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BANACH SPACES EMBEDDING ISOMETRICALLY 
INTO Lp WHEN 0<p<l 

N. J. KALTON AND A. KOLDOBSKY 

(Communicated by Jonathan M. Borwein) 

ABSTRACT. For 0 < p < 1 we give examples of Banach spaces isometrically 
embedding into Lp but not into any Lr with p < r < 1. 

1. INTRODUCTION 

It is a consequence of the Maurey-Nikishin factorization theory that every Ba- 
nach space that embeds isomorphically into Lp(0, 1) for some 0 < p < 1 embeds 
into every Lp(O, 1) for 0 < p < 1 (see [10], [11] and [15] pp. 257ff.). It is, however, 
an open problem whether every Banach space that embeds isomorphically into Lp 
for some 0 < p < 1 must also embed isomorphically into L1. This problem was 
formulated by Kwapien [8] in 1969; see [4] where it is shown that X embeds into 
L1 if and only if el(X) embeds into Lp for some p < 1. The isometric version of 
the problem asks: if X isometrically embeds into Lp for some p < 1 does it follow 
that X isometrically embeds into L1? This problem was solved negatively by the 
second author in 1996 [6] who showed that there is a Banach space embedding 
into L1/2 but not into L1. The construction also yielded an example of a Banach 
space embedding into L1/4 but not L1/2. Later, J. Borwein and the Center for 

Computational Mathematics at Simon Fraser University (unpublished) showed by 
computer methods that this algorithm yields examples of Banach spaces embedding 
into La/64 but not into L(a+l)/64 for a = 1, 2,... , 63. 

The purpose of this note is to show that for every 0 < p < 1 we can find a (real) 
Banach space X embedding isometrically into Lp but not into any Lr for p < r < 1. 
The example constructed in [6] is finite-dimensional and is obtained by a perturba- 
tion method. By contrast, our spaces are infinite-dimensional and we use probabilis- 
tic ideas to construct them. It is, of course, true that an infinite-dimensional space 
X embeds isometrically into Lp if and only if every finite-dimensional subspace 
does, and so our methods also imply the existence of finite-dimensional examples. 

We start in Section 2 by discussing the Plotkin-Rudin Equimeasurability and 
Uniqueness Theorems, which we need for our applications. In Section 3 we con- 
struct a very basic example, which we denote by Ep. This is the subspace of Lp(0, 1) 
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spanned by a constant function and a sequence of symmetric 1-stable random vari- 
ables. It turns out that this space is a Banach space that is an absolute direct sum 
of a one-dimensional space and an isometric copy of el. The spaces Ep provide 
our first family of examples. We show this by establishing that they have a certain 
extremal property (see Proposition 3.5). 

In Section 4 we provide a second family of examples that are renormings of 
Hilbert spaces. For each 0 < p < 1 we construct an example of such a space Xp 
that embeds isometrically into Lp but not into any Lr for r > p. These spaces are 
absolute direct sums of two infinite-dimensional Hilbert spaces. We observe that 
these examples have the additional property that no subspace of finite codimension 
can be embedded into any Lr where r > p. 

2. REMARKS ON THE PLOTKIN-RUDIN THEOREM 

In this section we discuss some essentially known results based on the Plotkin- 
Rudin theorems on isometric embeddings ([12], [13], [14]). See [7] for a discussion 
of these results. 

We will always work in the setting of a Polish space Q equipped with a nonatomic 
Borel probability measure /; we then say that (Q, ,) is a standard probability space. 
All functions are assumed to be Borel; if fi, " , f, are real Borel functions, then 
their joint distribution is the Borel measure on Rn given by u o (fi, * , fn)-l, and 
this will be denoted by pfl,...,fn. 

We say that if (Q1, /i) and (Q2, U2) are two standard probability spaces, then 
a Borel map a : fQ -> Q2 is a measure isomorphism if there is a Borel map 
7: Q2 -- 1 (an essential inverse) such that 

* Ta(Wl) = 1, ,i-a.e.; 
* cr(G2) = W2, /2-a.e.; 

* 2 o T-1 = -L1 and p/ = i2 o a-1. 

If a is a measure isomorphism, then it may be modified on a set of ,il-measure 
zero to become a Borel isomorphism (i.e., an invertible Borel map). If (Q, A) is a 
standard probability space, then there is always a Borel isomorphism a : Q -- [0, 1] 
such that A = , o a-1 where A is Lebesgue measure. 

We shall need the following fact. 

Proposition 2.1. Let (Q, ,) be a standard probability space and suppose K is a 
Polish space. Suppose a : Q -4 K is a Borel map and v = i o a-1. Suppose there 
exists a Borel function f on Q such that pf = I o f-1 is nonatomic and f is 
independent of a (i.e., f is independent of the a-algebra of sets of the form a-1B 
for B a Borel subset of K). Then there is a Borel map r : Q -- [0,1] so that a x r 
is a measure isomorphism of Q onto (K x [0, 1], v x A). 

Proof. This is surely well known, but we do not know an explicit reference. It 
follows, for example, from Proposition 2.2 of [3] once one observes that a is anti- 
injective (i.e., if B is a Borel set such that a is injective on B, then p(B) = 0)). 
It suffices by Lusin's theorem to consider the case when B is compact and a is 
continuous on B; then a is a Borel isomorphism of B onto a(B). To see this, suppose 
C1,., ,CN form a partition of IR so that pf(Ck) = N-1. Let Bk = B n f-l(Ck). 
Then a(Bk) is Borel and /(f -(Ck) n a-la(Bk)) = N-lv(a(Bk)). Hence I(B) < 

N 1 ENi= v(a(Bk)) < N-1 
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Let X be a separable normed space, and T : X -- Lp(Q, pu) an isometric em- 
bedding. We say that T is in canonical position if it satisfies the following two 
conditions: 

* There exists x C X so that Tx has full support, i.e., pi(Tx Z 0) = 1. 
* There exists a function f with pf nonatomic such that f is independent of 

the smallest a-algebra E such that each Tx is S-measurable. 
It is well known that if X embeds into Lp, then there is also an embedding in 
canonical position. 

Let us say that two embeddings S : X - Lp(Q1,/u1) and T : X - Lp(Q2,/12) 
are equivalent if 

PSxi,..-,Sxn = PTx1,..,Txn Xl, ' , Xn C X. 

Theorem 2.2 ([12], [13], [14]). (1) Suppose p is not an even integer and (Q,,ui) 
and (Q2,AL2) are two standard probability spaces. If S : X -* Lp(Q, u1) and T: 
X -* Lp(Q, /2) are isometric embeddings such that for some xo we have Sxo - XQ 
and Txo = XQ2, then S and T are equivalent. 

(2) If, in addition, S and T are in canonical position, then there exists a measure 
isomorphism a : Q -- Q2 such that 12 -= ui o r-1 and Tx o a = Sx for x E X. 

Proof. (1) is the usual Plotkin-Rudin equimeasurability theorem [12], [13], [14], 
[7]. (2) is surely well known and follows directly from Proposition 2.1. Let us 
indicate one proof. Let (xn) be any dense sequence in X and define, for j 1,2, 
Tj : Qj R- by T7(Wl) 

= (SXn(wl)) and T2(W2) = ((Txn)(W2)). Then by (1) 
1l 0OT1 = 2 072 

= 1 
, say. By Proposition 2.1 we can define Borel maps rj : Qj 

[0, 1] so that Tj x Kj is a measure isomorphism of (Qj, tj) onto (RN x [0, 1], v x A). 
The map a is then the composition a(rl x /1) where a is the essential inverse of 
T2 X N2- - 

If T: X -, Lp(Q, /u) is an isometric embedding, then we can always construct a 
new embedding by a change of density. If ,p is a nonvanishing Borel function, and 
f I lpdt = 1, we define dv = -IlPdu and T'x = p-1Tx; then T' : X -> Lp(Q, v) is 
a new isometric embedding. We then say that T' is obtained from T by a change 
of density. 

Theorem 2.3. Suppose p is not an even integer and S : X - Lp(Q,/,) is an 
isometric embedding of canonical type. Then, if T : X Lp(Q1,/l1) is any other 
isometric embedding, there exists a nonvanishing Borel function p so that T' is 
equivalent to T where T' : X -* Lp(Q, IJlPd/) is given by T'x = p-1Sx. (Thus T 
is obtained from S by a change of density.) 

Proof. We assume S is also of canonical type. Pick any x0 with llxoll = 1 so that 
Sxo - f and Txo = g have full support. Consider V1x = f-1Sx and V2x = 

g-1Tx. Then V1 : X -- Lp(Q, IflPd/1) and V2 : X -- Lp(Ql, IglPd/1) are isometric 
embeddings with Vlxo = XQ and V2xo = XQ1. It follows that there is a measure 
isomorphism a : Qf -- 1 so that Ig Pl1 = IflP/l o r -1 and Vlx = V2x o a. Now 
Txoa = gocrV2xoa = goaf-lSx, and if B is a Borel subset of Rn and xl, ,xn E 
X, then 

t1((Txi,. ,Txn) C B) = /g o ol-Pf lPX((Txo,-...,Tx,o)EB)dl 

and the conclusion follows with p = f(g o a)- 
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Corollary 2.4. Let X be a (separable) Banach space that embeds into Lp where 
p < 1. Let E be a subspace of X and suppose T: E -* Lp(Q, 1p) is a given isometric 
embedding. Then there is an isometric embedding S : X -Z Lp(Q1, li) such that 
the restriction of S to E is equivalent to T. 

Proof. Let R: X -L Lp(Q, ,u) be any isometric embedding of canonical type. We 
note that R is also of canonical type when restricted to E. In fact, it is only 
necessary to note that for every x C X, Rx has full support in Q. Indeed, if Rxo 
has full support, then 

J RxtRxdl l + tRIt[lPR RxolPd0, 
Rx=0 

which contradicts the convexity of the norm unless Rx has full support. It follows 
that we can make a change of density so that the new embedding S restricted to 
E is equivalent to T. a 

A random variable f is called symmetric p-stable 0 < p < 2 if the Fourier 
transform of pf is of the form e-cltlp for some c > 0. We recall that there is an 
isometric embedding T of Lr(0, 1) into Lp(O, 1) when 0 < p < r < 2 so that each Tf 
has a symmetric r-stable distribution. (See the remarks on p. 213 of [9].) We will 
call this the r-stable embedding. A particular case is that L1 can be embedded into 

Lp for p < 1 by mapping the basic vectors to a sequence of independent 1-stable 
random variables. 

We will also need the following standard lemmas. 

Lemma 2.5. Suppose X is a Banach space and T: X -* Lp(Q, /) is an isometric 
embedding where 0 < p < 1. Then {lTxlp: 11x\l < 1} is equi-integrable. 

Proof. This follows by contradiction: if {ITxP : I[xll < 1} is not equi-integrable, 
then (see [15] p. 137) there exists 6 > 0, a disjoint sequence of Borel sets (Ak) and 
xk with l\xkll < 1 so that fAk ITxklPdp > 6P. Then by an application of Khintchine's 

inequality we have for suitable c > 0, 
N 

NP > Ave | E EkXk Ip 

k=l 

> c^' J(Z ITxrk2) d^l 

> cPN6p, 

and for large enough N this gives a contradiction. O 

Lemma 2.6. Let F : RIm+l --* R be a continuous function. Suppose gl,' ,gm 
are measurable functions on (Q, /) and that (fn)=1 is any sequence of identically 
distributed independent random variables with common distribution p = pfn. If 
the functions F(gi,., *g, fn) are equi-integrable for n = 1, 2, * , then F(gl, , 
gm, fo) is integrable and 

(2.1) lim F(gl, ,gm, fn)d/l- l F(gl, , g . , t)dp(t)d[. n--+o R 
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Proof. First, suppose that F, gl,..., gm,, fn are all bounded functions. Note that 
for al,.., am b = 0,1,2, ..., we have 

lim g1 9g2 ... gm fdl = (g gm dt (tbdp(t) 
i~aiJg~i/a l am 9i/ I. 

since the fb converge weakly in L2 to the constant f fbd/u. Hence for any polynomial 
P, 

lim JP(gi,", gm, fn)d= P(gl, ,gm, t)dp(t)dl. 
n---oo 

If Ifnl, I9l, | Igml < M and e > 0, we approximate F on the cube [-M, M]m+l 
by a polynomial P so that the range of 

IP(x1 '" ,xm,y)- F(xl,'', xm, y) M, 1 < j < m, y < M. 

Then it follows that we have 

lim / F(9g,. , gm,fn)d/i- 
- 

J F(g91, , g, t)dp(t)di _ < e. n---+0o 

Letting e - 0 we obtain (2.1) under the assumption that f, gl, ' , gm are bounded. 
Next assume that IFI is bounded by M, but allow f and gj to be unbounded. 

For any m E N, let fk,n = fnXlfnI<k, and gk,j = 9Xlg9<k. Then for n > 0, 

F(gi,- ,gm, fn)d - JF(gk,l, gk,m fk,n,)diI 

<2M ([Ifo\>k)+Z /(jgjI>k) . 

~( ? ?s?j=l 
Since we have (2.1) for bounded fn, gl, , gm, we obtain the result in general for 
F bounded. 

Now assume that F(gl,, gm, fn) is equi-integrable and let Fk = min(F, k) if 
F > 0 and Fk = max(F,-k) if F < 0. Then 

lim X IFk(gl," ,gm, fn)dl = J IFk(9gl . - ,gm,t)dp(t)dd, 

and it follows that F(gl, *.. , g,I t) is integrable with respect to 1 x p. We also have 

lim / Fk(gl, ,.,gm fn)d= X F(gl, gm, fn)dp 
k- yo 

uniformly in k, so that the general result follows by uniform convergence. O 

3. THE SPACES Ep FOR 0 < p < 1 

Lemma 3.1. Suppose 0 < p < 1. Then for -7r/2 < 0 < 7r/2, 

i(3.1) 1 x (xcosO+sinelPd cosp0 
J7o 1 + 2 cosp7r/2' 

Proof. We consider the case 0 7 0 of (3.1); the other cases are similar. We define 
f(z) to be the branch of (z cos 0 + sin O)P defined in C \ {- tan 0 - it: t > O} such 
that f(x) is real and positive if x > -tan 0. Now by a routine contour integration 
we have 

1 f( dx = eip( -) 
7r o I+ x2 
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Taking imaginary parts gives 

1 - tan0 x cos 0 + sin OIP d sinp(2 -0) 
r JI-oo + x2 sinpTr 

Taking real parts and substituting in, we have 

x1 f \xcos P + sinOIP 7r si . - sinp( 0) 
Jan os l xsinP2 dx = cosp( 0) - cotp7rsinp( -0)= 7r J tan• 1 + 2 2 2 sinpTr 

Combining gives (3.1). D 

Lemma 3.2. Let M : C - [0, oo) be a continuous nonnegative function. Suppose 
M is subharmonic and positively homogeneous (i.e., M(az) = aM(z) for a > 0). 
Then M is convex. 

Proof. First, we assume that M is C2 on C \ {0}. Then for any z = x + iy 4 0 the 
second derivative of M is given by a symmetric 2 x 2 matrix that has rank at most 
one. To see this, note that the equation M(az) = aM(z) implies on differentiation 
by a, and then by setting a = 1 that 

9M 9M 
x- +y < = M. 

Differentiating again with respect to x and y gives 

02M 02M 
X02 +1/0 0, 9x 2 + 

Y OxOy 
02M 02M 

xOy 
+ 

y2 
= 0 

and hence the second derivative has determinant zero. Thus if V2M > 0, the 
second derivative of M is nonnegative at z. This shows that M is convex. 

If M is not C2, then we may approximate it by functions of the form 
r27r 

M(z)= / p(0)M(zeeO)d0 
Jo 

where (p is smooth and nonnegative. Each such function M is convex and so M is 
convex. D 

Now, for 0 < p < 1, let us define a function Np(x, y) on R2 by setting 

Np(x,y)= r os ) 

whenever x > 0 and x = rcos , y = rsin0 with r > 0, - < 0 < . Then extend 

Np to be an even function, i.e., so that Np(x,y) = Np(-x, -y) whenever x < 0. 
Note also that Np(O, 1) = 1 but Np(1, 0) = (sec P) '. 

Lemma 3.3. IfO < p < 1, Np is an absolute norm on 22; i.e., Np is a norm so 
that Np(x, y) = Np(lx, I y). 

Proof. Let u(z) = rP cospO when z = reio with -7r < 0 < 7r. Then u is subharmonic 
and Np(x,y) = (sec P) P (max(u(z), u(-z)))P where z = x-+iy. Hence Np is a norm 
by Lemma 3.2. The fact that Np is absolute is trivial. O 
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We now define a Banach space Ep for 0 < p < 1. We define this to be the space 
?1 R I with the norm II(x, Y)I IEP = Np(lxl, IYl). 

Let (fn) be a sequence of independent 1-stable random variables on some proba- 
bility space (Q, ,L) so that f eitfn d = e-lt . Then for any finitely nonzero sequence 
(~n)=1 and any rq we have 

00 00 

11 E nfn + rlIp = Np( N fnlj. I17). 
n=l n=l 

It follows that: 

Proposition 3.4. Ep is isometric to a closed subspace of Lp for 0 < p < 1. 

Next, we show that Ep cannot be embedded into Lr for any p < r < 1. To do 
this we introduce the quantity 

- 1 ((cos ,l) p- ) 1 sin P-. 
ap = lim N((cos Pp) -sin P 

t--O t 2 2 

Proposition 3.5. Suppose 0 < p < 1 and that (gn) is a sequence in Lp(Q, AI) that 
is 1-equivalent to the standard unit vector basis of ?1. Suppose h E Lp and \lhllp = 1. 
Then 

lim Ilh + tgnllp > Np((COS P) t, 1) > 1 + apltl. 
n--oo 

Proof. It follows from Theorem 2.3 and Corollary 2.4 that it suffices to consider 
the case when gn = (cos P) P fn where (fn) is a sequence of independent 1-stable 
random variables with f eitfndp = e-tl. We now apply Lemma 2.6: 

lim h + TfnlPdp =-1 
'0 Ih(f) + dx d ) n--+c)o 7r I + - 

= 
fN(, h(w))Pdlt(w) 

Now since Np is an absolute norm, 

/ Np(r, l)l-PNp(r, h())Pd > X Np(T. Ih(W)lP)d] 

> Np(T, 1) 

and hence 

Np (r, h())Pdp(u) > Np(T, 1)P. 

This gives us the first inequality. 
For the second part observe that 

Np((cos p)t, 1) - 1 
lim a 

t-O+ t 

and use the fact that Np is a norm. O 

Theorem 3.6. For 0 < p < 1 the space Ep is a Banach space isometric to a 
subspace of Lp, which is not isometric to a subspace of any Lr for r > p. 
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Proof. This is immediate from Proposition 3.5 once we show that the function 
p -- ap is strictly increasing on (0,1). Since Lr embeds into Lp when p < r and 
Er embeds into Lr, it is clear from Proposition 3.5 that p -> ap is increasing. This 
function is non-constant since limp_> ap = 1 and al/2 = 2. Since it is a real-analytic 
function, it must therefore be strictly increasing. O 

Remark. It would be interesting to estimate the smallest integer n = n(r,p) 
so that the n-dimensional subspace of Ep spanned by the constant function and 
fi, ' " , fn-1 fails to embed into Lr. We also mention that the span of the constant 
function and the sequence Ifnl is isomorphic to the Ribe space [2]; for similar 
examples involving p-stable random variables see [1]. 

4. PERTURBED HILBERT SPACES 

In this section we give an alternative construction of examples that are isomor- 
phic but not isometric to Hilbert spaces. 

Lemma 4.1. Suppose 0 < p < 1. Then there exists e(p) > 0 so that if 0 < a < e(p), 
the following equation defines an absolute norm on 2 : 

(4.1) N(, )P = (X2 + (1 + a)py2)2 + (x2 + (1- a) y2). 

Proof. This follows easily from Lemma 3.2 since, if a is small enough, (x2 + (1 + 

a) y2) and (2 + (1-a) y2) are both subharmonic. O 

Theorem 4.2. Suppose 0 < p < 1 and N is given by (4.1). Then the space 
X = e2 eN ?2 embeds into Lp but does not embed into any space Lr where r > p. 

Proof. We first establish an embedding of X into Lp(Q, p). Let (en) and (e') be 
the canonical orthonormal bases of the two factors of X. Let (fn), (gn) be two 
mutually independent sequences of independent normalized Gaussians; we denote 

by y their common distribution so that dy(t) = (27r)- exp(-t2)dt. Let E be a 

Borel set independent of (fn, gn) with M-E = . Let h = (1 + a) XE + (1 -a)PXE 
We define our embedding by 

Ten = bifn, 
Te' = blhgn 

where bP = ll = Ifn J Itlpddy(t). We can and do assume that T is of canonical 
type. Suppose (7n), (tn) are two finitely nonzero sequences of reals. Then 

00 00 00 00 

J 
| f: nTen + 7nTe' Pdti = bP I | f n + h E ing9nlPdi 

n=1 n=l1 n=l n=l 
00 00 

n-=1 n=1 

= N((E n 2 n) 2) 
n=l n=l 

Now assume X also embeds isometrically into Lr for some p < r < 2. Then X 
can also be embedded into Lp by an r-stable embedding S. In view of Theorem 2.3, 
it may be assumed that S is obtained from T by a change of density, i.e., there exists 
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a nonvanishing Borel function p with IIIplp = 1 such that S : X --+ Lp(Q, IlPdl) 
is given by Sx = p-1Tx. Fix any 0 < q < p. It follows for an appropriate choice 
of b2 that the map S'x = b2Sx embeds X into Lq(Q, oIlPdij). Now we make a 
further change of density. Let bj = f1 fplP-qduL and define b =- b319-1. Let 
R: X - Lq(Q, I/q1(pljpPdu) by Rx = --1-S'x. Then Rx = b3b2Tx. Let bo = b3b2b. 

We now use Lemma 2.5 and Lemma 2.6. Suppose x, y E R. 

N(x, y)q = b lim lim Ixfm + yhgnlqllPlqd m--oo n--oo 

= bo lim j/ I xfm + ythqd_y(t)lPllqdl 

= b jj Ixs +ythl\d(s)d(t) di 

= b I\tlqd(t) (X2+ y2h2)1 jPjIpjq 

Since h takes only the values (1 i a) , this implies that we can find positive 
constants cl, c2 so that for all x, y, 

N(x,y)q = ci(X2 + (1 - a)y2) + C2(x2 + (1 + a)y2)2. 

Since N(1, 0) = N(0, 1) = 1, this requires 

Cl + C2 = 1, 

cl(l - a)P + c2(1 + a)p = 1. 

Note also that 

limN(1,t)2 -1 1 2 
ti t2 _= ((1 + a) + (1 -a)) 

= Cl(l - a)2 + C2(1 + a) . 

It is clearly impossible to satisfy these three conditions. This contradiction shows 
that we cannot embed X into Lr for any r > p. D 

Remark. It is worth remarking in this context that it is unknown if there is an 
infinite-dimensional space X that embeds isometrically into Lp and Lr where p < 
2 < r and is isomorphic but not isometric to a Hilbert space (see [5]). 
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