ON NONATOMIC BANACH LATTICES AND HARDY SPACES

N. J. KALTON AND P. WOJTASZCZYK

(Communicated by Dale Alspach)

ABSTRACT. We are interested in the question when a Banach space X with an unconditional basis is isomorphic (as a Banach space) to an order-continuous nonatomic Banach lattice. We show that this is the case if and only if X is isomorphic as a Banach space with $X(\ell_2)$. This and results of Bourgain are used to show that spaces $H_1(\mathbf{T}^n)$ are not isomorphic to nonatomic Banach lattices. We also show that tent spaces introduced by Coifman, Meyer, and Stein are isomorphic to Rad H_1 .

1. INTRODUCTION

There is a natural distinction between sequence spaces and function spaces in functional analysis; as an example, let us point out the subtitles of two volumes of [15] and [16]. In this paper we use the term sequence space to indicate a space with the structure of an atomic Banach lattice and the term function space to indicate a space with the structure of a nonatomic Banach lattice. Many classical function spaces (e.g., the spaces $L_p[0, 1]$ for 1 [22]or [16]) have unconditional bases and hence are isomorphic as Banach spaces to sequence spaces (atomic Banach lattices). On the other hand, $L_1[0, 1]$ has no unconditional basis ([22] or [16]) and in the other direction the sequence spaces ℓ_p for $p \neq 2$ are not isomorphic to any nonatomic Banach lattice [1]. In this note we discuss a general criterion for deciding whether a Banach space with an unconditional basis (i.e., a sequence space) can be isomorphic to a nonatomic Banach lattice (i.e., a function space). Our main result (Theorem 2.4) gives a simple necessary and sufficient condition for an atomic Banach lattice X to be isomorphic to an order-continuous nonatomic Banach lattice; of course, if X contains no copy of c_0 , every Banach lattice structure on X is order-continuous.

Our main motivation is to study the Hardy space $H_1(\mathbf{T})$. After the discovery that the space $H_1(\mathbf{T})$ has an unconditional basis [17] it becomes natural to

Received by the editors June 5, 1992.

¹⁹⁹¹ Mathematics Subject Classification. Primary 46B42, 42B30.

Key words and phrases. Order-continuous Banach lattice, Hardy spaces.

The first author was supported by NSF-grant DMS-8901636; the second author was supported by KBN-grant 2-1055-91-01. This work was done while the second author was visiting the University of Missouri-Columbia; he would like to express his gratitude to the whole Abstract Analysis Group of this department for their hospitality.

investigate if $H_1(\mathbf{T})$ is isomorphic to a nonatomic Banach lattice. Applying Theorem 2.4 to H_1 and using some previous results of Bourgain [2, 3] we show that H_1 is not isomorphic to any nonatomic Banach lattice and furthermore that $H_1(\mathbf{T}^n)$ is not isomorphic to a nonatomic Banach lattice for any natural number n.

We conclude by showing that the space $\operatorname{Rad} H_1$ or $H_1(\ell_2)$ is isomorphic to the tent spaces T^1 introduced by Coifman, Meyer, and Stein [4].

2. LATTICES WITH UNCONDITIONAL BASES

Our terminology about Banach lattices will agree with [16]; we also refer the reader to [9, 10] for the isomorphic theory of nonatomic Banach lattices.

A (real) Banach lattice X is called *order-continuous* if every order-bounded increasing sequence of positive elements is norm convergent. Any Banach lattice not containing c_0 is automatically order-continuous.

For any order-continuous Banach lattice X we can define an associated Banach lattice $X(\ell_2)$ (using the Krivine calculus [16, pp. 40-42]) as the space of sequences $(x_n)_{n=1}^{\infty}$ in X such that $(\sum_{k=1}^{n} |x_k|^2)^{1/2}$ is order-bounded (and hence is a convergent sequence) in X. $X(\ell_2)$ becomes an order-continuous Banach lattice when normed by $||(x_n)|| = ||(\sum_{n=1}^{\infty} |x_n|^2)^{1/2}||$.

If X has nontrivial cotype then $\overline{X(\ell_2)}$ is naturally isomorphic to the space Rad X which is the subspace of $L_2([0, 1]; X)$ of functions of the form $\sum_{n=1}^{\infty} x_n r_n$ where (r_n) is the sequence of Rademacher functions. The space Rad X is clearly an isomorphic invariant of X; so if two Banach lattices X and Y with nontrivial cotype are isomorphic, it follows easily that $X(\ell_2)$ and $Y(\ell_2)$ are isomorphic. However, this result holds in general by a result of Krivine [13] or [16, Theorem 1.f.14].

Theorem 2.1. If X, Y are order-continuous Banach lattices and $T: X \longrightarrow Y$ is a bounded linear operator, then if $(x_n) \in X(\ell_2)$ we have $(Tx_n) \in Y(\ell_2)$ and

$$\|(T(x_n))\|_{Y(\ell_2)} \le K_G \|T\| \|(x_n)\|_{X(\ell_2)}$$

Here, as usual, K_G denotes the Grothendieck constant.

Proof. Essentially this is Krivine's theorem, but we do need to show that if $(x_n) \in X(\ell_2)$ then $(Tx_n) \in Y(\ell_2)$. To see this we show that $(\sum_{k=1}^n |Tx_k|^2)^{1/2}$ is norm-Cauchy. In fact, if m > n then

$$\left\| \left(\sum_{k=1}^{m} |Tx_{k}|^{2} \right)^{1/2} - \left(\sum_{k=1}^{n} |Tx_{k}|^{2} \right)^{1/2} \right\|_{Y} \leq \left\| \left(\sum_{k=n+1}^{m} |Tx_{k}|^{2} \right)^{1/2} \right\|_{Y} \\ \leq K_{G} \|T\| \left\| \left(\sum_{k=n+1}^{m} |x_{k}|^{2} \right)^{1/2} \right\|_{X} \leq K_{G} \|T\| \left\| \left(\sum_{k=n+1}^{\infty} |x_{k}|^{2} \right)^{1/2} \right\|_{X}$$

which converges to zero as $n \to \infty$ by the order-continuity of X. \Box

Corollary 2.2. If two order-continuous Banach lattices X and Y are isomorphic as Banach spaces, then $X(\ell_2)$ and $Y(\ell_2)$ are isomorphic as Banach spaces.

If X is a separable order-continuous nonatomic Banach lattice then X can be represented as (i.e., is linearly and order isomorphic with) a Köthe function space on [0, 1] in such a way that $L_{\infty}[0, 1] \subset X \subset L_1[0, 1]$ and inclusions are continuous. It will then follow that L_{∞} is dense in X, and the dual of X can be represented as a space of functions, namely, $X^* = \{f \in L_1 : \int |fg| dt < \infty$ for every $g \in X\}$.

Now we are ready to state our main result. Let us observe that for rearrangement invariant function spaces on [0, 1] this result was proved in [9](cf. also [16, 2.d]) by a quite different technique.

Theorem 2.3. Let X be an order-continuous, nonatomic Banach lattice with an unconditional basis. Then X is isomorphic as a Banach space to $X(\ell_2)$.

Proof. We will represent X as a Köthe function space on [0, 1] as described above. Suppose $(\phi_n)_{n=1}^{\infty}$ is a normalized unconditional basis of X. Then there is an order-continuous atomic Banach lattice Y which we identify as a sequence space and operators $U: X \longrightarrow Y$ and $V: Y \longrightarrow X$ such that $UV = I_Y$, $VU = I_X$, and $U(\phi_n) = e_n$ for n = 1, 2, ..., where e_n denotes the canonical basis vectors in Y. We can regard Y^* as a space of sequences and further suppose that $||e_n||_{Y^*} = ||e_n||_Y = 1$. We will identify $Y(\ell_2)$ as a space of double sequences with canonical unconditional basis $(e_{mn})_{m,n=1}^{\infty}$; thus for any finitely nonzero sequence we have $||\sum a_{mn}e_{mn}||_{Y(\ell_2)} = ||\sum_m (\sum_n |a_{mn}|^2)^{1/2}e_m||_Y$. Let r_n denote the Rademacher functions and for each fixed $f \in X$ note that

Let r_n denote the Rademacher functions and for each fixed $f \in X$ note that $(r_n f)$ converges weakly to zero, since for $g \in X^*$ we have $\lim_{n\to\infty} \int r_n f g dt = 0$. In particular, we have for each $m \in \mathbb{N}$ that $(r_n \phi_m)$ converges weakly to zero. It follows by a standard gliding hump technique that if $\eta = (2||U||||V||)^{-1}$ then we can find for each $(m, n) \in \mathbb{N}^2$ an integer k(m, n) and disjoint subsets (A_{mn}) of \mathbb{N} so that $||U(\phi_m r_{k(m,n)})\chi_{A_{mn}} - U(\phi_m r_{k(m,n)})||_Y \leq \eta$.

Identifying Y^* as a sequence space, we let $\psi_m = U^*(e_m)$ and then define $v_{m,n} = \chi_{A_{mn}} U(\phi_m r_{k(m,n)}) \in Y$ and $v_{m,n}^* = \chi_{A_{mn}} V^*(\psi_m r_{k(m,n)}) \in Y^*$. Now suppose (a_{mn}) is a finitely nonzero double sequence. Then

$$\begin{split} \left\| \sum_{m,n} a_{mn} v_{mn} \right\|_{Y} &\leq \left\| \left(\sum_{m,n} |a_{mn}|^{2} |U(\phi_{m} r_{k(m,n)})|^{2} \right)^{1/2} \right\|_{Y} \\ &\leq K_{G} \|U\| \left\| \left(\sum_{m,n} |a_{mn}|^{2} |\phi_{m} r_{k(m,n)}|^{2} \right)^{1/2} \right\|_{X} \\ &= K_{G} \|U\| \left\| \left(\sum_{m} \left(\sum_{n} |a_{mn}|^{2} \right) |\phi_{m}|^{2} \right)^{1/2} \right\|_{X} \\ &= K_{G} \|U\| \left\| \left(\sum_{m} \left(\sum_{n} |a_{mn}|^{2} \right) |Ve_{m}|^{2} \right)^{1/2} \right\|_{X} \\ &\leq K_{G}^{2} \|U\| \|V\| \left\| \left(\sum_{m} \left(\sum_{n} |a_{mn}|^{2} \right) |e_{m}|^{2} \right)^{1/2} \right\| \\ &= K_{G}^{2} \|U\| \|V\| \left\| \sum_{m,n} a_{mn} e_{mn} \right\|_{Y(e_{0})}. \end{split}$$

Y

Here we have used Krivine's theorem twice. It follows that we can define a linear operator $S: Y(\ell_2) \to Y$ by $Se_{mn} = v_{mn}$ and then $||S|| \leq K_G^2 ||U|| ||V||$.

Similar calculations yield that for any finitely nonzero double sequence (b_{mn}) we have

$$\left\|\sum_{m,n} b_{mn} v_{mn}^{*}\right\|_{Y^{*}} \leq K_{G}^{2} \|U\| \|V\| \left\|\sum_{m} \left(\sum_{n} |b_{mn}|^{2}\right)^{1/2} e_{m}\right\|_{Y^{*}}$$

Suppose then $y \in Y$ and set $a_{mn} = \langle y, v_{mn}^* \rangle$. Let F be a finite subset of \mathbb{N}^2 . Let $\alpha_m = (\sum_n \chi_F(m, n) |a_{mn}|^2)^{1/2}$, and suppose the finitely nonzero sequence (β_m) is chosen so that $\|\sum \beta_m e_m\|_{Y^*} = 1$ and $\sum \beta_m \alpha_m = \|\sum \alpha_m e_m\|_{Y}$. Then, with the convention that 0/0 = 0,

$$\begin{aligned} \left\| \sum_{(m,n)\in F} a_{mn} e_{mn} \right\|_{Y(\ell_2)} &= \sum_m \beta_m \alpha_m \\ &= \sum_{(m,n)\in F} \beta_m \alpha_m^{-1} |a_{mn}|^2 = \left\langle y, \sum_{(m,n)\in F} \beta_m \alpha_m^{-1} a_{mn} v_{mn}^* \right\rangle \\ &\leq \|y\|_Y \left\| \sum_{(m,n)\in F} \beta_m \alpha_m^{-1} a_{mn} v_{mn}^* \right\|_{Y^*} \leq K_G^2 \|U\| \|V\| \|y\|_Y. \end{aligned}$$

Thus for each F the map $T_F: Y \to Y(\ell_2)$ given by

$$T_F y = \sum_{(m,n)\in F} \langle y, v_{mn}^* \rangle e_{mn}$$

has norm at most $K_G^2 ||U|| ||V||$. More generally, we have

$$||T_F y|| \le K_G^2 ||U|| ||V|| ||\chi_{A_F} y||$$

where $A_F = \bigcup_{(m, n) \in F} A_{mn}$.

It follows that for each $y \in Y$ the series $\sum_{m,n} \langle y, v_{mn}^* \rangle e_{mn}$ converges (unconditionally) in $Y(\ell_2)$. We can thus define an operator $T: Y \to Y(\ell_2)$ by $Ty = \sum_{m,n} \langle y, v_{mn}^* \rangle e_{mn}$ and $||T|| \leq K_G^2 ||U|| ||V||$.

Now notice that $TS(e_{mn}) = c_{mn}e_{mn}$ where $c_{mn} = \langle v_{mn}, v_{mn}^* \rangle$. But

$$\begin{aligned} \langle v_{mn}, v_{mn}^* \rangle &= \langle v_{mn}, V^* \psi_m r_{k(m,n)} \rangle \\ &\geq \langle U(\phi_m r_{k(m,n)}), V^*(\psi_m r_{k(m,n)}) \rangle - \eta \|V\| \|\psi_m\|_{X^*} \\ &= \langle \phi_m, \psi_m \rangle - \eta \|V\| \|\psi_m\|_{X^*} \geq 1 - \eta \|V\| \|U\| \geq 1/2. \end{aligned}$$

Thus *TS* is invertible, so it follows that $Y(\ell_2)$ is isomorphic to a complemented subspace of *Y*. It then follows from the Pełczyński decomposition technique that $Y \sim Y(\ell_2)$; more precisely, $Y \sim Y(\ell_2) \oplus W$ for some *W* and so $Y \sim Y(\ell_2) \oplus (Y(\ell_2) \oplus W) \sim Y(\ell_2) \oplus Y \sim Y(\ell_2)$. The conclusion follows from Corollary 2.2. \Box

Remark. The order continuity of the Banach lattice X is essential. In [14] a nonatomic Banach lattice X (actually an M-space) was constructed which is isomorphic to c_0 . In particular, X has an unconditional basis but is not isomorphic to $X(\ell_2)$.

Theorem 2.4. Let Y be a Banach space with an unconditional basis. Then Y is isomorphic to an order-continuous nonatomic Banach lattice if and only if $Y \sim Y(\ell_2)$.

Remark. Here again we regard Y as an order-continuous Banach lattice.

Proof. One direction follows immediately from Theorem 2.3 and Corollary 2.2. For the other direction, it is only necessary to show that if $Y \sim Y(\ell_2)$ then Y is isomorphic to order-continuous nonatomic Banach lattice. To this end we introduce the space $Y(L_2)$; this is the space of sequences of functions (f_n) in $L_2[0, 1]$ such that $\sum ||f_n||_2 e_n$ converges in Y. We set $||(f_n)||_{Y(L_2)} = ||\sum ||f_n||_2 e_n||_Y$. It is clear that $Y(L_2)$ is an order-continuous Banach lattice. Now if (g_n) is an orthonormal basis of L_2 , we define $W : Y(\ell_2) \to Y(L_2)$ by $W(\sum_{m,n} a_{mn} e_{mn}) = (\sum_n a_{mn} g_n)_{m=1}^{\infty}$, and it is easy to see that W is an isometric isomorphism. \Box

Proposition 2.5. If X is a nonatomic order-continuous Banach lattice with unconditional basis, then $X \sim X \oplus X$ and $X \sim X \oplus R$. *Proof.* Both facts follow from Theorem 2.3. \Box

Note that for spaces with unconditional basis both properties do not hold in general (see [5, 6]).

Proposition 2.6. Let X be an order continuous nonatomic Banach lattice with an unconditional basis, and let Y be a complemented subspace of X. Assume that Y contains a complemented subspace isomorphic to X. Then $X \sim Y$. *Proof.* The proof is a repetition of the proof of Proposition 2.d.5. of [16]. \Box

3. HARDY SPACES

We recall that $H_1(\mathbf{T}^n)$ is defined to be the space of boundary values of functions f holomorphic in the unit disk **D** and such that

$$\sup_{0< r<1} \int_{\mathbf{T}^n} |f(re^{it_1}, re^{it_2}, \ldots, re^{it_n})| dt_1 dt_2 \cdots dt_n < \infty.$$

The basic theory of such spaces is explained in [18].

Let us consider first the case n = 1. Then $\Re H_1$ is defined be the space of real functions $f \in L_1(\mathbf{T})$ such that for some $F \in H_1(\mathbf{T})$ we have $\Re F = f$. $\Re H_1$ is normed by $||f||_1 + \min\{||F||_{H_1} : \Re F = f\}$. Then H_1 is isomorphic to the complexification of $\Re H_1$ and, further, when considered as a real space is isomorphic to $\Re H_1$. Further it was shown in [17] that $\Re H_1$ has an unconditional basis and is isomorphic to a space of martingales $H_1(\delta)$. To define the space $H_1(\delta)$ let $(h_n)_{n\geq 1}$ be the usual enumeration of the Haar functions on I = [0, 1] normalized so that $||h_n||_{\infty} = 1$. Then suppose $f \in L_1$ is of the form $f = \sum a_n h_n$. We define $||f||_{H_1(\delta)} = \int (\sum_n |a_n|^2 h_n^2)^{1/2} dt$ and $H_1(\delta) = \{f : ||f||_{H_1(\delta)} < \infty\}$. These considerations can be extended to the case n > 1. In a similar way,

These considerations can be extended to the case n > 1. In a similar way, $H_1(\mathbf{T}^n)$ is isomorphic to the complexification of, and is also real-isomorphic to, a martingale space $H_1(\delta^n)$. Here we define for $\alpha \in \mathscr{M} = \mathbf{N}^n$ the function $h_\alpha \in L_1(I^n)$ by $h_\alpha(t_1, \ldots, t_n) = \prod h_{\alpha_k}(t_k)$. Then $H_1(\delta^n)$ consists of all $f = \sum_{\alpha \in \mathscr{M}} a_\alpha h_\alpha$ such that $||f||_{H_1(\delta^n)} = \int (\sum |a_\alpha|^2 h_\alpha^2)^{1/2} dt < \infty$.

It is clear from the definition that the system $(h_{\alpha})_{\alpha \in \mathscr{M}}$ is an unconditional basis of $H_1(\delta^n)$. We can thus define a space $H_1(\delta^n, \ell_2) = H(\delta^n)(\ell_2)$ as in §1; since $H_1(\delta^n)$ has cotype two, this space is isomorphic to Rad $H_1(\delta^n)$. The following theorem is due to Bourgain [2]:

Theorem 3.1. $H_1(\delta, \ell_2)$ is not isomorphic to a complemented subspace of $H_1(\delta)$.

In a subsequent paper [3] Bourgain implicitly extended this result to higher dimensions.

Theorem 3.2. For every n = 1, 2, ... the space $H_1(\delta^n, \ell_2)$ is not isomorphic to any complemented subspace of $H_1(\delta^n)$.

Sketch of proof. For n = 1 this theorem is proved in detail in [2]. The subsequent paper [3] states only the weaker fact that $H_1(\delta^n)$ is not isomorphic to $H_1(\delta^{n+1})$. His proof, however, gives Theorem 3.2 as well. All that is needed is to change in §3 of [3] condition (m+1) and Lemma 4. Before we formulate the appropriate condition we need some further notation. By $BMO(\delta^n)$ we will denote the dual of $H_1(\delta^n)$ and by $BMO(\delta^n, \ell_2)$ we will denote the dual of $H_1(\delta^n, \ell_2)$. The space $H_1(\delta^n, \ell_2)$ has an unconditional basis given by $(h_\alpha \otimes e_k)_{\alpha \in \mathscr{M}, k \in \mathbb{N}}$. In our notation from §2 $h_\alpha \otimes e_k$ is a sequence of $H_1(\delta^n)$ functions which consists of zero functions except at the kth place where there is h_α . The same element can be treated as an element of the dual space. Note that the natural duality gives

$$\langle h_{\alpha} \otimes e_k, h_{\alpha'} \otimes e_{k'} \rangle = \begin{cases} \int_{I^n} |h_{\alpha}| & \text{when } \alpha = \alpha' \text{ and } k = k', \\ 0 & \text{otherwise.} \end{cases}$$

Now we are ready to state the new condition (m+1):

Let $\Phi: H_1(\delta^n, \ell_2) \longrightarrow H_1(\delta^n)$ and $\Phi^{\times}: BMO(\delta^n, \ell_2) \longrightarrow BMO(\delta^n)$ be bounded linear operators (note that Φ^{\times} is *not* the adjoint of Φ). Then for every $\varepsilon > 0$ there exists a set $A \subset \mathcal{M}$ such that $\sum_{\alpha \in A} |h_{\alpha}| = 1$ and integers k_{α} for $\alpha \in A$ such that

$$\sum_{\alpha \in A} \int_{I^n} |\Phi(h_\alpha \otimes e_{k_\alpha})| \cdot |\Phi^{\times}(h_\alpha \otimes e_{k_\alpha})| < \varepsilon.$$

With this condition one can repeat the proof from [3] and obtain the theorem. \Box

Corollary 3.3. We have

$$\ell_2 \stackrel{c}{\subset} H_1(\delta) \stackrel{c}{\subset} H_1(\delta, \ell_2) \stackrel{c}{\subset} H_1(\delta^2) \stackrel{c}{\subset} H_1(\delta^2, \ell_2) \stackrel{c}{\subset} \cdots$$

where $X \stackrel{c}{\leftarrow} Y$ means that X is isomorphic to a complemented subspace of Y but Y is **not** isomorphic to a complemented subspace of X.

Proof. It is well known and easy to check that the map $h_{\alpha} \otimes e_k \mapsto h_{\alpha}(t_1, \ldots, t_n)$. $r_k(t_{n+1})$ where r_k is the kth Rademacher function gives the desired complemented embedding. That no smaller space is isomorphic to a complemented subspace of a bigger one is the above theorem of Bourgain. \Box

Corollary 3.4. The spaces $H_1(\delta^n)$ is not isomorphic to a nonatomic Banach lattice for n = 1, 2, ... The spaces $H_1(\delta^n, \ell_2)$ are each isomorphic to a nonatomic Banach lattice.

Proof. The first claim follows directly from Theorems 3.1, 3.2, and 2.3. We only have to observe that (since $H_1(\delta^n)$ does not contain any subspace isomorphic to c_0 and indeed has cotype two) any Banach lattice isomorphic as a Banach space to $H_1(\delta^n)$ is order continuous (see [16, Theorem 1.c.4]). The second claim follows from Corollary 2.4. \Box

Remark. For $H_p(\mathbf{T}^n)$ with $0 we have the following situation. When <math>1 the orthogonal projection from <math>L_p(\mathbf{T}^n)$ onto $H_p(\mathbf{T}^n)$ is bounded so then $H_p(\mathbf{T}^n)$ is isomorphic to $L_p(\mathbf{T}^n)$. This implies in particular that these spaces are isomorphic to nonatomic lattices. When $0 then <math>H_p(\mathbf{T}^n)$ admit only purely atomic orders as a *p*-Banach lattices. To see this observe that if X is not a purely atomic *p*-Banach lattice then its Banach envelope (for definition and properties see [11]) is a Banach lattice which is not purely atomic. On the other hand it is known that the Banach envelope of $H_p(\mathbf{T}^n)$ is isomorphic to ℓ_1 . For n = 1 this can be found in [11, Theorem 3.9], for n > 1 the proof uses [19, Theorem 2'] but otherwise is the same; alternatively see [11, Theorem 3.5] for a proof using bases. When we compare it with the observation from [1] mentioned in the Introduction, that ℓ_1 is not isomorphic to any nonatomic *p*-Banach lattice.

Remark. For the dual spaces $H_1(\mathbf{T}^n)^* = BMO(\mathbf{T}^n)$ the situation is rather different. We first observe the following proposition:

Proposition 3.5. For any Banach space X the spaces $\ell_1(X)^* (= \ell_{\infty}(X^*))$ and $L_1([0, 1], X)^*$ are isomorphic.

Proof. Clearly $\ell_1(X)^*$ is isomorphic to a one-complemented subspace of $L_1(X)^*$. Now let $\chi_{n,k} = \chi_{((k-1)2^{-n}, k2^{-n})}$ for $1 \le k \le 2^n$ and $n = 0, 1, \ldots$. Let $T: \ell_1(X) \to L_1(X)$ be defined by $T((x_n)) = \sum x_n \chi_{m,k}$ where $n = 2^m + k - 1$. Let $L_1(\mathscr{D}_N, X)$ be the subspace of all functions measurable with respect to the finite algebra generated by the sets $((k-1)2^{-N}, k2^{-N})$ for $1 \le k \le 2^N$, and define $S_N: L_1(\mathscr{D}_N; X) \to \ell_1(X)$ by setting $S(x \otimes \chi_{N,k})$ to be the element with x in position $2^N + k - 1$ and zero elsewhere. Then applying [22, II.E, Exercise 7] (cf. [8, Proposition 1]), we obtain that $L_1(X)^*$ is isomorphic to a complemented subspace of $\ell_1(X)^*$. Then by the Pełczyński decomposition technique we obtain the proposition. \Box

Now from Proposition 3.5, observe that, since $H_1(\mathbf{T}^n) \sim \ell_1(H_1(\mathbf{T}^n))$, we have $L_1(H_1(\mathbf{T}^n))^* \sim BMO(\mathbf{T}^n)$, and clearly this isomorphism induces a nonatomic (but not order-continuous) lattice structure on $BMO(\mathbf{T}^n)$. (It is easy to see that a space which contains a copy of ℓ_{∞} cannot have an order-continuous lattice structure, because it fails the separable complementation property.)

4. Rad H_1 and tent spaces

The space $H_1(\delta, \ell_2)$ is, as observed in §2, isomorphic to Rad H_1 and has a structure as a nonatomic Banach lattice. The complex space Rad H_1 is easily seen to be isomorphic to the vector-valued space $H_1(\mathbf{T}, \ell_2)$ consisting of the boundary values of the space of all functions F analytic in the unit disk **D**

with values in a Hilbert space ℓ_2 and such that

$$\sup_{0< r<1}\int_0^{2\pi}\|F(re^{i\theta})\|\frac{d\theta}{2\pi}=\|F\|<\infty.$$

To see this isomorphism just note that $H_1(\mathbf{T}, \ell_2)$ can be identified with the space of sequences (f_n) in H_1 such that

$$\|(f_n)\| = \int_0^{2\pi} \left(\sum_{n=1}^\infty |f_n(e^{i\theta})|^2 \right)^{1/2} \frac{d\theta}{2\pi} < \infty.$$

This is in turn easily seen to be equivalent to the norm of $\sum r_n f_n$ in $L_2([0, 1]; H_1)$ (see [16, Theorem 1.d.6]).

We now show that a nonatomic Banach lattice isomorphic to $\operatorname{Rad} H_1$ arises naturally in in harmonic analysis. More precisely we will show that tent space T^1 , which was introduced and studied by Coifman, Meyer, and Stein in [4], is isomorphic to $\operatorname{Rad} H_1$. Tent spaces are useful in some questions of harmonic analysis (cf. [7] or [21]). They can be defined over \mathbb{R}^n , but for the sake of simplicity we will consider them only over \mathbb{R} .

Let us fix $\alpha > 0$. For $x \in \mathbf{R}$ we define

$$\Gamma_{\alpha}(x) = \{(y, t) \in \mathbf{R} \times \mathbf{R}^+ \colon |x - y| < \alpha t\}.$$

Given a function f(y, t) defined on $\mathbf{R} \times \mathbf{R}^+$ we put

$$\|f\|_{\alpha} = \int_{\mathbf{R}} \left(\int_{\Gamma_{\alpha}(x)} |f(y, t)|^2 t^{-2} \, dy \, dt \right)^{1/2} \, dx.$$

It was shown in [4, Proposition 4] that for different α 's the norms $\|\cdot\|_{\alpha}$ are equivalent; i.e., for $0 < \alpha < \beta < \infty$ there is a $C = C(\alpha, \beta)$ such that for every f we have

$$\|f\|_{\alpha} \le \|f\|_{\beta} \le C \|f\|_{\alpha}.$$

This implies that the space $T^1 = \{f(y, t) : \|f\|_{\alpha} < \infty\}$ does not depend on α . Observe that T^1 is clearly a nonatomic Banach lattice.

The main result of this section is

Theorem 4.1. The space T^1 is lattice-isomorphic to $H_1(\delta, L_2)$ and, hence, isomorphic to Rad H_1 .

Actually for the proof of this theorem it is natural to work with the dyadic H_1 space on **R**. This space, which we denote $H_1(\delta_{\infty})$, can be defined as follows:

Let $I_{nk} = [k \cdot 2^n, (k+1) \cdot 2^n]$ for $n, k = 0, \pm 1, \pm 2...$, and let h_{nk} be the function which is equal to 1 on the left-hand half of I_{nk} , -1 on the right-hand half of I_{nk} , and zero outside I_{nk} . In other words, h_{nk} is the Haar system on **R**. The system $\{h_{nk}\}_{n,k=0,\pm 1,\pm 2,...}$ is a complete orthogonal system. For a function $f = \sum_{n,k} a_{nk}h_{nk}$ we define its $H_1(\delta_{\infty})$ -norm by

(4.2)
$$||f|| = \int_{\mathbf{R}} \left(\sum_{n,k} |a_{nk}|^2 |h_{nk}|^2 \right)^{1/2} dt$$

That this space is isomorphic to the space $H_1(\delta)$ follows from the work of Sjölin and Stromberg [20]. However, slightly more is true:

Lemma 4.2. The atomic Banach lattices $H_1(\delta)$ and $H_1(\delta_{\infty})$ are lattice-isomorphic (or, equivalently the natural normalized unconditional bases of these spaces are permutatively equivalent).

Proof. For any subset *A* of Z² write *H*_A for the closed linear span of {*h_{nk}*: (*n*, *k*) ∈ *A*} in *H*₁(δ_∞). For *m* ∈ Z let *A_m* = {(*n*, *k*): *I_{nk}* ⊂ [2^{-*m*-1}, 2^{-*m*}]} and *B_m* = {(*n*, *k*): *I_{nk}* ⊂ [-2^{-*m*}, -2^{-*m*-1}]. Let *D* = ⋃_{*m*∈Z}(*A_m* ∪ *B_m*) and *D*₊ = ⋃_{*m*≥0}*A_m*. Then it is clear that *H*_D and *H_{D*₊ are each lattice isomorphic to ℓ₁(*H*₁(δ)). Now *H*₁(δ_∞) is lattice isomorphic to *H_D* ⊕ *H_E* where *E* = {(*m*, 0), (*m*, -1): *m* ∈ Z}. It is easy to show that *H_E* is lattice isomorphic to ℓ₁. Similarly *H*₁(δ) is lattice-isomorphic to *H*₁(*D*₊)⊕ℓ₁, and this completes the proof of the lemma. □}

Remark. Note also that $H_1(\delta)$ is lattice-isomorphic to $\ell_1(H_1(\delta))$.

Proof of Theorem 4.1. We will prove that T^1 is lattice-isomorphic to $H_1(\delta_{\infty}, L_2)$. Let us introduce squares $A_{nk} \subset \mathbf{R} \times \mathbf{R}^+$ defined as $A_{nk} = I_{nk} \times [2^n, 2^{n+1}]$ for $n, k = 0, \pm 1, \pm 2, \ldots$. It is geometrically clear that squares $\{A_{nk}\}_{n,k=0,\pm 1,\pm 2,\ldots}$ are essentially disjoint and that they cover $\mathbf{R} \times \mathbf{R}^+$. For j = 0, 1, 2 we define

$$A_{nk}^{j} = [(k+j/3)2^{n}, (k+(j+1)/3)2^{n}] \times [2^{n}, 2^{n+1}]$$

Note that in this way we divide each A_{nk} into three essentially disjoint rectangles. Let $D^j = \bigcup_{n,k} A_{nk}^j$. Let T_j^1 be the subspace of T^1 consisting of all functions whose support is contained in D^j . Clearly $T^1 = T_0^1 \oplus T_1^1 \oplus T_2^1$, so it is enough to show that T_j^1 is lattice-isomorphic to $H_1(\delta_{\infty}, L_2)$.

We write $f^j \in T_j^1$ as $f^j = \sum_{n,k} f_{nk}^j$ where $f_{nk}^j = f^j \cdot \chi_{A_{nk}^j}$. We start with j = 1. For any $\alpha > 0$ we have

(4.3)
$$\|f^{1}\|_{\alpha} = \int_{\mathbf{R}} \left(\int_{\Gamma_{\alpha}(x)} |f^{1}(y, t)|^{2} t^{-2} dy dt \right)^{1/2} dx$$
$$= \int_{\mathbf{R}} \left(\int_{\Gamma_{\alpha}(x)} \sum_{n,k} |f^{1}_{nk}(y, t)|^{2} t^{-2} dy dt \right)^{1/2} dx$$
$$= \int_{\mathbf{R}} \left(\sum_{nk} \int_{\Gamma_{\alpha}(x)} |f^{1}_{nk}(y, t)|^{2} t^{-2} dy dt \right)^{1/2} dx.$$

If we now take $\alpha = \frac{2}{3}$ we have $\Gamma_{\alpha}(x) \supset A_{nk}^{1}$ for all $x \in I_{nk}$, so from (4.3) we get

(4.4)
$$||f^{1}||_{\alpha} \geq \int_{\mathbf{R}} \left(\sum_{nk} \chi_{I_{nk}}(x) \int_{\mathcal{A}_{nk}^{1}} |f_{nk}^{1}(y, t)|^{2} t^{-2} dy dt \right)^{1/2} dx.$$

On the other hand, when we take $\alpha = \frac{1}{6}$ we have $\Gamma_{\alpha}(x) \cap A_{nk}^{1} = \emptyset$ for all $x \notin I_{nk}$, so from (4.3) we get

(4.5)
$$||f^1||_{\alpha} \leq \int_{\mathbf{R}} \left(\sum_{n,k} \chi_{I_{nk}}(x) \int_{A_{nk}^1} |f_{nk}^1(y,t)|^2 t^{-2} dy dt \right)^{1/2} dx.$$

For each (n, k) the subspace of T^1 consisting of functions supported on A_{nk}^1 is easily seen to be isometric to the Hilbert space. If we fix an isometry between this space and ℓ_2 , we obtain from (4.2)-(4.4) that T_1^1 is lattice-isomorphic to $H_1(\delta_{\infty}, L_2)$. In order to complete the proof of Theorem 4.1 it is enough to show that T_0^1 and T_2^1 are lattice-isomorphic to T_1^1 . This isomorphism can be given by $\sum_{nk} f_{nk}^j \mapsto \sum_{nk} f_{nk}^1$. The fact that this map is really an isomorphism follows from

Lemma 4.3. Let $\phi(t)$ be a uniformly bounded measurable function on \mathbb{R}^+ . For a function f defined on $\mathbb{R} \times \mathbb{R}^+$ we define

$$A_{\phi}(f)(y, t) = f(y + t\phi(t), t).$$

Then $A_{\phi}: T^1 \longrightarrow T^1$ is a continuous linear operator. Proof of Lemma 4.3. Since

$$\begin{split} \int_{\Gamma_{\alpha}(x)} |A_{\phi}(f)(y,t)|^{2} t^{-2} dy \, dt &= \int_{\mathbb{R}^{+}} \left(t^{-2} \int_{x-\alpha t}^{x+\alpha t} |A_{\phi}(f)(y,t)|^{2} dy \right) \, dt \\ &= \int_{\mathbb{R}^{+}} \left(t^{-2} \int_{x-\alpha t-t\phi(t)}^{x+\alpha t-t\phi(t)} |f(y,t)|^{2} dy \right) \, dt \\ &\leq \int_{\mathbb{R}^{+}} \left(t^{-2} \int_{x-(\|\phi\|_{\infty}+\alpha) t}^{x+(\|\phi\|_{\infty}+\alpha) t} |f(y,t)|^{2} dy \right) \, dt \\ &= \int_{\Gamma_{\alpha+\|\phi\|_{\infty}}(x)} |f(y,t)|^{2} t^{-2} dy \, dt \,, \end{split}$$

the lemma follows. \Box

References

- 1. Ju. A. Abramovič and P. Wojtaszczyk, On the uniqueness of order in the spaces ℓ_p and $L_p[0, 1]$, Mat. Zametki 18 (1975), 313-325.
- J. Bourgain, Non-isomorphism of H¹-spaces in one and several variables, J. Funct. Anal. 46 (1982), 45-57.
- 3. ____, The non-isomorphism of H¹-spaces in different number of variables, Bull. Soc. Math. Belg. Ser. B **35** (1983), 127–136.
- 4. R. R. Coifman, Y. Meyer, and E. Stein, Some new function spaces and their applications to harmonic analysis, J. Funct. Anal. 62 (1985), 304-335.
- 5. T. Figiel, An example of an infinite dimensional, reflexive Banach space non-isomorphic to its Cartesian square, Studia Math. 42 (1972), 295-306.
- 6. W. T. Gowers, A solution to Banach's hyperplane problem (to appear).
- 7. E. Harboure, J. L. Torrea and B. E. Viviani, A vector valued approach to tent spaces, J. Analyse Math. 66 (1991), 125-140.
- 8. W. B. Johnson, A complementably universal conjugate Banach space and its relation to the approximation property, Israel J. Math. 13 (1972), 301-310.
- 9. W. B. Johnson, B. Maurey, G. Schechtman, and L. Tzafriri, Symmetric structures in Banach spaces, Mem. Amer. Math. Soc., No. 217, Amer. Math. Soc., Providence, RI, 1979.
- N. J. Kalton, Lattice structures on Banach spaces, Mem. Amer. Math. Soc., no. 493, vol. 103, Amer. Math. Soc., Providence, RI, 1993.
- 11. N. J. Kalton, C. Leranoz, and P. Wojtaszczyk, Uniqueness of unconditional bases in quasi-Banach spaces with applications to Hardy spaces, Israel J. Math. 72 (1990), 299-311.

- 12. N. J. Kalton, N. T. Peck, and J. W. Roberts, An F-space sampler, London Math. Soc. Lecture Note Ser., vol. 89, Cambridge Univ. Press, Cambridge, 1984.
- J. L. Krivine, Théorèmes de factorisation dans les espaces réticules, Seminaire Maurey-Schwartz 1973-74, Exposes 22-23, École Polytechnique, Paris.
- E. Lacey and P. Wojtaszczyk, Nonatomic Banach lattices can have l₁ as a dual space, Proc. Amer. Math. Soc. 57 (1976), 79-84.
- 15. J. Lindenstrauss and L. Tzafriri, Classical Banach spaces. I. Sequence spaces, Springer-Verlag, Berlin, 1977.
- 16. ____, Classical Banach spaces. II. Function spaces, Springer-Verlag, Berlin, 1979.
- 17. B. Maurey, Isomorphismes entre espaces H_1 , Acta Math. 145 (1980), 79–120.
- 18. W. Rudin, Function theory in polydiscs, Benjamin, New York, 1969.
- 19. J. H. Shapiro, Mackey topologies, reproducing kernels, and diagonal maps on the Hardy and Bergman spaces, Duke Math. J. 43.1 (1976), 187-202.
- 20. P. Sjölin and J.-O. Stromberg, Basis properties of Hardy spaces, Ark. Mat. 21 (1983), 111-125.
- 21. A. Torchinsky, *Real-variable methods in harmonic analysis*, Academic Press, New York, 1986.
- 22. P. Wojtaszczyk, Banach spaces for analysts, Cambridge Stud. Adv. Math., vol. 25, Cambridge Univ. Press, Cambridge, 1991.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MISSOURI, COLUMBIA, MISSOURI 65211 E-mail address: MATHNJK@MIZZOU1.BITNET

Institut of Mathematics, Warsaw University, 00-913 Warszawa, ul. Banacha 2, Poland

E-mail address: PRZEMEK@MIMUW.EDU.PL