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ABSTRACT. We extend the Paley-Wiener pertubation theory to linear opera- 
tors mapping a subspace of one Banach space into another Banach space. 

1. INTRODUCTION 

In his classical book on potential theory in 1877, Carl Neumann [13] introduced 
what we now call the Neumann series for a linear operator: If X is a Banach 
space and T: X -- X is a linear operator satisfying II - TI < 1, then T is 
an onto isomorphism and T-1 = E - =(I-T)T. Special cases of this result were 
rediscovered by Paley and Wiener in 1934 [10] and in 1940 by Boas [3]. After further 
generalizations by Pollard [11] and Sz. Nagy [9], Hilding [6] gave the most general 
form: If X is a Banach space, and T: X -> X is a linear operator, A E [0, 1), and 
for all x E X, II(I-T)xII < A(IIxII + IlTxll), then T is an onto isomorphism. We will 
investigate the more general setting where Y is a subspace of a Banach space X, Z 
is a Banach space and S, T Y -> Z are linear operators satisfying, for all x E X, 
the inequality lSx - Txll < Al llSxHl + A2 IITxIH, where A1, A2 E [0, 1) . In this case, 
properties of S will carry over to T. This includes being one-to-one, onto, closed, 
open, having dense range, being a quotient map and most importantly, being a 
Fredholm operator (and the FRedholm index is maintained). A special case of this 
result is a generalization of the theorem of Neumann: If Y is a subspace of a Banach 
space X and T: Y -> X is a linear operator with II (I-T) I 1yI < 1, then Y and TY 
have the same codimension in X. 

2. THE BASIC INEQUALITIES 

We will first develop the basic inequalities needed throughout the paper. We 
will always assume that A1, A2 are real numbers with A1, A2 E [0, 1). 
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Basic Inequality. If x, y are elements of a Banach space X satisfying 

(1) Hix - yll < Al llxll + A21YvII, 

then 

(2) 1 - 2 Illl < IIXII <1 1 + A2 
Ilyll (2) ~ ~ ~ ~ I l?A 1-Al 

Proof. With x, y as above, 

llxll < llX - yll + IlYll < A1 llxll + A2 1YII + IIYII 

It follows that 

llXll < 1 + A2 IIYII- 

Switching the roles of x and y above completes the inequality. El 

We will be working in the case where Y, Z are subspaces of a Banach space X 
and T: Y -> Z is a bounded linear operator. Letting y = Tx in (1), we have, for 
all x E Y, 

(3) 11 (I - T)xjj < Al lixHl + A2 HlTxll. 

It follows from our basic inequality that T is an isomorphism of Y into X. We 
now show that if T satisfies (3), then so do certain operators obtained from T. 

Proposition 1. Let Y, Z be subspaces of a Banach space X and T: Y -> Z be a 
surjective linear operator satisfying, for all x E Y, 

11 (I-T)xjj < Al IIxll + A2 IlTxll. 

Then 
(1) T-1 satisfies, for all x E Z, 

(4) 11 (I - T-1)x < A211XII + Al JIT-1xll. 

(2) For every a > 0, aT satisfies, for all x E Y, 

(5) 11 (I - aT)xll < A1' llxl +A' IlaTxll, 

with constants A' = max{1 - a(1 - A1, A1}, and A' = max{1 - 1+A2, A2}. 
(3) For every 0 < a < 1, the operatorT, = (1-ca)I+caT satisfies, for all x E Y, 

(6) ||(I-T,Q)xll < A'llxll +?A2'|Tx1j, 

where Al = aA1 + (1 - a)A2, and A' = A2. 
(4) For every a < 0, the operator al - T is an isomorphism. 

Proof. (1) If z = Tx, then 

|(I-T-T1)zlzly = Tx - xll < Alllxll + A2 lTxll = Al IT 1zll + A211Z11- 

(2) Although this can be done in one case, we will do it in two cases to identify 
the exact constants obtained in each case. 



GENERALIZING THE PALEY-WIENER PERTURBATION THEORY 521 

Case I. Assume E < 1. 

For any x E Y, 

- (I- T)xll = 11(I- a)I + a(I - T)yll 
< (1 - a)lxll + Alallxll + A2aIcTxII 

= [1 - ca(l - Al)]llxll + A2HIaTxl. 

Case II. Assume ae> 1. 

For any x E Y, 

x- ETxll < (I - T)xII + (a - I)HlTxll 

< Al llxl + A2H|Txll + (a - 1)lTxll = Alllxll + a IlaTxll. 

(3) For any x E Y, 

- (I-T,)xI = all (I - T)xII ? aAj llxll + aA2 HlTxll = aAi llxll + A2 IlaTxl 
< agAllxll + A2HIlTx + (1 - a)xII + A2(1 - a)llx 

= [atAj + (1 - a)A22]1xI + A21ITxll. 

(4) This is immediate from (3) and the observation 

aI -T = -(|al|+1)[(1 - +1 )I+ | +T]. 
IaI?1 IaI?1 

If we weaken inequality 3, for example by letting A1 = 1, we lose our conclusion that 
T is a bounded linear operator. For example, it is immediate that T: ?p -> p given 
by T({ai}) = {iai} satisfies II(I-T)xll < IlTxll, for all x E Ap. Also, T = 0 satisfies 
inequality 3 with A1 = 1. The next proposition shows that this is essentially all 
that can go wrong with the weaker inequality 3. 

Proposition 2. Let Y be a subspace of a Banach space X and T: Y > X be a 
linear map. 

(1) Suppose T is bounded and there exists A E [0, 1) such that, for all x E Y, 

lx- Txll < Allxll + IlTxll. 

Choose 6 E [A, 1) so that ITIH < ". Then T satisf es, for all x C Y, 

lx- Txll < (llxll + ITxl). 

(2) If T-1 is bounded on T(Y), and T satisfies, for all x E Y, 

l|X- Txl < llxll + A2 ||Txll, 

then 

lx- Txll < 6(llxll + IlTxll) 

where 6 E [A, 1) is chosen so that JIT-1 11 > 1j6 > 0. 

Proof. (1) Since IITxII < ' 
IIxI we see that (1 - 6)lTxll < (6- A)llxll. Hence, 

Allxll + IlTxll < 6(llxll + IlTxll). (2) follows similarly. El 
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3. AN APPLICATION FROM OPERATOR THEORY 

We denote the unit sphere of a Banach space X by Sx = {x G X : lxll = 1}. 
Let v(T) denote the spectrum of an operator T: X -- X and 7r(T) denote the 
approximate point spectrum of T. That is, A G v(T) if T - AI is not invertible, 
and A G 7r(T) if there is a sequence x?, E Sx so that II(T - AI)xll -+ 0. In this 
terminology, Proposition 7.9 in [7] states, 

Theorem (Kalton, Peck, Roberts). The complement of the spectrum of T is a 
clopen (i.e. both closed and open) set in the complement of the approximate point 
spectrum of T, which contains the unbounded component. 

Corollary 3. Let X be a Banach space and T: X -- X be an isomorphism of X 
into X. 

(1) If the operator aI - T is an isomorphism for all ae > 0, then T is onto. 
(2) If the operator al - T is an isomorphism for all ae < 0, then T is onto. 

Proof. By our assumption in (1), [0, oo) is a subset of the unbounded component 
of lr(T)C and hence is a subset of u(T)c. (2) follows similarly. -II 

Some assumption on T in Corollary 3 is necessary, since without it T = 0 satisfies 
the hypotheses. In the complex case, the hypotheses in Theorem 3 could be stated 
more generally as: (1) If for some complex unit IAo I1, we have that EA0I - T is 
an isomorphism for all a > 0, then T is onto. Similarly for (2). 

The classical Borsuk-Ulam theorem asserts that any continuous map from an 
n-dimensional sphere to itself must either be onto, or have both fixed points and 
antipodal points. The Borsuk-Ulam theorem fails for infinite dimensional Banach 
spaces, in its exact form, even for linear isometries (just take the shift operator on 
a Hilbert space). However, there is an approximate version of this theorem. We say 
that a sequence of elements {xn} in Sx is an approximate fixed point sequence 
for a mapping f : Sx -> X if limn-oo IXn - f(xn) 1 = 0. It is an approximate 
antipodal sequence for f if limnO II-xn -f(Xn) = 0. Benyamini and Sternfeld 
[2] have shown that every infinite dimensional Banach space X has a Lipschitz mnap 
of the unit ball of X into itself without approximate fixed points. If X = ?p, for 
1 < p < oo, this map automatically satisfies inequality 3. But the theorem of 
Kalton, Peck, and Roberts above does yield an approximate version of the Borsuk- 
Ulam theorem for linear isometries. 

Borsuk-Ulam Theorem for Linear Operators. If X is a Banach space and 
T: X -i X is an isometry, then either T is onto, or T has both an approximate 
fixed point sequence and an approximate antipodal sequence. Moreover, if X is 
complex and T is an isometry which is not onto, then the spectrum of T contains 
the unit circle. 

Proof. All of this is immediate from Corollary 3 except the last statement which 
only requires the observation that if T is an isometry which is not onto, then for 
all complex numbers JAI = 1, the operator AT is not onto. By Corollary 3, there is 
an ae > 0 so that al - AT is not an isomorphism. It follows that a =1, so I - AT 
is not an isomorphism, and hence AI - T is not an isomorphism. Li 

Isometries which are onto need not have approximate fixed points or approximate 
antipodal points. To see this, define T: Ap -- ?p by: 

T(al, a2, a3, a4, ...)= (a2,-al,a4,-a3, **). 
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Then T is an isometry of Ap onto itself, but T has no approximate fixed points or 
approximate antipodal points. Hence, aI - T is an onto isomorphism for all at. 

It is clear that any operator satisfying inequality (3) cannot have approximate 
fixed points or approximate antipodal points. One would hope that an operator 
which fails inequality (3) would need to have approximate fixed points or approx- 
imate antipodal points. It is easily checked that this is the case in a uniformly 
convex space. To see that this is not true in general, let T(ai, a2) = (a2, -al) be 
considered as an operator on j2 

The classical perturbation theorem of Hilding [6] now follows. 

Hilding's Perturbation Theorem. If X is a Banach space and T X -> X 
satisfies, for all x E X, 

11 (I-T)xjj < Al lixll + A2 ||TXll, 

for some A1, A2 E [0, 1), then T is onto. 

Proof. Proposition 1 (4) states that T satisfies hypothesis 2 of Corollary 3. El 

4. GENERALIZING PALEY-WIENER 

Now we will extend the theory to operators between subspaces of Banach spaces. 
We start with an elementary observation. 

Lemma 4. Let X, Y be Banach spaces and S,T: X -- Y be linear operators 
satisfying 

||Sx-Txll < Al IlSxll + A2 ||Txll, 

for all x E X, and fixed A1, A2 E [0, 1). Then if S has closed range (respectively, is 
one-to-one, has dense range, is an open map, is a quotient map, is an isomorphism) 
then T has closed range (respectively, is one-to-one, has dense range, is an open 
map, is a quotient map, is an isomorphism). 

Proof. Applying our Basic Inequality to Sx, Tx we have: 
1 - A2 ||TXll < ||SX|| < 

1 ?A2 
||TXl. 

1 + A1lTH?Hx 1 - A1,TH 

It follows that L: S(X) -- T(X) defined by L(Sx) = Tx is a well defined onto 
isomorphism, which therefore has a unique extension to an isomorphism of S(X) 
onto T(X). This is all that is needed for the proof of the theorem. El 

Now we want to prove a deeper generalization of the Paley-Wiener perturbation 
theory. We will need a result of Krein, Krasnoselskii, and Milman [8], which can 
also be found in Gokhberg and Krein [5] or Day [4]. 

Lemma 5. Let E, F be subspaces of a Banach space X with dim F < oo and 
dim E > dim F. Then there exists an 0 74 x E SE such that 

1 = llxHl = d(x, F). 

To prove our main result, we need two lemmas. The first is actually a special 
case of the result. 

Lemma 6. Let Y be a subspace of a Banach space X, and T: Y -- X a linear 
operator satisfying I I(I-T)| IyI < 1. Then for every subspace W in Y, codimxW > 
codimxT(W). 



524 PETER G. CASAZZA AND NIGEL J. KALTON 

Proof. Let A = (I - T)I y . If the lemma fails, then there is a subspace W in Y so 
that dim(TW)L > dimWL. By Lemma 5, there is an element x* E S(TW)I with 
d(x*, WI) = 1 = sup{x*(x): x E Bw}. Now, for any 6 > 0, there is an x E Bw so 
that x*(x) > 1 - 6. Since x*(T(W)) = 0, we have 

1-6 < x*(x) = x*(x -Tx) < Allx* Hllxll = A. 

But, this is a contradiction for 1 - 6 > A. Therefore, 

codimxW = dimW' > dim(TW)- codimxT(W). 

Lemma 7. Let Y be a subspace of a Banach space X and T: Y -> X be a linear 
operator with (I - T) I y< 1. Then, I I(I-T-1) ITYH1 < 1. 2 

Proof. For any x E X, 

IITxll > llxll - (I - T)xII > 1Ixll. 

It follows that JIT-1ITYH1 < 2. Now, for every y E TY, 

11(I - T-)yll = 11(I - T)T-1yll < II - TI IT-lyll < I - T112lyll. 

We can now prove the main result of this section. Again, the proof is inspired 
by Hilding [6]. 

Theorem 8. Let Y be a subspace of a Banach space X, A1, A2 E [0, 1), and T 
Y -- X a linear operator satisfying, for all x E Y, 

' (I- T)xII < Al llxll + A2 |ITxll. 
Then codimxY codimxT(Y). 

Proof. To simplify the proof, let A = max{Aj, A2}. With TQ defined as in Proposi- 
tion 1 (3), we have from our Basic Inequality, for all 0 < K 1, 

(7) 1 AH ? 
x 

Next, we let 

E = {0< ?a < 1: codimxTQY = codimxY}. 

If ae = 0, then TQ = I, so 0 E E 74 0. 
Next, we will show that for all ae sufficiently close to ,3, we have codimxTOY 

codimxTgiY. To see this, given 0 < ae, ,B < 1, we have 

T - TIx|- = x 1(at - ,)Tx - (a - 3)xll < la - f(1 + JITIH)Hlxll. 

Hence if we let 
11-A 1 
2 1 + A 1 - ITIH' 

then as long as la -A31 < c, and applying (7) we have 

(8) IITQx-TTxll < ? llxll. 2 1T1 THXH. 
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Now define an operator L : TQ(X) -- Tp(X) by LTQx = Tpx. By inequality (8), 
we have that III -LI < 2. Thus by Lemma 7, we can apply Lemma 6 to both L 
and L-1 to conclude that codimxTQY = codimxT3Y. 

Summarizing, we have that 0 E E, and whenever a E E, we have (ae -6, a +?e) n 
[0, 1] C E. Hence, E = [0, 1] and so 1 E E, which is what we needed. D 

Theorem 8 gives a generalization of the result of Neumann [13]. 

Corollary 9. If Y, Z are subspaces of a Banach space X, and if T: Y -> Z is a 
surjective linear operator with (I - T) y < 1, then codimxY = codimxZ. 

We could obtain Corollary 9 directly from the Neumann series if T had an 
extension T to all of X also satisfying II - TI < 1. In fact, we can get such an 
extension if there is a projection P: X -> Y with IIPII < 1 (or just IIPIH < 11I-TIH). 
In this case we define T: X -- X by Tx = TPx + (I - P)x. Now, for all x c X, 

11(I-T)xII = (I-T)PxI ?< I-TI llPxll< ?I-Tlllxll. 

However, in general T need not have an extension which is an isomorphism on X. 
Our next example shows that even if dim Y < oo, there need not be an extension 
T of T satisfying II - TI < 1. 

Example 10. Let X = tp ff tp, for p 74 2. Choose a subspace W in Ap which is 
isomorphic to ?p but uncomplemented in ?p. Let Y = W ff 0, and let {(fn,) O)} be 
the unit vector basis of ?p in Y, and {en} be the unit vector basis of ?p. Also, let 

Z = {(E anfn, IE anen) (an) EtpC , 

where K is chosen so that 

-1 E anen 11 < 21 E an fn 11 

Finally, define T: Y -- Z by 

(9) T( anfn 0) = (Zanfn, Z Eanen) 

Then, 
(1) III - TI < 1, 
(2) Z is complemented in X, 
(3) T is an isomorphism of Y onto Z. 
Therefore, T cannot be extended to be an isomorphism of X onto X. 

Proof. (1) We just apply (9) to get 

11 (I-T)( an(fn 0)) Ix =- l Eanen I?P < Z lEanfn 11 

(2) We define the operator P on X by: 

P( aneni,E bnen) = (KEbnfn E bnen) 

It is clear that P is a bounded linear projection of X onto Z. 
(3) This is clear since the operator T(fn) = (fn, en) is an isomorphism. El 

By a standard compactness arguement, we can finite dimensionalize the above 
example. There is a choice of natural numbers j, < j2 < jh < ... with the 
following property. Let Yn = span,<i<ji(fi, 0) and Zn = span,<i<ji(fi, kei), and 
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Tn Tly. Then there is a O < A < I so that for all n = 1, 2,3, ... . ,II - Tnll < A 
but for any extension Tn of Tn to all of X, we have TniT7n-i > n. 

The next corollary of Theorem 8 comes from mimicking the proof of Lemma 4. 

Corollary 11. If X, Y are Banach spaces and S, T: X -- Y are linear operators 
satisfying, for all x C X, 

||Sx - Txll < A(HISxII + IlTxll), 

then codimy(S(X))= codimy(T(X)). 

Given an operator T: X -? Y with closed range, we let 

a(T) = dim ker T 

and 

:3(T) = dim Y/T(X). 

If either a(T) < oo or p3(T) < oo, we define the Fredholm index i(T) of T by 
i(T) = a(T) - 3(T). If a(T) and p3(T) are both finite (i.e. if i(T) is defined and is 
finite), then T is called a Fredholm operator of index i(T). 

Corollary 12. Let X, Y be Banach spaces and S, T: X -? Y be linear operators 
satisfying, for all x E X, and fixed 0 < A1, A2 < 1, 

11 (S-T)xIj < Al IlSxll + A2 flTxll. 

If S is a Fredholm operator with Fredholm Index n, then T is also a Fredholm 
operator with Fredholm Index n. 

Proof. By our Basic Inequality, ker S = ker T. Now apply Theorem 8. 0 

We end with one final application of Theorem 8. 

Corollary 13. Let X be a Banach space and T: X -? X be a linear operator 
satisfying 

(10) 1(I - T)xII < A(HIxII + IlTxll), 

for all x E X, and fixed 0 < A < 1. Then, for all natural numbers n, and all x E X, 
we have x E spann<kTkX. 

Proof. For each n = 0,1, 2,, let Wn = spann<kTkx. Then T maps Wn into 
Wn and satisfies (10), and hence is onto. Since T(Wn) = Wn+1, we see that 
Wo = W1 1472 = W2 , which proves the corollary. ] 
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