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ABSTRACT. We prove that for every bounded linear operator T: X -X, 

where X is a non-reflexive quotient of a von Neumann algebra, the point 
spectrum of T* is non-empty (i.e., for some A E C the operator AI - T fails to 
have dense range). In particular, and as an application, we obtain that such a 
space cannot support a topologically transitive operator. 

1. INTRODUCTION 

The results in this paper are motivated by a question related to hypercyclic 
operators. In [8] G. Godefroy and J. Shapiro suggest an extension of the notion 
of a hypercyclic operator to Banach space which is not necessarily separable via 
the notion of topologically transitive operators (see Section 3 below). Every Hilbert 
space supports a topologically transitive operator (see the example due to J. Shapiro 
in Section 3.) Recently, it has been shown by S. Ansari [1] and L. Bernal [2] that 
every separable Banach space supports a hypercyclic operator, so it is natural to 
ask whether every Banach space supports a topologically transitive operator. 

It is well-known that if T is hypercyclic, then the adjoint operator T* has empty 
point spectrum, op(T*), [13] and [14]; this extends to topologically transitive op- 
erators (Proposition 3.3). Thus we are led to the question of whether there exist 
complex Banach spaces so that for every operator T we have oup(T*) + 0. Such an 
example exists in the literature, [19] and [20]. However, we show here that there 
are much more natural examples. If X is any von Neumann algebra (or even a 
non-reflexive quotient of a von Neumann algebra), then any operator T on X has 
op(T*) + 0. In particular, this holds if X = 4 or X= ?(f2). We note hypercyclic- 
ity with respect to the strong-operator topology on IC(L2) has been considered in 

[5] and [16]. 
Our main result is rather stronger in that we show that if X is a non-reflexive 

quotient of a von Neumann algebra, then for any operator T we have that the 
quotient space X/R(A - T) contains a copy of f?, and is in particular non-separable. 
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Let us point out by way of further motivation that any operator T on ? satisfies 
cvp(T**) 7 0, since if A is in the approximate point spectrum of T, then it is in the 
point spectrum of T** by an argument depending on the Schur property of L (this 
was shown to us by M. Gonzalez). This is suggestive of the main result in the case 
X = f. 

Our arguments depend on two Banach space concepts, which we now introduce. 
A projection P on a Banach space X is an L-projection if llxll = IlPxll+llx-Pxll for 
any x e X. A Banach space X is said to be L-embedded if there is an L-projection 
of X** onto X, i.e., if there is a projection HI: X** - X so that we have 

Ix** 11 = -**-Ix** 11 + HFJIx**11 for x** C X**. 

For the basic facts on L-embedded spaces we refer to [11], Chapter IV. A Banach 
space X is called a Grothendieck space if every bounded operator T: X -+ Y with 
separable range is weakly compact. This is equivalent to requiring that if {Xn} nEI 

is a weak*-null sequence in X*, then it is also weakly null. Any von Neumann 
algebra is a Grothendieck space [17] and its dual is L-embedded [21], [11]. We also 
recall that a Banach space X is called an Asplund space if every separable subspace 
has separable dual (this is equivalent to the original definition, [6], Theorem 5.7, 
p. 29). 

Most of our notation is standard. We will use Bx to denote the closed unit ball 
of a Banach space X. If F is a subset of X, then (F) denotes its linear span. 

We would like to thank M. Gonzalez, J. Shapiro and D. Werner for helpful 
comments. 

2. MAIN RESULTS 

We use repeatedly the following principle: 

Lemma 2.1 ([22, II.E.151). Let X be a Banach space and suppose {Ck}ki Zs 

a finite set of convex sets. Suppose Dk is the weak* -closure of Ck in X**. If 
nf1 Dk #& 0, then for any e > 0 there exists xce Ci with d(x, Ck) < e for 
k = 2, 3...,,n. 

We will also need the following well-known variant of the Hahn-Banach Theorem. 

Lemma 2.2. Let X be a Banach space and suppose F is a finite-dimensional sub- 
space of X*. If V is a linear functional on F with JJV)JJ < 1, then there exists x C X 
with ffxJJ < 1 and x*(x) = /(x*) for x* C F. 

Proof. This can be proved directly or from Lemma 2.1. Let C= {x C X 
x*(x) = +(x*) Vx* C F} and C2 = {x E X : l[xll < 111}. Then, by the Hahn- 
Banach Theorem, the weak*-closure D1 of Ci is the set {x** C X** : x**(x*) = 
+1(x*) Vx* C F}. By an application of the Hahn-Banach Theorem and Goldstine's 
Theorem ([151, Theorem 2.6.26, p. 232) D1 meets the weak*-closure of C2 so that 
we can apply Lemma 2.1. F] 

Proposition 2.3. Suppose T : X -* Y is a bounded linear operator. Then the 
following properties are equivalent: 

(1i )A(T**) = {o} 
(2) If {fX}nJnN C X is a bounded sequence such that lrm rITXnll 0 O, then 

lim Xn = w weakly. 
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Proof. (1) implies (2). Clearly 0 is the only weak*-cluster point of {xn}nEN in X** 
and so lim xn = 0 weakly. 

n--oo 
(2) implies (1). Assume for some x** 74 0 with flx**Ij = 1, we have T**x** = 0. 

Pick x* C X* with x**(x*) = 1. Then for each n the sets C= {x: lkxcl < 1}, 
C2 = {x X*(x) > 1} and C3 ={x: IlTxll < n-1} satisfy the conditions of Lemma 
2.1, so we pick {xn}nEN C X with IlTxnll < n-1, xnll < 2 and X*(Xn) > 1 
contradicting (2). Lii 

Now if T: X -* Y is a bounded linear operator, we denote by T the induced 
operator T: X**/X - Y**/Y. 

Proposition 2.4. Suppose T: X -* Y is a bounded operator. Then the following 
are equivalent: 

(1) There exists a sequence {$n}jnN C X**/X such that 11W = 1 and 
lim ||T(nj l = ? 

(2) There exists a bounded sequence {x*}nEN C X** such that d(x**, X) =1 
and lim IIT**xn*H1 = 0. 

n--oo 

Proof. We only need to prove that (1) implies (2). Pick w** C (n with IIwn**1 < 
2. Let en := t(nj + 1. Then there exists un C X with lT**w * n-uHl < En. 

We now argue that since T**w** is in the weak*-closure of both Un + enBx and 
2T(Bx), then there exists vn E X with JIvnll < 2 and IITvn - ull < 26n. Thus 
IT* (W -vn) II < 36n . Letting xn* := W - v, we are done. D 

Theorem 2.5. Suppose X is a subspace of an L-embedded Banach space V, and 
Y is any Banach space. Suppose T : X -? Y is a bounded linear operator such 
that Af(T**) C X. Then there exists 3 > 0 so that for all ( E X**/X we have 

IIT(i > 61111. 

Proof. We start by proving the theorem in the special case when A/(T**) = {0}. 
Suppose the conclusion is false. Using Proposition 2.4 we produce a bounded 

sequence {xn**}nN C X** with d(x**,X) = 1 but limn,O IIT**x**11 = 0. We can 
regard X** as a subspace of V**. Now let An = d(x**, V). For fixed n, if p > an, 
then xn* is in the weak*-closure of both X and v + pBv for some v E V. Hence 
there is y E v + pBv such that d(y, X) < p by an application of Lemma 2.1 and so 
d(x**, X) < 2p. We conclude that An >1 for each n C N. 

Let us denote by H the L-projection of V** onto V, and let V,= ker Hl. Let 
vn := flx** and v** X* - yVn. Then v** E V, and IIv*|I = ?n > Let a:= 
supnEN |xn*|| and Tin = IIT**x 1* + - 

We shall define inductively a sequence {xn}en in X, and a sequence {x}nnEiN 
in X* such that 

(2.1) lxnll < a, n N, 

(2.2) IITxnll < Tin, 

(2.3) ix1 < 1, < n E 

(2.4) Ix*(xk) > 8' 1 < k < n. 
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Let us suppose that n EE N and that {Xk}k<r and {x}k<T<n have been determined 
and satisfy (2.1), (2.2), (2.3) and (2.4); if n = 1, these sets are empty of course. We 
shall determine x, and x*. 

Let F := (fX1, Xn_1,Vn}) and G := (K{xi.... vn ,vn *}) If n > 1, we 
define L = On E F* by taking L to be a norm-preserving extension of x*-1 Fnx; if 
n = 1, we simply let ' =0. Then 1 < 1. Let (vn) = reio where 0 < O < 2-r and 
r > 0. We next define o EE G* to the extension of L such that (v *) = 0. We 
claim that soW11 < 1. In fact, if u** E G, then we can write u** u + uv** where 
,t E C and u E F. Then 

so(u**)l < 10() + 41 A 

< 11f 11 Ilul + 2 Il 11Vn** 

< max(1 ) 11D** < Il*11. 2' 
Now by Lemma 2.2 we can define v* E V* with 11v*11 < 1 and u**(v*) =o(u**) for 
U** E G. Let x* be the restriction of v* to X. 

Now consider the sets Ci = {x: llxll < a}, C2 = {x: IlTxll < IIT**x**}ll and 
C3 = {x: x4(x) = xn*(x*)}. Clearly x** belongs to the weak*-closure of each set. 
By Lemma 2.1 we can find xn G Cl with IITxnll < Tin, and so that 

|x* (Xn) I > |x** (x*) 1 - . 

It is now clear that (2.1), (2.2) and (2.3) hold. For (2.4) note that if k < n, we have 
X* (xk) = x* (xk) while 

| x (n )| | n xn |8 (4 ) 8 -8 

Now the proof is completed (for the special case A((T**) = {0}) by observing 
that, if x* is any weak*-cluster point of the sequence {x*}mEN, then JX*(Xn) > 1 

for all n. Since limn,O IITxnll 0, this contradicts Proposition 2.3, since xn does 
not converge weakly. 

To treat the general case suppose R = A((T**) = A((T). Then R is reflexive. 
Consider the induced map To: X/R -? Y; clearly N(To**) = {0}. We next note 
that X/R embeds into V/R and V/R is L-embedded [11], p. 160. Hence To satisfies 
a lower bound on Z (X/R)**/(X/R). However, it is easily seen that Z coincides 
with X**/X and To T. D 

We next need some facts about Grothendieck spaces. 

Proposition 2.6. Suppose Y is a Grothendieck space and that T: X -? Y is a 
bounded linear operator such that T* is one-to-one. Then T*** is one-to-one. 

Proof. Suppose {fY}nnEN C Y* is a bounded sequence such that limn,O IIT*y* = 
0. Let y* be any weak*-cluster point of {Yn}nEN. Then T*y* = 0 so that y* = 0. 
Therefore, lim Yn = 0 weak*. But since Y is a Grothendieck space, this implies 

ni-*oo 
lim Yn 0 weakly and we can apply Proposition 2.3. D 

ni-*oo 

Proposition 2.7. Suppose X is a Grothendieck space and Y is a subspace of X 
so that X/Y is reflexive. Then Y is a Grothendieck space. 
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Proof. Suppose T: Y -? c0 is any bounded operator. Then we may find a Banach 
space E D co with E/co - X/Y and an extension T: X -? E. We claim E is 
an Asplund space. Indeed if F is a separable subspace of E, then let F' be the 
closure of c0 + F which is also separable. Then F'/co is separable and reflexive 
so that since c* - 

L1 is separable, F' has separable dual. Now it follows from a 
deep result of Hagler and Johnson [10] (see also [7]) that BE* is weak*-sequentially 
compact. Hence if (en) is any sequence in BE*, there is a subsequence (fn) so that 
T*fn is weak* and hence weakly convergent in X*. Thus T is weakly compact by 
Gantmacher's theorem (see [15], Theorem 3.5.13, p. 343) and, in particular, T is 
weakly compact. D 

Theorem 2.8. Suppose X and Y are Banach spaces and Y is a Grothendieck 
space. Suppose T: X -? Y is a bounded operator such that Y/IR(T) is reflexive. 
Then Af(T***) C Y*. 

Proof. Let Y0 = R(T). Then by Proposition 2.7 Yo is also a Grothendieck space. 
We write T = JTo where J: Yo -+ Y is the inclusion map and To: X -? Yo. 
Clearly (Y/Y0)* A (T*) is reflexive. We observe that To* is one-to-one and by 
Proposition 2.6 we obtain that To*** is also one-to-one. Now, since Y/YO is reflexive, 
this implies A((T***) = fA(J***) = fA(J*) c Y* as required. D 

Theorem 2.9. Let X be a non-reflexive complex Banach space which is a Grothen- 
dieck space such that X* is isometric to a subspace of an L-embedded space. Sup- 
pose T: X -? X is a bounded linear operator. Then there exists A E C so that 
X/R(A - T) is non-reflexive (and hence non-separable). In particular, the point 
spectrum op (T*) is non-empty. 

Proof. Let S = T*. Then since X is non-reflexive, the operator S has non-empty 
spectrum and furthermore for any A in the boundary &of(S) there is a sequence 

(n E X***/X* with jj,njj = 1 so that limn,I (A - S)ni II= 0. This implies that 
for A E &of(S) we have N((A - S)**) is not contained in X* by Theorem 2.5. 
Then we apply Theorem 2.8 and deduce that X/R(A - T) is non-reflexive. By 
Proposition 2.6 we have that A E cp(T*). E 

Our main example for Theorem 2.9 is when X is a von Neumann algebra. The 
fact that von Neumann algebras have the Grothendieck property is a recent result 
of Pfitzner [17]. In fact, slightly more follows from Pfitzner's work. 

Proposition 2.10. Let A be a von Neumann algebra and suppose T: A - Y 
fails to be weakly compact, then there is a closed subspace E of A such TIE is an 
isomorphism and E is isomorphic to fL,. 

Proof. Suppose T fails to be an isomorphism on any subspace isomorphic to f". 
Let Ao be any maximal Abelian subalgebra of A. Then it follows from classical 
results of Rosenthal [18] that T is weakly compact on Ao; by Pfitzner's Theorem 
[17] Theorem 1 (see also Corollary 10), T is weakly compact. D 

Theorem 2.11. Let X be a non-reflexive quotient of a von Neumann algebra, and 
let T: X -? X be any bounded linear operator. Then there exists A E C so that 
X/-R(A - T) contains an isomorphic copy of fL, and hence A(A - T*) contains an 
isomorphic copy of Lf. In particular, the point spectrum op (T*) is non-empty. 



1452 TERESA BERMUDEZ AND N. J. KALTON 

Proof. The dual of any C*-algebra is L-embedded ([21], [11]) and so it follows 
from the work of Pfitzner [17] that X satisfies the hypotheses of Theorem 2.9. 
Proposition 2.10 implies that if X/R(A-T) is non-reflexive, then it contains a 

complemented isomorphic copy of f4,. Since (X/R(A - T)) (A - T*), there 

exists in N(A - T*) an isomorphic copy of (4D)*. D 

3. APPLICATIONS TO HYPERCYCLIC OPERATORS 

A bounded linear operator T on a complex Banach space X is called hypercyclic if 
there is a vector x E X (called hypercyclic vector for T) such that {TTx : n E N} 
is dense on X. This concept is related to the problem of the existence of proper 
closed invariant subsets for a bounded linear operator. It is an open problem 
whether every bounded linear operator on a Hilbert space has a proper closed 
invariant subset, or equivalently if every operator has a non-zero vector which is 
not hypercyclic. We refer to [9] for an excellent survey. 

We note that a non-separable Banach space cannot support a hypercyclic vector. 
An approach to obtain something similar to hypercyclicity in non-separable Hilbert 
and Banach spaces was given by K. Chan [5] and A. Montes and C. Romero [16], 
respectively. In fact, they give certain "hypercyclicity" results in L(X) where X 
is a separable Banach space, using the strong operator topology in place of the 
standard uniform norm topology. 

It is however possible to extend the notion of hypercyclic operators to nonsep- 
arable Banach spaces in a natural way using the results of [8]. Let us say that an 
operator T on an arbitrary Banach space is topologically transitive if for every pair 
U, V of non-void open subsets of X, there exists a positive integer n such that 
T n(U) n V :A 0. In Theorem 1.2 of [8] it is proved that if X is a separable Banach 
space, then T is hypercyclic if and only if T is topologically transitive. 

The following proposition is immediate. 

Proposition 3.1. A bounded linear operator T is topologically transitive if and 
only if every proper closed invariant subset has empty interior. 

An argument similar to the result due to J. Bes and A. Peris [3] provides a 
sufficient condition for topological transitivity. 

Proposition 3.2 (Topologically transitive criterion). Let T be a bounded linear 
operator on a complex Banach space X (not necessarily separable). Suppose that 
there exists a strictly increasing sequence of positive integers 2nk}kkEN c N for which 
there are: 

(1) A dense subset Xo C X such that Tfnkx -O 0 for every x C Xo. 
(2) A dense subset Yo C X and a sequence of mappings Sk: YO - X such that 

(a) SkY -? 0 for every y C YO, 
(b) T nkSky -+ Y for every y C YO. 

Then T is topologically transitive. 

Example. The following example was suggested by J. Shapiro. Let us use Propo- 
sition 3.2 to show that there is a topologically transitive operator on any Hilbert 
space. If H is separable, then the result is clear by S. Ansari [1] and L. Bernal [2]. 
If H is a non-separable Hilbert space, we write H = 2(X) where X is a Hilbert 
space of the same density character. Define T as twice the backward shift on ?2 (X), 
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that is, 

T(x,X2,...) 2(X2, X3.... 

Using Proposition 3.2, we have that T is topologically transitive taking nk= k, 

X0 := {finitely non-zero sequences in ?2 (X)}, 

YO := f2(X), 

S(x1, X2,. . .) -(0 X X2 .. 
2 

and Sk := Sk. 

Clearly this example can be modified to replace H by any space ?p(I) where 
1 < p < oo. 

It has been shown by S. Ansari [1] and L. Bernal [2] that any separable complex 
Banach space supports a hypercyclic operator. Recently, J. Bonet and A. Peris gave 
a version for F-spaces [4]. This suggests the corresponding problem of determining 
whether every complex Banach space supports a topologically transitive operator. 

This question has a negative answer. In order to see this, we need to give a 
spectral property of topologically transitive operators, which is well-known in the 
case of hypercyclic operators [14] and [13]. 

Proposition 3.3. Let T' be a bounded linear operator on a complex Banach space. 
If T is topologically transitive, then op(T*) is empty. 

Proof. If A & o7p(T*) and x* is a corresponding eigenvector, then one of the sets 
{x: lx*(x)l > 1} or {x: lx*(x)l < 1} is an invariant set with non-empty interior. 
Then use Proposition 3.1. D 

As pointed out in the introduction, the examples of [19] and [20] of non-separable 
spaces such that every bounded operator is a perturbation of a multiple of the 
identity by an operator with separable range give examples of spaces which support 
no topological transitive operators. However, the following theorem shows that 
?,, and L(f2) are more natural examples, where L(f2) denotes the algebra of all 
bounded linear operators on ?2 

Theorem 3.4. Let X be a non-reflexive quotient of a von Neumann algebra. Then 
X does not support a topologically transitive operator. In particular, L(f2) and ?, 
do not support a topologically transitive operator. 

Proof. Just apply Theorem 2.11 and Proposition 3.3. D 

We conclude with a remark on ultrapowers. We recall some concepts about 
ultrapowers of Banach spaces and operators. See [12] for more information. We fix 
a non-trivial ultrafilter a on the set N of all positive integers. For every Banach 
space X, we consider the Banach space f, (X) of all bounded sequences (xn) in 
X, endowed with the norm I(Xn)ll :, SUp{llXnll rn E N}. Let Nu(X) be the 
closed subspace of all sequences (xi) E ?O (X) which converge to 0 following U. 
The ultrapower of X following H is defined as the quotient 
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The element of Xu including the sequence (xi) E ?O (X) as a represenitative is 
denoted by [xi]. Its norm in Xu is given by 

|[Xn]| liM |lXn||. u 

The constant sequences generate a subspace of Xu isometric to X. So we can 
consider the space X embedded in Xu. Moreover, every operator T E L(X, Y) 
admits an extension Tu E L(Xu, YU), defined by 

TU ( Xn] ) : = [TXn] v [Xn] E XU- 

An easy argument with ultrapowers gives that any ultrapower cannot be a topo- 
logically transitive operator. This fact can be obtained by the following easy argu- 
ment. 

Proposition 3.5. Let U be an ultrafilter, X a complex Banach space and T any 
bounded linear operator on X. Then Tu is not topologically transitive. 

Proof. We note that any A C &of(T) is in the approximate point spectrum of T*, i.e., 
there exists a sequence {xf}nEN in X* with 11x* 1 = 1 andlimn,O jjAx*-T*x*l = 
0. Now let (* E XN be defined by C*([xn]) = limX*(xn). Then A E up(T~) 0, so 
we can apply Proposition 3.3. D 

We conclude with the following open question: Is there any characterization of 
non-separable Banach spaces which support a topologically transitive operator? 
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