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IDEMPOTENTS OF NORM ONE AND BANACH ALGEBRA 
REPRESENTATIONS OF 

COMPACT GROUPS 

N. J. KALTON AND G. V. WOOD 

ABSTRACT. Let G be a finite group of order n and let A be a (real or 
complex) Banach algebra. Rudin and Schneider [31 ask whether a mapping 
f: G -- A satisfying IIf(x)II = 1 and f(x) = (l/n)YyEGf(xy - ')f(y) is nec- 
essarily a homomorphism (Question 1, p. 602). They give an affirmative 
answer if A is either commutative and semisimple or strictly convex. 

Here, we prove this result for general Banach algebras, and at the same 
time prove the natural generalization to compact groups. This allows us to 
characterize norm one idempotents in generalized group algebras. 

Suppose that G is a compact group with identity e and that X is a normed 
space. A representation of G on X is a homomorphism T: G -> B (X). T is an 
isometric representation if in addition each Tx is an isometry on X; in this case 
Te = I and each Tx is invertible. T is semi-isometric if TX II < 1 for x E G; in 
this case Te is a projection of norm one and Tx= SxTe where S is an 
isometric representation of G on Te(X). 

We equip G with its left-invariant Haar measure X, normalized so that 
X(G) = 1; we shall abbreviate dA(x) to dx. If X is any Banach space (or 
Banach algebra) then a map 4: G -> X is Bochner measurable if it is the 
almost everywhere limit of a sequence of simple functions, and Bochner 
integrable if in addition f J11(x)II dx < 0o. An operator valued function T: 
G ,-> B (X) is strongly measurable if for each t E X, the map x -> Tx is 
Bochner measurable (see Hille-Phillips [2, pp. 72-74]). If for each c E X, Txt 
is Bochner integrable and Tt = JGTx dx, then we shall write T = JGTx dx. 

LEMMA 1. If x -> Tx is a strongly measurable mapping from G into B (X), 
then so is the map yi-> Txy -Ty 

We omit the proof of Lemma 1, which follows by approximation by simple 
functions. 

LEMMA 2. If 4: G -> X is Bochner integrable then 

lim 11-0(ux 4)(u)) I du= 0. 

PROOF. See [2, Theorem 3.8.3] for the case G = Rn; the same proof applies 
here. The lemma is proved first for simple functions and follows in general by 
approximation. Again we omit the details. 
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LEMMA 3. Suppose x -> Tx is a strongly measurable mapping from G into 
B(X) such that SUPEGITxI = M < oo. Suppose for x E G, 

TX =f Txy- I Ty dy. 

Then x i-4 Tx is strongly continuous (i.e. for , E X, x -> Tx is continuous). 

PROOF. For t E X, 

TxT = fTxy- TyGt dy, 

TXUT = fGxuy- I Ty dy = 'Txy-Tyu " a 

by the invariance of Haar measure. Hence 

11Tx~ - TxuQ < JfIITxy-(Ty - Tyut)II dy 

< Mf 1 Tyt - Tyu)jj dy-> 0 as u -> e by Lemma 2. 

LEMMA 4. If x t-4 Tx is a strongly continuous map from G into B (X) then 
(i) (x, y) TxTy is strongly continuous on G x G, 
(ii) (x, y) Tx*TTy* is weak*-continuous on G x G. 

PROOF. Since G is compact, the continuous function x -> TTxII is bounded 
for every t e X. Hence the Uniform Boundedness Theorem shows that 
supxecGII Txll = M < 0o. Then 

T TyX - T TXOT4 S || TX - T TXTy04 + || TXTyo - TxoTyY04 

< M|| Ty- Ty04I + ||(TX - TX0)(Ty0), ) 

->0 as x > x0 andy ->y0. 

(ii) follows immediately by duality. 
REMARK. It is not true that x e-* T is strongly continuous from G into 

B (X*). For example let G = ll? { - 1, + 1 } and consider the representation 
on 1 given by (Txt)n = x,,; for t = (n) E 11 and x = (xv) E G. 

LEMMA 5. Suppose T: G -> B (X) is strongly continuous and satisfies 

(i) I ITxI < 1, x c- G, (i i) Tx = Txy - iTy dy, x c- G. 

Then, for , E X, II Tx(II is independent of x and 

IITxII = I TyTz7jj whenever x,y, z E G. 

PROOF. 

( 1, ~ ~11 TxQ1 < 11 Txy -,Tyt11 dy 

< 11 Tytjj dy for any x - G. 

Hence 11TxO = fGI 1Tytjj dy for almost every x E G. Strong continuity of Tx 
ensures that equality holds everywhere. Referring back to inequality (1) we 
see that 11 TxjII = 1I Txy-,Tytjj for almost every y E G. Again by continuity 



IDEMPOTENTS AND REPRESENTATIONS 363 

equality holds everywhere and the result follows. 
We are now able to prove the first version of our main result. 

THEOREM 1. Suppose T: G -> B (X) is strongly measurable and satisfies 
(i) II TxII < I (x C- G), 
(ii) Te is an isometry, i.e. 11 T,tIj = 11411 for ( E X, 
(iii) Tx = fGTxy- - Ty dy (x C G). 

Then T is a strongly continuous isometric representation of G. 

PROOF. T is strongly continuous by Lemma 3. Let U be the closed unit ball 
of X* and 4 be any extreme point of U. Since Te is an isometry, it follows by 
the Hahn-Banach Theorem that there exists 4 cE U such that T4*, = 4. 

For E X, 

4)(t T = T) = X(T(x-,)) dx. 

For each measurable subset A of G with X(A) > 0 define OA e X* by 

,OA () = X(A)' lA(TxTx_ ) dx. 

Clearly OA E U and 4 = X(A)4A + X(G - A))-GA. As 4 is an extreme point 
of U, 4) = OA = OG-A. Thus 

(0(t)- #(TjTx-,)) dx= 0 

for every measurable A c G and ( C X. Hence for ( C X, #(TjTx-,) = 4(() 
almost everywhere, and by the strong continuity of the map xF-+ TxTx-, (see 
Lemma 4), equality holds everywhere. Hence TX*-lTX*4 = 4 for x C G. The 
choice of 4 shows that T'*4) = (T,*)24, - 4). As Te* is weak*-continuous and, 
by the Krein-Milman theorem, U is the weak*-closed convex cover of its 
extreme points we have Te* = I. Thus 4 = 4 and we have also proved that 

Tx-,Tx*-T = 4 for any extreme point 4, i.e. TxTx-, = I by the same argument 
as above. Hence each Tx is an isometric isomorphism of X. 

Again if 4 is any extreme point of U, so is Tx*,o and 

( Tx*,O)(t) = A ( Txy- lTyt) dy (t X ). 

Arguing as before we conclude that 

Tx*= Ty*TX*Y x,y E G, 

i.e. T is an isometric representation. 

THEOREM 2. Suppose T: G -> B (X) is strongly measurable and satisfies 
(i) IITx II < I (x E- G), 
(ii) Tx = f Txy - Ty dy (x E G). Then T is a semi-isometric representation of 

G. 

PROOF. Again we have T strongly continuous by Lemma 2. Define a 
seminorm . on X by 

I(I = I| TeII 
and let N = Te- '(0). By Lemma 5, ITXIj = 1t1 for x E G. Hence there is an 
induced representation on X/N satisfying the hypotheses of Theorem 1. By 
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Theorem 1, 

ITe-( ~1= O, ( E X, 

and 

tTXTy- TXY(| O, t E- X, x, y E G. 

Hence II Te2 -Tefll = 0, i.e. Te is a projection. By Lemma 5, II Tx(Te - )II 
= IITe(Tet - ()11 = IITe24 - TeIll = 0 for x C G, i.e. TxTe = Tx. Also by 
Lemma 5, for any w C G, 

ITwTxTyv - TwTxyt|=||Te( TxTy - TxyO)II =ITxTy - Txy 0.= O. 

Thus TwTxTy = TwTxy for w, x, y C G. 
Now suppose we have the equation 

(2) TeTx = Tx (x E G) 

Then we have TxTy = TeTXTy = TeTxy = Txy and the proof is complete. 
Therefore it remains only to establish (2). Here the only difficulty is that 
x -> Tx* need not be strongly continuous. (For, if it were, we could apply the 
argument above to x -> Tx*.) This is circumvented by the construction that 
follows. We shall assume here that X is complete, for convenience. 

Fix any 40 c X and let XO be the smallest closed subspace of X such that 
o0 CA XO and Tx(Xo) c XO, x C G. It is enough to consider the induced map 

G -> B (X0). 
Let CO = {(to) U (Txto: x E G) U (TxTyto: x, y C G)}. Then CO is com- 

pact and so is its closed absolutely convex hull C. Let Y be the linear span of 
C equipped with the norm whose unit ball is C. Then Y is a Banach space, 
since C is compact. Furthermore since Tw Tx Ty = Tw Txy for w, x, y C G we 
have Tw(C) c C. Thus Y is invariant for each Tx and so Y is dense in XO. Let 
T denote the restriction of Tx to Y; then in the norm of Y, 11 TxII < 1. Let J: 
Y XO-> A be the inclusion map. By construction J is compact and JTx = TxJ 
(x C G). Now suppose TeTw 7# Tw. Since Te is a projection, Tw(Xo) 
Z Te(Xo). Hence there exists 4 C X0* such that Tw*4 =# 0 but Te*I = 0. Since 
J is compact the map x *-> J TX*+ is continuous. Choose u C G such that 

c = IIJ* T#*II= max IIJ* TxII. 
Since J(C) is compact there exists G C C such that Tu*4(Jq) = c. Then 

I( TUX -ITin)= I4 (Tux-JTn)I = IJ Tu*x-l(Txn)I < C. 

However 

J TUX -, Tx J) dx= Tu Jq) = c. 

Hence #(Tux-,TxJq) c by continuity. In particular putting x= u, 
4(TeTufq) = c, i.e. Te*"4(TuJh) = c. However Te* = 0 and hence c = 0. Thus 
J* TN4, = 0; but Y is dense in XO and hence Tw*4 = 0, which is a contradic- 
tion to our initial assumption. This completes the proof. 

COROLLARY. Suppose 6( is a bounded subsemigroup of B(X) and T: G 
B (X) is a strongly measurable mapping satisfying 

(i) T(G) c 6'i, 
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(ii) Tx = fGTxy- Ty dy (x E G). 
Then T is a representation of G. 

PROOF. Renorm X by 1(1 = SUPAE=EgU{IIIAt11. 
We can now characterize idempotents of norm one in the generalized 

group algebra of a locally compact group G. Let A be a Banach algebra and 
let L'(G : A) denote the space of Bochner integrable functions f: G--> A. 
Ll(G: A) is a Banach algebra under the multiplication 

f * g(x) = f (xy ')g(y) dy 

and norm 

1111= JGII f(x) dx. 

It is well known that if A = C, the norm one idempotents of 
L'(G: C) = L'(G) are of the form X(H)- lp(x)XH(x) where H is a compact 
open subgroup, p is a character on H and XH is the characteristic function 
of H. (See [1, 2.1.4].) Since the elements of L'(G: A) are equivalence classes, 
if f is an idempotent in L'(G: A), then we can assume that the represen- 
tative satisfies f(x) = fG f(xy - )f(y) dy for all x E G. We make this as- 
sumption in the following theorem. 

THEOREM 3. Letf E L1(G: A) and suppose IfI f 1=I andf*f=f. Then f is 
continuous and there exists a compact open subgroup H of G such that 

(i) f(x) = O,x 0 H, 
(ii) f (xy) = X(H) f (x) f (y), x, y E H, 
(iii) IIf(x)II = (X(H))-',x E H. 

PROOF. 

IIf(x)II ? fjf(xy-')jIIjf(x)II dy 

and 

1 =f IIf(x)II dx= f f |(xy )IIf (y) 11 dy dx 

so that 

IIf(x) = f ff(xy -) IIf(y)II dA almost everywhere. 

Hence if y(x) = fGIIf(xy -)IIIIf(y)II dy then y is a norm one idempotent in 
L'(G). Hence there is a compact open subgroup H such that y(x) 
= X(H)-'XH(X). 

It follows that IIf(x)II = 0 if x 0 H, and that IIf(x)II < X(H)-1 for all 
x E G. 

We may suppose A has an identity and then identify A as a subalgebra of 
B (A). If we define for x E H, 

T,a = X(H)f (x)a, 

then IITXII < 1 and JHTXY-TYdy = Ta . By Theorem 2, T,Ty = T y and the 
result follows. 

If G is compact we may also consider the algebra LP(G: A) (1 < p < oo) 
with the norm 
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II1 IP= 1f JI(x) IIp dx)} 

Using a similar approach to that of [4] we obtain 

THEOREM 4. If f E LP (G : A) satisfies II f IIp = 1 and f * f = f then f (xy) 
= f (x)f (y) for all x, y E G. 

REFERENCES 

1. F. P. Greenleaf, Norm decreasing homomorphisms of group algebras, Pacific J. Math. 15 
(1965), 1187-1219. MR 33 #3117. 

2. E. Hille and R. S. Phillips, Functional analysis and semi-groups, rev. ed., Amer. Math. Soc. 
Colloq. Publ., vol. 31, Amer. Math. Soc., Providence, R. I., 1957. MR 19, 664. 

3. W. Rudin and H. Schneider, Idempotents in group rings, Duke Math. J. 31 (1964), 586-602. 
MR29 #5119. 

4. G. V. Wood, Homomorphisms of group algebras, Duke Math. J. 41 (1974), 255-261. 

DEPARTMENT OF PURE MATHEMATICS, UNIVERSITY COLLEGE OF SWANSEA, SWANSEA SA2 8PP, 
WALES, GREAT BRITAIN 


	Article Contents
	p. 361
	p. 362
	p. 363
	p. 364
	p. 365
	p. 366

	Issue Table of Contents
	Proceedings of the American Mathematical Society, Vol. 55, No. 2 (Mar., 1976), pp. 253-474
	Volume Information [pp. 472-474]
	Front Matter
	An Application of Representation Theory to $PI$-Algebras [pp. 253-257]
	The Existence of Dual Modules [pp. 258-260]
	On the Order and Degree of Solutions to Pure Equations [pp. 261-266]
	The Prefrattini Residual [pp. 267-270]
	Commutativity of Endomorphism Rings of Ideals. II [pp. 271-274]
	Lie and Jordan Ideals in Prime Rings with Derivations [pp. 275-278]
	On Groups of Finite Weight [pp. 279-280]
	The Unity in Rings with Gabriel and Krull Dimension [pp. 281-286]
	$p$Th Powers of Distinguished Subfields [pp. 287-292]
	The $\bar{\mu}$-Invariants for Groups [pp. 293-298]
	Bounds on Positive Integral Solutions of Linear Diophantine Equations [pp. 299-304]
	An Analogue of Some Inequalities of P. Turan Concerning Algebraic Polynomials Having All Zeros Inside $\lbrack - 1, + 1 \rbrack$ [pp. 305-309]
	A Comparison Theorem [pp. 310-312]
	Sequential Convergence to Invariance in $BC(G)$ [pp. 313-317]
	A Perturbation Theorem for Complete Sets of Complex Exponentials [pp. 318-320]
	On Nonexpansive Mappings [pp. 321-325]
	Perturbations of Groups of Automorphisms of Von Neumann Algebras [pp. 326-328]
	The Local Resolvent Set of a Locally Lipschitzian Transformation is Open [pp. 329-333]
	On Exposed Points of the Range of a Vector Measure. II [pp. 334-338]
	Hyperfiniteness and the Halmos-Rohlin Theorem for Nonsingular Abelian Actions [pp. 339-344]
	A Commutative Banach Algebra Which Factorizes But Has No Approximate Units [pp. 345-346]
	Nets of Extreme Banach Limits [pp. 347-352]
	Measurability and Continuity Conditions for Nonlinear Evolutionary Processes [pp. 353-358]
	On a Convexity Property of the Range of a Maximal Monotone Operator [pp. 359-360]
	Idempotents of Norm One and Banach Algebra Representations of Compact Groups [pp. 361-366]
	Linear Dynamical Systems [pp. 367-370]
	Dominated Estimates in Hilbert Space [pp. 371-375]
	A Remark on Nelson's Best Hypercontractive Estimates [pp. 376-378]
	A Characterization of the 2-Sphere by Eigenfunctions [pp. 379-381]
	Characterizations of the Sphere by the Curvature of the Second Fundamental Form [pp. 382-384]
	Recursive Euler and Hamilton Paths [pp. 385-394]
	Variational Sums for Additive Processes [pp. 395-399]
	On the Second Homotopy Module of Two-Dimensional $\mathrm{CW}$ Complexes [pp. 400-404]
	Homotopy Trees with Trivial Classifying Ring [pp. 405-408]
	Branchpoint Covering Theorems for Confluent and Weakly Confluent Maps [pp. 409-415]
	Compact Lie Groups Which Act on Euclidean Space Without Fixed Points [pp. 416-418]
	A Characterization of $C^\infty$-Sufficient $k$-Jets [pp. 419-423]
	On Torsion Subgroups of Lie Groups [pp. 424-426]
	Point-Countability and Compactness [pp. 427-431]
	Uniqueness of Topology for the $p$-Adic Integers [pp. 432-434]
	Characterizations of Urysohn-Closed Spaces [pp. 435-439]
	A Note on the Construction of Simply-Connected 3-Manifolds as Branched Covering Spaces of $S^3$ [pp. 440-442]
	Embeddings of Compacta with Shape Dimension in the Trivial Range [pp. 443-448]
	PL Involutions on the Nonorientable 2-Sphere Bundle Over $S^1$ [pp. 449-452]
	Irreducibles in the Landweber Novikov Algebra [pp. 453-456]
	Existence of Sidon Sets in Discrete $FC$-Groups [pp. 457-460]
	On Properly Embedding Planes in 3-Manifolds [pp. 461-464]
	Shorter Notes: A Remark on the First Neighbourhood Ring of a Noetherian Cohen-Macaulay Local Ring of Dimension One [pp. 465-466]
	Shorter Notes: Some Simple Examples of Symplectic Manifolds [pp. 467-468]
	Shorter Notes: A Note on Semilocal Rings [pp. 469-470]
	Shorter Notes: On Pure States of $C^\ast$-Subalgebras [p. 471]
	Back Matter





