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TAUBERIAN OPERATORS ON BANACH SPACES 

NIGEL KALTON AND ALBERT WILANSKY 

ABSTRACT. A Tauberian operator: E -* F (Banach spaces) is one which 
satisfies T"g E F, g E E" imply g E E. The action of such operators and 
their pre-images on compact sets is studied in order to compare "Tauberian" 
with "weakly compact", an opposite property. Properties related to range 
closed are introduced which force operators with Tauberian-like properties 
to be Tauberian. Classes of spaces appear for which Tauberian is equivalent 
to semi-Fredholm. One example of this is the historical reason for the 
definition of these operators. 

1. Tauberian operators (?2) appeared in response to a problem in summa- 
bility (see [5]). Results on range closed Tauberian and co-Tauberian operators 
are given in [10]; our main results do not assume range closed. 

We use standard Banach space notation: B(E, F) is the set of bounded 
linear maps from E to F, E', E are the dual of E and the natural embedding of 
E in E", T': F' -> E' is the adjoint of T, and RT, NT are the range and null- 
space of T. We write E C E", identifying E with E so that T"| E = T. 

2. We call T c B(E,F) Tauberian if T"1-[F] C E, i.e. g E E", T"g E F 
imply g E E. It is immediate that a Tauberian operator has the property 

(N): g E E", T"g = 0 imply g E E. 

It is known that (N) implies 

(R): NT is reflexive. 

For range closed operators the three conditions are equivalent [5], [10]. Parts 
of this equivalence hold more generally as follows: (We omit the proofs.) (i) 
The following three conditions are equivalent. (a) T is Tauberian, (b) T has 
property (N) and T[D] is closed (D is the unit disc), (c) T has property (N) and 
the closure of T[D] is included in the range of T. (ii) T has property (N) if and 
only if it has property (R) and the range of T' has norm closure equal to its 
w* closure. 

For T one-to-one these results apply to the map given in [3, II, Lemma 
1 (iii)]. It also follows that any adjoint map with property (N) must be 
Tauberian. By considering the quotient map (which is automatically Tauber- 
ian) we see that if T E B(E, F) is Tauberian and S C F is reflexive, then 
T-1 [S] is reflexive. This generalizes (R). 
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3. Tauberian operators are, in a sense, opposite to weakly compact operators 
since T C B(E, F) is weakly compact if and only if RT" C F. Thus the set of 
Tauberian operators lies in the complement of a closed subspace of B(E, F), 
a closed ideal if F = E. Other nonweakly compact operators can be obtained 
by taking adjoints of Tauberian operators. There are examples of pairs of 
Banach spaces, E, F, neither one reflexive, such that no operator in B(E, F) is 
Tauberian). It suffices to consider a pair such that every operator is weakly 
compact. 

We now characterize Tauberian operators (internally) in terms of their 
mapping of compact sets. This may be compared with the fact that T is weakly 
compact if and only if it maps all bounded sets into relatively weakly compact 
sets. We begin with a criterion for property (N). 

3.1. THEOREM. Let E, F be Banach spaces, T C B(E, F). Then T has property 
(N) if and only if every bounded sequence {xn} in E with Txn > in F has a 
weakly convergent subsequence. 

Necessity. For any w* cluster point z of {xnj, T"z = 0 since T"xn = Txn 
0 in norm. Hence z C E and it follows that {xnj is relatively weakly 

compact, hence relatively weakly sequentially compact, by the Eberlein- 
Smulian theorem. 

Sufficiency. Suppose g C E", T"g = 0. We may assume llg|l = 1. There 
exists a net x in D, the unit disc of E, with x -> g, w*. Then Tx = T"x 
-> T"g = 0, w* and so Tx -> 0, weakly. Thus if C is any convex subset of E 
such that x C C eventually, it follows that 0 is in the norm closure of TC. 
Writing x = {xa: a C A); for each a C A, let Ca be the convex hull of 
(xY: y > a). As just mentioned, each Ca contains a sequence {cn} with 

Tcn - 0. By hypothesis {cn} has a subsequence converging weakly to ca, 
say. Clearly Tca = 0. Now (ca: a C A) is relatively weakly sequentially 
compact [each sequence {vn) in it has Tvn = 0], hence, by Eberlein-Smulian, 
relatively weakly compact. Thus ca has a weak cluster point c. The proof is 
concluded by showing g = c. This is clear since ca -> g, w*, and c is a w* 
cluster point of ca. 

3.2. THEOREM. Let E, F be Banach spaces, T C B(E, F). The following are 
equivalent: 

(i) T is Tauberian. 
(ii) For every bounded set B C E such that TB is relatively weakly compact, B 

is relatively weakly compact. 
(iii) For every bounded set B C E such that TB is relatively compact, B is 

relatively weakly compact. 

(i) implies (ii). Let T be Tauberian, B bounded c E, TB relatively weakly 
compact. Let x be a net in B. Then x, being a bounded net in E" has a w* 
convergent subnet which we may assume to be x itself; say x -> g C E", w*. 
Also x has a subnet, which we may again assume to be x itself, such that 
Tx -> y E F weakly. Then T"g = w* lim T"x = w* lim Tx = y. Since T is 
Tauberian, g C E. Then x -> g weakly. Thus B is relatively weakly compact. 

(ii) implies (iii). If TB is relatively norm compact its norm closure is a 
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compact, hence weakly compact set which includes TB; hence TB is relatively 
weakly compact. 

(iii) implies (i). Let D be the unit disc of E and y E TD. Choose {xn} in D 
with Txn -> y. By hypothesis {xn) has a weak cluster point x; clearly x E D 
and y = Tx, so y E RT. By ?2, (i), it remains to prove that T has property 
(N). This follows from 3.1 and the Eberlein-Smulian theorem. 

4. We call T E B(E, F) a semi-Fredholm operator (as in [8]) and write 
T E FD+ if T is range closed and dim NT < x. Such operators are Tauberian 
and in the eponymic case the converse is true, see 4.3 and [5]. Such operators 
are also discussed in [4], [9]. For the next result, due to Yood, Wolf, Basley, 
Schubert et al., see [6, 4.11, 4.12]. 

4.1. THEOREM. The following are equivalent for T E B(E, F): 
(i) T E D+I 
(ii) For every bounded set B C E such that TB is compact, B is relatively 

compact. 
(iii) Every bounded sequence {xn} in E with Tx- 0 has a convergent 

subsequence. 

4.2. THEOREM. Let T E B(E, F) be Tauberian. Then T E D+ if and only if 
T| R E (D+ for all reflexive subspaces R of E. 

That T] R E D+ for any closed R is by 4.1. Conversely suppose that 
T 4 (D+I The hypothesis implies that dim NT < oc so we may restrict T to 
the complement of NT, i.e. we may assume T is one-to-one. By 4.1 we can find 
{xn}, llxn j = 1, Txn -> 0. By [2, p. 156], (xn} has a basic subsequence, which 
we may assume to be (xn} itself, with 11 Txn 11 < 2-n. Let X be the linear closure 
of (xn}. Then TIX is compact and Tauberian. Now let D be the unit disc of X. 
By 3.2, D is relatively weakly compact hence X is reflexive. But TIX is not 
range closed. 

4.3. COROLLARY. Suppose E has no reflexive infinite dimensional subspace; 
then for a map T E B(E, F), T is Tauberian if and only if T E D+ . 

5. The result obtained by taking E = c in 4.3 is an extension of the Berg- 
Crawford-Whitley theorem. (See [5].) We may also take E = I (space of 
absolutely convergent series) in 4.3 but Theorem 5.1 is better. See also 5.2. 

5.1. THEOREM. For any Banach space F and T E B(l, F) the following are 
equivalent. 

(i) T is Tauberian. 
(ii) T has property (N). 
(iii) T E (D+I 

By 4.3, (i) and (iii) are equivalent. If (ii) holds, T has property (R) and so its 
null-space is finite dimensional. Since the restriction of T to a closed subspace 
satisfies (N), we may assume that T is one-to-one; our assumption is then that 
T" is also one-to-one and so T': F' -> I' has dense range. By a remark of 
Beurling (see [1, Theorem 3]), T' is onto; hence T is an isomorphism. (The 
equivalence of (i), (ii) also follows from 3.1, 3.2.) 
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The next result (which is false for E = c) generalizes the equivalence of (i) 
and (ii) in 5.1. The referee has pointed out that this proof may be simplified 
by citing [7]. 

5.2. THEOREM. Let E be a weakly sequentially complete Banach space, F any 
Banach space, and T E B(E, F). Then T is Tauberian if and only if it has 
property (N). 

Applying Eberlein-Smulian to 3.2(iii), it is sufficient to show that if {xn) in 
E is bounded and {Txn} is convergent, then {xnj has a weakly convergent 
subsequence. As in 5.1, we may restrict ourselves to the linear closure of {xnj, 
thus we may assume that E is separable. Let R = NT; it is reflexive since T 
has property (N). Let q: E -* E/R be the quotient map. We first show that 
{q(xn)} is weakly Cauchy. [If this is false, there exist increasing sequences 
{m(k),n(k)} and f E (E/R)' with If[q(Xm(k)) - q(Xn(k))Il > 1. Let w be a 
weak cluster point of {xm(k) - Xn(k)} by 3.1. Then Tw = 0, so w E R. Thus 
q (w) = 0 which contradicts I f [q (w)] I > 1. ] This means that f (Xn )} is conver- 
gent for allf E R' C E'. Now R' = E'/R' is separable since R" = R is, so 
there exists a sequence {fnJ C E' such that the linear closure of R' 
U If1,f2, .... } is E'. Select a subsequence tun} of {xn} such that limnfi(un) 
exists for each i. [This is possible since {xn} is bounded.] Since also t f (un)} is 
convergent for all f E R' and tun} is bounded, it follows that tun} is weakly 
Cauchy, hence weakly convergent. 

6. We ask the following questions. 
6.1. When is it true that T is Tauberian if and only if T" is? (For example 

this is true if T is range closed.) 
6.2. Which Banach spaces E, other than those mentioned in 4.3 have the 

property that a Tauberian map must be range closed? (Clearly every Tauber- 
ian map on E has finite dimensional null-space if and only if E has no infinite 
dimensional reflexive subspace.) 

6.3. When is the induced map T: E'IE -> F'IF an isomorphism? (It is one- 
to-one if and only if T is Tauberian. For range closed maps see [10].) 

6.4. We feel that a Tauberian map T: C(X) -> C(Y) must be close to an 
isomorphism in some sense. 
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