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RADEMACHER BOUNDED FAMILIES OF OPERATORS ON L1

N. J. KALTON AND T. KUCHERENKO

(Communicated by N. Tomczak-Jaegermann)

Abstract. We give a characterization of R-bounded families of operators on
L1. We then use this result to study sectorial operators on L1. We show that
if A is an R-sectorial operator on L1, then, for any ε > 0, there is an invertible
operator U : L1 → L1 with ‖U − I‖ < ε such that for some strictly positive
Borel function w, U(D(A)) contains the weighted L1-space L1(w).

1. Introduction

Let us recall that a closed operator A on a Banach space X is called sectorial
with sectoriality angle ω if

• The domain D(A) and range R(A) are dense
• A is one-to-one
• The spectrum σ(A) is contained in a closed sector Σω = {ζ ∈ C : | arg ζ| ≤

ω}
• For any ω < φ < π there is a constant Cφ such that the resolvent R(ζ, A)

satisfies the estimate

‖ζR(ζ, A)‖ ≤ Cφ, | arg(ζ)| ≥ φ.

Note that the definition does not require A to be invertible. If ω < π
2 , then the

operator −A generates a bounded analytic semigroup, Tt = e−tA. Conversely if −A
is the generator of a bounded analytic semigroup, then A is sectorial with ω < π/2,
provided it is one-one. For further discussion on sectorial operators see [2].

In applications involving Lp-maximal regularity of the abstract Cauchy problem
or, more generally, the joint functional calculus of two commuting sectorial opera-
tors it is often important to know that a sectorial operator satisfies a stronger form
of sectoriality, which we now introduce (see [8] and [11]).

We recall here that a collection of operators T on a Banach space X is called
R-bounded if there is a constant C so that

(E‖
n∑

j=1

εjTjxj‖2)
1
2 ≤ C(E‖

n∑
j=1

εjxj‖2)
1
2 , x1, . . . , xn ∈ X, T1, . . . , Tn ∈ T .
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Here (εj)∞j=1 is a sequence of independent Rademacher functions. The Kahane-
Khintchine inequality allows us to replace the exponent 2 in the definition by any
p ≥ 1. A is called R-sectorial with angle of R-sectoriality ωR = ωR(A) if for every
φ > ωR the collection of operators {ζR(ζ, A) : | arg ζ| ≥ φ} is R-bounded.

If, for example, A is invertible, then R-sectoriality with ωR(A) < π/2 is necessary
for Lp-maximal regularity of the abstract Cauchy problem (1 < p < ∞); if further
X is a UMD-space, it is also sufficient (see Weis [11] for details). Note that in a
Hilbert space every sectorial operator is R-sectorial for the same angle.

This note is concerned with the structure of R-sectorial operators on the Banach
space L1 = L1(K, λ) where K is a Polish space (i.e. a topological space which is
homeomorphic to a separable complete metric space) and λ is a nonatomic σ-finite
Borel measure. All such spaces are isometric to L1 = L1[0, 1], and so we will assume
that K is a compact metric space and λ is a probability measure.

Our work is related to some previous results which suggest that it is rather
restrictive for a sectorial operator A on L1 to be R-sectorial. If A is a sectorial
operator on L1 which has H∞-calculus (for some angle ω), then A is R-sectorial
(for the same angle ω) [8]. We refer to [8] for the definition and discussion of the
H∞-calculus. In [8] it was shown that if A has an H∞-calculus, then A is bounded
on any reflexive subspace of D(A) (with the graph norm); this had the implication
that there are very few examples of sectorial operators with an H∞-calculus on
L1 and, in particular, essentially no reasonable differential operator can have this
property. In [5] it was shown that there are no R-bounded strongly continuous
semigroups on L1 consisting of weakly compact operators; it also follows from the
results of [5] that if A is an R-sectorial operator on L1, then the resolvent R(ζ, A)
can never be a weakly compact operator.

The simplest example of a sectorial operator on L1(K, λ) which has an H∞-
calculus and hence is R-sectorial is the following. Given an a.e. positive function b
we define the operator

Af(s) = b(s)f(s)

with domain

D(A) =
{

f :
∫

|f(s)|b(s)−1dλ(s) < ∞
}

.

Note here that the domain is very large indeed; in fact for any ε > 0 we can find a
Borel set B with λ(B) > 1− ε and such that L1(B) ⊂ D(A). Of course one can get
further examples by considering A′ = UAU−1 for U any invertible operator with
D(A′) = U(D(A)).

In this note, we show that this example is typical. Precisely, we show that if
A is R-sectorial and ε > 0, then there is an invertible operator U : L1 → L1 with
‖U−I‖ < ε such that for some positive Borel function w we have U(D(A)) ⊃ L1(w).
This refines both the results of [5] and [8].

2. Operators on L1

Let K be a compact metric space and suppose λ is a probability measure on K.
We denote by B(K) the σ-algebra of Borel sets on K and by M(K) the space of
Borel measures on K with the norm of total variation. We will utilize the so-called
random measure representation of operators on L1, developed in [6], [4] and [10].
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A random measure on K is a map s → µs from K into M(K) which is Borel for
the weak∗-topology on M(K). If the random measure satisfies the condition

(2.1)
∫

K

|µs|(B)dλ(s) ≤ Cλ(B), B ∈ B(K),

then it induces a bounded operator T : L1(λ) → L1(λ) given by the formula

(2.2) Tf(s) =
∫

K

f(t)dµs(t) λ − a.e.

and then ‖T‖ ≤ C.
Conversely every bounded linear operator T : L1(λ) → L1(λ) has an essentially

unique random measure representation s → µT
s and ‖T‖ is the least constant C so

that (2.1) holds for µT
s .

We may also associate to T a unique measure ρT on K × K given by

ρT (E) =
∫

K

(∫
K

χE(s, t)dµT
s (t)

)
dλ(s), E ∈ B(K × K).

Thus
ρT (A × B) =

∫
A

TχBdλ.

The map T → ρT maps the space of all bounded operators on L1(K), denoted
by L(L1), onto an order-ideal in M(K ×K) consisting of all measures ρ such that

|ρ|(A × B) ≤ Cλ(B), A, B ∈ B(K × K).

The space L(L1(K, λ)) is a complex Banach lattice and it is easily checked that
if T ∈ L(L1), then µ

|T |
s = |µT

s | (λ-a.e.) and that ρ|T | = |ρT |. Since it is a Banach
lattice we can define as usual, using the Krivine calculus, an operator (

∑n
j=1 |Tj |2)

1
2

for any T1, . . . , Tn ∈ L(L1) (a full description of this construction is given in [9]).
The following result is implicitly contained in ideas of [6], and more explicitly in

[7].

Proposition 2.1. Let Tn : L1 → L1 be a uniformly bounded sequence of operators
such that limn→∞ ‖ρTn

‖ = 0. Then given any ε > 0 there is a Borel subset B of K
with λ(B) > 1 − ε and n ∈ N so that we have

‖Tnf‖ ≤ ε‖f‖, f ∈ L1(B).

Proof. Let σn = |ρTn
|. Consider the measure νn on K given, for A Borel, by

νn(A) = σn(A × K) = ‖|Tn|χA‖.
Then νn is absolutely continuous with respect to λ. Let wn be its Radon-Nikodym
derivative. Then, by our hypothesis,∫

wndλ = σn(K × K) → 0.

Therefore, wn −→ 0 in measure. Hence there exists n ∈ N and B with λ(B) > 1− ε
so that |wn| < ε on B.

If f ∈ L1(B) we have

‖Tnf‖ ≤
∫

K×K

|f(s)| dσn(s, t) =
∫

B

|f(s)|wn(s) dλ(s) ≤ ε‖f‖.

�
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If T ∈ L(L1), then we can write µs as given in (2.2) in the form

µs = a(s)δs + µ′
s λ − a.e.

where µ′
s{s} = 0 λ−a.e. and a is a bounded Borel function. (See for example [6].)

Thus

Tf(s) = a(s)f(s) +
∫

K

f(t)dµ′
s(t) λ − a.e.

If we define the diagonal part of T by

Π(T )f = a(s)f(s),

then ρΠ(T ) is the restriction of ρT to the diagonal subset ∆ = {(s, s) : s ∈ K}.
Thus

ρΠ(T )(B) = ρT (B ∩ ∆).

Theorem 2.2. Let T be a family of operators in L(L1(K, λ)). Then the following
are equivalent:

(i) T is R-bounded.
(ii) {(

∑n
k=1 a2

k|Tk|2)
1
2 :

∑n
k=1 |ak|2 ≤ 1, T1, ..., Tn ∈ T , n ∈ N} is uniformly

bounded.

Proof. Assume T is R-bounded, with

E‖
n∑

k=1

εkTkxk‖ ≤ CE‖
n∑

k=1

εkxk‖

for any T1, . . . , Tn ∈ T and x1, . . . , xn ∈ X. Suppose T1, . . . , Tn ∈ T and a1, . . . , an

∈ C are such that
∑n

k=1 |ak|2 ≤ 1. Then, by Khintchine’s inequality for lattices,
∥∥∥∥∥(

n∑
k=1

|ak|2|Tk|2)
1
2

∥∥∥∥∥ ≤ ME

∥∥∥∥∥|
n∑

k=1

εkakTk|
∥∥∥∥∥

where M is an absolute constant. Choose any sequence of partitions Am =(Amj)Nm
j=1

of K so that each Am+1 refines Am and

lim
m→∞

sup
1≤j≤Nm

diamAmj = 0.

Then for any positive function f ∈ L1(K, λ) and any T ∈ L(L1(K, λ)) we have

|T |f = lim
m→∞

Nm∑
j=1

|T (fχAmj
)| λ − a.e.

Thus, replacing T by
∑n

k=1 εkakTk in the previous line yields

|
n∑

k=1

εkakTk|f = lim
m→∞

Nm∑
j=1

|
n∑

k=1

εkakTk(fχAmj
)| λ − a.e.
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Now, by R-boundedness

E

∫
K

Nm∑
j=1

|
n∑

k=1

εkakTk(fχAmj
)|dλ =

Nm∑
j=1

E‖
n∑

k=1

εkakTk(fχAmj
)‖

≤ C

Nm∑
j=1

E‖
n∑

k=1

εkakfχAmj
‖

= C

Nm∑
j=1

‖fχAmj‖E|
n∑

k=1

εkak|

= C(
n∑

k=1

|ak|2)
1
2

Nm∑
j=1

‖fχAmj
‖

≤ C‖f‖L1 .

It follows from Fatou’s Lemma that

E

∥∥∥ |
n∑

k=1

εkakTk|
∥∥∥ ≤ C

and hence

‖(
n∑

k=1

|ak|2|Tk|2)
1
2 ‖ ≤ CM.

We now prove that (ii) implies (i). First suppose f ∈ L1(K, λ) is positive and
T1, . . . , Tn ∈ L(L1(K, λ)). Then if a1, . . . , an ≥ 0 and a2

1 + · · · + a2
n = 1 we have

n∑
k=1

ak|Tk|f ≤ (
n∑

k=1

|Tk|2)
1
2 f.

The least upper bound of the left hand side over all choices of a1, . . . , an is
(
∑n

k=1(|Tk|f)2)
1
2 and so

(
n∑

k=1

(|Tk|f)2)
1
2 ≤ (

n∑
k=1

|Tk|2)
1
2 f.

Let us suppose C is a constant so that

‖(
n∑

k=1

|ak|2|Tk|2)
1
2 ‖ ≤ C, T1, . . . , Tn ∈ T , |a1|2 + · · · + |an|2 = 1.

Suppose f ∈ L1 and T1, . . . , Tn ∈ T . Then

E‖
n∑

k=1

εkakTkf‖ ≤ ‖(
n∑

k=1

|ak|2|Tkf |2) 1
2 ‖

≤ ‖(
n∑

k=1

|ak|2(|Tk||f |)2)
1
2 ‖

≤ ‖(
n∑

k=1

|ak|2|Tk|2)
1
2 |f | ‖

≤ C‖f‖.
In this situation, Theorem 2.2 of [5] implies that T is R-bounded. �
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Proposition 2.3. Suppose T is an R-bounded family of operators on L1(K, λ).
Then the family of measures {ρT : T ∈ T } is relatively weakly compact in
M(K × K).

Proof. Let

C = sup{‖(
m∑

j=1

|aj |2|Tj |2)
1
2 ‖ : T1, . . . , Tm ∈ T ,

m∑
j=1

|aj |2 ≤ 1, m ∈ N},

which is finite by Theorem 2.2. Now, if T1, . . . , Tn ∈ T , then

‖ max
1≤k≤n

|Tk|‖ ≤ ‖(
n∑

k=1

|Tk|2)
1
2 ‖ ≤ Cn

1
2 .

The maximum here is computed in the lattice L(L1).
Hence

‖ max
1≤k≤n

|ρTk
| ‖M(K×K) ≤ Cn

1
2 .

Assume the set {ρT : T ∈ T } is not relatively weakly compact. Then there is a
δ > 0, a sequence (Tk)n

k=1 and a sequence of disjoint open sets Uk in K ×K so that
ρTk

(Uk) ≥ δ for all k (see e.g. [3]). Then

‖ max
1≤k≤n

|ρTk
| ‖M(K×K) ≥

n∑
k=1

ρTk
(Uk) ≥ δn, n = 1, 2, . . . ,

which gives a contradiction. �

3. Applications to sectorial operators

In this section we give some applications of the above results to sectorial opera-
tors.

Proposition 3.1. If A is R-sectorial and ωR(A) < π/2, then {e−tA : 0 < t < ∞}
is an R-bounded semigroup. Conversely, if A is sectorial and −A generates an
R-bounded semigroup, then A is R-sectorial with ωR(A) ≤ π/2.

If −A is a sectorial operator which generates a semigroup {e−tA : 0 < t < ∞}
with the property that {e−tA : 0 < t ≤ 1} is R-bounded, then for any φ > π/2 there
exists M so that the set {ζR(ζ, A) : | arg(ζ + M)| ≥ φ} is R-bounded.

Proof. Our proof depends mainly on the two formulas

ζR(ζ, A) =
∫ ∞

0

ζeζte−tAdt

and

e−tA − (1 + tA)−1 = − 1
2πi

∫
Γν

(e−tζ − (1 + tζ)−1)R(ζ, A)dζ

where Γν is a contour of the form {|s|ei(sgn s)ν : −∞ < s < ∞} for any ν with
ν > ω(A).
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Assuming that {e−At : 0 < t < ∞} is R-bounded we fix some angle π
2 < ϕ < π.

Then for any choice of numbers ζj = rje
iϕj with ϕj ≥ ϕ, j = 1, ..., n, we obtain

E‖
n∑

j=1

εjζjR(ζj , A)xj‖ = E‖
n∑

j=1

∫ ∞

0

εjrje
iϕj etrjeiϕj

e−tAxjdt‖

= E‖
n∑

j=1

∫ ∞

0

εje
iϕj eseiϕj

e−s/rjAxjds‖

≤
∫ ∞

0

E‖
n∑

j=1

εje
iϕj eseiϕj

e−s/rjAxj‖ds

≤ C

∫ ∞

0

max
j

|eseiϕj |ds · E‖
n∑

j=1

εjxj‖

≤ C

∫ ∞

0

es cos ϕ ds · E‖
n∑

j=1

εjxj‖

≤ C

| cos ϕ| · E‖
n∑

j=1

εjxj‖.

Therefore A is R-sectorial with sectoriality angle ωR(A) ≤ π/2. Similarly, it follows
that if A is R-sectorial and ωR(A) < π/2, then {e−tA : 0 < t < ∞} is R-bounded.

For the last statement suppose that C is a constant such that

(E‖
n∑

j=1

εje
−tjAxj‖2)

1
2 ≤ C(E‖

n∑
j=1

εjxj‖2)
1
2

whenever x1, . . . , xn ∈ X, 0 ≤ t1, . . . , tn ≤ 1.
Then if m ∈ N,

(E‖
n∑

j=1

εje
−(m+tj)Axj‖2)

1
2 ≤ CKm(E‖

n∑
j=1

εjxj‖2)
1
2

where K = ‖e−A‖. Now we show that the set {e−ute−tA : 0 < t < ∞} is R-bounded
as long as eu > K. For x1, ..., xn ∈ X and 0 < t1, . . . , tn < ∞ we obtain

(E‖
n∑

j=1

εje
−tjue−tjAxj‖2)

1
2 = (E‖

∞∑
m=0

∑
m≤tj<m+1

εje
−tjue−tjAxj‖2)

1
2

≤ C

∞∑
m=0

Kme−um(E‖
∑

m≤tj<m+1

εje
−ut̃j xj‖2)

1
2

where 0 ≤ t̃j ≤ 1. By the contraction principle

(E‖
∑

m≤tj<m+1

εje
−ut̃j xj‖2)

1
2 ≤ max

1≤j≤n
|e−ut̃j |(E‖

n∑
j=1

εjxj‖2)
1
2 ≤ (E‖

n∑
j=1

εjxj‖2)
1
2 .

Since
∑∞

m=0 Kme−um is finite for u > ln K we obtain the claim. Consequently, the
set {ξR(ξ, u + A) : | arg ξ| > φ} is R-bounded.
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Now for ζ ∈ C with | arg(ζ + M)| > φ, M > u, we can rewrite using ξ − u = ζ,

ζR(ζ, A) = (ξ − u)R(ξ − u) = (ξ − u)R(ξ, A + u) =
ξ − u

ξ
ξR(ξ, A + u).

Since | ξ−u
ξ | ≤ M

M−u the result follows quickly. �

It follows from results of [5] that if −A is the generator of a semigroup such
that e−tA is weakly compact for t > 0, or if the resolvents R(z, A) are weakly
compact operators, then A cannot be R-sectorial. The next theorem strengthens
this conclusion.

Theorem 3.2. Suppose A is a sectorial operator on L1(K, λ). Assume that either:
(i) A is R-sectorial for some angle ω, or
(ii) −A is the generator of a bounded semigroup such that {e−tA : 0 < t ≤ 1} is

R-bounded.
Then there is a bounded function a(ζ, s) defined for s ∈ K and | arg ζ| > ω such

that
• For each s ∈ K the map ζ → a(ζ, s) is analytic.
• For each ζ the map s → a(ζ, s) is Borel.
• λ{s : a(ζ, s) = 0} = 0 for almost every ζ.
•

(R(ζ, A)f)(s) = a(ζ, s)f(s) +
∫

K

f(t)dµζ
s(t), f ∈ L1,

where µζ
s{s} = 0.

Proof. We begin with the observation that, under either hypothesis, there exist
φ < π and M < ∞ such that the set of operators {ζR(ζ, A) : | arg ζ| ≥ φ, |ζ| ≥ M}
is R-bounded. Hence the set of measures {ρR(ζ,A) : | arg ζ| ≥ φ, |ζ| ≥ M} is
relatively weakly compact.

Consider the map ζ → Π(R(ζ, A)) which is an analytic map from the set S =
{ζ : | arg ζ| > ω} into L(L1). This induces an analytic map F : S → L∞(K, λ)
given by

Π(R(ζ, A))f = F (ζ)f.

Let us show that we can choose representatives so that F (ζ)(s) = a(ζ, s) where a
satisfies the first two conditions of the statement. Indeed let D be the unit disk and
let ϕ : D → S be a conformal equivalence. Then F ◦φ can be expanded in a Taylor
series around the origin and we may pick uniformly bounded Borel representatives
bn for the coefficients in the expansion so that

F (ϕ(z))(s) =
∞∑

n=0

bn(s)zn λ − a.e., z ∈ D.

Let

a(ζ, s) =
∞∑

n=0

bn(s)(ϕ−1(ζ))n.

Assume that the third condition fails. Then by Fubini’s theorem there is a subset
B of K with λ(B) > 0 so that for each s ∈ B the set {ζ : a(ζ, s) = 0} has positive
planar measure. By analyticity, this implies a(ζ, s) ≡ 0 for s ∈ B.

However ρn(n+A)−1 converges weakly to ρI and hence so does ρΠ(n(n+A)−1). Thus
−na(−n, s) is weakly convergent to the constant function 1 ∈ L1(K, λ). This is a
contradiction. �
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The next theorem shows that if a sectorial operator generates an R-bounded
semigroup on L1, then it is very similar to a bounded operator in the sense that its
domain is sufficiently large to contain generic L1-functions.

Theorem 3.3. Let A be a sectorial operator on L1(K, λ) and assume that for some
φ < π and M < ∞ the set {ζR(ζ, A) : | arg ζ| ≥ φ, |ζ| ≥ M} is R-bounded. Then
for any ε > 0 there is an invertible operator U : L1 → L1 with ‖U − I‖ < ε and a
density function w > 0 a.e. such that L1(w) ⊂ U−1(D(A)).

In particular, there is a closed subspace Y of D(A) isomorphic to L1 so that
A : Y → A(Y ) is bounded (and thus Y is also closed in L1).

Proof. According to Proposition 2.3 the set of measures ρζR(ζ,A) for | arg ζ| ≥ φ, |ζ|
≥ M is relatively weakly compact in M(K×K). The sequence (m(m+A)−1)m≥M

converges in the strong operator topology to the identity. Therefore, ρm(m+A)−1

converges weak* to ρI in M(K × K) and hence converges weakly to ρI by weak
compactness.

Fix ε > 0. We may find a sequence of convex combinations (Tn)∞n=1 of
{m(m+A)−1}∞m=1 such that ρTn

converges to ρI in norm. Applying Proposition 2.1
to (Tn − I)∞n=1 gives a sequence of Borel sets En ⊂ K such that λ(En) > 1 − 2−nε
and

‖Tnf − f‖ ≤ 2−nε‖f‖, f ∈ L1(En).

Let us put F1 = E1 and then Fn = En \En−1 for n ≥ 2. We define U : L1 → L1 by

Uf =
∞∑

n=1

Tn(fχFn
).

Thus ‖U −I‖ ≤ ε. Observe that Tn : L1 → D(A) and so ATn is a bounded operator
on L1.

Define

w =
∞∑

n=1

‖ATn‖χFn

and assume f ∈ L1(w). Then

‖AU(fχFn
)‖ = ‖ATn(fχFn

)‖ ≤
∫

Fn

|f |w dt.

Hence
∑∞

k=1 AU(fχFk
) converges and, since A is closed, Uf ∈ D(A).

The last part of the theorem is deduced by fixing any n and note that if Y =
U(L1(En)), then A is bounded on Y and hence Y is closed in both D(A) and X
and is isomorphic to L1 in both. �

Many differential operators on bounded domains have compact resolvents.
Therefore we can use the results of [5] to show that they cannot be R-sectorial.
In contrast, resolvents of differential operators on unbounded domains are, in gen-
eral, not compact. An important example is the Laplacian ∆ on L1(Rn). Our
corollary addresses this situation.

Corollary 3.4. Let Ω ⊂ Rn be a bounded open set with locally Lipschitz boundary
or Ω = Rn. Suppose that A : D(A) ⊂ L1(Ω) −→ L1(Ω) is a sectorial operator such
that D(A) is contained in a Sobolev space Hs

1(Ω) for some s > 0. Then A does not
generate an R-bounded semigroup.
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Proof. Assume the contrary, i.e., A generates an R-bounded semigroup. Then
by Sobolev’s embedding theorem [1] we have a continuous inclusion Hs

1(Ω) ↪→
Lp(Ω) ∩ L1(Ω) for some p > 1. By Theorem 3.3 there is a closed subspace Y of
D(A) on which A is bounded and so that Y is isomorphic to L1. This implies that
there is a subspace of L1(Ω)∩Lp(Ω) which is isomorphic to L1. If Ω is bounded this is
an immediate contradiction since L1(Ω)∩Lp(Ω) = Lp(Ω) is reflexive. However even
if Ω is unbounded this is still impossible. If Ω = R

n we consider an isomorphism
J : L1 → L1(Rn) ∩ Lp(Rn).Then J : L1 → Lp(Rn) is a Dunford-Pettis operator
and so if (fn) is any normalized weakly null sequence in L1 we have ‖Jfn‖p → 0.
By passing to a subsequence we can assume Jfn → 0 a.e. But then (Jfn) is also
weakly null in L1(Rn) and so ‖Jfn‖1 → 0. This gives a contradiction. �

This corollary is actually true for any set Ω for which Sobolev’s embedding the-
orem holds. Sufficient geometrical properties of Ω for this to happen are discussed
in [1].
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