BANACH SPACES EMBEDDING ISOMETRICALLY INTO L_p WHEN 0

N. J. KALTON AND A. KOLDOBSKY

(Communicated by Jonathan M. Borwein)

ABSTRACT. For $0 we give examples of Banach spaces isometrically embedding into <math>L_p$ but not into any L_r with $p < r \le 1$.

1. INTRODUCTION

It is a consequence of the Maurey-Nikishin factorization theory that every Banach space that embeds isomorphically into $L_p(0, 1)$ for some 0 embeds $into every <math>L_p(0, 1)$ for 0 (see [10], [11] and [15] pp. 257ff.). It is, however, $an open problem whether every Banach space that embeds isomorphically into <math>L_p$ for some $0 must also embed isomorphically into <math>L_1$. This problem was formulated by Kwapien [8] in 1969; see [4] where it is shown that X embeds into L_1 if and only if $\ell_1(X)$ embeds into L_p for some p < 1. The isometric version of the problem asks: if X isometrically embeds into L_p for some p < 1 does it follow that X isometrically embeds into L_1 ? This problem was solved negatively by the second author in 1996 [6] who showed that there is a Banach space embedding into $L_{1/2}$ but not into L_1 . The construction also yielded an example of a Banach space embedding into $L_{1/4}$ but not $L_{1/2}$. Later, J. Borwein and the Center for Computational Mathematics at Simon Fraser University (unpublished) showed by computer methods that this algorithm yields examples of Banach spaces embedding into $L_{a/64}$ but not into $L_{(a+1)/64}$ for $a = 1, 2, \dots, 63$.

The purpose of this note is to show that for every 0 we can find a (real) $Banach space X embedding isometrically into <math>L_p$ but not into any L_r for $p < r \le 1$. The example constructed in [6] is finite-dimensional and is obtained by a perturbation method. By contrast, our spaces are infinite-dimensional and we use probabilistic ideas to construct them. It is, of course, true that an infinite-dimensional space X embeds isometrically into L_p if and only if every finite-dimensional subspace does, and so our methods also imply the existence of finite-dimensional examples.

We start in Section 2 by discussing the Plotkin-Rudin Equimeasurability and Uniqueness Theorems, which we need for our applications. In Section 3 we construct a very basic example, which we denote by E_p . This is the subspace of $L_p(0, 1)$

Received by the editors March 31, 2002.

²⁰⁰⁰ Mathematics Subject Classification. Primary 47A16, 47C15.

Key words and phrases. Isometric embedding, L_p -space, stable random variables.

The first author was supported by NSF grant DMS-9870027.

The second author was supported by NSF grant DMS-9996431.

spanned by a constant function and a sequence of symmetric 1-stable random variables. It turns out that this space is a Banach space that is an absolute direct sum of a one-dimensional space and an isometric copy of ℓ_1 . The spaces E_p provide our first family of examples. We show this by establishing that they have a certain extremal property (see Proposition 3.5).

In Section 4 we provide a second family of examples that are renormings of Hilbert spaces. For each $0 we construct an example of such a space <math>X_p$ that embeds isometrically into L_p but not into any L_r for r > p. These spaces are absolute direct sums of two infinite-dimensional Hilbert spaces. We observe that these examples have the additional property that no subspace of finite codimension can be embedded into any L_r where r > p.

2. Remarks on the Plotkin-Rudin theorem

In this section we discuss some essentially known results based on the Plotkin-Rudin theorems on isometric embeddings ([12], [13], [14]). See [7] for a discussion of these results.

We will always work in the setting of a Polish space Ω equipped with a nonatomic Borel probability measure μ ; we then say that (Ω, μ) is a standard probability space. All functions are assumed to be Borel; if f_1, \dots, f_n are real Borel functions, then their joint distribution is the Borel measure on \mathbb{R}^n given by $\mu \circ (f_1, \dots, f_n)^{-1}$, and this will be denoted by ρ_{f_1,\dots,f_n} .

We say that if (Ω_1, μ_1) and (Ω_2, μ_2) are two standard probability spaces, then a Borel map $\sigma : \Omega_1 \to \Omega_2$ is a measure isomorphism if there is a Borel map $\tau : \Omega_2 \to \Omega_1$ (an essential inverse) such that

•
$$\tau\sigma(\omega_1) = \omega_1, \ \mu_1$$
-a.e.;

•
$$\sigma\tau(\omega_2) = \omega_2, \, \mu_2$$
-a.e.;

• $\mu_2 \circ \tau^{-1} = \mu_1$ and $\mu_1 = \mu_2 \circ \sigma^{-1}$.

If σ is a measure isomorphism, then it may be modified on a set of μ_1 -measure zero to become a Borel isomorphism (i.e., an invertible Borel map). If (Ω, μ) is a standard probability space, then there is always a Borel isomorphism $\sigma : \Omega \to [0, 1]$ such that $\lambda = \mu \circ \sigma^{-1}$ where λ is Lebesgue measure.

We shall need the following fact.

Proposition 2.1. Let (Ω, μ) be a standard probability space and suppose K is a Polish space. Suppose $\sigma : \Omega \to K$ is a Borel map and $\nu = \mu \circ \sigma^{-1}$. Suppose there exists a Borel function f on Ω such that $\rho_f = \mu \circ f^{-1}$ is nonatomic and f is independent of σ (i.e., f is independent of the σ -algebra of sets of the form $\sigma^{-1}B$ for B a Borel subset of K). Then there is a Borel map $\tau : \Omega \to [0, 1]$ so that $\sigma \times \tau$ is a measure isomorphism of Ω onto $(K \times [0, 1], \nu \times \lambda)$.

Proof. This is surely well known, but we do not know an explicit reference. It follows, for example, from Proposition 2.2 of [3] once one observes that σ is antiinjective (i.e., if *B* is a Borel set such that σ is injective on *B*, then $\mu(B) = 0$)). It suffices by Lusin's theorem to consider the case when *B* is compact and σ is continuous on *B*; then σ is a Borel isomorphism of *B* onto $\sigma(B)$. To see this, suppose C_1, \dots, C_N form a partition of \mathbb{R} so that $\rho_f(C_k) = N^{-1}$. Let $B_k = B \cap f^{-1}(C_k)$. Then $\sigma(B_k)$ is Borel and $\mu(f^{-1}(C_k) \cap \sigma^{-1}\sigma(B_k)) = N^{-1}\nu(\sigma(B_k))$. Hence $\mu(B) \leq N^{-1}\sum_{k=1}^N \nu(\sigma(B_k)) \leq N^{-1}$. Let X be a separable normed space, and $T: X \to L_p(\Omega, \mu)$ an isometric embedding. We say that T is *in canonical position* if it satisfies the following two conditions:

- There exists $x \in X$ so that Tx has full support, i.e., $\mu(Tx \neq 0) = 1$.
- There exists a function f with ρ_f nonatomic such that f is independent of the smallest σ -algebra Σ such that each Tx is Σ -measurable.

It is well known that if X embeds into L_p , then there is also an embedding in canonical position.

Let us say that two embeddings $S: X \to L_p(\Omega_1, \mu_1)$ and $T: X \to L_p(\Omega_2, \mu_2)$ are *equivalent* if

$$\rho_{Sx_1,\dots,Sx_n} = \rho_{Tx_1,\dots,Tx_n} \qquad x_1,\dots,x_n \in X.$$

Theorem 2.2 ([12], [13], [14]). (1) Suppose p is not an even integer and (Ω, μ_1) and (Ω_2, μ_2) are two standard probability spaces. If $S : X \to L_p(\Omega, \mu_1)$ and $T : X \to L_p(\Omega, \mu_2)$ are isometric embeddings such that for some x_0 we have $Sx_0 = \chi_{\Omega_1}$ and $Tx_0 = \chi_{\Omega_2}$, then S and T are equivalent.

(2) If, in addition, S and T are in canonical position, then there exists a measure isomorphism $\sigma: \Omega_1 \to \Omega_2$ such that $\mu_2 = \mu_1 \circ \sigma^{-1}$ and $Tx \circ \sigma = Sx$ for $x \in X$.

Proof. (1) is the usual Plotkin-Rudin equimeasurability theorem [12], [13], [14], [7]. (2) is surely well known and follows directly from Proposition 2.1. Let us indicate one proof. Let (x_n) be any dense sequence in X and define, for j = 1, 2, $\tau_j : \Omega_j \to \mathbb{R}^{\mathbb{N}}$ by $\tau_1(\omega_1) = (Sx_n(\omega_1))$ and $\tau_2(\omega_2) = ((Tx_n)(\omega_2))$. Then by (1) $\mu_1 \circ \tau_1^{-1} = \mu_2 \circ \tau_2^{-1} = \nu$, say. By Proposition 2.1 we can define Borel maps $\kappa_j : \Omega_j \to$ [0,1] so that $\tau_j \times \kappa_j$ is a measure isomorphism of (Ω_j, μ_j) onto $(\mathbb{R}^{\mathbb{N}} \times [0,1], \nu \times \lambda)$. The map σ is then the composition $\alpha(\tau_1 \times \kappa_1)$ where α is the essential inverse of $\tau_2 \times \kappa_2$.

If $T: X \to L_p(\Omega, \mu)$ is an isometric embedding, then we can always construct a new embedding by a change of density. If φ is a nonvanishing Borel function, and $\int |\varphi|^p d\mu = 1$, we define $d\nu = |\varphi|^p d\mu$ and $T'x = \varphi^{-1}Tx$; then $T': X \to L_p(\Omega, \nu)$ is a new isometric embedding. We then say that T' is obtained from T by a change of density.

Theorem 2.3. Suppose p is not an even integer and $S : X \to L_p(\Omega, \mu)$ is an isometric embedding of canonical type. Then, if $T : X \to L_p(\Omega_1, \mu_1)$ is any other isometric embedding, there exists a nonvanishing Borel function φ so that T' is equivalent to T where $T' : X \to L_p(\Omega, |\varphi|^p d\mu)$ is given by $T'x = \varphi^{-1}Sx$. (Thus T is obtained from S by a change of density.)

Proof. We assume S is also of canonical type. Pick any x_0 with $||x_0|| = 1$ so that $Sx_0 = f$ and $Tx_0 = g$ have full support. Consider $V_1x = f^{-1}Sx$ and $V_2x = g^{-1}Tx$. Then $V_1: X \to L_p(\Omega, |f|^p d\mu)$ and $V_2: X \to L_p(\Omega_1, |g|^p d\mu_1)$ are isometric embeddings with $V_1x_0 = \chi_{\Omega}$ and $V_2x_0 = \chi_{\Omega_1}$. It follows that there is a measure isomorphism $\sigma: \Omega \to \Omega_1$ so that $|g|^p \mu_1 = |f|^p \mu \circ \sigma^{-1}$ and $V_1x = V_2x \circ \sigma$. Now $Tx \circ \sigma = g \circ \sigma f^{-1}Sx$, and if B is a Borel subset of \mathbb{R}^n and $x_1, \dots, x_n \in X$, then

$$\mu_1((Tx_1,\cdots,Tx_n)\in B)=\int |g\circ\sigma|^{-p}|f|^p\chi_{((Tx_1\circ\sigma,\cdots,Tx_n\circ\sigma)\in B)}d\mu$$

and the conclusion follows with $\varphi = f(g \circ \sigma)^{-1}$.

Corollary 2.4. Let X be a (separable) Banach space that embeds into L_p where p < 1. Let E be a subspace of X and suppose $T : E \to L_p(\Omega, \mu)$ is a given isometric embedding. Then there is an isometric embedding $S : X \to L_p(\Omega_1, \mu_1)$ such that the restriction of S to E is equivalent to T.

Proof. Let $R: X \to L_p(\Omega, \mu)$ be any isometric embedding of canonical type. We note that R is also of canonical type when restricted to E. In fact, it is only necessary to note that for every $x \in X$, Rx has full support in Ω . Indeed, if Rx_0 has full support, then

$$\int |Rx + tRx_0|^p d\mu \ge ||x||^p + |t|^p \int_{Rx=0} |Rx_0|^p d\mu,$$

which contradicts the convexity of the norm unless Rx has full support. It follows that we can make a change of density so that the new embedding S restricted to E is equivalent to T.

A random variable f is called symmetric p-stable $0 if the Fourier transform of <math>\rho_f$ is of the form $e^{-c|t|^p}$ for some c > 0. We recall that there is an isometric embedding T of $L_r(0,1)$ into $L_p(0,1)$ when 0 so that each <math>Tf has a symmetric r-stable distribution. (See the remarks on p. 213 of [9].) We will call this the r-stable embedding. A particular case is that ℓ_1 can be embedded into L_p for p < 1 by mapping the basic vectors to a sequence of independent 1-stable random variables.

We will also need the following standard lemmas.

Lemma 2.5. Suppose X is a Banach space and $T: X \to L_p(\Omega, \mu)$ is an isometric embedding where $0 . Then <math>\{|Tx|^p : ||x|| \le 1\}$ is equi-integrable.

Proof. This follows by contradiction: if $\{|Tx|^p : ||x|| \leq 1\}$ is not equi-integrable, then (see [15] p. 137) there exists $\delta > 0$, a disjoint sequence of Borel sets (A_k) and x_k with $||x_k|| \leq 1$ so that $\int_{A_k} |Tx_k|^p d\mu > \delta^p$. Then by an application of Khintchine's inequality we have for suitable c > 0,

$$N^{p} \geq \operatorname{Ave}_{\epsilon_{k}=\pm 1} \|\sum_{k=1}^{N} \epsilon_{k} x_{k}\|^{p}$$
$$\geq c^{p} \int (\sum_{k=1}^{N} |Tx_{k}|^{2})^{\frac{p}{2}} d\mu$$
$$\geq c^{p} N \delta^{p},$$

and for large enough N this gives a contradiction.

Lemma 2.6. Let $F : \mathbb{R}^{m+1} \to \mathbb{R}$ be a continuous function. Suppose g_1, \dots, g_m are measurable functions on (Ω, μ) and that $(f_n)_{n=1}^{\infty}$ is any sequence of identically distributed independent random variables with common distribution $\rho = \rho_{f_n}$. If the functions $F(g_1, \dots, g_m, f_n)$ are equi-integrable for $n = 1, 2, \dots$, then $F(g_1, \dots, g_m, f_0)$ is integrable and

(2.1)
$$\lim_{n \to \infty} \int F(g_1, \cdots, g_m, f_n) d\mu = \int_{\Omega} \int_{\mathbb{R}} F(g_1, \cdots, g_m, t) d\rho(t) d\mu.$$

Proof. First, suppose that F, g_1, \dots, g_m, f_n are all bounded functions. Note that for $a_1, \dots, a_m, b = 0, 1, 2, \dots$, we have

$$\lim_{n \to \infty} \int g_1^{a_1} g_2^{a_2} \cdots g_m^{a_m} f_n^b d\mu = \left(\int g_1^{a_1} \cdots g_m^{a_m} d\mu \right) \left(\int t^b d\rho(t) \right)$$

since the f_n^b converge weakly in L_2 to the constant $\int f_n^b d\mu$. Hence for any polynomial P,

$$\lim_{n \to \infty} \int P(g_1, \cdots, g_m, f_n) d\mu = \int_{\Omega} \int_{\mathbb{R}} P(g_1, \cdots, g_m, t) d\rho(t) d\mu.$$

If $|f_n|, |g_1|, \dots, |g_m| \leq M$ and $\epsilon > 0$, we approximate F on the cube $[-M, M]^{m+1}$ by a polynomial P so that the range of

$$|P(x_1,\cdots,x_m,y) - F(x_1,\cdots,x_m,y)| \le \epsilon \qquad |x_j| \le M, \ 1 \le j \le m, \ |y| \le M.$$

Then it follows that we have

$$\left|\lim_{n\to\infty}\int F(g_1,\cdots,g_m,f_n)d\mu-\int_{\Omega}\int_{\mathbb{R}}F(g_1,\cdots,g_m,t)d\rho(t)d\mu\right|\leq\epsilon.$$

Letting $\epsilon \to 0$ we obtain (2.1) under the assumption that f, g_1, \dots, g_m are bounded.

Next assume that |F| is bounded by M, but allow f and g_j to be unbounded. For any $m \in \mathbb{N}$, let $f_{k,n} = f_n \chi_{|f_n| \leq k}$, and $g_{k,j} = g \chi_{|g| \leq k}$. Then for $n \geq 0$,

$$\left| \int F(g_1, \cdots, g_m, f_n) d\mu - \int F(g_{k,1}, \cdots, g_{k,m}, f_{k,n}) d\mu \right|$$

$$\leq 2M \left(\mu(|f_0| > k) + \sum_{j=1}^m \mu(|g_j| > k) \right).$$

Since we have (2.1) for bounded f_n, g_1, \dots, g_m , we obtain the result in general for F bounded.

Now assume that $F(g_1, \dots, g_m, f_n)$ is equi-integrable and let $F_k = \min(F, k)$ if $F \ge 0$ and $F_k = \max(F, -k)$ if $F \le 0$. Then

$$\lim_{n \to \infty} \int_{\Omega} |F_k(g_1, \cdots, g_m, f_n)| d\mu = \int_{\Omega} \int_{\mathbb{R}} |F_k(g_1, \cdots, g_m, t)| d\rho(t) d\mu,$$

and it follows that $F(g_1, \dots, g_m, t)$ is integrable with respect to $\mu \times \rho$. We also have

$$\lim_{k\to\infty}\int F_k(g_1,\cdots,g_m,f_n)d\mu=\int F(g_1,\cdots,g_m,f_n)d\mu$$

uniformly in k, so that the general result follows by uniform convergence.

3. The spaces E_p for 0

Lemma 3.1. Suppose $0 . Then for <math>-\pi/2 < \theta \le \pi/2$,

(3.1)
$$\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{|x\cos\theta + \sin\theta|^p}{1 + x^2} dx = \frac{\cos p\theta}{\cos p\pi/2}$$

Proof. We consider the case $\theta \neq 0$ of (3.1); the other cases are similar. We define f(z) to be the branch of $(z \cos \theta + \sin \theta)^p$ defined in $\mathbb{C} \setminus \{-\tan \theta - it : t \ge 0\}$ such that f(x) is real and positive if $x \ge -\tan \theta$. Now by a routine contour integration we have

$$\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{f(x)}{1+x^2} dx = e^{ip(\frac{\pi}{2}-\theta)}.$$

Taking imaginary parts gives

$$\frac{1}{\pi} \int_{-\infty}^{-\tan\theta} \frac{|x\cos\theta + \sin\theta|^p}{1 + x^2} dx = \frac{\sin p(\frac{\pi}{2} - \theta)}{\sin p\pi}.$$

Taking real parts and substituting in, we have

$$\frac{1}{\pi} \int_{-\tan\theta}^{\infty} \frac{|x\cos\theta + \sin\theta|^p}{1+x^2} dx = \cos p(\frac{\pi}{2} - \theta) - \cot p\pi \sin p(\frac{\pi}{2} - \theta) = \frac{\sin p(\frac{\pi}{2} + \theta)}{\sin p\pi}.$$

Combining gives (3.1).

Lemma 3.2. Let $M : \mathbb{C} \to [0, \infty)$ be a continuous nonnegative function. Suppose M is subharmonic and positively homogeneous (i.e., M(az) = aM(z) for $a \ge 0$). Then M is convex.

Proof. First, we assume that M is C^2 on $\mathbb{C} \setminus \{0\}$. Then for any $z = x + iy \neq 0$ the second derivative of M is given by a symmetric 2×2 matrix that has rank at most one. To see this, note that the equation M(az) = aM(z) implies on differentiation by a, and then by setting a = 1 that

$$x\frac{\partial M}{\partial x} + y\frac{\partial M}{\partial y} = M$$

Differentiating again with respect to x and y gives

$$\begin{split} &x\frac{\partial^2 M}{\partial x^2} + y\frac{\partial^2 M}{\partial x \partial y} = 0,\\ &x\frac{\partial^2 M}{\partial x \partial y} + y\frac{\partial^2 M}{\partial y^2} = 0, \end{split}$$

and hence the second derivative has determinant zero. Thus if $\nabla^2 M \ge 0$, the second derivative of M is nonnegative at z. This shows that M is convex.

If M is not C^2 , then we may approximate it by functions of the form

$$ilde{M}(z) = \int_{0}^{2\pi} \varphi(\theta) M(z e^{i\theta}) d\theta$$

where φ is smooth and nonnegative. Each such function \tilde{M} is convex and so M is convex.

Now, for $0 , let us define a function <math>N_p(x, y)$ on \mathbb{R}^2 by setting

$$N_p(x,y) = r \left(rac{\cos p heta}{\cos rac{p\pi}{2}}
ight)^{rac{1}{p}},$$

whenever $x \ge 0$ and $x = r \cos \theta$, $y = r \sin \theta$ with $r \ge 0$, $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$. Then extend N_p to be an even function, i.e., so that $N_p(x, y) = N_p(-x, -y)$ whenever $x \le 0$. Note also that $N_p(0, 1) = 1$ but $N_p(1, 0) = (\sec \frac{p\pi}{2})^{\frac{1}{p}}$.

Lemma 3.3. If $0 , <math>N_p$ is an absolute norm on \mathbb{R}^2 ; i.e., N_p is a norm so that $N_p(x, y) = N_p(|x|, |y|)$.

Proof. Let $u(z) = r^p \cos p\theta$ when $z = re^{i\theta}$ with $-\pi < \theta \le \pi$. Then u is subharmonic and $N_p(x, y) = (\sec \frac{p\pi}{2})^{\frac{1}{p}} (\max(u(z), u(-z)))^{\frac{1}{p}}$ where z = x + iy. Hence N_p is a norm by Lemma 3.2. The fact that N_p is absolute is trivial.

We now define a Banach space E_p for $0 . We define this to be the space <math>\ell_1 \oplus \mathbb{R}$ with the norm $||(x, y)||_{E_p} = N_p(||x||, |y|)$.

Let (f_n) be a sequence of independent 1-stable random variables on some probability space (Ω, μ) so that $\int e^{itf_n} d\mu = e^{-|t|}$. Then for any finitely nonzero sequence $(\xi_n)_{n=1}^{\infty}$ and any η we have

$$\|\sum_{n=1}^{\infty} \xi_n f_n + \eta\|_p = N_p(\sum_{n=1}^{\infty} |\xi_n|, |\eta|).$$

It follows that:

Proposition 3.4. E_p is isometric to a closed subspace of L_p for 0 .

Next, we show that E_p cannot be embedded into L_r for any p < r < 1. To do this we introduce the quantity

$$a_p = \lim_{t \to 0} \frac{N((\cos \frac{p\pi}{2})^{\frac{1}{p}}t, 1) - 1}{t} = (\cos \frac{p\pi}{2})^{\frac{1}{p}-1} \sin \frac{p\pi}{2}.$$

Proposition 3.5. Suppose $0 and that <math>(g_n)$ is a sequence in $L_p(\Omega, \mu)$ that is 1-equivalent to the standard unit vector basis of ℓ_1 . Suppose $h \in L_p$ and $||h||_p = 1$. Then

$$\lim_{n \to \infty} \|h + tg_n\|_p \ge N_p((\cos \frac{p\pi}{2})^{\frac{1}{p}}t, 1) \ge 1 + a_p|t|.$$

Proof. It follows from Theorem 2.3 and Corollary 2.4 that it suffices to consider the case when $g_n = (\cos \frac{p\pi}{2})^{\frac{1}{p}} f_n$ where (f_n) is a sequence of independent 1-stable random variables with $\int e^{itf_n} d\mu = e^{-|t|}$. We now apply Lemma 2.6:

$$\lim_{n \to \infty} \int |h + \tau f_n|^p d\mu = \frac{1}{\pi} \int_{\Omega} \int_{-\infty}^{\infty} \frac{|h(\omega) + \tau x|^p}{1 + x^2} dx \, d\mu(\omega)$$
$$= \int N_p(\tau, h(\omega))^p d\mu(\omega).$$

Now since N_p is an absolute norm,

$$\int N_p(\tau, 1)^{1-p} N_p(\tau, h(\omega))^p d\mu \ge \int N_p(\tau, |h(\omega)|^p) d\mu$$
$$\ge N_p(\tau, 1)$$

and hence

$$\int N_p(\tau, h(\omega))^p d\mu(\omega) \ge N_p(\tau, 1)^p.$$

This gives us the first inequality.

For the second part observe that

$$\lim_{t \to 0+} \frac{N_p((\cos \frac{p\pi}{2})^{\frac{1}{p}}t, 1) - 1}{t} = a_p$$

and use the fact that N_p is a norm.

Theorem 3.6. For $0 the space <math>E_p$ is a Banach space isometric to a subspace of L_p , which is not isometric to a subspace of any L_r for r > p.

Proof. This is immediate from Proposition 3.5 once we show that the function $p \to a_p$ is strictly increasing on (0, 1). Since L_r embeds into L_p when p < r and E_r embeds into L_r , it is clear from Proposition 3.5 that $p \to a_p$ is increasing. This function is non-constant since $\lim_{p\to 1} a_p = 1$ and $a_{1/2} = \frac{1}{2}$. Since it is a real-analytic function, it must therefore be strictly increasing.

Remark. It would be interesting to estimate the smallest integer n = n(r, p) so that the *n*-dimensional subspace of E_p spanned by the constant function and f_1, \dots, f_{n-1} fails to embed into L_r . We also mention that the span of the constant function and the sequence $|f_n|$ is isomorphic to the Ribe space [2]; for similar examples involving *p*-stable random variables see [1].

4. Perturbed Hilbert spaces

In this section we give an alternative construction of examples that are isomorphic but not isometric to Hilbert spaces.

Lemma 4.1. Suppose $0 . Then there exists <math>\epsilon(p) > 0$ so that if $0 < a < \epsilon(p)$, the following equation defines an absolute norm on \mathbb{R}^2 :

(4.1)
$$N(x,y)^{p} = \frac{1}{2}(x^{2} + (1+a)^{\frac{2}{p}}y^{2})^{\frac{p}{2}} + (x^{2} + (1-a)^{\frac{2}{p}}y^{2})^{\frac{p}{2}}.$$

Proof. This follows easily from Lemma 3.2 since, if a is small enough, $(x^2 + (1 + a)^{\frac{2}{p}}y^2)^{\frac{p}{2}}$ and $(x^2 + (1 - a)^{\frac{2}{p}}y^2)^{\frac{p}{2}}$ are both subharmonic.

Theorem 4.2. Suppose $0 and N is given by (4.1). Then the space <math>X = \ell_2 \oplus_N \ell_2$ embeds into L_p but does not embed into any space L_r where r > p.

Proof. We first establish an embedding of X into $L_p(\Omega, \mu)$. Let (e_n) and (e'_n) be the canonical orthonormal bases of the two factors of X. Let $(f_n), (g_n)$ be two mutually independent sequences of independent normalized Gaussians; we denote by γ their common distribution so that $d\gamma(t) = (2\pi)^{-\frac{1}{2}} \exp(-\frac{t^2}{2}) dt$. Let E be a Borel set independent of (f_n, g_n) with $\mu E = \frac{1}{2}$. Let $h = (1+a)^{\frac{1}{p}} \chi_E + (1-a)^{\frac{1}{p}} \chi_{\tilde{E}}$. We define our embedding by

$$Te_n = b_1 f_n,$$

 $Te'_n = b_1 hg_n$

where $b_1^{-p} = ||f_n||_p^p = \int |t|^p d\gamma(t)$. We can and do assume that T is of canonical type. Suppose $(\xi_n), (\eta_n)$ are two finitely nonzero sequences of reals. Then

$$\begin{split} \int_{\Omega} |\sum_{n=1}^{\infty} \xi_n T e_n + \sum_{n=1}^{\infty} \eta_n T e'_n|^p d\mu &= b_1^p \int_{\Omega} |\sum_{n=1}^{\infty} \xi_n f_n + h \sum_{n=1}^{\infty} \eta_n g_n|^p d\mu \\ &= \int_{\Omega} (\sum_{n=1}^{\infty} |\xi|^2 + h^2 \sum_{n=1}^{\infty} \eta_n^2)^{\frac{p}{2}} d\mu \\ &= N((\sum_{n=1}^{\infty} \xi_n^2)^{\frac{1}{2}}, (\sum_{n=1}^{\infty} \eta_n^2)^{\frac{1}{2}})^p. \end{split}$$

Now assume X also embeds isometrically into L_r for some p < r < 2. Then X can also be embedded into L_p by an r-stable embedding S. In view of Theorem 2.3, it may be assumed that S is obtained from T by a change of density, i.e., there exists

a nonvanishing Borel function φ with $\|\varphi\|_p = 1$ such that $S: X \to L_p(\Omega, |\varphi|^p d\mu)$ is given by $Sx = \varphi^{-1}Tx$. Fix any 0 < q < p. It follows for an appropriate choice of b_2 that the map $S'x = b_2Sx$ embeds X into $L_q(\Omega, |\varphi|^p d\mu)$. Now we make a further change of density. Let $b_3^q = \int_{\Omega} |\varphi|^{p-q} d\mu$ and define $\psi = b_3^{-1} \varphi^{-1}$. Let $R: X \to L_q(\Omega, |\psi|^q |\varphi|^p d\mu)$ by $Rx = \psi^{-1}S'x$. Then $Rx = b_3b_2Tx$. Let $b_0 = b_3b_2b_1$. We now use Lemma 2.5 and Lemma 2.6. Suppose $x, y \in \mathbb{R}$.

$$\begin{split} N(x,y)^{q} &= b_{0}^{q} \lim_{m \to \infty} \lim_{n \to \infty} \int_{\Omega} |xf_{m} + yhg_{n}|^{q} |\varphi|^{p} |\psi|^{q} d\mu \\ &= b_{0}^{q} \lim_{m \to \infty} \int_{\Omega} \int_{\mathbb{R}} |xf_{m} + yth|^{q} d\gamma(t) |\varphi|^{p} |\psi|^{q} d\mu \\ &= b_{0}^{q} \int_{\Omega} \int_{\mathbb{R}} \int_{\mathbb{R}} \int_{\mathbb{R}} |xs + yth|^{q} d\gamma(s) d\gamma(t) |\varphi|^{p} |\psi|^{q} d\mu \\ &= b_{0}^{q} \int_{\mathbb{R}} |t|^{q} d\gamma(t) \int_{\Omega} (x^{2} + y^{2}h^{2})^{\frac{q}{2}} |\varphi|^{p} |\psi|^{q} d\mu. \end{split}$$

Since h takes only the values $(1 \pm a)^{\frac{1}{p}}$, this implies that we can find positive constants c_1, c_2 so that for all x, y,

$$N(x,y)^{q} = c_{1}(x^{2} + (1-a)^{\frac{2}{p}}y^{2})^{\frac{q}{2}} + c_{2}(x^{2} + (1+a)^{\frac{2}{p}}y^{2})^{\frac{q}{2}}.$$

Since N(1, 0) = N(0, 1) = 1, this requires

$$c_1 + c_2 = 1,$$

 $c_1(1-a)^{\frac{q}{p}} + c_2(1+a)^{\frac{q}{p}} = 1.$

Note also that

$$\lim_{t \to 0} \frac{N(1,t)^2 - 1}{t^2} = \frac{1}{2} \left((1+a)^{\frac{2}{p}} + (1-a)^{\frac{2}{p}} \right)$$
$$= c_1 (1-a)^{\frac{2}{p}} + c_2 (1+a)^{\frac{2}{p}}.$$

It is clearly impossible to satisfy these three conditions. This contradiction shows that we cannot embed X into L_r for any r > p.

Remark. It is worth remarking in this context that it is unknown if there is an infinite-dimensional space X that embeds isometrically into L_p and L_r where p < 2 < r and is isomorphic but not isometric to a Hilbert space (see [5]).

References

- [1] G. Godefroy, N. J. Kalton and D. Li, On subspaces of L_1 which embed into ℓ_1 , J. reine angew. Math. 471 (1996) 43–75. MR 97d:46017
- [2] N. J. Kalton, Sequences of random variables in L_p for p < 1, J. reine angew. Math. 329 (1981) 204-214. MR 83a:46040
- [3] N. J. Kalton, Isomorphisms between L_p -function spaces when p < 1, J. Functional Analysis 42 (1981) 299-337. MR 83d:46032
- [4] N. J. Kalton, Banach spaces embedding into L_0 , Israel J. Math. 52 (1985) 305–319. MR 87k:46045
- [5] A. Koldobsky, Common subspaces of L_p -spaces, Proc. Amer. Math. Soc. 122 (1994) 207–212. MR **94k**:46060
- [6] A. Koldobsky, A Banach subspace of $L_{1/2}$ which does not embed in L_1 (isometric version), Proc. Amer. Math. Soc. 124 (1996) 155–160. MR **96d:**46026
- [7] A. Koldobsky and H. König, Aspects of the isometric theory of Banach spaces, Handbook of the geometry of Banach spaces, Volume 1, W. B. Johnson and J. Lindenstrauss, editors, North-Holland, Amsterdam, 2001, pp. 899-939. MR 2003c:46017

- [8] S. Kwapien, Problem 3, Studia Math. 38 (1969) 469.
- J. Lindenstrauss and L. Tzafriri, Classical Banach spaces II, Function spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 97, Springer-Verlag, Berlin, 1979. MR 81c:46001
- [10] B. Maurey, Théorèmes de factorisation pour les opérateurs linéaires à valeurs dans les espaces L_p, Asterisque 11, 1974.
- [11] E. M. Nikishin, Resonance theorems and superlinear operators, Uspeki Mat. Nauk. 25 (1970) 129-191.
- [12] A. I. Plotkin, Isometric operators on subspaces of L_p , Dokl. Akad. Nauk. SSSR 193 (1970) 537-539. MR **42:**6601
- [13] A. I. Plotkin, An algebra that is generated by translation operators and L_p-norms, Functional Analysis No. 6: Theory of Operators in Linear Spaces, Ulyanovsk. Gos. Ped. Inst. Ulyanovsk (1976) 112-121. MR 58:29837
- [14] W. Rudin, L_p -isometries and equimeasurability, Indiana Univ. Math. J. 25 (1976) 215-228. MR 53:14105
- [15] P. Wojtaszczyk, Banach spaces for analysts, Cambridge University Press, Cambridge, 1991. MR 93d:46001

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MISSOURI-COLUMBIA, COLUMBIA, MISSOURI 65211

E-mail address: nigel@math.missouri.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MISSOURI-COLUMBIA, COLUMBIA, MISSOURI 65211

 $E\text{-}mail\ address:\ \texttt{koldobskQmath.missouri.edu}$