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1. Introduction. A decomposition of a topological vector space E is a sequence
(En)%=1 of non-trivial subspaces of E such that each x in E can be expressed uniquely in

the form x = Sj/j, where yi&Ei for each i. I t follows at once that a basis (a;n)™=1 of E
i=l

corresponds to the decomposition consisting of the one-dimensional subspaces
En = lin{£n}; the theory of bases can therefore be regarded as a special case of the
general theory of decompositions, and every property of a decomposition may be
naturally denned for a basis.

The decomposition (En)™=1 induces a sequence (Qn)n=i of projections denned by
00

Qnx = yn, where x = £ yi with yieEi. These projections are obviously orthogonal
i = \

(i.e. QnQm = 0 if n # m) and Qn(E) = En for each n; if, in addition, they are con-
tinuous, the decomposition is said to be a Schauder decomposition. For a basis
(xn)%=1 the projection Qn takes the form Qn(x) = fn(x) xn, where /„ is a linear functional
and Qn is continuous if and only if fn is continuous; it is known that every basis of an
jF-space or ilF-space is a Schauder basis (2). It is, in general, necessary to restrict
attention to Schauder decompositions, as non-Schauder decompositions are extremely
difficult to deal with.

In recent years, Schauder bases and, to a lesser extent, Schauder decompositions
of general locally convex spaces (rather than Banach spaces) have received some
attention (see, for example (1), (4), (9), (10)). However, little is as yet known about the
structure of bases in this more general setting, since attempts to generalize Banach
space arguments usually fail. Nevertheless, it is the purpose of this paper to establish
quite strong results about certain types of bases and decompositions familiar in the
Banach space theory, in particular shrinking and boundedly complete (or in the
terminology to be introduced later, y-complete) decompositions.

In section 2 certain elementary but necessary facts about Schauder decompositions
are established, and the concept of a simple Schauder decomposition is introduced.
A necessary and sufficient condition for the semi-renexivity of space with a Schauder
decomposition is obtained in section 3, extending slightly a theorem of Cook (3), who
generalized a theorem of James (7) to locally convex spaces.

In section 4 a sequence space technique due to Garling (6) is generalized for use in
Schauder decompositions. The duality of boundedly complete and shrinking decompo-
sitions is studied in section 5, and in section 6 further study is made of spaces with
boundedly complete decompositions.
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2. Basic results. Let E be a locally convex space, and let (En)™=1 be a Schauder
decomposition for E; then as observed in section 1 (En)™=1 induces a sequence (#n)™=i
of continuous projections on E satisfying:

(i) QnQm = O ( « i*n ) ,
CO

(ii) x = YiQnx for each xeE.
n=l

Conversely if (Qn)n=i *s a sequence of continuous projections on E satisfying condi-
tions (i) and (ii), it may be readily shown that (Qn(E))%=1 is a Schauder decomposition
for E with induced projections (Qn)™=1; it will be convenient to refer to such a sequence
of projections as a Schauder decomposition, and the preceding remarks show that this
is entirely consistent with the original definition.

Henceforth, if (Qn)%=1 is a Schauder decomposition of E then we shall always write

En = Qn(E) and Pn = JSG<-

The map Qn: E-*E has a dual map Qn denned on the algebraic dual E* of E, given
by (x,Q*fy = {Qnx,f} whenever xeE and feE*. The restriction of Q* to W, the
continuous dual of E, will be denoted by Q'n\ it can easily be shown that Q'n maps E'
into E' and is itself continuous for the topology cr(E', E). Also Q'n{E') can be identified
naturally with E'n under the correspondence Q'nf^f\En, where f\En denotes the
restriction of / to En.

UxeE and feW <x>/> = £ ^xJ) = £ <a;>Q,f>

so t h a t / = 2 Q'ifin the topology ofcr{E', E). Thus (Q4)«=i is a Schauder decomposition
i = \

of {#', cr(E', E)}\ it will be called the dual decomposition.
The following simple result is of fundamental importance:

PROPOSITION 2-1. Let E be a locally convex space with a Schauder decomposition
(Qn)n=i- Then the weak, Mackey and strong topologies onE induce respectively the weak,
Mackey and strong topologies on each En.

Qn In

Let /„ denote the inclusion map En-^E and consider the sequence E >En >E.
Each map is continuous for the original topology and hence for, in turn, the weak
topologies a{E,E') and <x{En,E'n), the Mackey topologies T(E,E') and r{En,E'n) and
the strong topologies fi(E,E') and f}{En,E'n). Considering the restriction of the first
map to En, the required result is obtained.

COBOLLABY. Let E be a locally convex space with a Schauder decomposition (Qn)n=i-
Then:

(i) / / E is barrelled, each En is barrelled.
(ii) / / E is semi-reflexive, each En is semi-reflexive.
Let T be the topology on E. If E is barrelled T = T(E, E') = fi(E, E'), and so by the

proposition j\En = r{En,E^) = fi{En, E'n). If E is semi-reflexive, the result is
obtained by using the dual decomposition (Q^); for T(E',E) = fi(E',E) and so
r{E'n,En) = p{E'n,En), since Q'n{E') = E'n.

The following two definitions are fairly standard:
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DEFINITION 2-2. A Schauder decomposition (Qn) is said to be equi-Schauder if the set
n

of maps Pn= YiQiis equicontinuous.

A Schauder decomposition (Qn) is said to be shrinking if (Q'n) is a Schauder decomposi-
tion for (E',0(E',E)).

In addition, it will be found necessary to introduce another definition, similar but
much weaker than that of a shrinking decomposition.

DEFINITION 2-3. A Schauder decomposition (Qn) is said to be simple if for eachfeE',
(P;/)^=1 is a /?(#', E) bounded set in W.

In general, it is true that (P^/)£=i is o~{E', i?)-bounded, but not necessarily fl{E', E)-
bounded. Suppose A is defined to be the space of all real-valued sequences (an) such that

< oo,

and (j) is the space of all sequences which are finitely non-zero; then <A, 0} forms a dual
pair of sequence spaces and if en is the sequence taking the value 1 in the nth place and
zero elsewhere, (en)%=1 is a Schauder basis for a(<p, A). Let /eA be the sequence
/(2n— 1) = n and/(2n) = — n, and let ane(j> be denned by

sup
n

271

t = l
< 0 0 and

1
S U P ~
n n

27!.+1

i = l

then the set (a27i)n=i is °"(̂ > ^) bounded. However, we have (a2n, -P2n-i/) = n> a n d so
(P;/)"=i is not 0(E', E) bounded.

In most cases of interest, however, a Schauder decomposition is simple as is shown
by the following proposition.

PROPOSITION 2-4. If (Qn) is a Schauder decomposition for E, then each of the following
conditions is sufficient to ensure that (Qn) is simple:

(i) T(E, E') is sequentially complete,
(ii) T(E', E) is sequentially complete,
(iii) (Qn) is equi-Schauder,
(iv) (Qn) is shrinking.
In cases (i) and (ii) the weakly and strongly bounded subsets of E' coincide, and as

remarked above (P'nf)n=i is always weakly bounded. In case (iii) (P^/)™=1 is equi-
continuous and so is strongly bounded; in case (iv) {P'nf)n=i is strongly convergent and
hence certainly bounded.

If H is defined as the subspace of E' given by

# = {/ ; /=l imP;/ in
7l-*-a>

then it is clear that [Q'n) is a Schauder decomposition for H in the topology fl(E',E),

and that if J = lin (J Q'n(E'), then J <= H c J (closure in the topology fi(E', E)). If,
7 1 = 1

however, (Qn) is simple, a much stronger result can be obtained; the following lemma,
of which the simple proof is omitted, is a necessary preliminary.
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LEMMA 2-5. Let (E,F) be a dual pair of vector spaces: suppose T is a collection of
cr(E', F)-continuous linear maps from E to E, such that for each xeE, the set {t(x);teT}
is fl{E, F)-bounded. Then T is fi(E, F) equicontinuous.

THEOREM 2-6. Let (Qn) be a simple Schauder decomposition for E: then H = J, and
(Qn) is an equi-Schauder decomposition for (H,ft(E',E)).

Since (Qn) is simple, for each/e E', (P^/)n=i is fi(E'> ®) bounded and so we can apply
Lemma 2-5 to obtain that (Pn)n=i is jl(E',E) equicontinuous; hence the set

= / in

is closed. Since J <= H <= J, the result follows at once.

COROLLARY. / / (Qn) is a shrinking Schauder decomposition for E, (Q'n) is an equi-
Schauder decomposition for (E', f}(E'', E)).

THEOREM 2-7. If E is quasi-barrelled, then if (Qn) is a simple Schauder decomposition
of E, (Qn) is equi-Schauder.

00

If A is an equicontinuous subset of W, the set P'{A) = (J Pn(A) is strongly bounded
n=l

in E', since the maps (Pn)n=i a r e equicontinuous in the strong topology on E' and A is
strongly bounded. Hence P'(A) is equicontinuous and as

f) P
n=l

(Qn) is equi-Schauder.
In this case the completion of E is barrelled and the simple Schauder decompositions

of E are precisely those which are decompositions of the completion of E.
3. Semi-reflexivity. I t is well known that a Banach space with a basis is reflexive

if and only if the basis is shrinking and boundedly complete; recently Cook(3) has
shown that this result remains true for decompositions in locally convex spaces
provided reflexivity is replaced by semi-reflexivity.

DEFINITION 3-1. Let (Qn) be a Schauder decomposition of E; then:

( m \ oo
£ xn J is a weakly bounded Gauchy sequence with

71 = 1 7 T O = 1

00

xneEn then 2 ocn converges (in the original topology on E).
71=1

/ m \ oo

(ii) Qn is y-complete if, whenever I 2 x
n I *s a bounded sequence with xneEn then

\n=l }m=l
oo

2 xn converges.
71 = 1

Definition (ii) is exactly that of boundedly complete decompositions (see (4)); how-
ever, the terminology is chosen because of the close connexion with concepts of /? and
y-duality of sequence spaces studied in (5). Both types of decompositions are' complete'
in the sense of (6).

THEOREM 3-2. Let Ebea locally convex space with a Schauder decomposition (Qn); the
following are equivalent:
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(i) E is semi-reflexive.
(ii) (Qn) is y-complete and shrinking, and each En is semi-reflexive.
(iii) (Qn) is ^-complete and shrinking, and each En is semi-reflexive.
The equivalence of (i) and (ii) has been shown by Cook (3); as (ii) obviously implies

(iii), we show that (iii) implies (i). Suppose that ^ is a strongly continuous linear
functional on E'; as (Qn) is shrinking

/ = £ « / in fi{E',E)
i = l

and £
1 = 1

Define Vn: E'n-*E' by <x, FJ) = (Qnx,f).

Then Tn is weakly continuous and hence strongly continuous; thus/-*- (j(, F n / ) is
a continuous linear functional on {E'n,fi(E'n, En)}. As E'n is semi-reflexive, there exists

Now let feE' and \e\,fnsE'n be its restriction to En\ then:

and so <#,/> = 2 <*«>/>•
n=l

Hence I S xn I is weakly Cauchy, and so there exists x with
\n=l /m=l

oo
* = S Xn,

n=\

CO

hence <x,/> = S <^n,/>

n=l

= <*,/>

and so xe^'> * n u s -̂  ^s semi-reflexive.
COROLLARY, ie i E be a Mackey space (i.e. the topology on E is the Mackey topology

r(E, E')) with a Schavder decomposition (Qn). Then E is barrelled, if and only if:
(i) Each En is barrelled.
(ii) (Qn) is a Schavder decomposition for E in the strong topology fl(E, E').
(iii) (Q'n) is ^-complete (or y-complete) for (E', cr(E',E)).
4. The ay-topology and B-invariance. In order to study y-complete decomposition

in detail in section 5, it is now necessary to introduce several concepts first studied by
Garling (5,6) in sequence spaces; as many of the results of this section are simple
generalizations of results of Garling, their proofs may be omitted or condensed.

CO

We recall that the sequence space cs of all sequences (at), such that 2 a i converges,
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is a Banach space under the norm

|| a | = sup
n

and that its dual may be identified with the sequence space bv of all sequences (a )̂ of
'bounded variation', such that

00

the dual norm on bv is given by

00

71—>CO 1 = 1

We shall let B be the closed unit ball of bv, and Bo be the subset of B consisting of
all a such that lim <*„ = 0.

n—>-oo

Suppose now that i? is a locally convex space with a Schauder decomposition (Qn);
we define EP to be the subspace of the algebraic dual E* consisting of allfeE* such

that (i) QtfeQ'n{E') for each n, (ii) <z,/> = £ «^z , /> whenever xeE.

I t is an immediate consequence of the definition that E' <= E& <= E*, and (QTC) is
a Schauder decomposition for E in the topology cr(E,EP). I t can also be seen that
{Q'n) is a /^-complete decomposition for {E', <x(E', E)) if and only if W = E$.

If feE and xsE then the sequence (<^na;,/»"=i belongs to cs; and so if
CO

feeB, 2 6t<Qj^)/) converges whenever / e S and xeE. Thus we define an action of
i = l

B on E by /->& •/, where

If (r is a subspace of £?, we define

B{G) = (b.g;beB and geG) and .B0(G) = (fe.gr; 6e.B0 and

and let B*(G) = Un5(G) and B%(Q) = linJ?0(G().

A subspace GoiE is, said to be jB-invariant if G = B(G) (and hence G = B*(G)); since
B*(G) = lin (B0(G) U G) always, this is equivalent to B0(G) <= G. I t is obvious at once
that EP is 5-invariant.

In Lemmas 4-1-4-3 the sequence (yn) in E will be of the form

n
Vn= 2 ^t With XiGEi.

i = l

LEMMA 4-1. Le< (Qre) fee a Schauder decomposition for E, and suppose J <= (? <= 2?A;
<Ae% (Qn) ts a Schauder decomposition for {E, a(E, G)} and (yn) is convergent in the
topology <x{E, G) if and only if it is convergent in the original topology.

The simple proof is omitted.

LEMMA 4-2. Under the same hypotheses as Lemma 4-1, the following statements are
equivalent:
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(i) (yn) is a(E, G) bounded.
(ii) (yn) is a(E, B$(G)) bounded.
(iii) (yn) is a(E,B*(G)) Cauchy.
That (iii) implies (ii) is clear; the proof is completed by showing that (ii) implies (i)

and (i) implies (iii). Suppose {yn) is cr(E, G) unbounded; then a subsequence (yn.) may
be chosen such that for some g e G

\<2/nj,g>\ ^

Letting bt = 2~' when ni_1 +1 ^ i ^ n^ (bt) e Bo and it is easily seen that

\(ynj,b.g)\ > 2*.

so that (yn) is o~(E, B^(G)) unbounded.
Now suppose that (yn) is a(E,G) bounded, and let gsG and beB0. If » ^ TO

n

2 b
i=m+l

> 9)+fe«+i<2/n> 9)+K

p | < 2 3 > | ( \ + \ \n+\ \ +
j \i—m+l

->-0 as n,m^-oo.

This completes the proof of Lemma 4-2. An immediate consequence of this and
Lemma 4-1 is that (Qn) is a y-complete decomposition for cr(E,B*(G)) if and only if
it is a y-complete decomposition for a(E, G). However, in this paper we shall only use
the corresponding results for B*{G), which are consequences of the following lemma.

LEMMA 4-3. Under the same hypotheses as Lemma 4-1 (yn) is convergent (resp. Cauchy :
resp. bounded) for the topology <r(E, B*(G)) if and only if (yn) is convergent (resp. Cauchy :
resp. bounded) for the topology a(E, G).

The equivalence of convergence follows from Lemma 4-1, while the other two cases
are immediate consequences of Lemma 4-2 and the fact that B*(G) = lin (G U B%((?)).
From this we obtain at once the next proposition which will be very useful in section 5.

PROPOSITION4-4. / / (Qn) is a Schauder decomposition for E and J <= G <=• E& then
(Qn) is ^-complete (resp. y-complete) for a(E, G) if and only if it is ^-complete (resp.
y-complete) for cr(E,B*(G)).

Since/ = Km P^/in the topology a(E',E) the set P(f) = (P;/)™=1 is weakly bounded
n-*<o

for e&chfeE', and so we can define an {E,E'y polar topology ay(E,E') of uniform
convergence on the sets (P(f),feE'); the notation is derived from (5). This topology
for E may also be considered as given by the collection of semi-norms (pf;feE'),
wherept(x) = sup \{Pnz,f}\. Although cr(E,E') is not a 'natural' topology on E, for
it depends on the decomposition (Qn), its properties are extremely useful; the
remainder of this section is devoted to its study.

25 F S P 68
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PROPOSITION 4-5. cry(E,E') is the minimal (E,E") polar topology for which (Qn) is
an equi-Schauder decomposition.

Suppose xeE, andfeE'; then

Pf(x-Pmx) = sup \(Pnx-Pmx,f)\

and so lim Pm x = x

in cry(E,E'). Also pf(Pmx) < pf(x) for each m,xeE andfeE'; and so (Qn) is an equi-
Schauder decomposition for cry(E, E').

Conversely suppose T is an (E, E'} polar topology for which (Qn) is an equi-Schauder
decomposition. Then if feE', f is r-continuous and so pf{x) = sup \(Pnx,f)\ is

n
r-continuous, i.e. r ^ o~y(E,E').

COROLLARY. ay{E,E') is complete (resp. sequentially complete: resp. quasi-complete)
if and only if:

(i) (Qn) if y-complete for the original topology.
(ii) Each En is weakly complete {resp. weakly sequentially complete: resp. weakly

quasi-complete or semi-reflexive).
This is a direct application of the main theorem of (8) and the fact that if xteEt

In \ co

the sequence ( 2 ^ 1 is cr(E, E') Cauchy if and only if it is cry(E, E') Cauchy.

PROPOSITION 4-6. The dual of (E, ay(E, E')) is B*(E').
. HfeE', define Tt: E^cs by (Tf(x))n = (Qnx,f). Then lTfxla = pt(z), and so T, is
o~y{E,E') continuous. Hence if beB the Hnear functional x->(2}(a;),6) = (x,b./) is
continuous, and so B*(E') is contained in the dual of (E,ay(E,E')).

Conversely let <j>e(E,ary{E,E'))' be such that \<j>{x)\ < p,{x) for all xeE. Then if
Tf(x) = 0, (x, <j>) = 0 and so we may define a linear functional ft on Tt{E) by

and

Using the Hahn—Banach theorem ifr may be extended to a linear functional b on cs
such that |6||6c < 1, i.e. beB.

Thus (x,<j>)= (Tfx,b)

i.e. (fieB(E'), and the result follows.

COROLLARY. The following are equivalent:
(i) E' is B-invariant.

( l l ) JtjrxijUJ ) ^ Ml .

(iii) o-y(E, E') is an (E, E') dual topology.
(iv) There exists an (E,E'~) dual topology T such that (Qn) is an equi-Schauder

decomposition for (E,T).

(v) For eachf,P(f) is equicontinuous for the Mackey topology T(E,E').
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That (i) and (ii) are equivalent has already been observed, and Proposition 4-6
shows that (i) and (iii) are equivalent; (v) and (iii) are obviously equivalent. Condi-
tion (iii) implies (iv) by letting T = cry{E, E'); and (iv) implies (iii) since cry(E, E') ^ T
by Proposition 4-5.

We recall that (Qn) is simple if P(f) is strongly bounded for each/; it follows that,
if E' is S-invariant then certainly (Qn) is simple; and the converse holds if E is quasi-
barrelled or E' is strongly sequentially complete (this last follows by using condition (ii)
of the corollary).

DEFINITION 4-7. (Qn) is B-simple if E' is B-invariant.
To conclude this section, we consider the bounded sets of E in the topology cry(E, E');

in this respect we find an interesting criterion for (Qn) to be simple (Proposition 4-8).
Theorem 4-9 is essentially theorem 10 of (5) translated into a new setting.

PROPOSITION 4-8. (Qn) is simple if and only if <r(E,E') and ay(E,E') define the
same bounded sets.

P(f) is strongly bounded if and only if for every cr(E, E') bounded set A

sup sup|<a,P^/>| < co,
aeA n

i.e. sup Pf(a) < co,
aeA

and the result follows.

THEOREM 4-9. Suppose that (Qn) is a ^-complete Schauder decomposition for E such
n

that each En is weakly sequentially complete. Let fiGQ'^E') and gn = S / i / suppose
i=l

(9n)%=i is <T{E',E)-bounded; for every ay(E,E')-bounded set A:
sup sup|<a,grm>| < co.

n aeA

The conditions that (Qn) is /^-complete and each En is weakly sequentially complete
imply, using the Corollary to Proposition 4-5, that ay(E,E) is sequentially complete.
The method is then precisely that of (5) theorem 10 and is omitted.

COROLLARY. Under the hypotheses of Theorem 4-8, cry(E,E') and a(E,EP) define the
same bounded sets.

If feEP then {P$f)n=x is a a(E',E) Cauchy sequence, and is therefore a{E',E)-
bounded. Hence if A is cry(E, 2?')-bounded using Theorem 4-8

sup sup | <a,P*/> | < co
n aeA

and so sup|<a,/>| < oo since feEP,
aeA

i.e. A is a(E, i^)-bounded.

5. Shrinking and y-complete decompositions. Let (xn) be a Schauder basis for E, and
(/„) the dual sequence in E'; as before, let H be the set of all feE' such that P^f-^f
in the topology fi(E', E), with the relativized topology. Then if E is a Banach space,
each of the following statements is true (see (7) and (11)):

25-2
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(I) If (xn) is y-complete, then H' is naturally isomorphic to E (loosely, H' = E).
(II) If (xn) is y-complete, (fn) is a shrinking basis for H.
(III) If (/„) is a shrinking basis for H, (xn) is y-complete.
(IV) If (xn) is shrinking, (/„) is a y-complete basis for E'.
(V) If (/„) is a y-complete basis for H, then (xn) is shrinking (i.e. H = E').

The problem therefore naturally arises: under what circumstances can we generalize
these results to locally convex spaces ? This problem has been considered by Dubinsky
and Retherford (4), who produce counter-examples to show that, in general, (II), (III)
and (IV) fail to hold; and it may be noted that each of their examples is a simple basis.
We shall show, however, that (I) and (V) hold for simple bases, and (III) holds if E is
sequentially complete; we shall also derive a necessary and sufficient condition for (II)
to hold when E is sequentially complete.

Since this work generalizes without difficulty to Schauder decompositions, all the
results are obtained in this form; usually it is necessary to assume that each En is
semi-reflexive.

LEMMA 5-1. / / (Qn) is a simple Schauder decomposition for E and feB0(E') then
(P%f )n-i is a /3(E', E) Cauchy sequence.

Since feB0(E'), l e t / = b.g where beB0 and geE'; letp be any fi(E',E) continuous
semi-norm on E'. Suppose m ~& n > 1.

S Qtf)=p( S biQi
i=n+l I \i=»+l

( m
S (bi-

i=n+l

( m
S h-h+i\ +

i=n+l I k

-*• 0 as m, n -> oo,

since (Qn) is simple; and so -P*/is a Cauchy sequence as required.

COROLLARY. / / (Qn) is B-simple then H is B-invariant.
IffeB0(E') then by the lemma P'J-^f in the strong topology fi(E',E). Hence

B0(E') <= H, and so B0(H) <= H; thus H is ^-invariant.
With the aid of Lemma 5-1, (I) may now be investigated; Theorem 5-2 gives

necessary and sufficient conditions for (I) to hold.

THEOREM 5-2. Let (Qn) be a Schauder decomposition for E. Then H' = E if and only
if (Qn) is y-complete and simple, and each En is semi-reflexive.

First we suppose H' = E; let ^ be a continuous linear functional on (E'n,f5(E'n, En)).
We define a linear functional v on E' by (i/,f) = Ct>/) where/is the restriction of

/ t o En; there exists a bounded subset A of En such that whenever

| |
aeA

and since A is a bounded subset of E with

aeA
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whenever/e 2?', 77 isa,fi(E', E) continuous linear functional on E'. By assumption there
exists yeE such that whenever/eZ7, <«/,/> = (jl,f}- Suppose <j>eE'n; define Tn<f>eE'
by (x, Tn$) = (Qnx, <j>y whenever xeE. Thus we have

= <ji,4>) for all <j>eE'n.
Thus En is semi-reflexive.

Now let feE', and let P(f) = {P^f)%=1; we wish to show that P(f) is ft(E',E)-
bounded.WehaveP(/) <= H,andH' = E is the topology fi(E\ E); but P(f) is certainly
o-(#, 2?)-bounded, and so it is ft(E', ̂ -bounded.

Finally let xneEn be any sequence such that

( n \<x>

i=l /n=l

is bounded. Then the set I S xi I is an equicontinuous collection of linear functional
\f=i /

00

on (E',P{E',E)); and so the set of feE' such that 2 (x
n>f} converges, is a closed

7 1 = 1

00

subspace, and includes each Q^(E'). Thus for each feH, £ (xn,f) converges and is
n=l

a continuous functional on H; by assumption there exists xeE such that

«=i

for ea,ch feH. If feE', Q'JeH and so <x, Q;/> = <*„,/>; thus «n = Qna; and

t=l i=l

converges.
For the converse, we use Lemma 5-1; suppose that (Qn) is y-complete and simple

with each En semi-reflexive. Certainly E<^H'; now suppose xe^'- The map
Fn: E'n-*E' used in the earlier part of the proof is weakly and hence also strongly
continuous and maps E' into Q'n(E')\ and so if 4>eE'n, <#, Tn<j>) is strongly continuous
linear functional on E'n. Thus there exists xneEn such that <xn, <j>) = (x> I\i0> for all
<f>eE'n. If feE' and/n is its restriction to En,

<*»./> = <*«./»> = <x.r»/B>,
where (x, VJn) = (Qnx,f) = <x,g;/>
for each xeE; thus <zn,/> = (x, Q'J).

n <o
Now let beB0; then 2 bt Qif is a Cauchy sequence, and so 2 6f (%, Qif) converges

i l lt=l
n n

for each/ei/'. Hence 2 <#, Q /̂> is a bounded sequence for each feE', and so 2 <xf,/>
t=i i=i

is a bounded sequence. Therefore I 2 xi) *a a bounded sequence, and since (Qn) is
\t=i /

00

y-complete, there exists xeE such that x = 2 t̂-
t=i
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Then <*,/> = 5 <*„/> = S <X, 0i/> = <*,/>,

and so # ' = E.
We now consider statements (II) and (III); it is clearly necessary to consider the

strong dual of H. We observe first that Qn(H') may be identified with En, when En is
semi-reflexive; for let # e i / ' be such that Q'nX = X> then for <peE^ the map
<p-> (%, Vn<j)} is strongly continuous, where Tn is the map used above. Thus since En

is semi-reflexive, there exists xeEn such that whenever <f>eE'n> (j(,Tn<j)) = (x,<j>);
hence i f / e # , <*,/> = <C^ . /> = <X, &/> = <X. rB/B> = <*,/>, where /„ is the restric-
tion of/ to # n . Thus Q'n(H') = En is a natural sense.

PROPOSITION 5-3. Let (Qn) be a simple Schauder decomposition of E. Then on E,
fi(H'', H) coincides with the topology of uniform convergence on the strongly bounded
subsets of E'.

Clearly fi(H', H) is weaker than the topology of uniform convergence on the strongly
CO

bounded subsets of E'. Now suppose A is strongly bounded; then P'(A) = (J Pn(A)
n=i

is also strongly bounded, as the maps (P^) are equicontinuous. Thus P'{A) c H is
/?(#', H)-equicontinuous, and [P'(A)]° c A0, so that A0 is a /?(#', J?)-neighbourhood
of zero.

COROLLABY 1. If E is sequentially complete and (Qn) is a simple Schauder decomposition
with each En semi-reflexive such that (Q'^) is shrinking for H, then H' = E and (Qn) is
a strong decomposition of E.

By Proposition 5-3, the topology /?(#', H) coincides with the topology fi(E, E') on E,
as E is sequentially complete. As stated before Proposition 5-3, (Q'^) is a decomposition
of H' into subspaces which can be identified with (En)%=1. For X£H> (P'nX) is a

ft(H',H)-Ca,uchy sequence in E; hence P'^x converges in E and xe^- Thus H' = E
and the result follows.

COROLLABY 2. Under the hypotheses of Corollary 1, (Qn) is a y -complete decomposition
of E (see (III)).

Proof by Theorem 5-2 and Corollary 1.
I t will be seen that Corollary 2 provides an affirmative answer for (III) if E is

sequentially complete and (Qn) is simple, while Corollary 1 shows that it is unlikely
that under the same conditions we can obtain (II) unless E is barrelled. If E is barrelled
then we do not need sequential completeness, for we have the following result, proved
for bases in (4):

COROLLABY 3. / / E is barrelled and (Qn) is a y-complete Schauder decomposition of E
with each En semi-reflexive [and so reflexive), then (Q^) is shrinking for H.

Any Schauder decomposition of E is equi-Schauder and hence simple (Proposi-
tion 2-4); hence by Theorem 5-2 H' = E, and by Proposition 5-3 fi(H', H) is the original
topology on E.

To conclude this section we consider statements (IV) and (V); Proposition 5-4 is
simply a generalization of a result of Dubinsky and Retherford(4), and so the proof
is omitted.
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PROPOSITION 5-4. If E is a locally convex space such that every strongly bounded
sequence in E' is equicontinuous and (Qn) is a shrinking Schauder decomposition, then
(Q'n) is a y-complete Schauder decomposition for E' in its strong topology.

Finally we prove (V) for simple decompositions.

PROPOSITION 5-5. If (Qn) is a simple Schauder decomposition of E and (Qn) is a
y-complete decomposition of H, then (Qn) is shrinking (i.e. H = E').

If feE' then I £ Q'if) is a strongly bounded sequence in H, and so 2 Q\f

converges; hence feH.

6. The structure of H. In this section we obtain various results concerning H
particularly when (Qn) is a y-complete decomposition of E; in particular sufficient
conditions for H to be barrelled are derived. We shall also relate, in general, the
structure of E', to the structure of the space B*(E') defined in section 4.

THEOREM 6-1. / / (Qn) is simple with each En semi-reflexive then H is quasi-barrelled.
In this case (Q1^) is a decomposition of H' into the sub-spaces En. Suppose A cz H'

is P(H'', i7)-bounded; then as (Qn) is an equi-Schauder decomposition of H, and is thus

simple, (Ql) is equi-Schauder on {H',fl(H',H)) and so P"(A) = U P'n(A) is fi(H',H)-
• r a = l

bounded in E. Therefore, P"(A) is bounded in E by Proposition 5-3, and

and the result follows.
LEMMA 6-2. / / (Qn) is a B-simple Schauder decomposition of E with each En semi-

reflexive, then on H, fi(E',E) = fi(H,E) = J3(H,H'), and so H is barrelled.
Let L = B*(E') <= E'\ then (Qn) is a Schauder decomposition of (L, cr(L, E)) and we

may identify the space LP (see section 4) with respect to this decomposition, and E may
be considered as a subspace of V. The dual decomposition (Qn) of (L$, o~(LP, L)) is
a /^-complete Schauder decomposition of L? into the subspaces En.

Suppose A is o-(LP, i)-bounded in L& andfeE'; then if beB0,

sup |<a,b.f)| < co,
aeA

and so, using the Principle of Uniform Boundedness on the space bv0,

sup|<a,P; /> |<co
n

so that sup |<P^a,/>| < oo
71

and P"(A) = U P'n(A) is a o-(-E,.g;')-bounded subset of E. Clearly

and so A is fi(E, E')-equicontinuous on L. Hence on L, fi(E, E') > fi(L, U) Ss P(L, U),
where L' is the dual of L in the topology fi(E, E'). Hence L is barrelled, and as H = L,
H is barrelled and on H fi(E', E) = /?(#, H') > fi(H, E) Z fi(E', E).
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THEOREM 6-3. / / E is barrelled and (Qn) is a Schavder decomposition ofE into reflexive
subspaces then H is barrelled.

(Qn) is equi-Schauder and hence 5-simple by Proposition 4-6 and Corollary.
In the general case when (Qn) is not jB-simple, it is convenient to consider B*(E')

instead of ffl; this is explained by the next lemma.

LEMMA 6-4. Let (Qn) be a Schauder decomposition for E.
(i) On E', T(B*(E'), E) = T(E', E).

(ii) If (Qn) is simple, ft(B*{E'), E) = fi(E', E) on W.
If feE', beB0 and p is a r{E',E) continuous semi-norm on E', then, by a similar

method to that in Lemma 4-2,

\i=mm+l I i \i=m+l

and so if F is a completion of (E', T(E', E)), then we may identify B*{E') as a subspace
of F. Thus we have E>

The inclusion maps are continuous for the weak topologies a(E',E), a(B*(E'),E)
and o-(F, E), and hence also for the corresponding Mackey topologies. Thus on E'

T(E',E) > T(B*(E'),E) SS T(F,E).

However, (F, T) is a completion of {E', T(E', E)} for some locally convex T; hence
(F,T)' = (E',T(E',E))' = E, and so r ^ T(F,E). Hence on E'\

T = T{F,E) = T(B*(E'),E) = T(E',E).

If (Qn) is simple, by Proposition 4-8 a(E, E') and o-y(E, E') define the same bounded
sets; and by Proposition 4-6 o-(E,E') and cr(E,B*(E')) define the same bounded sets.
Hence on E', p(B*(E'),E) = /3{E',E).

THEOREM 6-5. Let (Qn) be a Schavder decomposition for E, such that each En is weakly
sequentially complete. Then the following are equivalent :

(i) B*(E') is T(B*(E'), E) barrelled.
(ii) T(E', E) is quasi-barrelled and (Qn) is ^-complete.
(iii) T{E', E) is quasi-barrelled and (Qn) is y-complete.
I t is obvious that (iii) implies (ii); suppose then (ii) holds and A is a(E,B*(E'))-

bounded. Then A is cry(E, 2?')-kounded; by the Corollary to Proposition 4-5, o-y(E, E')
is sequentially complete, and so defines the same bounded sets as fi(E, E'). Thus A is
ft{E, 2?')-bounded, and by assumption T(E',E) equicontinuous; hence by Lemma 6-4
A is T(B*(E'),E) equicontinuous, and so B*(E') is barrelled.

Now suppose (i) holds, and that A isfi(E, E')-bounded. Then A is cr(E, ̂ ')-bounded,
hence o-(E, B*(E'))-bounded, and so T(B*(E'), E) equicontinuous. Thus by Lemma 6-4
A is T{E',E) equicontinuous, and so E' is T(E',E) quasi-barrelled. Also (Qn) is
y-complete for (E,T{E,B*(E')) by Theorem 3-1, and by Proposition 4-4 y-complete
for E in the original topology.

This theorem gives another characterization of semi-reflexivity.
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THEOREM 6-6. E is semi-reflexive if and only if:
(i) (Qn) is simple and ^-complete.
(ii) E' is T{E', E) quasi-barrelled.
(iii) Each En is weakly sequentially complete.
If (i), (ii) and (iii) hold, then by Theorem 6-5 B*(E') is T(B*(E'), #)-barrelled, and

so by Lemma 6-4, on E'

T(E',E) = T(B*(E'),E) = /3(B*(E'),E) =

In the final theorem we obtain two necessary and sufficient conditions for H to be
barrelled, when (Qn) is y-complete and simple.

THEOREM 6-7. Let (Qn) be a Schauder decomposition for E, with each En semi-reflexive.
The following are equivalent:

(i) (Qn) is y-complete simple and H is barrelled.
(ii) (Qn) is ^-complete simple for (E, o~(E, H)).
(iii) cr(E, H) is sequentially complete.
If (i) holds, then by Theorem 5-2 H' = E, and so (E, a(E, H)) is semi-reflexive. Thus

o-(E, H) is quasi-complete and so (i) implies (iii).
If a{E, H) is sequentially complete, then (Qn) is /?-complete for (E, cr(E, H)) and,

since cr(H, E) and o-y(H, E) then define the same bounded sets, also simple. Hence
(iii) implies (ii).

Tixi) is o~(E,E') -bounded; then for
i= l /m=l

feH,f=]im P'Jin a(E', E) and so

lim sup
>oo n

= 0

hence lim sup
m-*oo n>m

S <**/>
i=m+l

/ n \ co oo
andsol J^xA is <r(^,^)-Cauchy; thus there exists a; 6^ , withQfx = x^anda; = S^i-

\i = l )n=\ i=l

(Qn) is therefore y-complete. Since (Qn) is simple for o-(E, H), o~{E, H) and o"y(E, H)
define the same bounded sets; hence by Theorem 4-9 so do o~(E,H) and o~(E,EP).
Hence, cr(E,E') and ay(E,E') define the same bounded sets. By Proposition 4-8
(Qn) is simple for the original topology on E.

We have therefore (Qn) y-complete and simple, and so by Theorem 6-1 H is quasi-
barrelled and H' = E; thus H is T(H, E) quasi-barrelled. Hence we can apply Theorem
6-6 to {E, o~(E, H)) to obtain that H is barrelled. Thus (ii) implies (i).

This result is quite surprising as the condition that cr(E, H) is sequentially complete
is apparently mild. It shows that in theorem 1-8, page 273 of (4), the condition' (/") is
shrinking' is irrelevant, and so the theorem does not show the intended duality
between shrinking and boundedly complete bases.

I would like to express my thanks to my research supervisor, Dr D. J. H. Garling,
for his help and encouragement during this research.
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