PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 136, Number 1, January 2008, Pages 263-272 S 0002-9939(07)09046-6 Article electronically published on October 5, 2007

RADEMACHER BOUNDED FAMILIES OF OPERATORS ON L_1

N. J. KALTON AND T. KUCHERENKO

(Communicated by N. Tomczak-Jaegermann)

ABSTRACT. We give a characterization of R-bounded families of operators on L_1 . We then use this result to study sectorial operators on L_1 . We show that if A is an R-sectorial operator on L_1 , then, for any $\epsilon > 0$, there is an invertible operator $U : L_1 \to L_1$ with $||U - I|| < \epsilon$ such that for some strictly positive Borel function $w, U(\mathcal{D}(A))$ contains the weighted L_1 -space $L_1(w)$.

1. INTRODUCTION

Let us recall that a closed operator A on a Banach space X is called sectorial with sectoriality angle ω if

- The domain $\mathcal{D}(A)$ and range $\mathcal{R}(A)$ are dense
- A is one-to-one
- The spectrum $\sigma(A)$ is contained in a closed sector $\Sigma_{\omega} = \{\zeta \in \mathbb{C} : |\arg \zeta| \le \omega\}$
- For any $\omega < \phi < \pi$ there is a constant C_{ϕ} such that the resolvent $R(\zeta, A)$ satisfies the estimate

$$\|\zeta R(\zeta, A)\| \le C_{\phi}, \, |\arg(\zeta)| \ge \phi.$$

Note that the definition does not require A to be invertible. If $\omega < \frac{\pi}{2}$, then the operator -A generates a bounded analytic semigroup, $T_t = e^{-tA}$. Conversely if -A is the generator of a bounded analytic semigroup, then A is sectorial with $\omega < \pi/2$, provided it is one-one. For further discussion on sectorial operators see [2].

In applications involving L_p -maximal regularity of the abstract Cauchy problem or, more generally, the joint functional calculus of two commuting sectorial operators it is often important to know that a sectorial operator satisfies a stronger form of sectoriality, which we now introduce (see [8] and [11]).

We recall here that a collection of operators \mathcal{T} on a Banach space X is called *R*-bounded if there is a constant C so that

$$(\mathbb{E}\|\sum_{j=1}^{n}\epsilon_{j}T_{j}x_{j}\|^{2})^{\frac{1}{2}} \leq C(\mathbb{E}\|\sum_{j=1}^{n}\epsilon_{j}x_{j}\|^{2})^{\frac{1}{2}}, \qquad x_{1},\ldots,x_{n} \in X, \ T_{1},\ldots,T_{n} \in \mathcal{T}.$$

The authors acknowledge support from NSF grants DMS-0244515 and DMS-0555670.

©2007 American Mathematical Society Reverts to public domain 28 years from publication

Received by the editors September 21, 2005 and, in revised form, December 6, 2006 and December 13, 2006.

²⁰⁰⁰ Mathematics Subject Classification. Primary 47D06, 46E30.

 $Key\ words\ and\ phrases.$ Sectorial operators, representation of regular operators, R-boundedness.

Here $(\epsilon_j)_{j=1}^{\infty}$ is a sequence of independent Rademacher functions. The Kahane-Khintchine inequality allows us to replace the exponent 2 in the definition by any $p \geq 1$. A is called *R*-sectorial with angle of R-sectoriality $\omega_R = \omega_R(A)$ if for every $\phi > \omega_R$ the collection of operators $\{\zeta R(\zeta, A) : |\arg \zeta| \geq \phi\}$ is R-bounded.

If, for example, A is invertible, then R-sectoriality with $\omega_R(A) < \pi/2$ is necessary for L_p -maximal regularity of the abstract Cauchy problem (1 ; if furtherX is a UMD-space, it is also sufficient (see Weis [11] for details). Note that in aHilbert space every sectorial operator is R-sectorial for the same angle.

This note is concerned with the structure of R-sectorial operators on the Banach space $L_1 = L_1(K, \lambda)$ where K is a Polish space (i.e. a topological space which is homeomorphic to a separable complete metric space) and λ is a nonatomic σ -finite Borel measure. All such spaces are isometric to $L_1 = L_1[0, 1]$, and so we will assume that K is a compact metric space and λ is a probability measure.

Our work is related to some previous results which suggest that it is rather restrictive for a sectorial operator A on L_1 to be R-sectorial. If A is a sectorial operator on L_1 which has H^{∞} -calculus (for some angle ω), then A is R-sectorial (for the same angle ω) [8]. We refer to [8] for the definition and discussion of the H^{∞} -calculus. In [8] it was shown that if A has an H^{∞} -calculus, then A is bounded on any reflexive subspace of $\mathcal{D}(A)$ (with the graph norm); this had the implication that there are very few examples of sectorial operators with an H^{∞} -calculus on L_1 and, in particular, essentially no reasonable differential operator can have this property. In [5] it was shown that there are no R-bounded strongly continuous semigroups on L_1 consisting of weakly compact operators; it also follows from the results of [5] that if A is an R-sectorial operator on L_1 , then the resolvent $R(\zeta, A)$ can never be a weakly compact operator.

The simplest example of a sectorial operator on $L_1(K, \lambda)$ which has an H^{∞} calculus and hence is R-sectorial is the following. Given an a.e. positive function bwe define the operator

$$Af(s) = b(s)f(s)$$

with domain

$$\mathcal{D}(A) = \left\{ f: \int |f(s)| b(s)^{-1} d\lambda(s) < \infty \right\}.$$

Note here that the domain is very large indeed; in fact for any $\epsilon > 0$ we can find a Borel set B with $\lambda(B) > 1 - \epsilon$ and such that $L_1(B) \subset \mathcal{D}(A)$. Of course one can get further examples by considering $A' = UAU^{-1}$ for U any invertible operator with $\mathcal{D}(A') = U(\mathcal{D}(A))$.

In this note, we show that this example is typical. Precisely, we show that if A is R-sectorial and $\epsilon > 0$, then there is an invertible operator $U : L_1 \to L_1$ with $||U-I|| < \epsilon$ such that for some positive Borel function w we have $U(\mathcal{D}(A)) \supset L_1(w)$. This refines both the results of [5] and [8].

2. Operators on L_1

Let K be a compact metric space and suppose λ is a probability measure on K. We denote by $\mathcal{B}(K)$ the σ -algebra of Borel sets on K and by $\mathcal{M}(K)$ the space of Borel measures on K with the norm of total variation. We will utilize the so-called random measure representation of operators on L_1 , developed in [6], [4] and [10]. A random measure on K is a map $s \to \mu_s$ from K into $\mathcal{M}(K)$ which is Borel for the weak*-topology on $\mathcal{M}(K)$. If the random measure satisfies the condition

(2.1)
$$\int_{K} |\mu_{s}|(B)d\lambda(s) \leq C\lambda(B), \qquad B \in \mathcal{B}(K),$$

then it induces a bounded operator $T: L_1(\lambda) \to L_1(\lambda)$ given by the formula

(2.2)
$$Tf(s) = \int_{K} f(t)d\mu_{s}(t) \qquad \lambda - \text{a.e.}$$

and then $||T|| \leq C$.

Conversely every bounded linear operator $T: L_1(\lambda) \to L_1(\lambda)$ has an essentially unique random measure representation $s \to \mu_s^T$ and ||T|| is the least constant C so that (2.1) holds for μ_s^T .

We may also associate to T a unique measure ρ_T on $K \times K$ given by

$$\rho_T(E) = \int_K \left(\int_K \chi_E(s, t) d\mu_s^T(t) \right) d\lambda(s), \qquad E \in \mathcal{B}(K \times K).$$

Thus

$$\rho_T(A \times B) = \int_A T \chi_B d\lambda.$$

The map $T \to \rho_T$ maps the space of all bounded operators on $L_1(K)$, denoted by $\mathcal{L}(L_1)$, onto an order-ideal in $\mathcal{M}(K \times K)$ consisting of all measures ρ such that

$$|\rho|(A \times B) \le C\lambda(B), \qquad A, B \in \mathcal{B}(K \times K).$$

The space $\mathcal{L}(L_1(K,\lambda))$ is a complex Banach lattice and it is easily checked that if $T \in \mathcal{L}(L_1)$, then $\mu_s^{|T|} = |\mu_s^T|$ (λ -a.e.) and that $\rho_{|T|} = |\rho_T|$. Since it is a Banach lattice we can define as usual, using the Krivine calculus, an operator $(\sum_{j=1}^n |T_j|^2)^{\frac{1}{2}}$ for any $T_1, \ldots, T_n \in \mathcal{L}(L_1)$ (a full description of this construction is given in [9]).

The following result is implicitly contained in ideas of [6], and more explicitly in [7].

Proposition 2.1. Let $T_n : L_1 \to L_1$ be a uniformly bounded sequence of operators such that $\lim_{n\to\infty} \|\rho_{T_n}\| = 0$. Then given any $\epsilon > 0$ there is a Borel subset B of K with $\lambda(B) > 1 - \epsilon$ and $n \in \mathbb{N}$ so that we have

$$|T_n f|| \le \epsilon ||f||, \qquad f \in L_1(B).$$

Proof. Let $\sigma_n = |\rho_{T_n}|$. Consider the measure ν_n on K given, for A Borel, by

$$\nu_n(A) = \sigma_n(A \times K) = |||T_n|\chi_A||.$$

Then ν_n is absolutely continuous with respect to λ . Let w_n be its Radon-Nikodym derivative. Then, by our hypothesis,

$$\int w_n d\lambda = \sigma_n(K \times K) \to 0.$$

Therefore, $w_n \longrightarrow 0$ in measure. Hence there exists $n \in \mathbb{N}$ and B with $\lambda(B) > 1 - \epsilon$ so that $|w_n| < \epsilon$ on B.

If $f \in L_1(B)$ we have

$$||T_n f|| \le \int_{K \times K} |f(s)| \, d\sigma_n(s,t) = \int_B |f(s)| w_n(s) \, d\lambda(s) \le \epsilon ||f||.$$

If $T \in \mathcal{L}(L_1)$, then we can write μ_s as given in (2.2) in the form

$$\mu_s = a(s)\delta_s + \mu'_s \qquad \lambda - a.e$$

where $\mu'_s\{s\} = 0 \ \lambda$ -a.e. and a is a bounded Borel function. (See for example [6].) Thus

$$Tf(s) = a(s)f(s) + \int_{K} f(t)d\mu'_{s}(t) \qquad \lambda - \text{a.e.}$$

If we define the diagonal part of T by

$$\Pi(T)f = a(s)f(s),$$

then $\rho_{\Pi(T)}$ is the restriction of ρ_T to the diagonal subset $\Delta = \{(s,s) : s \in K\}$. Thus

$$\rho_{\Pi(T)}(B) = \rho_T(B \cap \Delta)$$

Theorem 2.2. Let \mathcal{T} be a family of operators in $\mathcal{L}(L_1(K,\lambda))$. Then the following are equivalent:

- (i) \mathcal{T} is *R*-bounded.
- (ii) $\{(\sum_{k=1}^{n} a_k^2 |T_k|^2)^{\frac{1}{2}} : \sum_{k=1}^{n} |a_k|^2 \le 1, T_1, ..., T_n \in \mathcal{T}, n \in \mathbb{N}\}$ is uniformly bounded.

Proof. Assume \mathcal{T} is R-bounded, with

$$\mathbb{E} \| \sum_{k=1}^{n} \epsilon_k T_k x_k \| \le C \mathbb{E} \| \sum_{k=1}^{n} \epsilon_k x_k \|$$

for any $T_1, \ldots, T_n \in \mathcal{T}$ and $x_1, \ldots, x_n \in X$. Suppose $T_1, \ldots, T_n \in \mathcal{T}$ and $a_1, \ldots, a_n \in \mathbb{C}$ are such that $\sum_{k=1}^n |a_k|^2 \leq 1$. Then, by Khintchine's inequality for lattices,

$$\left\| \left(\sum_{k=1}^{n} |a_k|^2 |T_k|^2 \right)^{\frac{1}{2}} \right\| \le M \mathbb{E} \left\| \left| \sum_{k=1}^{n} \epsilon_k a_k T_k \right| \right\|$$

where M is an absolute constant. Choose any sequence of partitions $\mathcal{A}_m = (A_{mj})_{j=1}^{N_m}$ of K so that each \mathcal{A}_{m+1} refines \mathcal{A}_m and

$$\lim_{m \to \infty} \sup_{1 \le j \le N_m} \operatorname{diam} A_{mj} = 0.$$

Then for any positive function $f \in L_1(K, \lambda)$ and any $T \in \mathcal{L}(L_1(K, \lambda))$ we have

$$|T|f = \lim_{m \to \infty} \sum_{j=1}^{N_m} |T(f\chi_{A_{mj}})| \qquad \lambda - \text{a.e.}$$

Thus, replacing T by $\sum_{k=1}^{n} \epsilon_k a_k T_k$ in the previous line yields

$$\left|\sum_{k=1}^{n} \epsilon_k a_k T_k \right| f = \lim_{m \to \infty} \sum_{j=1}^{N_m} \left|\sum_{k=1}^{n} \epsilon_k a_k T_k(f \chi_{A_{mj}})\right| \qquad \lambda - \text{a.e.}$$

266

Now, by R-boundedness

$$\mathbb{E}\int_{K}\sum_{j=1}^{N_{m}}|\sum_{k=1}^{n}\epsilon_{k}a_{k}T_{k}(f\chi_{A_{mj}})|d\lambda = \sum_{j=1}^{N_{m}}\mathbb{E}\|\sum_{k=1}^{n}\epsilon_{k}a_{k}T_{k}(f\chi_{A_{mj}})\|$$

$$\leq C\sum_{j=1}^{N_{m}}\mathbb{E}\|\sum_{k=1}^{n}\epsilon_{k}a_{k}f\chi_{A_{mj}}\|$$

$$= C\sum_{j=1}^{N_{m}}\|f\chi_{A_{mj}}\|\mathbb{E}|\sum_{k=1}^{n}\epsilon_{k}a_{k}|$$

$$= C(\sum_{k=1}^{n}|a_{k}|^{2})^{\frac{1}{2}}\sum_{j=1}^{N_{m}}\|f\chi_{A_{mj}}\|$$

$$\leq C\|f\|_{L_{1}}.$$

It follows from Fatou's Lemma that

$$\mathbb{E} \left\| \left\| \sum_{k=1}^{n} \epsilon_k a_k T_k \right\| \right\| \le C$$

and hence

$$\|(\sum_{k=1}^{n} |a_k|^2 |T_k|^2)^{\frac{1}{2}}\| \le CM.$$

We now prove that (ii) implies (i). First suppose $f \in L_1(K, \lambda)$ is positive and $T_1, \ldots, T_n \in \mathcal{L}(L_1(K, \lambda))$. Then if $a_1, \ldots, a_n \ge 0$ and $a_1^2 + \cdots + a_n^2 = 1$ we have

$$\sum_{k=1}^{n} a_k |T_k| f \le (\sum_{k=1}^{n} |T_k|^2)^{\frac{1}{2}} f.$$

The least upper bound of the left hand side over all choices of a_1,\ldots,a_n is $(\sum_{k=1}^n (|T_k|f)^2)^{\frac{1}{2}}$ and so

$$\left(\sum_{k=1}^{n} (|T_k|f)^2\right)^{\frac{1}{2}} \le \left(\sum_{k=1}^{n} |T_k|^2\right)^{\frac{1}{2}} f.$$

Let us suppose C is a constant so that

$$\|(\sum_{k=1}^{n} |a_k|^2 |T_k|^2)^{\frac{1}{2}}\| \le C, \qquad T_1, \dots, T_n \in \mathcal{T}, \ |a_1|^2 + \dots + |a_n|^2 = 1.$$

Suppose $f \in L_1$ and $T_1, \ldots, T_n \in \mathcal{T}$. Then

$$\mathbb{E} \| \sum_{k=1}^{n} \epsilon_{k} a_{k} T_{k} f \| \leq \| (\sum_{k=1}^{n} |a_{k}|^{2} |T_{k} f|^{2})^{\frac{1}{2}} \|$$

$$\leq \| (\sum_{k=1}^{n} |a_{k}|^{2} (|T_{k}||f|)^{2})^{\frac{1}{2}} \|$$

$$\leq \| (\sum_{k=1}^{n} |a_{k}|^{2} |T_{k}|^{2})^{\frac{1}{2}} |f| \|$$

$$\leq C \| f \|.$$

In this situation, Theorem 2.2 of [5] implies that \mathcal{T} is R-bounded.

Proposition 2.3. Suppose \mathcal{T} is an *R*-bounded family of operators on $L_1(K, \lambda)$. Then the family of measures $\{\rho_T : T \in \mathcal{T}\}$ is relatively weakly compact in $\mathcal{M}(K \times K)$.

Proof. Let

$$C = \sup\{\|(\sum_{j=1}^{m} |a_j|^2 |T_j|^2)^{\frac{1}{2}}\|: T_1, \dots, T_m \in \mathcal{T}, \sum_{j=1}^{m} |a_j|^2 \le 1, m \in \mathbb{N}\},\$$

which is finite by Theorem 2.2. Now, if $T_1, \ldots, T_n \in \mathcal{T}$, then

$$\|\max_{1 \le k \le n} |T_k|\| \le \|(\sum_{k=1}^n |T_k|^2)^{\frac{1}{2}}\| \le Cn^{\frac{1}{2}}.$$

The maximum here is computed in the lattice $\mathcal{L}(L_1)$.

Hence

$$\|\max_{1\leq k\leq n}|\rho_{T_k}|\|_{\mathcal{M}(K\times K)}\leq Cn^{\frac{1}{2}}.$$

Assume the set $\{\rho_T : T \in \mathcal{T}\}$ is not relatively weakly compact. Then there is a $\delta > 0$, a sequence $(T_k)_{k=1}^n$ and a sequence of disjoint open sets U_k in $K \times K$ so that $\rho_{T_k}(U_k) \geq \delta$ for all k (see e.g. [3]). Then

$$|\max_{1 \le k \le n} |\rho_{T_k}| \, \|_{\mathcal{M}(K \times K)} \ge \sum_{k=1}^n \rho_{T_k}(U_k) \ge \delta n, \qquad n = 1, 2, \dots,$$

which gives a contradiction.

3. Applications to sectorial operators

In this section we give some applications of the above results to sectorial operators.

Proposition 3.1. If A is R-sectorial and $\omega_R(A) < \pi/2$, then $\{e^{-tA} : 0 < t < \infty\}$ is an R-bounded semigroup. Conversely, if A is sectorial and -A generates an R-bounded semigroup, then A is R-sectorial with $\omega_R(A) \leq \pi/2$.

If -A is a sectorial operator which generates a semigroup $\{e^{-tA} : 0 < t < \infty\}$ with the property that $\{e^{-tA} : 0 < t \le 1\}$ is R-bounded, then for any $\phi > \pi/2$ there exists M so that the set $\{\zeta R(\zeta, A) : |\arg(\zeta + M)| \ge \phi\}$ is R-bounded.

Proof. Our proof depends mainly on the two formulas

$$\zeta R(\zeta, A) = \int_0^\infty \zeta e^{\zeta t} e^{-tA} dt$$

and

$$e^{-tA} - (1+tA)^{-1} = -\frac{1}{2\pi i} \int_{\Gamma_{\nu}} (e^{-t\zeta} - (1+t\zeta)^{-1}) R(\zeta, A) d\zeta$$

where Γ_{ν} is a contour of the form $\{|s|e^{i(\operatorname{sgn} s)\nu} : -\infty < s < \infty\}$ for any ν with $\nu > \omega(A)$.

Assuming that $\{e^{-At} : 0 < t < \infty\}$ is R-bounded we fix some angle $\frac{\pi}{2} < \varphi < \pi$. Then for any choice of numbers $\zeta_j = r_j e^{i\varphi_j}$ with $\varphi_j \ge \varphi$, j = 1, ..., n, we obtain

$$\begin{split} \mathbb{E}\|\sum_{j=1}^{n}\epsilon_{j}\zeta_{j}R(\zeta_{j},A)x_{j}\| &= \mathbb{E}\|\sum_{j=1}^{n}\int_{0}^{\infty}\epsilon_{j}r_{j}e^{i\varphi_{j}}e^{tr_{j}e^{i\varphi_{j}}}e^{-tA}x_{j}dt\|\\ &= \mathbb{E}\|\sum_{j=1}^{n}\int_{0}^{\infty}\epsilon_{j}e^{i\varphi_{j}}e^{se^{i\varphi_{j}}}e^{-s/r_{j}A}x_{j}ds\|\\ &\leq \int_{0}^{\infty}\mathbb{E}\|\sum_{j=1}^{n}\epsilon_{j}e^{i\varphi_{j}}e^{se^{i\varphi_{j}}}e^{-s/r_{j}A}x_{j}\|ds\\ &\leq C\int_{0}^{\infty}\max_{j}|e^{se^{i\varphi_{j}}}|ds\cdot\mathbb{E}\|\sum_{j=1}^{n}\epsilon_{j}x_{j}\|\\ &\leq C\int_{0}^{\infty}e^{s\cos\varphi}\,ds\cdot\mathbb{E}\|\sum_{j=1}^{n}\epsilon_{j}x_{j}\|\\ &\leq \frac{C}{|\cos\varphi|}\cdot\mathbb{E}\|\sum_{j=1}^{n}\epsilon_{j}x_{j}\|. \end{split}$$

Therefore A is R-sectorial with sectoriality angle $\omega_R(A) \leq \pi/2$. Similarly, it follows that if A is R-sectorial and $\omega_R(A) < \pi/2$, then $\{e^{-tA} : 0 < t < \infty\}$ is R-bounded.

For the last statement suppose that ${\cal C}$ is a constant such that

$$(\mathbb{E} \| \sum_{j=1}^{n} \epsilon_{j} e^{-t_{j}A} x_{j} \|^{2})^{\frac{1}{2}} \le C(\mathbb{E} \| \sum_{j=1}^{n} \epsilon_{j} x_{j} \|^{2})^{\frac{1}{2}}$$

whenever $x_1, \ldots, x_n \in X$, $0 \le t_1, \ldots, t_n \le 1$.

Then if $m \in \mathbb{N}$,

$$(\mathbb{E}\|\sum_{j=1}^{n}\epsilon_{j}e^{-(m+t_{j})A}x_{j}\|^{2})^{\frac{1}{2}} \leq CK^{m}(\mathbb{E}\|\sum_{j=1}^{n}\epsilon_{j}x_{j}\|^{2})^{\frac{1}{2}}$$

where $K = ||e^{-A}||$. Now we show that the set $\{e^{-ut}e^{-tA} : 0 < t < \infty\}$ is R-bounded as long as $e^u > K$. For $x_1, ..., x_n \in X$ and $0 < t_1, ..., t_n < \infty$ we obtain

$$(\mathbb{E} \| \sum_{j=1}^{n} \epsilon_{j} e^{-t_{j}u} e^{-t_{j}A} x_{j} \|^{2})^{\frac{1}{2}} = (\mathbb{E} \| \sum_{m=0}^{\infty} \sum_{m \leq t_{j} < m+1} \epsilon_{j} e^{-t_{j}u} e^{-t_{j}A} x_{j} \|^{2})^{\frac{1}{2}}$$

$$\leq C \sum_{m=0}^{\infty} K^{m} e^{-um} (\mathbb{E} \| \sum_{m \leq t_{j} < m+1} \epsilon_{j} e^{-u\tilde{t}_{j}} x_{j} \|^{2})^{\frac{1}{2}}$$

where $0 \leq \tilde{t}_j \leq 1$. By the contraction principle

$$(\mathbb{E}\|\sum_{m \le t_j < m+1} \epsilon_j e^{-u\tilde{t}_j} x_j \|^2)^{\frac{1}{2}} \le \max_{1 \le j \le n} |e^{-u\tilde{t}_j}| (\mathbb{E}\|\sum_{j=1}^n \epsilon_j x_j \|^2)^{\frac{1}{2}} \le (\mathbb{E}\|\sum_{j=1}^n \epsilon_j x_j \|^2)^{\frac{1}{2}}.$$

Since $\sum_{m=0}^{\infty} K^m e^{-um}$ is finite for $u > \ln K$ we obtain the claim. Consequently, the set $\{\xi R(\xi, u + A) : |\arg \xi| > \phi\}$ is R-bounded.

Now for $\zeta \in \mathbb{C}$ with $|\arg(\zeta + M)| > \phi$, M > u, we can rewrite using $\xi - u = \zeta$,

$$\zeta R(\zeta, A) = (\xi - u)R(\xi - u) = (\xi - u)R(\xi, A + u) = \frac{\xi - u}{\xi}\xi R(\xi, A + u).$$

Since $\left|\frac{\xi-u}{\xi}\right| \leq \frac{M}{M-u}$ the result follows quickly.

It follows from results of [5] that if -A is the generator of a semigroup such that e^{-tA} is weakly compact for t > 0, or if the resolvents R(z, A) are weakly compact operators, then A cannot be R-sectorial. The next theorem strengthens this conclusion.

Theorem 3.2. Suppose A is a sectorial operator on $L_1(K, \lambda)$. Assume that either: (i) A is R-sectorial for some angle ω , or

(ii) -A is the generator of a bounded semigroup such that $\{e^{-tA} : 0 < t \le 1\}$ is *R*-bounded.

Then there is a bounded function $a(\zeta, s)$ defined for $s \in K$ and $|\arg \zeta| > \omega$ such that

- For each $s \in K$ the map $\zeta \to a(\zeta, s)$ is analytic.
- For each ζ the map $s \to a(\zeta, s)$ is Borel.
- $\lambda\{s: a(\zeta, s) = 0\} = 0$ for almost every ζ .

•

$$(R(\zeta, A)f)(s) = a(\zeta, s)f(s) + \int_{K} f(t)d\mu_{s}^{\zeta}(t), \qquad f \in L_{1},$$

where $\mu_{s}^{\zeta}\{s\} = 0.$

Proof. We begin with the observation that, under either hypothesis, there exist $\phi < \pi$ and $M < \infty$ such that the set of operators $\{\zeta R(\zeta, A) : |\arg \zeta| \ge \phi, |\zeta| \ge M\}$ is R-bounded. Hence the set of measures $\{\rho_{R(\zeta,A)} : |\arg \zeta| \ge \phi, |\zeta| \ge M\}$ is relatively weakly compact.

Consider the map $\zeta \to \Pi(R(\zeta, A))$ which is an analytic map from the set $S = \{\zeta : |\arg \zeta| > \omega\}$ into $\mathcal{L}(L_1)$. This induces an analytic map $F : S \to L_{\infty}(K, \lambda)$ given by

$$\Pi(R(\zeta, A))f = F(\zeta)f.$$

Let us show that we can choose representatives so that $F(\zeta)(s) = a(\zeta, s)$ where a satisfies the first two conditions of the statement. Indeed let \mathbb{D} be the unit disk and let $\varphi : \mathbb{D} \to S$ be a conformal equivalence. Then $F \circ \phi$ can be expanded in a Taylor series around the origin and we may pick uniformly bounded Borel representatives b_n for the coefficients in the expansion so that

$$F(\varphi(z))(s) = \sum_{n=0}^{\infty} b_n(s) z^n \qquad \lambda - \text{a.e.}, \ z \in \mathbb{D}.$$

Let

$$a(\zeta, s) = \sum_{n=0}^{\infty} b_n(s)(\varphi^{-1}(\zeta))^n.$$

Assume that the third condition fails. Then by Fubini's theorem there is a subset B of K with $\lambda(B) > 0$ so that for each $s \in B$ the set $\{\zeta : a(\zeta, s) = 0\}$ has positive planar measure. By analyticity, this implies $a(\zeta, s) \equiv 0$ for $s \in B$.

However $\rho_{n(n+A)^{-1}}$ converges weakly to ρ_I and hence so does $\rho_{\Pi(n(n+A)^{-1})}$. Thus -na(-n,s) is weakly convergent to the constant function $1 \in L_1(K,\lambda)$. This is a contradiction.

270

The next theorem shows that if a sectorial operator generates an R-bounded semigroup on L_1 , then it is very similar to a bounded operator in the sense that its domain is sufficiently large to contain generic L_1 -functions.

Theorem 3.3. Let A be a sectorial operator on $L_1(K, \lambda)$ and assume that for some $\phi < \pi$ and $M < \infty$ the set $\{\zeta R(\zeta, A) : |\arg \zeta| \ge \phi, |\zeta| \ge M\}$ is R-bounded. Then for any $\epsilon > 0$ there is an invertible operator $U : L_1 \to L_1$ with $||U - I|| < \epsilon$ and a density function w > 0 a.e. such that $L_1(w) \subset U^{-1}(\mathcal{D}(A))$.

In particular, there is a closed subspace Y of $\mathcal{D}(A)$ isomorphic to L_1 so that $A: Y \to A(Y)$ is bounded (and thus Y is also closed in L_1).

Proof. According to Proposition 2.3 the set of measures $\rho_{\zeta R(\zeta,A)}$ for $|\arg \zeta| \ge \phi$, $|\zeta| \ge M$ is relatively weakly compact in $\mathcal{M}(K \times K)$. The sequence $(m(m+A)^{-1})_{m \ge M}$ converges in the strong operator topology to the identity. Therefore, $\rho_{m(m+A)^{-1}}$ converges weak* to ρ_I in $\mathcal{M}(K \times K)$ and hence converges weakly to ρ_I by weak compactness.

Fix $\epsilon > 0$. We may find a sequence of convex combinations $(T_n)_{n=1}^{\infty}$ of $\{m(m+A)^{-1}\}_{m=1}^{\infty}$ such that ρ_{T_n} converges to ρ_I in norm. Applying Proposition 2.1 to $(T_n - I)_{n=1}^{\infty}$ gives a sequence of Borel sets $E_n \subset K$ such that $\lambda(E_n) > 1 - 2^{-n}\epsilon$ and

$$||T_n f - f|| \le 2^{-n} \epsilon ||f||, \quad f \in L_1(E_n).$$

Let us put $F_1 = E_1$ and then $F_n = E_n \setminus E_{n-1}$ for $n \ge 2$. We define $U: L_1 \to L_1$ by

$$Uf = \sum_{n=1}^{\infty} T_n(f\chi_{F_n}).$$

Thus $||U - I|| \leq \epsilon$. Observe that $T_n : L_1 \to \mathcal{D}(A)$ and so AT_n is a bounded operator on L_1 .

Define

$$w = \sum_{n=1}^{\infty} \|AT_n\| \chi_{F_n}$$

and assume $f \in L_1(w)$. Then

$$||AU(f\chi_{F_n})|| = ||AT_n(f\chi_{F_n})|| \le \int_{F_n} |f| w \, dt.$$

Hence $\sum_{k=1}^{\infty} AU(f\chi_{F_k})$ converges and, since A is closed, $Uf \in \mathcal{D}(A)$.

The last part of the theorem is deduced by fixing any n and note that if $Y = U(L_1(E_n))$, then A is bounded on Y and hence Y is closed in both $\mathcal{D}(A)$ and X and is isomorphic to L_1 in both.

Many differential operators on bounded domains have compact resolvents. Therefore we can use the results of [5] to show that they cannot be R-sectorial. In contrast, resolvents of differential operators on unbounded domains are, in general, not compact. An important example is the Laplacian Δ on $L_1(\mathbb{R}^n)$. Our corollary addresses this situation.

Corollary 3.4. Let $\Omega \subset \mathbb{R}^n$ be a bounded open set with locally Lipschitz boundary or $\Omega = \mathbb{R}^n$. Suppose that $A : \mathcal{D}(A) \subset L_1(\Omega) \longrightarrow L_1(\Omega)$ is a sectorial operator such that $\mathcal{D}(A)$ is contained in a Sobolev space $H_1^s(\Omega)$ for some s > 0. Then A does not generate an R-bounded semigroup. Proof. Assume the contrary, i.e., A generates an R-bounded semigroup. Then by Sobolev's embedding theorem [1] we have a continuous inclusion $H_1^s(\Omega) \hookrightarrow L_p(\Omega) \cap L_1(\Omega)$ for some p > 1. By Theorem 3.3 there is a closed subspace Y of $\mathcal{D}(A)$ on which A is bounded and so that Y is isomorphic to L_1 . This implies that there is a subspace of $L_1(\Omega) \cap L_p(\Omega)$ which is isomorphic to L_1 . If Ω is bounded this is an immediate contradiction since $L_1(\Omega) \cap L_p(\Omega) = L_p(\Omega)$ is reflexive. However even if Ω is unbounded this is still impossible. If $\Omega = \mathbb{R}^n$ we consider an isomorphism $J : L_1 \to L_1(\mathbb{R}^n) \cap L_p(\mathbb{R}^n)$. Then $J : L_1 \to L_p(\mathbb{R}^n)$ is a Dunford-Pettis operator and so if (f_n) is any normalized weakly null sequence in L_1 we have $\|Jf_n\|_p \to 0$. By passing to a subsequence we can assume $Jf_n \to 0$ a.e. But then (Jf_n) is also weakly null in $L_1(\mathbb{R}^n)$ and so $\|Jf_n\|_1 \to 0$. This gives a contradiction.

This corollary is actually true for any set Ω for which Sobolev's embedding theorem holds. Sufficient geometrical properties of Ω for this to happen are discussed in [1].

References

- R. A. Adams, Sobolev spaces, Pure and Applied Mathematics, Vol. 65, Academic Press, New York-London, 1975. MR0450957 (56:9247)
- [2] M. Cowling, I. Doust, A. McIntosh, and A. Yagi, Banach space operators with a bounded H[∞] functional calculus, J. Austral. Math. Soc. Ser. A 60 (1996), 51–89. MR1364554 (97d:47023)
- J. Diestel, Sequences and series in Banach spaces, Graduate Texts in Mathematics, vol. 92, Springer-Verlag, New York, 1984. MR737004 (85i:46020)
- [4] H. Fakhoury, Représentations d'opérateurs à valeurs dans $L^1(X, \Sigma, \mu)$, Math. Ann. 240 (1979), 203–212 (French). MR526843 (80e:47027)
- [5] M. Hoffmann, N. Kalton, and T. Kucherenko, *R-bounded approximating sequences and appli*cations to semigroups, J. Math. Anal. Appl. **294** (2004), 373–386. MR2061331 (2005e:46034)
- [6] N. J. Kalton, The endomorphisms of L_p ($0 \le p \le 1$), Indiana Univ. Math. J. **27** (1978), 353–381. MR0470670 (57:10416)
- [7] _____, Linear operators on L_p for 0 , Trans. Amer. Math. Soc.**259**(1980), 319–355. MR0567084 (81d:47022)
- [8] N. J. Kalton and L. Weis, The H[∞]-calculus and sums of closed operators, Math. Ann. 321 (2001), 319–345. MR1866491 (2003a:47038)
- J. Lindenstrauss and L. Tzafriri, Classical Banach spaces, II, Function spaces, Vol. 97, Springer-Verlag, Berlin, 1979. MR540367 (81c:46001)
- [10] L. Weis, On the representation of order continuous operators by random measures, Trans. Amer. Math. Soc. 285 (1984), 535–563. MR752490 (85g:47047)
- [11] _____, Operator-valued Fourier multiplier theorems and maximal L_p -regularity, Math. Ann. **319** (2001), 735–758. MR1825406 (2002c:42016)

Department of Mathematics, University of Missouri-Columbia, Columbia, Missouri65211

 $E\text{-}mail \ address: \texttt{nigel@math.missouri.edu}$

Department of Mathematics, University of California Los Angeles, Box 951555, Los Angeles, California 90095-1555

E-mail address: tamara@math.ucla.edu