
(iii) K is Mackey relatively compact.
(iv) K is p-relatively compact.

If E is separable these are equivalent to:
(v) K is relatively compact in every topology y on E' such that (E', y) is separable and

y is (E, E') polar.

Proof. ( i )o (ii) is an exercise in Grothendieck(9), p. 286 (see also Webb(24)). Clearly
(iii) => (ii) and (iv) => (ii). Conversely (ii) => (iv) by Grothendieck's result(9), p. 286,
since we have observed that if A c E is/>-equicontinuous, then A has the property that
every sequence contains a weakly Cauchy sequence. Similarly (ii) => (iii) by an applica-
tion of Eberlein's theorem ((4), (17), p. 315), which asserts that a weakly compact set in
E is weakly sequentially compact and therefore has the same property.

If E is separable, then E' is weak*-separable (K6the(i7), p. 259), and hence Mackey
separable. Hence (v) => (iii). Conversely if y is (JE, jEJ')-polar and (Er, y) is separable,
it is easy to show that any y-equieontinuous subset of E is weakly metrizable and so
y < p so that (iv) => (v).

COROLLARY If E' is norm separable, then the Mackey topology r(E', E) and the norm
topology define the same compact sets and convergent sequences.

This Corollary has been observed in special cases before; for example, Garling(6),
p. 977 shows that (lv r(lx, c0)) has the same compact sets as the norm topology on lx.

We define the topology <r+ on E as the topology of uniform convergence on Mackey
compact subsets of E'. By Proposition 1 and Proposition 1-3 of Webb(24) we have

PROPOSITION 2. cr+ is the finest topology on E having the same convergent sequences as
the weak topology.

I t is perhaps worth pointing out that although tr+has the same convergent sequences
as o~(E, E'), it may define a different topology on the unit ball.
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PROPOSITION 3. cr+ and the weak topology define the same topology on the unit ball of E
if and only if every Mackey compact set in E' is norm compact. In particular this will be
the case if E' is norm separable.

Proof. See Webb(24), Proposition 2-10, {c)o{d).

3. Almost shrinking bases. Now let {en} be a Schauder basis of E; we will denote the
dual sequence in E' by {e'n} so that for x e E

The sequence {e'n} is a Schauder basis of (E', o~(E', E)); if it is also a basis of E' in the
norm topology we say that {en} is shrinking. We shall say that {en} is almost shrinking
if {e'n} is a basis for (E', T(E', E)). This definition is motivated by the fact that E' is
always Mackey separable although it may fail to be norm separable; furthermore
{e'n} is always a weak basis for (E',T(E',E)). Therefore in asking whether a basis is
almost shrinking we are asking the question of whether a weak Schauder basis of
(E', T(E', E)) is necessarily a Schauder basis.

The operators Pn on E are denned by

We recall that {ej (resp. {ê }) is an equi-Schauder basis of (E, y) (resp. (E', y)) if the
maps {Pn} (resp. {P^}) ar© equicontinuous.

THEOREM 1. Let Ebea Banach space with a basis {en}. Then the following conditions are
equivalent:

(i) {en} is almost shrinking.
(ii) Ifak->0 weakly and nk -> oo then Pn]cak -*• 0 weakly.
(iii) If ak^-a weakly and nk->ao then Pnk ak -*• a, weakly.
(iv) {en} is an equi-Schauder basis of (E, o~+).
(v) {ê } is an equi-Schauder basis of (E', T(E', E)).

Proof. We prove (i) => (ii) => (iii) => (v) => (i), and (v) => (iv) => (ii).
(i) => (ii) If ak -*• 0 weakly then {ak} is T(E', i?)-equicontinuous; hence for/eE'

uniformly in j . Therefore

fc-*oo k—>oo

= o,

(ii) => (iii) If ak->a weakly then ak~a^-0 and so Pnk(ak — a)-> 0. However,
Pn i« -> a and therefore Pnjtafc -> a.

(iii) => (v) Let W be a weakly compact subset of E; we will show that

n = l
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is relatively weakly compact. By Eberlein's Theorem, it is enough to show that P(W)
is relatively weakly sequentially compact. Let fkeP(W) be a sequence, so that
fk = Pnkwk,wke W; by selection of a subsequence we may suppose that wk -> w weakly.

If nk contains a bounded subsequence, then we may select a subsequence of {fk}
N

lying in the relatively compact (because finite-dimensional) set U Pn(W). Hence we
n=l

may assume nk -> oo and therefore Pnkwk -> w, so that P(W) is relatively weakly com-
pact.

This shows that the maps P'n are Mackey-equicontinuous and hence
P'J^f T(E',E)

on a Mackey closed subspace of E'. However, P'ne'k -> e'k r(E', E) and the {e'k} are funda-
mental in (E',T(E',E)); hence {e'k} is an equi-Schauder basis of (E',T(E',E)).

(v) => (i) Immediate.
(v) => (iv) Let K be Mackey compact; then as {P^} is equicontinuous it follows that

Pnf^-f uniformly in the Mackey topology on K. Now we quote Theorem 1 of (19) to

deduce that P'(K) = (J Pn(K) *s Mackey precompact and hence relatively compact.
n=l

Therefore the maps Pn are <r+-equicontinuous, and {en} is an equi-Schauder basis of
(E,a+).

(iv) => (ii) If ak -»• 0 weakly then ak -> 0 (<r+), and as {Pnk} is o^-equicontinuous
Pnkak^0(<r+).

Me Arthur and Retherford(i9) have shown that no basis of a Banach can be weakly
equi-Schauder (cf. (2)); Theorem 1 shows that almost shrinking bases are 'sequentially'
equi-Schauder in the weak topology (cf. conditions (ii) and (v)). At the same time,
every Schauder basis of (E', r(E', E)) is equi-Schauder ((i) implies (v)).

I t is also worth pointing out that if {en} is almost shrinking then {ê } is a Schauder
basis of E' in any (E, E') polar topology y such that (E', y) is separable (see Proposi-
tion 1).

We next consider the distinction between almost shrinking and shrinking bases.
We recall ((14)) that a sequence {en} in a locally convex space is normal if there exists a
sequence {ocn} of scalars and a neighbourhood V of 0 such that ocnxn $ V for all n, and
{ocnxn} is bounded ; a Schauder basis in which every block basic sequence is normal is
called completely normal. I t is shown in (14) that a Fre"chet space with a completely
normal basis is a Banach space.

THEOREM 2. Let {en} be an almost shrinking basis of a Banach space E. Then the follow-
ing are equivalent:

(i) E' is norm-separable;
(ii) {en} is shrinking;
(iii) {ê } is a completely normal basis of (E', T(E', E)).

Proof, (i) o (ii) By Proposition 1 and Corollary.
(ii) => (iii) Let (/„) be a block basic sequence with respect to e'n. Thus

Pn
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where p0 = 0 < px < p2..., and fn #= 0 for every n. We may choose an such that
lla»j/n|| = 1 f° r a ^ w! then the sequence (an/n) is T(E', jE7)-bounded.

Let ^ = lim{ep _1+1, ...,e^n} in .E', and define a linear functional xn such that
*»(«J») = 1 = foil-Then

We define dn on # ' by p

Thus (?»(/)=/(*»).

where ^71= 2 ^e

Now since {en} is a basis of E
sup||pn| |=Jfir<co

and sup ||P;|| = K.

Thus \6n(J)\ =

Hence ||*w|| = | |^| | < 2Z

and so {xn} is a bounded block basic sequence. We now quote Theorem 5-4 of (14) to
deduce that xn ->- 0 weakly, and hence that {#„} is T(E'', £)-equicontinuous. Let
^ = {/: \f(xn)\ ^h n = !»2,...}; then F is a T(£/', ̂ -neighbourhood of zero, and
(anfn) $ V f° r au* n- Therefore (/„) is normal, as required.

(iii) => (ii). Suppose {en} is not shrinking and suppose P'nf-\*f in norm in E'. Then
there is a sequence 0 = p0 < pt < p2..., such that if

gn= If /KK
then inf |gfn| = e > 0.

However, {gn} is T(E', E) -normal and so there is a sequence {an} of scalars such that
{angn} is bounded and there is an absolutely convex neighbourhood V of zero with
angn£V for all n. Then

so that sup |an | = a < oo.
n

Thus grn £ a-1 F. However, {ê } is a basis of ($', T(E', E)) and so Sgrn converges in T(E', E).
Hence we have reached a contradiction.

Theorem 2 enables us to give examples of locally convex spaces in which every
Schauder basis is completely normal, but which are not Banach spaces. For example
the space (lv T(Z1, C0)) has this property.
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PROPOSITION 4. An unconditional basis is always almost shrinking.

Proof. For feE'
f=2f(ei)e'i, o-(E',E)

and series converges subseries. Now by the Orlicz-Pettis Theorem (18).

We conclude this section by giving an example, a space with no almost shrinking
basis. Let C be the space of all continuous real functions on [0,1]; then C has a basis
(the original result of Schauder(20)). However, if fneC and fn->fT(C',C) then it
follows from results of Grothendieck ((8), Theoreme 2 combined with Proposition 1
above, or Edwards(5), p. 283 and p. 621), that/TC->/weakly in C. Therefore any basis
of (C, T(C, C)) would be a weak basis and therefore a basis of C in the norm topology;
however, C is inseparable. The space (C, T(C, C)) is therefore a locally convex space
with a weak Schauder basis but which has no basis; we believe that this is the first
such example. Previous examples have been given of separable locally convex spaces
without bases ((21), (22) and (12)) or of weak Schauder bases which fail to be bases
((l), (3)). I t should be noted that the space above is not 'to-separable' or 'sequentially
separable' (see (12) and (23) p. 210).

4. Properties of almost shrinking bases. A basis (en) of a Banach space E is called
y-complete or boundedly complete if whenever

N II
SUp 2 aiei\\ < °°,

then Saiei converges. I t is called ̂ -complete if whenever

is weakly Cauchy then Saf et converges. The classical theorem of James(io) states E is
reflexive if and only if (en) is both y-complete and shrinking; a modification of this
result(i3) states that E is reflexive if and only if (en) is both /?-complete and shrinking.
We now give a partial result of a similar type concerning almost shrinking bases.

THEOREM 3. Let (en) be a ^-complete almost shrinking basis of a Banach space E.
Then E is weakly sequentially complete.

Proof. By Theorem 1, (en) is an equi-Schauder basis of (E, a+). As (en) is/?-complete,
it follows that (en) is complete for (E, cr+) in the sense of (11); hence (E, cr+) is complete
and therefore E is weakly sequentially complete.

I t will be shown later that the converse of this result is false (i.e. there is a basis of a
weakly sequentially complete Banach space which is not almost shrinking). A question
naturally arises from Theorem 3: if E is weakly sequentially complete, is (E, <r+)
complete? A counterexample would yield a weakly sequentially complete Banach
space with no almost shrinking basis.

The results of James have led naturally to the study of spaces E in which every basis
is shrinking, or every basis is y-complete (25), or every basis is /?-complete(l5). In each
case a neat characterization of such spaces is obtained (in the first two cases E is
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reflexive, in the final case E is weakly sequentially complete). I t is natural therefore
to attempt to classify spaces in which every basis is almost shrinking.

THEOREM 4. Let E be a Banach space with a basis. Then the following are equivalent:
(i) Either E is reflexive, or the weak topology and the norm topology define the same

convergent sequences.
(ii) Every basis of E is almost shrinking.
(iii) Every basis of E is almost shrinking and ^-complete.

Proof, (i) => (iii) In either case E is weakly sequentially complete (since in the latter
case, a weakly Cauchy sequence must be norm convergent). Hence any basis of E
must be /^-complete. If E is reflexive, any basis is shrinking and therefore almost shrink-
ing. On the other hand, if weak sequential convergence coincides with norm sequential
convergence, then a+ is the norm topology and hence (iv) of Theorem 1 is satisfied for
any basis.

(iii) => (ii) Immediate.
(ii) => (i) Let (en) be a basis of E, and suppose that E contains a sequence xn -> 0

weakly such that || xn\\ ^ 1. Then by a standard' gliding hump' technique we may find
a subsequence (yn) of (xn) and a block basic sequence (zn) with \\yn — zn\\ -> 0 and

where \\zn\\ ^ £ and#0 = 0 < px < p2.... Then by Theorem 1, (ii), zn -*• 0 weakly.
Now suppose (en) is not shrinking: then there is a bounded block basic sequence

(wn) and f0 eE' such that fo{wn) = 1 for all n (see (14) Theorem 5-4). Thus we may select
a bounded block basic sequence (vn) of the form

vn= S etet
t = 3»-i + l

where q0 = 0 < qx < q2..., and such that (v2n) is a subsequence of (wn) and (vin+x) is a
subsequence of (zn).

Next we define u2n = v2n

W2n+1 = V2n+l~V2n>

so thatit2re,M2m+1elin (eg m i + 1 , ...eg2n+i) for?i= 1,2,.... We shall show that there is a
basis (tn) of E such that *92n+1 = ^n+i a n d ^2n+1-i = U2n- To do this, we quote Proposi-
tion 2 of (15), which is a modification of Zippin's Lemma(25). It must be shown that

infinf ||«2n+1 + cw2J = A > 0.
c n

Suppose on the contrary that A = 0; then since u2n and u2n+1 are linearly independent
for each n, we may deduce the existence of sequences nk -> oo and (cfc) such that

Now lim (/0(«2rei+1) + ckf0(u2nk)) = 0,
fe->-00

and therefore lim(cfc— 1) = 0.
fc->-CO

Hence lim||«2 +1+M2njfc|| = 0.
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A : - * to

contrary to construction. Hence there is a basis (tn) as required.

-¥• 0 weakly.
Hence if (tn) is almost shrinking

'*»«-* O w e a k l y -
However, tq!n+i = v2n

and /o(^2B+1) = ! f o r a11 n-

Again we have a contradiction, and we deduce that (en) is shrinking. Hence every basis
of E is shrinking and hence (25) E is reflexive.

We can now give the counter-example to the converse of Theorem 3. The space
L{0,1) is weakly sequentially complete, but by Theorem 4 must possess a basis which
is not almost shrinking. Another example is provided by the space lt®l2 in which
each component satisfies the conditions of Theorem 4, but the whole space does not;
this example has a basis which is unconditional and therefore /^-complete and almost
shrinking, but not every basis can be of this type. Another interpretation of Theorem 4
may be given as follows: it is shown that if every weak Schauder basis of (E', r{E', E))
is a Schauder basis, then either (E',T(E',E)) is a Banach space (E is reflexive) or,
T(E', E) defines the same convergent sequences as its weak topology cr(E', E) (it may be
easily shown that this is equivalent to the statement that a+ is the norm topology).
Thus (E',T(E',E)) can only have the property that every weak Schauder basis is a
basis if this is a consequence of already known results; there are no other spaces with
this property.
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