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A REMARK ON QUASI-ISOMETRIES 

N. J. KALTON 

(Communicated by N. Tomczak-Jaegermann) 

ABSTRACT. We show that if f : Bn -- IRn is an e-quasi-isometry, with e < 1, 
defined on the unit ball Bn of Rn, then there is an affine isometry h : Bn -- Rn 
with lIf(x) -h(x)|I < Ce(l+logn) where C is a universal constant. This result 
is sharp. 

1. INTRODUCTION 

Suppose e > 0 and X and Y are Banach spaces and let Bx = {x: Ix|I < 1}. An 
e-quasi-isometry f : Bx -) Y is a local homeomorphism such that for any x E Bx 
we have 

(1 + e)-1 < liminf lf((Y) f (x)1l < limsup Jlf(Y- f < (1 + e). Y- l-x\ y-x \\y -x\l 
A map f : Bx - Y is e-rigid if 

(1 + 6)-1llXl - X2l1 < Ilf(x1) - f(x2)ll < (1 + e)||x1 - X211, X1,X2 E Bx. 

If dim X = dim Y < oo, then any e-rigid map is also an e-quasi-isometry (cf. [8]). 
We refer to [2] for a full discussion. 

In this note we will be concerned with the case when X = Y = IWR with the 
usual Euclidean norm (we then write Bn for the closed unit ball in IRn). In this 
context John [6] (discussed in [2]) showed that if f is an e-quasi-isometry one can 
find an a E Rn and an orthogonal linear operator U so that 

lIf(x) -Ux- all < Cnme, x Bn. 

See also a recent paper [1] for related results. Recently the exponent 3 has been 

improved to 1 
by Vestfrid [11]. This raises the question of finding the optimal 

function a(n) so that given any e-quasi-isometry f one can find an orthogonal U 
and a such that 

llf(x) - Ux- all < a(n)e, x E Bn. 

In another direction Matouskova [8] has given examples to show that a(n) > c log n 
for any such function. The aim of this note is to show that this lower estimate is 
in fact sharp and we can take a(n) < C(logn + 1). 
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In the final section we make a few remarks on the connections between this result 
and the theory of twisted sums, and make an observation about an old problem of 
Figiel, Lindenstrauss and Milman. 

2. MAIN RESULTS 

Let us first discuss the example which gives the lower bound (due to Matouskova 
[8]). Fix e > 0. Assume n is even, say n = 2m, and identify Rln with Cm. For 
z = reie E C let pOe(z) = zriE (if z = 0, then pOe(z) = 0). Then po, is an e-quasi- 
isometry of C (see [6], [2] p. 352) and so it follows easily that if we set 

fe(zl, . * * , Zm) = ((Oe(Z1), * . , ( e(Zm)), 

then f, is also an e-quasi-isometry of Bn onto Bn. 

Proposition 2.1. Suppose elogm < 27r. Then for any affine isometry h(x) = 
Ux + a we have 

max I fe (x)- h(x)l > sin( e6log m). 
E Bn4 

Remark 1. Let us remark that this example of Matouskova shows that Theorem 3 
of [10] is incorrect, as was pointed out to us by Igor Vestrid. 

Proof. Since fe(x) = -fe(-x) we can clearly replace h by (h(x)-h(-x)) and so as- 
sume h(x) = Ux. Note that U is only assumed real-linear on Cm. Let us suppose U is 
the best linear approximation to f, (not necessarily orthogonal). Let G be the group 
of unitary operators V on Cm of the form V(zl,... , Zm) = (U1r(1),... ,UmZ (m)) 
where lujl = 1 for 1 < j < m and 7r is a permutation of {1,2,..., m}. Note that 
V-lfe(V(zl,... ,Zm)) = fe(zl,... ,Zm). Hence if U is an optimal approximation 
we can replace it by 

U'= - V-UVd1(V) 

where /, is the Haar measure of G, and then U' is also optimal. Now U' commutes 
with each V E G and so is complex linear and furthermore must be of the form 
reiOI where I is the identity. Now 

Lf(l, 0,... ,0) - (rei0, 0,... ,0)|11 > sin 0 

and 

\lfe(m- 2, m 2 . ,~ m- 2 )-re(m 2... , m 2)11> I sin( 2elogm - 0) 1 

Clearly this leads to the result. D 

The following result is essentially contained in [3], but we will give some details 
here for completeness and ease of the reader. As we point out in the final section 
this result is in some sense derivable from classical results on Banach space theory 
and the theory of twisted sums, although to do it this way would arguably use more 
sophisticated notions than we really need. 

Theorem 2.2. There is an absolute constant C with the following property. Let 
Q : RI - IR n be a continuous map which satisfies the conditions: 

(1) Q(Ax) = Ax, A E R, x E n, 
(2) I||(Xl + X2) - Q(Xl) - Q(x2)I < IIill1 + Ix211, X1,X2 E TR. 

Then there is a linear map A: R" --> Rn with IIQ(x)- A(x)l <? C(logn + 1)llxil for 
all x zE Rn. 
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Proof. This theorem is almost proved in [3], but we will sketch the details. We 
need the following result, which is a fairly simple deduction from the Hahn-Banach 
Theorem (see Theorem 3.1 of [3]): 

Proposition 2.3. Suppose K is a compact convex subset of IR and that f : K 
JR is a continuous map satisfying the condition 

If( (xl + X2)) - (f(x) + f(x2)) < 1, Xl,X2 e K. 

Then there is an affine map a : K - R such that 

If(x)- a(x)l < log2 n + -, x E K. 

Returning to the proof of Theorem 2.2 we will first prove that there is a sym- 
metric linear operator B so that 

(2.1) (x, Q(x) -Bx) I < 5(log2 n + 1) 1xlX2. 

We define p(x) = (x,Q (x)). Let us observe that (o(Ax) = AX2(x) for A e IR and 
x E Rn. Also, for xl,X2 C RI, 

SO(Xl + X2) + P(xZ - X2) = (X1, Q((1 + X2) + Q(X1 - X2)) 

+ (X2, Q(xi + x2) - Q(X1 - x2)) 

and hence 

1 
2((Xi + X2) + p(Xi - X2)) - (p(Xl) - p(x2)1 < (lXl 11 + II2 11)2 

< 2(j11xll2 + 11x2112). 
Then if P is a positive-definite operator we define vp to be the probability measure 
on Rn with Fourier transform 

e-i(x')dvp(x) = e- (P,) 
,n 

For each positive definite matrix P we define 

f(P) = p (x)dvp(x). 
JRn 

Observe that f(AP) = Af(P) if A > 0. Since Vp+Q = vp * VQ 

f(P + Q) = j j W(x1 + x2)dvp(xl)dvQ(x2). 
i,n Jn 

By symmetry 

f(P + Q) = j (Xl (+ x2)dvp(xl)dvQ(x2) 

= j j 
2 ( (x1 + x2) + W(x1 - x2)) dvp(xl)dvQ(x2) 

=p + ?/ ((xI) + W(x2)) dvp(xl)dvQ(x2) 

where 

IPl < 2 (j11x112 + 1x2 12)dvp(xl)dvQ(2) < 2 tr(P+ Q). Nn t n 

Now let Fo = {P: tr P = 1}. Then for P, Q E Fo we have 

If( (P+ ))- (f(P)+ f(Q))l < 2. 
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Now oF is a compact convex subset in the ?n(n + 1)-dimensional space En of 
symmetric matrices and so by Proposition 2.3 we have an affine map a: Fo - IR 
such that 

If(P) - a(P)I < 5(log2 n + 1), P E Fo. 

Extending a by homogeneity we obtain a linear map h on the space En so that 

If(P) - h(P) < 5(log2n + 1)trP 

if P > 0. For x E Wn let x 0 x be the rank-one operator y - (y,x)x. Then 
q(x) = h(x 0 x) is a quadratic form and so there is a symmetric operator S so that 
q(x) = (x, Sx) for x e 1Wn. Now f(x 0 x) = (x) and so we conclude that (2.1) 
holds. 

To complete the proof we consider R2n = RIn x IRn and define Q'(x) = (0, Q(xl)) 
if x = (x1, x2). By (2.1) we find a symmetric 2n x 2n matrix B so that 

(x, Q'(x) - B(x)) | < 5(log2 n + 2) Ixfl2. 

Let 

B(x) = (Bllil + B12x2, B21l1 + B22x2) 

where Bjk are n x n matrices for 1 < j, k < 2. Then if el, e2 = ?1 we obtain 

(x2, Q(xl)) - 6162 6ejek(xj, Bjkxk)I < 5(log2 n + 2)(||xl|12 + |x2112). 
j,k<2 

Averaging over choices of sign and noting that B12 = B21 we obtain (if A = 2B21) 

|(x2, Q(xi)-Axl) < 5(log2n + 2)(1x 12 + |x2 112), x1,x2 E RIn 

Taking llx1lI = lIx211 = 1 and using homogeneity, this leads to the inequality 

IIS(x) - Axll < 10(log2n + 2)IIxl, x e x R. 

This completes the proof. O 

The following lemma follows from Lemma 2.5 of Matouskova [8]; a more general 
lemma for arbitrary Banach spaces has been proved by Vestfrid [11]. 

Lemma 2.4. Suppose f : Bn - IRn is an e-quasi-isometry where e < 10-2. Then 
if tIxl 1, IIX2\11 < < 2 

Ilf( (Xl + X2)) - (f(Xl) + f(x2))ll < 65e61x - X211. 

Lemma 2.5. Let g : [0, 1] - IR be a continuous function which satisfies 

(2.2) Ig(t) - (g(t + s) + g(t - s))I < s, 0 < s < min(t, (1 - t)). 

Then 

max Ig(t) < 14+12 max Ig(t) 
0<t<l 0<t<1 

Proof. Let M = maxo<,< Ig (x) . It will suffice to show that g(t) < 12M+14 since 
then one can obtain the same estimate for -g. 

Let h(t) = (1 - t)log(1 - t) (with h(1) = 0). Note h is continuous and - < 

h(t) < 0 for 0 < t < 1. We also observe that 

3 3 1 1 32/. -tlog3t + t log -t = 2t log t + t log - 2 2 2 2 4 
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Then if 1 < t < 1 we have 3 _ _ 

(2.3) 2(h((3t- 1)) + h( (1 + t))) > h(t) + 8(1 - t) 

since log 
33 > 1. Note that if g satisfies (2.2), 

(2.4) 2(9( 2(3t - 1)) + g( (1 + t))) > g(t) - (1 - t). 

It follows from (2.3) and (2.4) that if g satisfies (2.2), then g + 4h cannot have a 
maximum for 3 < t < 1. This implies that 

(2.5) g(t) < max( max g(x), g(1)) + 2, 0 < t 1. 
O<X< 3 

If g(1) < 0, then we immediately obtain g(t) < M + 2 for 0 < t < 1 and the 
proof is complete. If g(1) > 0, we define f(t) = tg(l) - g(t) and note that f also 
satisfies (2.2). For 0 < t < 1 we have f(t) < M+ 3 g(1) and we also have f(1) = 0. 
By (2.5) 

f(t) < 1g(1)+M+2. 

Letting t = 1 we have 

6g(1) < g9()+M+2 < 2M+2. 

Hence g(1) < 12M + 12 and we now use (2.5) to complete the proof. D 

Theorem 2.6. There is a universal constant C with the following property. Let 
f : Bn -~ Rn be an e-quasi-isometry where 0 < e < 1. Then there exists a E RI 
and an orthogonal linear map U with 

lf(x) - Ux - all < C(logn + 1) 

for x C Bn. 

Proof. It suffices to consider the case e < 10-2. We may assume f(O) = 0. Let us 
then define 

Q(x) = |X|| (f 211xll f1 - 211 11 )) E R 

Q is clearly homogeneous. Next suppose lxll = 1 and IlylI = 1. Define h(t) = 
(f(tx) - Q(tx),y) for -1 < t < 1. Note that by Lemma 2.4, applied to the ball 
tx + (1 - It)Bx, we have 

Ih(t) - l(h(t + s) + h(t - s))I < 200es, 0 < s < min(ltl, ((1 - tl)). 

In particular if we apply the Whitney Lemma ([12]) there is an affine function a so 
that Ih(t) - a(t)l < 100e for - < t < . Now 

f(? 
I 

x) - Q( fx) = 2(f(x) + f(-?x)). 2- 2 2 2 - 2 
Then h(() = h(-2) and by Lemma 2.4, Ih(i)l < 65e. Thus 

Ia(t)l < Ih(')l + 100e < 200e 

for 0 < t < . Hence 2 

h(t)l < 300e, Itl < . 

Now by Lemma 2.5 (used on both [0, 1] and [-1, 0]) we obtain 

Ih(t)l < Coe, Itl < 1, 
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where Co < 104. We conclude that 

llf(x) - Q(x)W l < Co, Ilxii < 1. 

Now if X1,X2 c IRn we define b = 2(11lxil + I\x211) and then note that 

IIQ(xl + 2) - Q(X1) - Q(x2) 

= bllQ(b-l(x + x2)) - Q(b-lxl) - Q(b-l2) 

< Coeb + bll2f( (b-l(xl + X2)))- f(b-lx) - f(b-1x2) 
< Coeb + 200ElIxl - x211 < Cle(IxIII1 + IIx211) 

where C1 = 2Co + 200. 
Now we can apply Theorem 2.2 to deduce the existence of a linear map A so 

that 

IIQ(x) - Axll < C2(1 + logn)eHllxl, x E Rn, 

for some absolute constant C2. If llxll < 1 we have 

llf(x) - Axl < (C2(1 + log n) + Co)e 

and hence if IIxll = 1 we have 

1- C3(log n + 1)e < Axll < 1 + 3(log n + 1) 

where C3 is a universal constant. This implies there is an orthogonal transformation 
U with IA- U ll < C3(logn+1). Then U satisfies the conclusion of the theorem. 1 

3. REMARKS 

In fact Theorem 2.2 can be reached from known results in Banach space theory 
using the theory of twisted sums (and more specifically twisted Hilbert spaces). We 
sketch the ideas. One can use the map Q to define a (2n)-dimensional Banach space 
X with a Euclidean subspace E with dim E = n so that X/E is also Euclidean. 
It then follows from results of Figiel, Lindenstrauss and Milman [5] (see also [4]) 
that X has type 2 constant T2(X) < C(1 + logn). But then Maurey's extension 
theorem [9] produces a projection P: X -- E with IIPII < T2(X). This projection 
induces the linear approximation A in the standard way. 

We would like to take this opportunity to resolve a question raised in [5] con- 
cerning such twisted sums. In [5], Figiel, Lindenstrauss and Milman ask for an 
estimate on the Banach-Mazur distance dx = d(X, ?2n) when X is as above (i.e. 
dim X = 2n and X has a subspace E of dimension n with E and X/E isometrically 
Euclidean). They note that in [4] an example is given with dx > c(logn) and 
they obtain an upper estimate of the type C(logn + 1)2. Later in [7] an example 
was produced with dx > clog n. We now point out that this is sharp, as the upper 
estimate can be improved to C(logn + 1). Curiously this requires nothing other 
than the results of [5]. The bound established in [5] uses Kwapien's theorem and 
a logarithmic estimate on both type and cotype; by using Maurey's theorem one 
eliminates a logarithmic factor. 

Theorem 3.1. There is a universal constant C such that if X is a Banach space 
of dimension 2n with a subspace E of dimension n with E, X/E isometrically Eu- 
clidean, then d(X, 2n) < C(1 + log n). 
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Proof. As remarked above T2(X) < C(1 + logn) for some universal constant C 
(see Theorem 6.5 of [5]). By Maurey's extension theorem [9] there is a projection 
P: X - E with IIPII < T2(X). Let Q be the quotient map Q: X -- X/E. Define 
a Euclidean norm on X by 

IIxI12 = I(lPII-21lpPxi2 + IlQx112). 
Then IlxllE < lixll. Conversely assume Ilxll > 8llPIIllxllH. Then I\Qxll < 'IIPI-1llxIi. 
Pick e C E so that lix - ell = IlQxll. Then 

IlPxll > liell - IIP(x - e)ll > lxll - llx - ell(l + IIPll). 
Hence 

IIPxl > 311PII - I 
il 

- 411PII 2 
and 

IIXIIH > iI lxll - 
211Pll 

which is a contradiction. Thus 

IiXIIH < Ilxil < 8T2(X)Ilxll 
and the proof is complete. C3 
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