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Abstract. We give a negative solution to the problem of theLp-maximal
regularity on various classes of Banach spaces includingLq-spaces with
1 < q /= 2 < +∞.
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1. Introduction

In this paper we consider the following abstract Cauchy problem:{
u′(t) +B(u(t)) = f(t) for 0 ≤ t < T
u(0) = 0

whereT ∈ (0,+∞), −B is the infinitesimal generator of a bounded ana-
lytic semigroup on a complex Banach spaceX andu andf areX-valued
functions on[0, T ). Suppose1 < p < ∞. B is said to satisfyLp−maximal
regularity if wheneverf ∈ Lp([0, T );X) then the solution

u(t) =
∫ t

0
e−(t−s)Bf(s) ds

satisfiesu′ ∈ Lp([0, T );X). It is known thatB hasLp-maximal regularity
for some1 < p < ∞ if and only if it hasLp-maximal regularity for every
1 < p < ∞ [4], [5], [20]. We thus say simply thatB satisfiesmaximal
regularity (MR).
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ThequestionwhetherB satisfiesmaximal regularityhasbeenextensively
studied. De Simon [4] showed thatB always satisfy (MR) ifX is a Hilbert
space. We also mention the early work of Grisvard [7] using interpolation
spaces betweenX and the domainD(B).More recently, Dore andVenni [6]
showed thatB satisfies (MR) ifX is an UMD Banach space andB admits
bounded imaginary powers with an estimate||Bis|| ≤ Keθ|s| for some0 ≤
θ < π/2. The question we address was first asked by H. Brézis (see [2]) and
is the following: under which conditions on the Banach spaceX does every
negative generator of a bounded analytic semigroup onX satisfy (MR). Let
us say thatX has thethe maximal regularity property (MRP)if B satisfies
(MR) whenever−B is the generator of a bounded analytic semigroup. The
result of De Simon cited above implies that Hilbert spaces satisfy (MRP).
Notealso thatbya theoremofLotz [14]everystronglycontinuoussemigroup
on L∞ is uniformly continuous and this impliesL∞ has (MRP). On the
other hand, Coulhon and Lamberton [2] exhibited counterexamples onX =
Lp(R;E) whenever1 < p < ∞ andE is not an UMD Banach space.
More recently, Le Merdy [9] found counterexamples on other fundamental
spaces such asL1(T), C(T) andK(�2). For several years it has been an
open question whether the spacesLp have (MRP) or even whether every
UMD-space has (MRP).

In this paper, we provide a fairly complete answer to this question. In fact
we will show that (MRP), up to isomorphism, characterizes Hilbert spaces
among spaces with an unconditional basis or (more generally) separable
Banach lattices. We also extend the Coulhon-Lamberton result cited above
by showing thatLp(R;E) for 1 ≤ p < ∞ can never have (MRP) unless
p = 2 andE is a Hilbert space.

We would like to mention that our constructions have been initially in-
spired by a very useful transference principle for maximal regularity proved
by C. Le Merdy [9], although we only use a very simple version of it (see
our Proposition 2.1).

This work was done during a visit of the first author to the Department of
Mathematics at the Université de Franche-Comté in spring 1999; he would
like to thank the Department for its warm hospitality.

2. Notation and basic facts

We will mainly adopt the notation introduced in [9].
Let X be a complex Banach space,1 < p < ∞ and0 < T < ∞.

We denote byAT the differentiationd/dt on Lp([0, T );X) with domain
D(AT ) = W 1,p

0 ([0, T );X) = {u ∈ W 1,p([0, T );X) : u(0) = 0}. Let
now −B be the generator of a bounded analytic semigroup onX. The
operatorILp ⊗B defined onLp([0, T )) ⊗D(B) is closable and we denote
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by B its closure.B can also be described byD(B) = Lp([0, T );D(B))
and(Bu)(t) = B(u(t)) for u inD(B). We say thatB satisfiesLp-maximal
regularity (on[0, T )) if the operatorAT +Bwith domainD(AT )∩D(B)has
a bounded inverse; this is equivalent to the formulation in the introduction,
and obviously independent ofT. By a result in [3],Lp−maximal regularity
is also equivalent to the statement thatAT + B is closed, and also to an
inequality of the form

‖ATu‖ ≤ C‖ATu+ Bu‖
for u ∈ D(AT ) ∩D(B). As remarked in the introduction, it is known (see
[4], [5], [20]) that this property does not depend on1 < p < ∞. Thus
we will simply say thatB satisfies (MR) and work only onL2([0, T );X).
Then we say that a Banach spaceX has themaximal regularity property
(MRP), if every Bsuch that−B generates a bounded analytic semigroup
onX satisfies (MR).

We will also use the following terminology. A closed densely defined
operatorB on a Banach spaceX is said to be sectorial of typeω, where
0 < ω < π, if the spectrumσ(B) of B is included inΣω, whereΣω =
{z ∈ C : |Arg(z)| < ω} and for everyω < θ < π there existsCθ > 0
so that for anyλ /∈ Σθ we have‖(λ− B)−1‖ ≤ Cθ|λ|−1. Notice that−B
generates a bounded analytic semigroup onX if and only ifB is sectorial
of typeω, for someω < π/2 (see [21] or [10] for details).

Our next result can be regarded as a form of transference to the circle.
Forf ∈ L1([0, 2π);X) we define the Fourier coefficientŝf(n) in the usual
way

f̂(n) =
1
2π

∫ 2π

0
f(t)e−intdt

for n ∈ Z.

Proposition 2.1. LetX be a Banach space and let−B be an invertible
generator of a bounded analytic semigroup onX. Assume thatB satisfies
(MR). Then there is a constantC so that for anyX-valued trigonometric

polynomialf(t) =
N∑

n=−N

f̂(n)eint we have

(∫ 2π

0
‖
∑
n∈Z

in(in+B)−1f̂(n)eint‖2 dt

2π

)1/2

≤ C

(∫ 2π

0
‖f(t)‖2 dt

2π

)1/2

.

Proof. Denote by(e−tB)t>0 the semigroup generated by−B. For any
trigonometric polynomialf defineg ∈ L2([−2π, 2π);X) by:{

g(s) = (1 − e−2πB)−1f(s+ 2π) for − 2π ≤ s ≤ 0
g(s) = f(s) for 0 < s ≤ 2π



562 N.J. Kalton, G. Lancien

SinceB has a negative exponential type, the definition ofg makes sense.
Moreover there is a constantC > 0 independent off so that

||g||L2([−2π,2π);X) ≤ C||f ||L2([0,2π);X).

Now we solve{
u′(t) +B(u(t)) = g(t) for − 2π ≤ t < 2π
u(−2π) = 0

Elementary calculations show thatu′ =
∑
n∈Z

in(in + B)−1f̂(n)eint on

(0, 2π). Now, the fact thatB has (MR) yields the result. ��
Next, is an elementary lemma about (MRP) that we will use extensively:

Lemma 2.2. LetX be a Banach space andY be a complemented subspace
ofX. Assume thatX has the (MRP) thenY has the (MRP).

Proof. AssumeX = Y ⊕ Z and thatB is a sectorial operator of type
< π/2 on Y which fails (MR). Then the operatorB′, defined onX by
D(B′) = D(B)⊕Z andB′x = Bywhenx = y+zwith (y, z) ∈ D(B)×Z
provides a counterexample to (MR) onX. ��

The operators that wewill usewill bemultipliers associatedwith various
Schauder decompositions. Let us introduce some notation for that purpose.
If F ⊂ X, we denote by[F ] the closed linear span ofF . Let (En)n≥1 be
a sequence of closed subspaces ofX. Assume that(En)n≥1 is a Schauder
decomposition ofX and let(Pn)n≥1 be the associated sequence of projec-
tions fromX ontoEn. For convenience we will also denote this Schauder
decomposition by(En, Pn)n≥1. Notice that the spacesZn = P ∗

n(X∗) form
a Schauder decomposition of the subspaceZ = [∪∞

n=1Zn] of X∗.
Let now(bn)n≥1 be a sequence of complex numbers.We define the (pos-

sibly unbounded) operatorM(bn;En)with domainD(M(bn;En)) = {x ∈
X such that

∑
bnPnx converges in X} byM(bn;En)x =

∑
bnPnx.

The following lemma is elementary (see [1] or [22] for a proof in the
case of a Schauder basis).

Lemma 2.3. (i) M(bn;En) is a closed densely defined operator.
(ii) If b1 > 0and(bn)n≥1 is an increasing sequenceof reals, thenM(bn;En)
is invertible and sectorial of typeω for anyω ∈ (0, π).

3. The results

We first establish a necessary condition for spaces with a Schauder decom-
position to have the maximal regularity property.
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Theorem 3.1. Let(En, Pn)n≥1 beaSchauder decompositionof theBanach
spaceX. Let Zn = P ∗

nX
∗ andZ = [∪∞

n=1Zn]. AssumeX has (MRP).
Then there is a constantC > 0 so that whenever(un)N

n=1 are such that
un ∈ [E2n−1, E2n] and(u∗

n)N
n=1 are such thatu

∗
n ∈ [Z2n−1, Z2n] then

(∫ 2π

0
‖

N∑
n=1

P2nune
i2nt‖2 dt

2π

)1/2

≤ C

(∫ 2π

0
‖

N∑
n=1

une
i2nt‖2 dt

2π

)1/2

and

(∫ 2π

0
‖

N∑
n=1

P ∗
2nu

∗
ne

i2nt‖2 dt

2π

)1/2

≤ C

(∫ 2π

0
‖

N∑
n=1

u∗
ne

i2nt‖2 dt

2π

)1/2

.

Proof. Let (an)n≥1 and(bn)n≥1 be two sequences defined by

a2n−1 = b2n−1 = b2n = 2n−1 and a2n = 2n.

We letA = M(an;En) andB = M(bn;En). It is easy to see that

(i2n +A)−1un = (i2n + 2n−1)−1P2n−1un + (i2n + 2n)−1P2nun

while

(i2n +B)−1un = (i2n + 2n−1)−1un.

Hence

i2n(i2n +B)−1un − i2n(i2n +A)−1un =
i

(i+ 1)(2i+ 1)
P2nun.

If we assume thatX has (MRP) then bothA andB satisfy (MR) and
so we can apply Proposition 2.1 to each in turn for the polynomialf(t) =
N∑

n=1

une
i2nt. Subtracting gives us the first estimate.

The second estimate follows by duality. More precisely the operators
f �→

∑
n∈Z

in(in + A)−1f̂(n)eint andf �→
∑
n∈Z

in(in + B)−1f̂(n)eint can

be extended to bounded linear operators onL2([0, 2π);X). Taking adjoints
and restricting to the subspaceL2([0, 2π);Z) one easily obtains similar
estimates in the dual. ��

We first examine two important examples.

Corollary 3.2. c0 and�1 fail the (MRP).
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Proof. Denoteby(xn)n≥1 the canonical basis ofc0 and letsn = x1+..+xn.
(sn)n≥1 is a Schauder basis ofc0 which is usually called the summing basis
of c0. We now apply Theorem 3.1 with the sequence of projections(Pn)
associated with the Schauder basis(sn) andun = s2n − s2n−1. Then we
obtain that there isC > 0 so that for everyN ≥ 1,:(∫ 2π

0
‖

N∑
n=1

s2ne
i2nt‖2 dt

2π

)1/2

≤ C

(∫ 2π

0
‖

N∑
n=1

(s2n − s2n−1)ei2nt||2 dt
2π

)1/2

.

The right-hand side is equal toC but, considering only the first co-ordinate
of the left-hand side with respect to the canonical basis, we have(∫ 2π

0
‖

N∑
n=1

s2ne
i2nt‖2 dt

2π

)1/2

≥ N1/2.

This is a contradiction.

Assume now that�1 has the (MRP). Let(vn)n≥1 be the coordinate func-
tionals associatedwith the summing basis(sn) of c0. The closed linear space
Y spanned in�1 by the sequence(vn) is of codimension 1 in�1 and hence is
isomorphic to�1. The bi-orthogonal functionals(v∗

n) in Y ∗ are equivalent
to the summing basis ofc0. Hence using the same calculation as above and
the second inequality of Theorem 3.1 we again get a contradiction.��

We now explain the consequences of Theorem 3.1 whenX admits an
unconditional basis.

Theorem 3.3. A Banach space with an unconditional basis has the (MRP)
if and only if it is isomorphic to�2.

Proof. The idea is to show that ifX has the (MRP) and an unconditional
basis(xn)n≥1, then for every permutationπ of the integers and for every
block basis(uj)j≥1 of (xπ(n))n≥1 the closed subspace ofX spanned by
the uj ’s is complemented inX. Once we have shown this the proof is
completed by using a theorem of Lindenstrauss and Tzafriri ([11], see also
[12] Theorem 2.a.10) which asserts that(xn)n≥1 must be equivalent to the
canonical basis ofc0 or �p for somep in [1,∞). Then, by Corollary 3.2,
(en) is equivalent to the canonical basis of�p for somep in (1,∞). Now, if
1 < p /= 2 < ∞, �p admits an unconditional basis which is not equivalent to
any of the canonical bases ofc0 or �q where1 ≤ q < ∞. Indeed Pelczýnski

[17] showed that, for1 < p < ∞, �p is isomorphic to(
∑
n≥1

⊕�n2 )p.
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So assume, as we may, that(xn)n≥1 is a normalized 1-unconditional
basis ofX and that(un)n≥1 is a normalized block basis of(xn)n≥1, with

∀n ≥ 1, un =
rn+1∑
rn+1

ajej ,

where0 = r1 < r2 < .. < rn < rn+1 < .. and(aj)j≥1 ⊂ C. For n≥ 1,
letXn = [xrn+1, .., xrn+1 ] andE2n = [un]. Then(Xn) is an unconditional
Schauder decomposition ofX with associated projectionsPn, say. Now,
by the Hahn-Banach theorem there is a norm-one projectionRn : Xn →
E2n. LetE2n−1 = R−1

n (0). Then(En) is a Schauder decomposition ofX
with associated projectionsQ2n−1 = (I − Rn)Pn andQ2n = RnPn. We
now apply Theorem 3.1 and exploit the unconditionality of the Schauder
decomposition(Xn). There is a constantC so that ify is in the linear span
of the(xn)n≥1 then

‖
∞∑

n=1

Q2ny‖ ≤ C‖y‖.

This implies that[un]n≥1 is complemented inX.
Clearly the same reasoning can be applied to any permutation of the

basis(xn) so that the proof is complete. ��
Although this will be included in further and more general statements

let us point out that this already solves our problem for the spacesLp(0, 1):

Corollary 3.4. Let1 ≤ p ≤ ∞. ThenLp(0, 1) has the (MRP) if and only if
p = 2 or p = ∞.

Proof. For 1 < p < ∞, the Haar system is known to be an unconditional
basis ofLp(0, 1) ([16], see also [13]). So the result follows from the preced-
ing Theorem. The fact thatL1 fails (MRP) was proved by C. Le Merdy in
[9]. Notice thatL1 contains a complemented copy of�1, so this result can
be derived from Lemma 2.2 and Corollary 3.2. ��

Wenow extend Theorem 3.3 to the case of a space with an unconditional
Schauder decomposition.

Theorem 3.5. LetX be a Banach space with an unconditional decompo-
sition (Fn, Pn)n≥1. Assume thatX has the (MRP).

ThenX is isomorphic to(
∞∑

n=1

⊕Fn)�2 .

Proof. It suffices to show that ifun ∈ Fn with ‖un‖ = 1 then
∑

anun

converges if and only if
∑ |an|2 < ∞. As above in the proof of Theorem
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3.5, letRn be a norm-one projection ofFn onto [un]. Then letE2n = [un]
andE2n−1 = R−1

n (0). Reasoning exactly as in Theorem 3.5 gives that
[un]n≥1 is complemented inX. But this subspace has an unconditional
basis and so Theorem 3.5 yields that(un) is equivalent to the canonical
basis of�2. ��

Our next theorem completes the important counterexamples obtained by
Coulhon and Lamberton [2].

Theorem 3.6. SupposeX is a Banach space and1 ≤ p < ∞. Then the
Banach spaceLp((0, 1);X) has the (MRP) if and only ifp = 2 andX is
isomorphic to a Hilbert space.

Proof. Wefirst note thatLp[0, 1] is complemented inLp((0, 1);X) so that if
the latter has (MRP) thenp = 2 byCorollary 3.4. Assume thatL2((0, 1);X)
has the (MRP); we will show thatX is isomorphic to a Hilbert space (the
opposite implication is due to de Simon [4]). By [2],X must have the UMD
property. In particular,X does not contain the�n1 ’s uniformly. Hence by
Pisier’s theorem [18], the spaceRad(X) = [εn]n≥1 ⊗X is complemented
in L2((0, 1);X) (hereεn is a standard Rademacher function). Therefore,
by Lemma 2.2,Rad(X) has the (MRP). Now,(En)n≥1 = (εn ⊗X)n≥1 is
an unconditional Schauder decomposition ofRad(X). So, by Theorem 3.5,
Rad(X) must be isomorphic to(

∑⊕ (εn ⊗X))�2 . Finally, it follows from
Kwapien’s theorem [8] thatX is isomorphic to a Hilbert space. ��

We now extend Theorem 3.3 and Corollary 3.4 to the setting of Banach
lattices. All the notions on Banach lattices that we will use can be found in
[13] Chapters 1.a and 1.b.

Theorem 3.7. An order continuous Banach lattice has the (MRP) if and
only if it is isomorphic to a Hilbert space.

Proof. LetX beanorder continuousBanach lattice.Bya result of L. Tzafriri
(see for instance [13], Lemma 1.b.13), it is enough to show that every nor-
malized sequence of disjoint elements ofX is equivalent to the canonical
basis of�2. So let (fn)n≥1 be such a sequence inX. ThenX admits an un-
conditional Schauder decomposition(En)n≥1 such that theEn’s are ideals
of X and for alln ≥ 1, fn ∈ En. Now, by Theorem 3.5,X is isomorphic
to (
∑⊕En)�2 and(fn) is equivalent to the canonical basis of�2. ��

Corollary 3.8. A separable Banach lattice has the (MRP) if and only if it
is isomorphic to a Hilbert space.

Proof. LetX be a separable Banach lattice which is not order continuous.
ThenX is notσ-complete (see [13] Proposition 1.a.7) and by a result of P.
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Meyer-Nieberg ([15], see also [13] Theorem 1.a.5)X contains a subspace
isomorphic toc0. SinceX is separable, it follows from Sobczyk’s Theo-
rem [19] that this subspace is complemented inX. So, by Lemma 2.2 and
Corollary 3.2,X does not have the (MRP). Then, the preceding Theorem
concludes our proof. ��

4. Final remarks

1) One can also consider the problem of theLp-maximal regularity on the
half line [0,+∞), which has in general a different answer (see [9] for an
example). But it follows from Theorem 2.4. in [5] that all our results remain
valid in this slightly different setting.

2) We do not know if there is a non-Hilbertian subspace of anLp-space
(1 ≤ p < ∞) with (MRP).

3) We do not know if every space with a basis and (MRP) is isomorphic to
a Hilbert space.

References

1. J.B. Baillon and P. Clément, Examples of unbounded imaginary powers of operators,
J. Funct. Anal.100(1991), 419–434

2. T. Coulhon andD. Lamberton, Régularit́eLp pour leśequations d’́evolution, Śeminaire
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