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Convergence of the dual greedy algorithm
in Banach spaces

M. Ganichev and N. J. Kalton

Abstract. We show convergence of the weak dual greedy algorithm in
wide class of Banach spaces, extending our previous result where it was
shown to converge in subspaces of quotients of Lp (for 1 < p < ∞).
In particular, we show it converges in the Schatten ideals Sp when 1 <
p < ∞ and in any Banach lattice which is p-convex and q-concave with
constants one, where 1 < p < q < ∞. We also discuss convergence of
the algorithm for general convex functions.
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1. Introduction

Suppose X is a real Banach space. A dictionary is a subset D of X such
that:

(i) d ∈ D =⇒ ‖d‖ = 1.
(ii) d ∈ D =⇒ −d ∈ D.
(iii) x∗ ∈ X∗, 〈d, x∗〉 = 0 ∀d ∈ D =⇒ x∗ = 0.
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Here (iii) is equivalent to the statement that the closed linear span of D is
X. For complex Banach spaces X we define D to be a dictionary if it is
dictionary for the underlying real Banach space XR. This means that (iii)
is replaced by
(iv) x∗ ∈ X∗, Re 〈d, x∗〉 = 0 ∀d ∈ D =⇒ x∗ = 0.
If the dictionary D satisfies
(v) d ∈ D =⇒ eiθd ∈ D, 0 ≤ θ < 2π,

then (iv) is equivalent to (iii). Thus we treat complex Banach spaces
throughout as well as real Banach spaces, by simply forgetting their complex
structure.

If f : X → R is a continuous convex function we denote by ∇f(x) the
subdifferential of f at x, i.e., the set of x∗ ∈ X∗ such that

f(x) + x∗(y − x) ≤ f(y), y ∈ X.

If f is Gâteaux differentiable then ∇f is single-valued and we consider

∇f : X → X∗

as a mapping.
Now suppose f : X → R is a continuous convex function which is Gâteaux

differentiable. Assume further that f is proper, i.e., that

lim
‖x‖→∞

f(x) = ∞.

The weak dual greedy algorithm with dictionary D and weakness 0 < c < 1
is designed to locate the minimum of f . We select an initial point x0 ∈ X.
Then for n ∈ N so that xn−1 has been selected we choose dn ∈ D to nearly
optimize the rate of descent. Precisely we choose dn so that

〈dn,∇f(xn−1〉 ≥ c sup
d∈D

〈d,∇f(xn)〉.

We then choose tn > 0 so that

f(xn−1 − tndn) = min
t≥0

f(xn−1 − tdn).

We say the algorithm converges if, for any initial point x0 and weakness c,
the sequence (xn)∞n=0 always converges in norm to a point a ∈ X at which
f assumes its minimum.

This algorithm has been studied in the literature (see [4], [16] and [17]) in
the special case when f(x) = ‖x‖ on a space X with a Gâteaux differentiable
norm. Strictly speaking this does not quite fit our hypotheses since the norm
is never Gâteaux differentiable at the origin (where it attains its minimum);
however it would be equivalent to consider the algorithm for f(x) = ‖x‖2

which then is Gâteaux differentiable everywhere. The aim in this case is
to give an expansion of the initial point x0 =

∑∞
n=1 tndn in terms of the

dictionary.
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Historically this algorithm was first considered and shown to converge
for f(x) = ‖x‖2 when X is a Hilbert space (see [9], [10] and [14]). In
2003, the current authors showed that the algorithm converges provided X
has a Fréchet differentiable norm and property (Γ) ([7] Theorem 4). To
define property (Γ), assume X has a Gâteaux differentiable norm and let
J : X \ {0} → X∗ be the duality map, i.e., J = ∇N where N(x) = ‖x‖. X
has property (Γ) provided there is a constant C such that:

(1.1) ‖x‖ = 1, y ∈ X, 〈y, Jx〉 = 0 =⇒ 〈y, J(x + y)〉 ≤ C(‖x + y‖ − 1).

In fact the assumption of a Fréchet differentiable norm in Theorem 4 of [7]
is redundant because this is implied by property (Γ), as will be seen in this
paper. It turns out that the classical spaces Lp(0, 1) enjoy property (Γ) as
long as 1 < p < ∞. Furthermore the property passes to subspaces and
quotients, so that the algorithm converges for all subspaces of quotients of
Lp (Theorem 4 of [7]). This result was the main conclusion of [7], and it
appeared at the time that property (Γ) was a rather specialized property
that could only be established for a restricted class of Banach spaces. (This
class does, however, include the complex Lp-spaces (1 < p < ∞) because
these are isometric to subspaces of the corresponding real spaces.) Later
Temlyakov [17] studied modifications of the (WDGA) which converge in
spaces which are assumed only to be uniformly smooth with a certain degree
of smoothness. See also the recent preprint [5] for a discussion of problems
of weak convergence.

In this paper we will develop further the study of spaces with property
(Γ). We first introduce the notion of a tame convex function. A convex
function f : X → R is tame if there is a constant γ such that we have

(1.2) f(x + 2y) + f(x − 2y) − 2f(x) ≤ γ(f(x + y) + f(x − y) − 2f(x)),
x, y ∈ X.

We show that if f is a continuous tame convex function then f is contin-
uously Fréchet differentiable. Furthermore the (WDGA) converges to the
necessarily unique minimizer of f for any proper tame continuous convex
function (Theorem 3.6 below).

The connection with property (Γ) is that, if r > 1, X has property (Γ)
if and only if ‖x‖r is tame (Theorem 4.3). It turns out that this provides
a much better way to deal with property (Γ). The advantage of dealing
with tame functions is that (1.2) is much easier to handle than (1.1). Using
this approach it is quite easy to see that a space with property (Γ) is both
uniformly convex and uniformly smooth (and hence superreflexive), and that
X∗ must also have property (Γ) (Theorem 4.4).

We can then expand the list of spaces with property (Γ) quite substan-
tially. We show that a Banach lattice which is p-convex and q-concave with
constants one where 1 < p ≤ q < ∞ always has a property (Γ) (see The-
orem 5.2). We also show that an Orlicz space LF (0,∞) (with either the
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Luxemburg or the Orlicz norm) has property (Γ) if and only if the func-
tion t → F (|t|) is tame on R; this is equivalent to the statement that the
second derivative of F is a doubling measure (see Proposition 2.10 and The-
orem 5.1). We study stability of property (Γ) under interpolation and use
these results to deduce that the Schatten ideals Sp for 1 < p < ∞ have
property (Γ).

2. Tame convex functions

We shall say that a function ϕ : [0,∞) → [0,∞) is an Orlicz function
if ϕ is continuous, convex function and satisfies ϕ(0) = 0. We allow the
degenerate case when ϕ is identically zero. ϕ satisfies a ∆2-condition with
constant β ≥ 2 if

(2.1) ϕ(2t) ≤ βϕ(t) t > 0.

It then follows that t−bϕ(t) is a decreasing function of t > 0 where b = β−1
and hence that (at points of differentiability)

(2.2) tϕ′(t) ≤ bϕ(t) t > 0.

If ϕ obeys (2.2) then it obeys (2.1) with β = 2b.
Conversely ϕ satisfies a ∆∗

2-condition with constant α > 2 if

(2.3) ϕ(2t) ≥ αϕ(t) t > 0.

It then follows that t−aϕ(t) is an increasing function of t > 0 where a =
2 − 2α−1 > 1.

Let V be a real vector space. We will say that a convex function f : V → R
is tame if the collection F = {ϕx,y : x, y ∈ V } of all functions

ϕx,y(t) = f(x + ty) + f(x − ty) − 2f(x) t ≥ 0

obeys a uniform ∆2-condition, i.e., for some γ ≥ 2 we have:

f(x+2y)+ f(x− 2y)− 2f(x) ≤ γ(f(x+ y)+ f(x− y)− 2f(x)) x, y ∈ V.

We then say f has is tame with constant γ. A collection of convex functions
F is uniformly tame if there is a uniform constant γ such that each f ∈ F
has is tame with constant γ.

Lemma 2.1. Let ϕ : R → R be a nonnegative convex function with ϕ(0) = 0.
Assume ϕ is tame with constant γ. Then we have

αϕ(t) ≤ ϕ(2t) ≤ ϕ(2t) + ϕ(−2t) ≤ βϕ(t) −∞ < t < ∞
where

α = 2 + γ−1 > 2
and

β = γ3.

In particular ϕ is differentiable at 0 and ϕ′(0) = 0.
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Proof. We start by observing that for any t we have

ϕ(3t) + ϕ(−t) − 2ϕ(t) ≤ γ(ϕ(2t) − 2ϕ(t)).

Hence

(2.4) ϕ(−t) + ϕ(t) ≤ γ(ϕ(2t) − 2ϕ(t)).

Thus
γ2ϕ(2t) ≥ γ(ϕ(−t) + ϕ(t)) ≥ ϕ(2t) + ϕ(−2t).

Now we deduce

ϕ(2t) ≤ ϕ(2t) + ϕ(−2t)
≤ γ(ϕ(t) + ϕ(−t))

≤ γ3ϕ(t).

On the other hand by (2.4) we have

ϕ(2t) ≥ αϕ(t).

Since α > 2, it trivially follows that both the left- and right-derivatives
of ϕ at 0 are 0. !
Proposition 2.2. Let f : R → R be a tame convex function. Then f is
continuously differentiable.

Proof. If s ∈ R let λ be the right-derivative of f at s. Let

ϕ(t) = f(s + t) − λt − f(s).

Then ϕ satisfies Lemma 2.1 for some constant γ. In particular ϕ is differ-
entiable at 0 which implies that f is differentiable at s. Since f is convex,
f must be continuously differentiable. !
Theorem 2.3. Let F be a collection of continuously differentiable convex
functions f : R → R. The following conditions on F are equivalent:

(i) F is uniformly tame.
(ii) There is a constant λ such that

(2.5) (f ′(t)−f ′(s))(t−s) ≤ λ(f(t)−f(s)−f ′(s)(t−s)) f ∈ F , s, t ∈ R.

Proof. (i) =⇒ (ii). Let γ be a uniform tameness constant for F . For
s, t ∈ R we define

ϕs,t(u) = f(s + u(t − s)) − u(t − s)f ′(s) − f(s).

Then ϕs,t is tame with constant γ and satisfies the hypotheses of Lemma 2.1.
Thus ϕs,t satisfies a ∆2-condition with constant γ3. This implies that

uϕ′
s,t(u) ≤ µϕs,t(u) u > 0

where 2µ = γ3. Letting u = 1 gives (2.5).
(ii) =⇒ (i). For fixed s, t let

ϕ(u) = f(s + ut) + f(s − ut) − 2f(s).
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Then

uϕ′(u) = ut(f ′(s + ut) − f ′(s − ut))

= ut(f ′(s + ut) − f ′(s)) + ut(f ′(s) − f ′(s − ut))

≤ λ(f(s + ut) − f(s) − utf ′(s)) + λ(f(s − ut) − f(s) + utf ′(s))
≤ λϕ(u).

Hence ϕ satisfies a ∆2-condition with constant 2λ. !
If f is a tame convex function the optimal constant λ = λ(f) in (2.5) will

be called the index of f .

Proposition 2.4. If f is a tame convex function with index λ then we also
have

(2.6) (f ′(t)−f ′(s))(t−s) ≥ λ′(f(t)−f(s)−f ′(s)(t−s)) f ∈ F , s, t ∈ R
where λ′ = λ/(λ− 1).

Proof. Simply observe that
(λ− 1)(f ′(t) − f ′(s))(t − s)

≥ λ(f(t) − f(s) + f ′(t)(s − t)) + λ(f ′(t) − f ′(s))(t − s)
≥ λ(f(t) − f(s) − f ′(s)(t − s)). !

Remark. This argument is reversible so that λ′ is the optimal constant in
(2.6).

Let us now give some examples.

Proposition 2.5. The function f(t) = |t|p is tame if and only if p > 1.

Proof. Since f satisfies a ∆2-condition it suffices to check that the convex
function t → |1+ t|p + |1− t|p −2 also satisfies a ∆2-condition. This is easily
seen to hold if and only if p > 1. !

Notice this proof does not provide an estimate for λ(f). Of course if
f(t) = t2 we have λ(f) = 2. We will calculate λ(f) for f(t) = t4 below but
in general it seems too complicated to explicitly estimate the indices for |t|p.

Proposition 2.6. Let C2n be the class of all convex polynomials of degree
at most 2n where n ∈ N. Then C2n is uniformly tame.

Let us denote the polynomials of degree n by Pn−1. The proposition is
an immediate consequence of the following lemma.

Lemma 2.7. Let αn be the largest root of the Legendre polynomial Pn of
degree n. Then for any convex polynomial ϕ ∈ P2n with ϕ(0) = ϕ′(0) we
have

tϕ′(t) ≤ 2
1 − αn

ϕ(t) 0 < t < ∞

and these constants are best possible.
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Proof. Let σn, µn be the optimal constants such that
∫ 1

0
tf(t)2 dt ≤ σn

∫ 1

0
f(t)2 dt, f ∈ Pn−1,

and ∫ 1

0
tf(t)2 dt ≥ µn

∫ 1

0
f(t)2 dt, f ∈ Pn−1.

Let us pick a nonzero polynomial g ∈ Pn−1 such that
∫ 1

0
tg(t)2 dt = σn

∫ 1

0
g(t)2 dt.

Then for any polynomial f ∈ Pn−1

∫ 1

0
t(g(t) + θf(t))2 dt ≤ σn

∫ 1

0
(g(t) + θf(t))2 dt −∞ < θ < ∞

which leads to the fact that
∫ 1

0
tg(t)f(t) dt = σn

∫ 1

0
g(t)f(t) dt

or (t − σn)g(t) is a polynomial of degree n which is orthogonal to Pn−1 in
L2(0, 1). Hence (t−σn)g(t) = cPn(2t−1) and so σn is a root of Pn(2t−1) = 0.
In particular 2σn − 1 ≤ αn, i.e., σn ≤ 1

2 (1 + αn). On the other hand if we
choose g0(t) = Pn(2t−1)/(2(t−αn)−1) then by using Gaussian quadrature
(see [2] p. 343) to perform the integration it is clear, since g0(t)2, tg0(t)2 ∈
P2n−1, that

∫ 1

0
tg0(t)2 =

1
2
(1 + αn)

∫ 1

0
g0(t)2 dt.

Thus σn = 1
2(1 + αn). Similarly we have µn = 1

2 (1 − αn). Thus

1 − αn

2

∫ 1

0
f(t)2 dt ≤

∫ 1

0
tf(t)2 dt(2.7)

≤ 1 + αn

2

∫ 1

0
f(t)2 dt, f ∈ Pn−1.

This in turn implies

1 − αn

2
s

∫ s

0
f(t)2 dt ≤

∫ s

0
tf(t)2 dt(2.8)

≤ 1 + αn

2
s

∫ s

0
f(t)2 dt, f ∈ Pn−1, s > 0.

Now if ϕ is a convex function in P2n−1 then ϕ′′(t) ≥ 0 for all t ∈ R and
so we can write ϕ′′(t) =

∑r
j=1 fj(t)2 where fj ∈ Pn−1. If ϕ(0) = ϕ′(0) = 0
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then if s > 0

ϕ(s) =
∫ s

0
(s − t)

r∑

j=1

fj(t)2 dt

≥ s

∫ s

0

r∑

j=1

fj(t)2dt − 1 + αn

2
s

∫ s

0

r∑

j=1

fj(t)2dt

=
1 − αn

2
sϕ′(s).

Clearly if we define ϕ(t) so that ϕ′′(t) = g0(t)2 as above the estimate is
optimal. This gives

sϕ′(s) ≤ 2
1 − αn

ϕ(s), s > 0. !

Notice that the lemma gives a more precise estimate of the index of f ∈ Cn:

Proposition 2.8. If f ∈ Cn then

λ(f) ≤ 2
1 − αn

and this estimate is sharp.

Proposition 2.9. If f(t) = t4 then λ(f) = 3 +
√

3.

Proof. Note that α2 = 1/
√

3 and by the proof of Lemma 2.7 if ϕ′′(t) =
((2t − 1) − 1/

√
3)2 then λ(ϕ) = 3 +

√
3. This implies λ(f) = 3 +

√
3. !

If n ≥ 3 it may be shown that 2n < λ(t2n) < 2(1 − αn)−1. It seems that
the index for a power function |t|p for arbitrary p cannot be given by elegant
formula.

We conclude this section with some further remarks on tame scalar convex
functions. If f : R → R is a convex, its second derivative (as a distribution) is
a positive locally finite Borel measure d2f = µ. Then µ[a, b) = f ′

−(b)−f ′
+(a).

We recall that a measure µ defined on R is doubling if there is a constant
C such that µ([s − 2t, s + 2t]) ≤ Cµ([s − t, s + t]) for all s ∈ R and t > 0.

Proposition 2.10. If f : R → R is a convex function, then f is tame if
and only if µ = d2f is a doubling measure.

Proof. Let ϕs(t) = f(s + t) + f(s − t) − 2f(s). The functions

{ϕs : −∞ < s < ∞}

satisfy a uniform ∆2-condition if and only the functions

{ϕ′
s+ : −∞ < s < ∞}

also satisfy a uniform ∆2-condition and this is equivalent to the doubling
condition for µ. !
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Now suppose F : [0,∞) → R is an Orlicz function. We extend F to R by
setting F (t) = F (−t) if t < 0. It is easy to see that F (or its extension to
R) is then tame if and only if µ([s− 2t, s+2t]) ≤ Cµ([s− t, s+ t]) whenever
0 < t < s. Thus an Orlicz function F is tame if and only if

F (t) =
∫ t

0
(t − s) dµ(s), t > 0

where µ is a doubling measure.

Proposition 2.11. Let F be a continuously differentiable Orlicz function
such that there exist 0 < a < b < ∞ so that F ′(t)/ta is increasing and
F ′(t)/tb is decreasing for t > 0. Then F is tame.

Proof. Note that F ′ satisfies a ∆2-condition. Let

gs(θ) = F ′((1 + θ)s) − F ′((1 − θ)s), s > 0, θ ≥ 0.

It will be enough to show that the functions {gs : s > 0} satisfy a uniform
∆2-condition. This follows from the following two estimates. For θ ≥ 1 we
note that

F ′(θs) ≤ F ′((1 + θ)s) − F ′((1 − θ)s) ≤ 2F ′((1 + θ)s) ≤ 2F ′(2θs)

and so
F ′(θs) ≤ gs(θ) ≤ 2F ′(2θs) ≤ 2b+1F ′(θs), θ ≥ 1.

On the other hand if 0 < θ < 1 then

((1 + θ)a − (1 − θ)a)F ′(s) ≤ gs(θ) ≤ ((1 + θ)b − (1 − θ)b)F ′(s),

which implies
2aF ′(s)θ ≤ gs(θ) ≤ 2bF ′(s)θ. !

Remark. The proposition is equivalent to the statement that F ′ is quasi-
symmetric; see [8] for the precise definition. Not every tame Orlicz function
satisfies the conditions of this proposition. In fact, these conditions imply
that µ = d2F is absolutely continuous with respect to Lebesgue measure,
and not every doubling measure is absolutely continuous (see [8] p. 107 for
a discussion).

3. Convex functions on Banach spaces

We now turn to the study of tameness for a continuous convex function
on a Banach space X. We will say that a convex function f : X → R is
proper if lim‖x‖→∞ f(x) = ∞.

The following theorem follows immediately from Theorem 2.3. We refer
to [3] for background on differentiability of convex functions.

Theorem 3.1. Let X be a Banach space and let f : X → R be a continuous
convex function. The following are equivalent:

(i) f is tame.
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(ii) f is Gâteaux differentiable and there exists a constant λ < ∞ such that

(3.1) 〈y−x,∇f(y)−∇f(x)〉 ≤ λ(f(y)−〈∇f(x), y−x〉−f(x)), x, y ∈ X.

As in the scalar case we define the index λ = λ(f) of a tame continuous
convex function to be the optimal constant such that for x, y ∈ X,

〈y − x,∇f(y) −∇f(x)〉 ≤ λ(f(y) − 〈∇f(x), y − x〉 − f(x)).

Notice that (3.1) implies the estimate

(3.2) 〈y − x,∇f(y) −∇f(x)〉 ≥ λ′(f(y) − 〈∇f(x), y − x〉 − f(x)),
x, y ∈ X.

where as before λ′ = λ/(λ− 1).

Corollary 3.2. Let X be a Banach space and let f : X → R be a tame
continuous convex function. Suppose λ = λ(f) is the index of f . If f
attains a minimum at a then there is a constant C so that

f(x) − f(a) ≤ C max
(
‖x − a‖λ, ‖x − a‖λ′)

.

Proof. Let C = max{f(x) − f(a) : ‖x − a‖ = 1}. The result follows from
the fact that

t−λ′
(f(a + t(x − a)) − f(a))

is increasing and
t−λ(f(a + t(x − a)) − f(a))

is decreasing in t for t > 0 by Theorem 3.1. !
Corollary 3.3. Let X be a Banach space and let f : X → R be a tame
continuous convex function. Then f is continuously Fréchet differentiable
and f → ∇f is locally Hölder continuous.

Proof. For any a ∈ X the function g(x) = f(x)−〈x−a,∇f(a)〉 is tame and
assumes a minimum at x = a. The estimate in Corollary 3.2 then implies
Fréchet differentiability. Furthermore for any u, x ∈ X and τ ∈ R, we have

〈τu,∇f(x) −∇f(a)〉 ≤ g(x + τu) − g(x) ≤ g(x + τu) − g(a).

If 0 < ‖x−a‖ < 1/2 and ‖u‖ = 1 take τ = ‖x−a‖; then we have an estimate

〈u,∇f(x) −∇f(a)〉 ≤ C‖x − a‖λ′−1

by Corollary 3.2 where C = C(a, f). Since u is arbitrary

‖∇f(x) −∇f(a)‖ ≤ C‖x − a‖λ′−1, ‖x − a‖ ≤ 1. !
Theorem 3.4. Let X be a Banach space and let f : X → R be a tame
continuous convex function with index λ = λ(f). If f is proper then f
assumes its minimum at a unique point a and there is a constant c > 0 so
that

cmin
(
‖x − a‖λ, ‖x − a‖λ′) ≤ f(x) − f(a).
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Proof. First we assume f attains its minimum at x = a. Pick R > 0 so
that inf{f(x) : ‖x − a‖ = R} = δ > 0. Then arguing as in the proof of
Corollary 3.2 we obtain

f(x) − f(a) ≥ δmin(‖x − a‖λR−λ, ‖x − a‖λ′
R−λ′

) x ∈ X

and we also obtain the uniqueness of a.
We now turn to the general case; we show that f attains a minimum.

Note that f is uniformly continuous on bounded sets and bounded below.
Now let U be a nonprincipal ultrafilter on N let XU be the corresponding
ultraproduct, i.e., the quotient of +∞(X) by the subspace c0,U (X) of all
sequences ξ = (ξn)∞n=1 such that limU ‖ξn‖ = 0. If we define fU on +∞(X)
by fU(ξ) = limU f(ξn). Then f = g ◦ q where q : +∞(X) → XU is the
quotient map and g is easily seen to be a proper tame continuous convex
function. Thus g attains a unique minimum.

If f fails to attain a minimum there is a bounded sequence (ξn)∞n=1 so
that, for some ε > 0, ‖ξm − ξn‖ ≥ ε for m /= n and

lim
n→∞

f(ξn) = inf{f(x) : x ∈ X} = σ,

say. But then
fU(ξ1, ξ2, . . .) = fU (ξ2, ξ3, . . .) = σ

so that
q(ξ1, ξ2, . . .) = q(ξ2, ξ3, . . .)

and hence
lim
U

‖ξn − ξn+1‖ = 0

contrary to hypothesis. !
If f : X → R is a tame proper continuous convex function we can define

its Fenchel dual f∗ : X∗ → R by

f∗(x∗) = sup
x∈X

(〈x, x∗〉 − f(x)) x∗ ∈ X∗.

Note that by Theorem 3.4 the function x → f(x)−〈x, x∗〉 is also proper and
tame. Theorem 3.4 then implies that f∗ is well-defined and the supremum
is attained uniquely. Furthermore f∗ is continuous and convex.

Theorem 3.5. If f : X → R is a tame proper continuous convex function
with index λ = λ(f). Then f∗ : X∗ → R is also a tame proper continuous
convex function. Furthermore X is reflexive and λ(f∗) = λ.

Proof. It is clear that f∗ is proper since

f∗(x∗) ≥ ‖x∗‖ − sup
x∈BX

f(x).

Suppose x∗ ∈ X∗. Then there is a unique x ∈ X such that

f(x) + f∗(x∗) = 〈x, x∗〉,
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and then ∇f(x) = x∗. Hence for any y∗ ∈ X∗ we have

f∗(y∗) − f∗(x∗) − 〈x, y∗ − x∗〉 ≥ 0

so that x regarded as an element of X∗∗ belongs to the subdifferential
∇f∗(y∗) (which we do not yet know to be single-valued). Next suppose
y∗ ∈ X∗ and let y be the unique solution of 〈y, y∗〉 = f(y) + f∗(y∗), so that
y∗ = ∇f(y). Thus by Theorem 3.1 we have

〈y − x, y∗ − x∗〉 ≤ λ(f(x) − 〈x − y, y∗〉 − f(y))
= λ(〈x, x∗〉 − f∗(x∗) − 〈x − y, y∗〉 − 〈y, y∗〉 + f∗(y∗))
= λ(f∗(y∗) − f∗(x∗) − 〈x, y∗ − x∗〉).

Now, for fixed x∗, u∗ ∈ X∗, consider the function

h(t) = f∗(x∗ + tu∗) − f∗(x∗) − t〈x, u∗〉

(where as before 〈x, x∗〉 = f(x) + f∗(x∗). If h is differentiable at some t
then setting y∗ = x∗ + tu∗ it is clear that h′(t) = 〈y − x, u∗〉 where 〈y, y∗〉 =
f(y)+f∗(y∗). Hence th′(t) ≤ λh(t) for −∞ < t < ∞. Since h is nonnegative,
convex and h(0) = 0 we deduce that h(t) + h(−t) satisfies a ∆2-condition
with constant 2λ. Thus f∗ is tame and is Gâteaux differentiable everywhere.
We deduce that ∇f∗(x∗) can be identified with x ∈ X where f(x)+f∗(x∗) =
〈x, x∗〉. Hence λ(f∗) ≤ λ.

To see X is reflexive, suppose x∗∗ ∈ X∗∗. Then x∗ → 〈x∗, x∗∗〉 − f∗(x∗)
attains its minimum at some x∗; but then x∗∗ = ∇f∗(x∗) ∈ X. Now since
f∗∗ = f we deduce λ(f∗) = λ(f). !

We conclude this section by showing that the weak dual greedy algo-
rithm can be used to find the minimum of a proper tame continuous convex
function.

Theorem 3.6. Let f be a proper tame continuous convex function on a
Banach space X. Then for any dictionary and any initial point, the weak
dual greedy algorithm with weakness 0 < c < 1 yields a sequence converging
to the minimizer of f .

Proof. We suppose a is the unique minimizer of f . Let D be a dictionary
and suppose x0 ∈ X. We define the sequences (xn)∞n=0 ⊂ X, (dn)∞n=1 ⊂ D
and (tn)∞n=1 ∈ [0,∞) so that

(3.3) 〈dn,∇f(xn−1)〉 ≥ c sup
d∈D

〈d,∇f(xn−1)〉 n = 1, 2, . . . ,

(3.4) f(xn−1 − tndn) = inf
t≥0

f(xn−1 − tdn)

and

(3.5) xn = xn−1 − tndn.
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First suppose
∑∞

n=1 tn < ∞. Then the sequence (xn)∞n=1 is convergent
to some u ∈ X. Then ∇f(xn) is also norm convergent to ∇f(u) by Corol-
lary 3.3. But, since 〈dn,∇f(xn)〉 = 0,

|〈dn,∇f(u)〉| ≤ ‖∇f(u) −∇f(xn)‖

and
|〈dn,∇f(u) −∇f(xn−1)〉| ≤ ‖∇f(u) −∇f(xn−1)‖

so that
lim

n→∞
|〈dn,∇f(xn−1)〉| = 0

which implies
lim

n→∞
sup
d∈D

|〈d,∇f(xn)|〉| = 0.

Thus
〈d,∇f(u)〉 = 0, d ∈ D

and this means that ∇f(u) = 0, i.e., u = a.
Now let us consider the case when

∑∞
n=1 tn = ∞. In this case we must

have tn > 0 for all n, since tn = 0 implies tj = 0 for j > n.
Now since 〈dn,∇f(xn)〉 = 0,

tn〈dn,∇f(xn−1)〉 ≤ λ(f(xn−1) − f(xn))

and hence by (3.3),

(3.6) sup
d∈D

tn|〈d,∇f(xn−1)〉| ≤ λc−1(f(xn−1) − f(xn)).

Notice that the sequence (f(xn))∞n=1 is monotonically decreasing and
bounded below by f(a). If sn = t1 + · · · + tn then arguing as in [7] we
have

∑
tn/sn = ∞ and since

∑
(f(xn−1) − f(xn)) < ∞ we may find a

subsequence M of N so that

lim
n∈M

sn((f(xn−1) − f(xn))
tn

= 0.

Hence by (3.6)

(3.7) lim
n∈M

sn sup
d∈D

|〈d,∇f(xn−1)| = 0.

Let x∗ be any weak∗-cluster point of the (bounded) sequence (∇f(xn−1))n∈M.
Then by (3.7) and since limn→∞ sn = ∞ we have 〈d, x∗〉 = 0 for every d ∈ D,
which implies that x∗ = 0. Thus 0 is the only weak∗-cluster point of the
sequence (∇f(xn−1))n∈M. It follows that the sequence (∇f(xn−1))n∈M is
weak∗-convergent to 0.

Returning to (3.7), we deduce that

lim
n∈M

n−1∑

j=1

tj〈dj ,∇f(xn−1)〉 = 0,
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or

(3.8) lim
n∈M

〈x0 − xn−1,∇f(xn−1)〉 = 0.

Since (∇f(xn−1))n∈M is weak∗-convergent to 0,

lim
n∈M

〈xn−1 − a,∇f(xn−1)〉 = 0.

Now
0 ≤ f(xn−1) − f(a) ≤ 〈xn−1 − a,∇f(xn−1)〉

and so limn∈M f(xn−1) = f(a). By monotonicity this implies

lim
n→∞

f(xn) = f(a)

and by Corollary 3.2, limn→∞ ‖xn − a‖ = 0. !

4. Property (Γ)

We start by giving an equivalent formulation of property (Γ). We recall
the definition of property (Γ) was given in (1.1).

Proposition 4.1. Let X be a Banach with a Gâteaux differentiable norm.
Then X has property (Γ) if and only if there is a constant β such that

(4.1) 1 − 〈x, Jy〉 ≤ β(1 − 〈y, Jx〉), ‖x‖ = ‖y‖ = 1.

Proof. Suppose X has property (Γ), i.e., there is a constant C so if 〈z, Jx〉 =
0 then

〈z, J(x + z)〉 ≤ C(‖x + z‖ − ‖x‖).

We may assume C > 1. Assume ‖x‖ = ‖y‖ = 1 and let 〈y, Jx〉 = σ
and 〈x, Jy〉 = τ . If σ ≤ (C − 1)/(C + 1) then since τ ≥ −1 we have
(1 − τ) ≤ (C + 1)(1 − σ). If σ > (C − 1)/(C + 1) we have

(1 − τ) = (σ−1 − τ) − (σ−1 − 1)

= 〈σ−1y − x, Jy〉 − (σ−1 − 1)

≤ C(‖σ−1y‖ − 1) − (σ−1 − 1)

= (C − 1)σ−1(1 − σ)
≤ (C + 1)(1 − σ).

Thus (4.1) holds with β = C + 1.
Conversely assume (4.1) holds. Assume that ‖x‖ = 1 and 〈y, Jx〉 = 0.

Let σ = ‖x + y‖. Then we have

1 − 〈x, J(x + y)〉 = 1 − 〈x, J(σ−1(x + y)〉 ≤ β(1 − σ−1〈x + y, Jx〉).
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Hence

〈y, J(x + y)〉 = σ − 〈x, J(x + y)〉
≤ σ − 1 + β(1 − σ−1)
≤ (β + 1)(σ − 1).

Thus (1.1) holds with C = β + 1. !
Theorem 4.2. Let X be a Banach space and let f : X → [0,∞) be a proper
tame continuous function such that f(0) = 0 and f(x) = f(−x) for x ∈ X.
Let

‖x‖f = inf{λ > 0 : f(x/λ) ≤ 1} x ∈ X.

Then ‖ · ‖f is an equivalent norm on X with property (Γ).

Proof. Let λ be the index f . Then

(4.2) min(‖x‖λ′
f , ‖x‖λ

f ) ≤ f(x) ≤ max(‖x‖λ′
f , ‖x‖λ

f ) x ∈ X.

By Theorem 3.4 this ensures that ‖ · ‖f is equivalent to the original norm
on X. Suppose x ∈ X and f(x) = 1. Then if 〈y,∇f(x)〉 = 0 we have

lim
t→0

f(x + ty) − f(x)
t

= 0

and hence by (4.2)

lim
t→0

‖x + ty‖f − 1
t

= 0.

This implies that ∇f(x) is a multiple of the unique norming functional Jx
for (X, ‖ ·‖f ) at x. In particular the norm ‖ ·‖f is Gâteaux differentiable. It
also follows from (4.2) that, if J denotes the duality map for ‖ · ‖f , we have
Jx = θ(x)−1∇f(x) whenever ‖x‖f = 1, where λ′ ≤ θ(x) ≤ λ.

Next suppose ‖x‖f = ‖z‖f = 1, i.e., f(x) = f(z) = 1. Then

〈z − x,∇f(z) −∇f(x)〉 ≤ λ〈x − z,∇f(x)〉
and so

〈z − x,∇f(z)〉 ≤ (λ− 1)〈x − z,∇f(x)〉.
From this we obtain

θ(z)(1 − 〈x, Jz〉) ≤ (λ− 1)θ(x)(1 − 〈z, Jx〉).
Using our estimate on θ(x), θ(z) this implies

(4.3) (1 − 〈x, Jz〉) ≤ (λ− 1)2(1 − 〈z, Jx〉).
An application of Proposition 4.1 now gives the conclusion. !
Theorem 4.3. Let (X, ‖ · ‖) be a Banach space. Then the following are
equivalent:

(i) X has property (Γ).
(ii) For some (respectively, every) 1 < r < ∞ the function f(x) = ‖x‖r is

tame.
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Proof. (i) =⇒ (ii). Let x → Jx be the duality map on X \ {0}. Then by
assumption there is a constant C so that if 〈y, Jx〉 = 0 then

〈y, J(x + y)〉 ≤ C(‖x + y‖ − ‖x‖).
Fix r > 1. For any x, y ∈ X with ‖x‖ = ‖y‖ = 1 let ψ = ψx,y be defined by

ψ(t) = ‖x + ty‖r − rλt − 1 t ≥ 0

where λ = 〈y, Jx〉. Note that

x + ty = (1 + λt)(x +
t

1 + λt
(y − λx)) 0 ≤ t ≤ 1

2
.

Let
ϕ(t) = ‖x + t(y − λx)‖ − 1 t ≥ 0.

Note that

tϕ′(t) = t〈y − λx, J(x + t(y − λx))〉 ≤ Cϕ(t) t ≥ 0.

Then

ψ(t) = (1 + λt)r(1 + ϕ((1 + λt)−1t)) − rλt − 1 0 ≤ t ≤ 1
2
.

Now
ψ(t) = g(t) + h(t) 0 ≤ t ≤ 1

2
where

g(t) = (1 + λt)r − rλt − 1
and

h(t) = (1 + λt)rϕ((1 + λt)−1t).
Here g is convex but h need not be; h is, however, nonnegative for t > 0.
Since the function |t|r is tame there is a constant C1 = C1(r) so that

tg′(t) ≤ C1g(t) 0 ≤ t ≤ 1
2
.

On the other hand

h′(t) = rλ(1+λt)r−1ϕ((1+λt)−1t)+(1+λt)r−2ϕ′((1+λt)−1t) 0 ≤ t ≤ 1
2
.

Thus
th′(t) ≤ rλ+ C

1 + λt
h(t), 0 ≤ t ≤ 1

2
.

Since |λ| ≤ 1 this gives a bound

th′(t) ≤ C2h(t) 0 ≤ t ≤ 1
2

where C2 depends on C and r. Combining we have

tψ′(t) ≤ C3ψ(t) 0 ≤ t ≤ 1
2

where C3 = max(C1, C2).
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Now consider the function

ρ(t) = ψx,y(t) + ψx,−y(t) = ‖x + ty‖r + ‖x − ty‖r − 2 t ≥ 0.

According to the above calculation we have

ρ′(t) ≤ C3ρ(t) t ≤ 1
2
.

Note that
ρ(1

2 ) ≥ (3/2)r + (1/2)r − 2 > 0.
For t ≥ 2 we have

2(tr − 1) ≤ ρ(t) ≤ 2((t + 1)r − 1).

Combining these estimates it is clear that ρ satisfies a ∆2-condition with
constant γ independent of the choice of x, y with ‖x‖ = ‖y‖ = 1. Together
with the fact that |t|r is a tame function we conclude by homogeneity that
‖x‖r is itself tame.

The converse follows from Theorem 4.2. !
We recall that a Banach space X is superreflexive if every ultraproduct

of X is reflexive and this is equivalent to the existence of an equivalent
uniformly convex norm on X (see [6] and [13]).

Theorem 4.4. Let X be a Banach space with property (Γ). Then X has
a Fréchet differentiable norm and is both uniformly convex and uniformly
smooth (hence X is superreflexive). Furthermore X∗ also has property (Γ).

Proof. Fréchet differentiability follows from Corollary 3.3.
Since 1

2‖x‖
2 is tame with index λ, say, if ‖x‖ = ‖y‖ = 1 we have an

estimate

‖x+ ty‖2 +‖x− ty‖2 −2 ≤ tλ
′
(‖x+y‖2 +‖x−y‖2 −2) ≤ 2tλ

′
0 ≤ t ≤ 1.

Similarly

‖x + ty‖2 + ‖x − ty‖2 − 2 ≥ 2(t/2)λ 0 ≤ t ≤ 1.

These estimates imply that X is uniformly smooth and uniformly convex.
The function 1

2‖x‖
2 is tame and hence so is its Fenchel dual 1

2‖x
∗‖2 on

X∗ by Theorem 3.5. Hence by Theorem 4.3 X∗ also has (Γ). !
Remark. The fact that property (Γ) implies uniform convexity and uniform
smoothness was independently obtained by S. Gogyan and P. Wojtaszczyk.

Corollary 4.5. If X has property (Γ) and E is a subspace of a quotient of
X, then E also has property (Γ).

Remark. This is also proved in [7].

Corollary 4.6. Let X be a Banach space such that there is a proper tame
continuous convex function f : X → R. Then X is superreflexive.
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Proof. If f is proper tame convex function then so is 1
2 (f(x) + f(−x)).

Then we can apply Theorem 4.2 to show that X has an equivalent norm
with property Γ. If X is a complex Banach space then we may use instead
(2π)−1

∫ 2π
0 f(eiθx)dθ. !

5. Spaces with property (Γ)

If F is an Orlicz function, we recall that F is tame if t → F (|t|) is a tame
function on R.

Theorem 5.1. Let F be an Orlicz function. Then LF (0,∞) has property
(Γ) for the Orlicz norm (respectively the Luxemburg norm) if and only if the
Orlicz function F is tame.

Proof. Suppose F is tame; then F satisfies the ∆2 condition and the ∆∗
2-

condition. The functional

f(x) =
∫ ∞

0
F (|x(t)|)dt

is continuous on LF and is also clearly tame. Hence LF has property (Γ) for
the Luxemburg norm by Theorem 4.2. If F ∗ is the Fenchel dual of F then
LF ∗ also has property (Γ) for the Luxemburg norm. However L∗

F ∗ = LF

with the Orlicz norm; now we can use Theorem 4.4 to deduce that LF has
property (Γ) for the Orlicz norm.

Conversely suppose LF (0,∞) has property (Γ) for the Luxemburg norm.
Then LF is superreflexive and so F satisfies a ∆2 and a ∆∗

2-condition. This
implies the existence of 1 < p ≤ q < ∞ so that

min(σp,σq)F (t) ≤ F (σt) ≤ max(σp,σq)F (t), 0 < t < ∞
and hence

min(‖x‖p, ‖x‖q) ≤
∫ ∞

0
F (|x(t)|) dt ≤ max(‖x‖p, ‖x‖q), x ∈ LF .

Now fix 0 < s < ∞ and define

yt = (s + t)χ(0, 12 (F (s)−1) + (s − t)χ( 1
2 (F (s)−1,F (s)−1) −∞ < t < ∞.

Let
gs(t) =

∫ ∞

0
F (|yt(u)|) du − 1, 0 ≤ t < ∞

and
hs(t) = ‖yt‖2 − 1 =

1
2
(‖yt‖2 + ‖y−t‖2 − 1), 0 < t < ∞.

Then hs obeys a uniform ∆2-condition for 0 < s < ∞ with constant C0, say.
For t ≥ s we have

gs(2t)/gs(t) ≤ 2F (3t)/F (2t) ≤ C1

where C1 is independent of s.
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For t ≤ s we have

gs(2t) ≤ (1 + hs(2t))q/2 − 1, gs(t) ≥ (1 + hs(t))p/2 − 1

so that
gs(2t)
gs(t)

≤ (1 + hs(2t))q/2 − 1
(1 + hs(t))p/2 − 1

≤ max
0≤u≤1

(1 + C0u)q/2 − 1
(1 + u)p/2 − 1

= C2,

say. Thus the functions gs satisfy a uniform ∆2-condition. However

gs(t) =
1

2F (s)
(F (s + t) + F (s − t) − 2F (s))

so we deduce that F is tame.
If we assume LF has property (Γ) for the Orlicz norm then we can argue

that F ∗ is tame by the above reasoning and hence F is also tame. !
If X is a Banach lattice we recall that X is said to be p-convex (where

p > 1) with constant M if we have

‖(|x1|p + · · · + |xn|p)1/p‖ ≤ M(‖x1‖p + · · · + ‖xn‖p)1/p, x1, . . . , xn ∈ X

and q-concave (where q < ∞) with constant M if we have

(‖x1‖q + · · · + ‖xn‖q)1/q ≤ M‖(|x1|q + · · · + |xn|q)1/q‖, x1, . . . , xn ∈ X.

We refer to [12] pp. 40ff for a discussion of these concepts. If X is p-
convex and q-concave then it can always be renormed so that the respective
constants are both one ([12] p. 54). Furthermore X is superreflexive if and
only if X is p-convex and q-concave for some 1 < p ≤ q < ∞ (combine
Theorem 1.f.1 p. 80 and Corollary 1.f.13 p. 92 of [12].

Theorem 5.2. Let X be a Banach lattice which is p-convex with constant
one and q-concave with constant one, where 1 < p < q < ∞. Then X has
property (Γ).

Proof. First note that

(5.1) (1 + t)p − 1 ≤ p

q
((1 + t)q − 1), −1 ≤ t < ∞,

and

(5.2) (1 + tp)q/p − 1 ≤ 2q/ptp, 0 ≤ t ≤ 1.

We next observe that there is a constant κ ≥ 2 such that

(5.3)
|1 + 2t|q + |1 − 2t|q

2
− 1 ≤ κ

((
|1 + t|p + |1 − t|p

2

)q/p

− 1

)

0 < t < ∞.

Thus, using (5.3)

|1 + 2t|q

2κ
+

|1 − 2t|q

2κ
+
κ− 1
κ

≤
(
|1 + t|p + |1 − t|p

2

)q/p

.
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Hence if x, y ∈ X we have
(
|x + 2y|q

2κ
+

|x − 2y|q

2κ
+
κ− 1
κ

|x|q
)1/q

≤
(
|x + y|p + |x − y|p

2

)1/p

.

Using q-concavity and p-convexity we have
(
‖x + 2y‖q

2κ
+

‖x − 2y‖q

2κ
+
κ− 1
κ

‖x‖q

)1/q

≤
(
‖x + y‖p + ‖x − y‖p

2

)1/p

.

Hence

(5.4)
‖x + 2y‖q + ‖x − 2y‖q

2
− ‖x‖q

≤ κ

((
‖x + y‖p + ‖x − y‖p

2

)q/p

− ‖x‖q

)
.

Now we show that x → ‖x‖p is tame. Thus we need show that all functions
of the form

ϕ(t) =
1
2
(‖x + ty‖p + ‖x − ty‖p) − 1, t ≥ 0,

where ‖x‖ = ‖y‖ = 1, satisfy a uniform ∆2-condition. For t ≥ 1 we have an
estimate ctp ≤ ϕ(t) ≤ Ctp for uniform constants c, C. Hence we need only
consider the case t ≤ 1. In this case, by (5.1), we have

ϕ(t) ≤ p

q

(
‖x + ty‖q + ‖x − ty‖q

2
− 1

)

and by (5.2) we have
((

‖x + ty‖p + ‖x − ty‖p

2

)q/p

− 1

)

≤ 2q/pϕ(t).

Hence, combining with (5.4),

ϕ(2t) ≤ p

q

(
‖x + 2ty‖q + ‖x − 2ty‖q

2
− 1

)

≤ κp

q

((
‖x + ty‖p + ‖x − ty‖p

2

)q/p

− 1

)

≤ κp2q/p

q
ϕ(t).

This then completes the proof. !

Remark. If X = LF (0,∞) is an Orlicz space then the hypotheses of The-
orem 5.2 hold if and only F (x1/p) is convex and F (x1/q) is concave and this
implies that F ′(x)/xp−1 is increasing and F ′(x)/xq−1 is decreasing, i.e., we
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have the hypotheses of Proposition 2.11. Thus as remarked after Proposi-
tion 2.11 there are Orlicz spaces with property (Γ) which fail to be p-convex
and q-concave with constants one where 1 < p ≤ q < ∞.

Corollary 5.3. A Banach lattice has an equivalent norm with property (Γ)
if and only if it is superreflexive.

Problem. Does every superreflexive space have a renorming with property
(Γ)?

Theorem 5.4. Let X be a Banach space with property (Γ). Then Lr(R;X)
has property (Γ) whenever 1 < r < ∞.

Proof. It is trivial to observe that ‖ · ‖r is tame on Lr(R;X) since ‖ · ‖r
X is

tame. !
An even easier proof, which we omit, gives:

Theorem 5.5. Suppose X,Y have property (Γ). Then X ⊕r Y has property
(Γ) whenever 1 < r < ∞.

Theorem 5.6. Suppose X is a Banach space such that for some n ∈ N,
‖x + ty‖2n is a polynomial of degree 2n in t for all x, y ∈ X. Then X has
property (Γ).

Proof. This follows from Proposition 2.6. !
Theorem 5.7. Let (X0,X1) be a compatible pair of complex Banach spaces
each with property (Γ). Then the complex interpolation spaces [X0,X1]θ
have (Γ) for 0 < θ < 1.

Proof. The space [X0,X1]θ is isometric to a subspace of a quotient of
L2(R;X0) ⊕2 L2(R;X1) (see [1] p. 450). The conclusion follows from Theo-
rems 5.4 and 5.5. !

If H is a separable Hilbert space then, for 1 ≤ p < ∞, the Schatten
ideal Sp consists of all compact operators T : H → H whose singular values
(sn(T ))∞n=1 satisfy

‖T‖Sp =

( ∞∑

n=1

sn(T )p
)1/p

< ∞.

Theorem 5.8. The Schatten ideals Sp have property (Γ) when 1 < p < ∞.

Proof. By Theorem 5.6 the spaces S2n have property (Γ) as long as n ∈ N.
Hence by Theorem 4.4 so do the spaces S2n/(2n−1). The result then follows
by complex interpolation (Theorem 5.7). !
Remark. It seems natural to ask if every two-dimensional real subspace of
Sp embeds isometrically into Lp, which would of course give an alternate
approach to such a result. This is true if p = 1 (since every two-dimensional
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real Banach space embeds into L1, see e.g., [11]), p = 2 and p = 4 (by a
result of Reznick [15] that every two-dimensional space such that ‖x‖4 is a
polynomial embeds isometrically into L4 or even +34. ).

Theorem 5.9. Let (X0,X1) be a compatible pair of real Banach spaces
each with property (Γ). Then the real interpolation spaces (X0,X1)θ,p for
0 < θ < 1 and 1 < p < ∞ each have an equivalent norm with property (Γ).

Proof. We may define a norm on (X0,X1)θ,p by

‖x‖ =
(∫ ∞

0
tθp−1K2(t;x)p dt

)1/p

where
K2(t;x)2 = inf{‖x0‖2

X0
+ t2‖x1‖2

X1
: x = x0 + x1}.

It is then clear that the functions K2(t;x)p are uniformly tame on X0 + X1.
Indeed (X0 + X1,K2(t, ·)) is isometric to a quotient of X0 ⊕2 X1 which has
property (Γ) by Theorem 5.5. Hence ‖x‖p is also tame as a function on
(X0,X1)θ,p. !
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