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ABSTRACT. A Weyl-Heisenberg frame for L2 (R) is a frame consisting of mod- 
ulates Embg(t) = e2timbtg(t) and translates Tnag(t) = g(t - na), m, n C 2, 
of a fixed function g E L2 (R), for a, b E R. A fundamental question is to 
explicitly represent the families (g, a, b) so that (EmbTnag)m,nEZ is a frame 
for L2 (R). We will show an interesting connection between this question 
and a classical problem of Littlewood in complex function theory. In par- 
ticular, we show that classifying the characteristic functions XE for which 

(EmTnXE)m,nE is a frame for L2 (R) is equivalent to classifying the integer 

sets {rn < n2 < < nk} so that f(z) = k=1 z'i does not have any zeroes 
on the unit circle in the plane. 

1. INTRODUCTION 

A family of vectors (fl) in a Hilbert space H is called a frame for H if there are 
constants A, B > 0 so that 

(1.1) AAllf12 < Z lKf, fi)12 < BJ fI12, for all f E H. 
i 

We call A (resp. B) a lower (resp. upper) frame bound of the frame. The 
largest A and the smallest B which work in (1.1) above are called the optimal 
frame bounds. If P is an orthogonal projection on H, and (fi) is a frame for H 
with frame bounds A, B, then for all f G PH we have 

(1.2) Allf 1l2 < E l( fi) 12 
- 

JKf, Pf,)12 < Bflf 112 
i i 

It follows that (Pfi) is a frame for PH with the same frame bounds A, B. 
An important class of frames used in signal/image processing, data compression 

etc. are the Weyl-Heisenberg frames. For f E L 2(R) and a, b real numbers we 
define translation by a (resp. modulation by b) by Taf(t) = f(t - a) (resp. 
Ebf(t) = e27ribtf(t)). For a fixed g C L2Q(R), we say that (g, a, b) generates a Weyl- 
Heisenberg frame (WH-frame for short) if (EmbTnag)m,nCZ forms a frame for 
L2(]R). A fundamental question in this area is to explicitly represent those families 
(g, a, b) which generate Weyl-Heisenberg frames for L2 (iR). Much work has been 
done on this question by Ron and Shen [13, 14], Janssen [10], Casazza, Christensen 
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and Janssen [3], Casazza and Lammers [4], and a host of other authors. The 
papers [4, 10] concentrate on the question of finding the characteristic functions 
XE SO that (XE, a, b) generates a Weyl-Heisenberg frame. Janssen [10] has made 
quite a detailed study of this question, and one consequence of his work is that even 
this very special case of the general problem is quite a deep question. It is known 
[7] that (g, 1,1) generates a WH-frame if and only if (EmTng) is a Riesz basis for 
L2 (R). In this paper we will show that the question of classifying the characteristic 
functions XE SO that (XE, 1,1) generates a Weyl-Heisenberg frame is equivalent to 
a classical problem of Littlewood in complex function theory. This shows that this 
question in WH-framne theory is even more difficult than previously thought, as 
well as giving important connections between frame theory and complex function 
theory. 

Now we will pass to Littlewood's problem. In 1968 Littlewood [11] studied the 
class of functions A, which consists of polynomials of the form a3> a z2, with 
ai E {0, 1}. On page 25 of [11] he writes: "These raise some fascinating questions." 
One of the main questions raised by Littlewood is: 

Problem 1.1 (Littlewood). Classify the integer sets {Tni < n2 < ...< nkI} so that 
f (z) = Ek=: z'i does not have any zeroes on the unit circle in the plane. 

There is a huge literature on the zeroes of polynomials in A, as well as various 
other related classes (e.g. where the coefficients come from the set {-1,0,1}). 
For an up to date view of this subject, we refer the reader to [1, 2, 12] and their 
references. 

2. MAIN RESULTS 

We need the Zak transform (called the kq-representation by Zak and also called 
the Weil-Brezin map in the literature) but brought to the level of an "art form" 
by Janssen (see [5, 8, 9]). We define the Zak transform to be the unitary mapping 
Z(.) from L2(IR) onto L2([0, 112) that takes the orthonormal basis {EmTnX[0,l])m,nC2 
to the orthonormal basis { 27ri(nx+m?y) 1,,,C - This is not the usual definition of the 
Zak transform, but is an equivalent formulation [7j. It is known (see [7, 8, 9]) that 

(2.1) Zg(x, y) E g(x + n)e2J,iny, for all x, y E [0, 1], 
neZ 

and 

(2.2) Z(EmTng) (XI y) = c27ri(xnx+mY) ZgQ(xI y) 

Now we have the following (somewhat well-known) result. 

Proposition 2.1. Let E be a measurable subset of [0, 1], F = UnZ(E + n) and 
g E L2(F). The following are equivalent: 

(1) (EmTng)m,rn,nZ is a frame for L2(F) with optimal frame bounds A, B. 
(2) We have 

0 < A = essinf Zg(X,y)12 
(x,y)EEx [0,1] 

< esssup Zg(x,y)12 = B < oo. 
(X,y)CEx [0,1] 



COMPLEX FUNCTIONS AND WH-FRAMES 2315 

Proof. Since Z(.) is a unitary operator, the frame bounds for (EmTmg) are the 
same as the frame bounds for (e2xi(hnx+my)Zg(x, y)). Also, by equation (2.1) and 
the definition of E, F, we have 

(2.3) Zg(x,y) = O, for all x c E. 

Since (e2Ni(hnx+my))m,nCz is an orthonormal basis for L2([0, 1]2), we have for any 

F(x, y) C L2 ([O, 112), 

E I (F(x, y), e2-i(nx+my) Zg(xI )) 12 
(2.4) m,n__Z 

= |JF(x,y)Zg(x,y)fIL2(EX[O01]). 

It follows that the upper (resp. lower) frame bound for (e27ri(nx+my)Zg(x, y)) is 
the square of the norm of the multiplication operator (resp. the inverse of the 
multiplication operator) F -) F Zg on L2(E x [0, 1]). A direct calculation shows 
that these norms are precisely the bounds given in (2) of the proposition. n 

We now have 

Proposition 2.2. Let Ei c [0, 11, Fi = UnZ(Ei + n), F = Ui Fi, and assurme 
F2 n Fj = 0, for all i 74 j. Let gi be a function supported on Fi and assume that 
g = Eigi E L2(R1). The following are equivalent: 

(1) (EmTng)m,nCZ is a frame for L2 (F) with optimal frame bounds A, B. 
(2) For each i, (EmTngi)m,nCZ is a frame for L2(Fi) with optimal frame bounds 

Ai, Bi, and 0 < A = inf Ai < sup Bi = B < oc. 

Proof. (1) => (2): Let Pi be the orthogonal projection of L2 (F) onto L2 (Fi) given 
by Pif = f IF,,. Now, Pig = gi, and, as we observed in the introduction, (gi, 1, 1) 
generates a WH-frame for L2 (Fi) with frame bounds A, B. Hence, A < Ai < Bi < 
B. 

(2) #$ (1): By Proposition 2.1 and our assumptions in (2), for each i we have 

A < Ai < ess inf IZg, (X, Y)12 
(x,y)CFi x [0,1]1 

< ess sup IZgi(x, Y) 12 < Bi < B. 
(x1Y)EFi X[0,1] 

Now, Zg - >3 Zg. and by our assumption that Fi n Fj = 0, for all i 74 j, we have 

support Zgi n support Zg = 0, for all i 74 j. 

It follows that 

ess sup Zg(x, Y) 12 = sup ess sup Zg (x, Y) 12 = sup Bi = B. 
(X,y)CFx[0,1] i (x,y,)CFix[0,1]i 

Similarly, 
A = inf Ai~ ess inf Zg(X, Y) 12. 

i (x,y)CFx[0,1] 

It follows that (g, 1, 1) generates a WH-frame for L2(F) with frame bounds A, B 
by Proposition 2.1 n 

Now we have a constructive characterization of certain Weyl-Heisenberg frame 
sets for a = b = 1. To simplify the notation, we call a measurable subset F C I a 
Weyl-Heisenberg frame set for (a, b) if (XF, a, b) generates a Weyl-Heisenberg 
frame for L2(IR). 
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Theorem 2.3. Fix integers ni < n2 < * K < nk. The following are equivalent: 
(1) The set F = UJ=,( [O, 1) + nj) is a Weyl-Heisenberg frame set for (1, 1) with 

frame bounds A, B. 
(2) We have A < I Ek Znj 12 < B, for all lzl = 1. 

(3) For every measurable set E C [0,1] of positive measure, and for the set 

Fo = U>k=i(E + nj), (EmTnXFo)m,nCZ is a frame for L2(Fo) with frame bounds 
A,B. 

Proof. In Proposition 2.1, if 9 = XF, then 

k k 

Zg(x, y) = X[oi ] (x) E e2-injy =E e 2 injy, for all x, y [0, 1]. 
j=l j=l 

Hence, 

A < ess inf Zg(x, y) 12 < ess sup I Zg(x, y) 12 < B) 
(x,y)C[0,1]2 (x,y)C[0,1]2 

if and only if for all IZ z 1, 

k 

A?< Eznj2<B. 
j=1 

This proves the equivalence of (1) and (2), which is clearly implied by (3). 
We now show that (1) implies (3). By (1), (XF, 1, 1) generates a WH-frame for 

L2 (F) with frame bounds A, B. Let P be the orthogonal projection of L2 (F) onto 
L2(FO) given by Pf = fIFo. Then PXF = XFO, and, as we have observed in the 
introduction, it follows that (XF, 1, 1) generates a WH-frame for L2(FO) with frame 
bounds A, B. D 

We call a measurable set F C IR an elementary A-Weyl-Heisenberg frame 
set of length k if F = U>k=1(E + nj) for some (nj) and some measurable subset 
E in [0,1) of positive measure and we have 

k 

A< inf Eza I2 -Iz =1 j=1 
We end with our classification of all WH-frame sets for a = b = 1. We first note 
that for F c R, functions in the span of (EmTng)m,nCZ have their support in 

UnCZ(F + n). Hence, a necessary condition for F to be a WH-frame set for (1,1) 
is that JR-Un(F+n) = ?0 

Theorem 2.4. Let F be a subset of R for which JR - UnCZ(F + n) = 0 a.e. The 
following are equivalent: 

(1) The set F is a Weyl-Heisenberg frame set for (1,1). 
(2) There are constants k, A > 0 so that F = UiJe Fi (I is finite or infinite), 

where each Fi is an elementary A-Weyl-Heisenberg frame set of length < k and 
(F, + n) n (F. + m) = 0 for all i :4 j and all m,rn E 2. 

Proof. (1) => (2): Let F be a WH-frame set. For each j E N let Fj {x E [0,1): 
#(x + N) n F# = j}, where # denotes cardinality. A consequence of the WH-frame 
identity (see [7], Theorem 4.1.2, p. 648) is that En IXF(X + n)12 < B a.e. Hence, 
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there is a k E N so that IFjI 0, for all j > k. Now for j < k and any finite set 
of integers(={ni <n2 < <njI let Fj, ={x Fj :x?+n m F, 1 <f <j}. 
The distinct non-empty (Fj,~) form a countable family of sets which are pairwise 
disjoint under translation by n rC Z and which by Proposition 2.2 satisfies (2). 

(2) => (1): Fix i and consider (XF%, 1,1). Since Fi is an elementary A-WH-frame 
set of length k, there are a m < k and a set Ei C [0,1] with Fi = UmJLI(Ei + nj) 
for some ni < n2 < < nm so that for all Izl = I we have 

m 

A < U Znj 2 < m < k. 
j=l 

By Theorem 2.3, (XFi, 1, 1) generates a WH-frame with frame bounds A, k. Since 
the (Fi) are disjoint, we have XF = Ei XFi. Also, (Fi + n) n (Fj + m) - 0, for all 
i j, m, n C Z, implies that Ei n Ej = 0 for all i 74 j. Hence, 

IFI = lFil < kZ E Ei <k, 
i i 

and it follows that XF E L2(R). Now, by Proposition 2.2, (XF, 1,1) is a frame for 
L2 (F) with frame bounds A, k. D 
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