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1. Introduction

In this paper we consider the following abstract Cauchy problem:

{u’(t) + B(u(t)) = f(t) for0<t<T
u(0) =0

whereT € (0,400), —B is the infinitesimal generator of a bounded ana-
lytic semigroup on a complex Banach spa€eandw« and f are X -valued
functions on0, 7"). Supposd < p < co. B is said to satisfy.? —maximal
regularity if wheneverf € LP([0,T); X) then the solution

u(t) :/0 e~ (=3B f(s) ds

satisfies’ € LP([0,T); X). It is known thatB hasL?-maximal regularity
for somel < p < oo if and only if it hasLP-maximal regularity for every
1 < p < oo [4], [5], [20]. We thus say simply thaB satisfiesmaximal

regularity (MR).
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The question whethé? satisfies maximal regularity has been extensively
studied. De Simon [4] showed th&talways satisfy (MR) ifX is a Hilbert
space. We also mention the early work of Grisvard [7] using interpolation
spaces betweeki and the domait(B). More recently, Dore and Venni [6]
showed thai3 satisfies (MR) ifX is an UMD Banach space arigladmits
bounded imaginary powers with an estimafg’®|| < Ke’*l for some0 <
6 < 7/2. The question we address was first asked by l#zBr(see [2]) and
is the following: under which conditions on the Banach spdEatoes every
negative generator of a bounded analytic semigroufy satisfy (MR). Let
us say thatX has thehe maximal regularity property (MRR) B satisfies
(MR) whenever—B is the generator of a bounded analytic semigroup. The
result of De Simon cited above implies that Hilbert spaces satisfy (MRP).
Note also that by atheorem of Lotz [14] every strongly continuous semigroup
on L®° is uniformly continuous and this implies> has (MRP). On the
other hand, Coulhon and Lamberton [2] exhibited counterexamplés en
LP(R; E) wheneverl < p < oo and E is not an UMD Banach space.
More recently, Le Merdy [9] found counterexamples on other fundamental
spaces such a&!(T), C(T) and K (¢3). For several years it has been an
open question whether the spadéshave (MRP) or even whether every
UMD-space has (MRP).

In this paper, we provide a fairly complete answer to this question. In fact
we will show that (MRP), up to isomorphism, characterizes Hilbert spaces
among spaces with an unconditional basis or (more generally) separable
Banach lattices. We also extend the Coulhon-Lamberton result cited above
by showing thatL?(R; £') for 1 < p < oo can never have (MRP) unless
p =2 andFE is a Hilbert space.

We would like to mention that our constructions have been initially in-
spired by a very useful transference principle for maximal regularity proved
by C. Le Merdy [9], although we only use a very simple version of it (see
our Proposition 2.1).

This work was done during a visit of the first author to the Department of
Mathematics at the Universitde Franche-Coratin spring 1999; he would
like to thank the Department for its warm hospitality.

2. Notation and basic facts

We will mainly adopt the notation introduced in [9].

Let X be a complex Banach space,< p < oo and0 < 7' < 0.
We denote byAr the differentiationd/dt on L?([0,T); X') with domain
D(Ar) = WyP([0,T); X) = {u € WHP([0,T); X) : u(0) = 0}. Let
now —B be the generator of a bounded analytic semigroupXonThe
operatorl/» ® B defined onL?([0,T)) ® D(B) is closable and we denote



LP —maximal regularity 561

by B its closure.5 can also be described by(B) = LP(]0,T); D(B))
and(Bu)(t) = B(u(t)) for win D(B). We say thaB satisfies.”-maximal
regularity (on0, 7)) if the operatotd -+ B with domainD (A7) N.D(B) has

a bounded inverse; this is equivalent to the formulation in the introduction,
and obviously independent @t By a result in [3],L?—maximal regularity

is also equivalent to the statement tbét + 5 is closed, and also to an
inequality of the form

| Arul] < CllAru + Bul|

foru € D(Ar) N D(B). As remarked in the introduction, it is known (see
[4], [5], [20]) that this property does not depend bn< p < oo. Thus
we will simply say thatB satisfies (MR) and work only of?([0,7T); X).
Then we say that a Banach spakehas themaximal regularity property
(MRP), if every Bsuch that— B generates a bounded analytic semigroup
on X satisfies (MR).

We will also use the following terminology. A closed densely defined
operatorB on a Banach spac¥ is said to be sectorial of type, where
0 < w < m, if the spectrumy(B) of B is included inX,, whereX,, =
{z € C: |Arg(z)| < w} and for everyw < 6 < 7 there existy > 0
so that for any\ ¢ Xy we havel||(A — B) Y| < Cy|\|~*. Notice that—B
generates a bounded analytic semigroupXoif and only if B is sectorial
of typew, for somew < 7/2 (see [21] or [10] for details).

Our next result can be regarded as a form of transference to the circle.
For f € L([0, 27); X) we define the Fourier coefficienfgn) in the usual
way

R 1 o t 7intdt
fm =52 [ $0e
forn € Z.

Proposition 2.1. Let X be a Banach space and letB be an invertible
generator of a bounded analytic semigroup &nAssume thaB satisfies
(MR). Then there is a constant so that for anyX-valued trigonometric

N
polynomialf(t) = > f(n)e™ we have
n=—N

o A o a2
(%;H§:mﬁn+BYfﬂmémW%J <o([Turorg)

nel
Proof. Denote by(e~*#),~( the semigroup generated byB. For any
trigonometric polynomiaf defineg € L?([—2m, 27); X) by:

g(8) =1 —e7B)"1f(s+21) for —2r <s5<0
g(s) = f(s) for0<s<2m
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Since B has a negative exponential type, the definitiory shakes sense.
Moreover there is a constaft > 0 independent of so that

gl 22 ((—2r2m);) < ClF |l L2(0,27); %)
Now we solve

{u’(t) + B(u(t)) = g(t) for —2w <t < 2m
u(—2m) =0

Elementary calculations show that =  "in(in + B)~' f(n)e™ on

nez
(0, 27). Now, the fact tha3 has (MR) yields the result. 0

Next, is an elementary lemma about (MRP) that we will use extensively:

Lemma 2.2. Let X be a Banach space aidbe a complemented subspace
of X. Assume thaX has the (MRP) thei” has the (MRP).

Proof. AssumeX = Y @ Z and thatB is a sectorial operator of type
< m/2 on'Y which fails (MR). Then the operataB’, defined onX by
D(B') = D(B)®Z andB’'x = Bywhenz = y+zwith (y, 2) € D(B)xZ
provides a counterexample to (MR) éh O

The operators that we will use will be multipliers associated with various
Schauder decompositions. Let us introduce some notation for that purpose.
If F C X, we denote byF] the closed linear span @. Let (E,,),>1 be
a sequence of closed subspaceXofAssume thatE,,),>1 is a Schauder
decomposition ofX’ and let(P,),>1 be the associated sequence of projec-
tions fromX onto E,,. For convenience we will also denote this Schauder
decomposition byE,, P,,),>1. Notice that the space$, = P (X*) form
a Schauder decomposition of the subspéce (U2, Z,,] of X*.

Let now(b,),>1 be a sequence of complex numbers. We define the (pos-
sibly unbounded) operatdr (b,,; E,,) with domainD (M (b,,; E,,)) = {z €
X such that ) b, P,z converges in X} by M (b,,; Ep)x = > by Py,

The following lemma is elementary (see [1] or [22] for a proof in the
case of a Schauder basis).

Lemma 2.3. (i) M (b,; E,,) is a closed densely defined operator.
(i) If by > 0and(b,),>1 iIsanincreasing sequence of reals, theb,,; £,,)
is invertible and sectorial of type for anyw € (0, 7).

3. The results

We first establish a necessary condition for spaces with a Schauder decom-
position to have the maximal regularity property.
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Theorem 3.1. Let(E,, P,),>1 be a Schauder decomposition of the Banach
spaceX. Let Z, = P;X* andZ = [U)2,Z,]. AssumeX has (MRP).
Then there is a constarit > 0 so that whenevefu,,)"_; are such that

€ [Ean—1, E2n) and (u)N_, are such that, € [Z2,_1, Zo,) then

or N 1/2 1/2
ony o dt ny o dt
2"t )12 12 t 2
(/0 1> Pontine™"| 2W> éc(/o u}j \ )

n=1

and

e g2 At v S g2
P* * 2™ et <C * i2" _
[ P ) <ol [T we ey,

Proof. Let (ay),>1 and(b,),>1 be two sequences defined by

1/2

n—1 n
aon—1 = bgnfl = an =2 and aon — 2".

We letA = M (an; E,) andB = M (b,; E,,). It is easy to see that
(12" + A) " lu, = (12" + 2" ) T Py qup, + (127 + 2 T Py,

while

(12" + B) " tu, = (2" + 2" 1) "L,
Hence
i

G+1)@2i+1) ™"

i2" (12" 4 B) tuy, — 2" (12" + A) " lu
If we assume thakX has (MRP) then botkl and B satisfy (MR) and

so we can apply Proposition 2.1 to each in turn for the polynoif(igl =
N

> " une"*. Subtracting gives us the first estimate.

n=1

The second estimate follows by duality. More precisely the operators

fr > in(in+ A)7 f(n)e™ and f > Y " in(in + B) ' f(n)e™ can
nez neZ

be extended to bounded linear operatord.4({0, 2 ); X ). Taking adjoints

and restricting to the subspadé([0,2n); Z) one easily obtains similar

estimates in the dual. 0

We first examine two important examples.

Corollary 3.2. ¢y and/; fail the (MRP).



564 N.J. Kalton, G. Lancien

Proof. Denote by(z,,),>1 the canonical basis of and lets,, = z1+..4z,.
(sn)n>1is a Schauder basis af which is usually called the summing basis
of ¢o. We now apply Theorem 3.1 with the sequence of projectidig
associated with the Schauder bagis) andu,, = s2, — s2,—1. Then we
obtain that there i€’ > 0 so that for everyV > 1,:

or N 1/2
oy o dt
§ : 12"t (|12
</0 H n=1 e H 27T>
2 N dt 1/2
<C . B 27|12 )
< ( D e A =

The right-hand side is equal @ but, considering only the first co-ordinate
of the left-hand side with respect to the canonical basis, we have

i2nt 2 At > N1/2
(1)

This is a contradiction.

Assume now that; has the (MRP). Letv,,),>1 be the coordinate func-
tionals associated with the summing bdsig) of ¢y. The closed linear space
Y spanned iff; by the sequence, ) is of codimension 1 id; and hence is
isomorphic to/;. The bi-orthogonal functional&}) in Y* are equivalent
to the summing basis @f,. Hence using the same calculation as above and
the second inequality of Theorem 3.1 we again get a contradiction.O

We now explain the consequences of Theorem 3.1 wXieadmits an
unconditional basis.

Theorem 3.3. A Banach space with an unconditional basis has the (MRP)
if and only if it is isomorphic tds.

Proof. The idea is to show that iK' has the (MRP) and an unconditional
basis(z,)n>1, then for every permutation of the integers and for every
block basis(u;);>1 Of (x7(n))n>1 the closed subspace of spanned by

the u;’s is complemented inX. Once we have shown this the proof is
completed by using a theorem of Lindenstrauss and Tzafriri ([11], see also
[12] Theorem 2.a.10) which asserts tlat, ),~1 must be equivalent to the
canonical basis of, or ¢, for somep in [1,00). Then, by Corollary 3.2,

(en) is equivalent to the canonical basisfgffor somep in (1, co). Now, if

1 < p # 2 < o0, £, admits an unconditional basis which is not equivalent to
any of the canonical bases®@for ¢, wherel < ¢ < co. Indeed Pelczyski

[17] showed that, fot < p < oo, £, is isomorphic to(z ®ly)p.
n>1
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So assume, as we may, that,),>; is a normalized 1-unconditional
basis ofX and that(u,,),>1 is a normalized block basis 6f,),>1, with

Tn41

VYn > 1, u, = E aje;,
rn+1

where) = r; <rp < .. <rp <7rpg1 < ..and(a;);>1 € C. Forn>1,

let X,, = [z, 41, .., T, ] @NdEy, = [u,]. Then(X,,) is an unconditional
Schauder decomposition & with associated projections,,, say. Now,

by the Hahn-Banach theorem there is a norm-one projectipn X,, —

Eo,. Let By, 1 = R;1(0). Then(E,) is a Schauder decomposition &f

with associated projection@,,—1 = (I — R,,) P, andQ2, = R, P,. We

now apply Theorem 3.1 and exploit the unconditionality of the Schauder
decompositior{ X,,). There is a constar so that ify is in the linear span

of the (zy,)n>1 then

1Y~ Qanyll < Cllyll.
n=1
This implies thafuy,],>1 is complemented iX.
Clearly the same reasoning can be applied to any permutation of the
basis(x,) so that the proof is complete. 0

Although this will be included in further and more general statements
let us point out that this already solves our problem for the spbegs 1):

Corollary 3.4. Letl < p < oo. ThenL?(0, 1) has the (MRP) if and only if
p=20rp=0o0.

Proof. For1 < p < oo, the Haar system is known to be an unconditional
basis ofL?(0, 1) ([16], see also [13]). So the result follows from the preced-
ing Theorem. The fact thadt! fails (MRP) was proved by C. Le Merdy in
[9]. Notice thatL! contains a complemented copy&f so this result can
be derived from Lemma 2.2 and Corollary 3.2. O

We now extend Theorem 3.3 to the case of a space with an unconditional
Schauder decomposition.

Theorem 3.5. Let X be a Banach space with an unconditional decompo-
sition (£, Py)n>1. Assume thakX has the (MRP).

[e.9]
ThenX is isomorphic to(z DF,)e,-
n=1

Proof. It suffices to show that if,,, € F,, with |ju,|| = 1 then} ayu,
converges if and only i} |a,|> < oo. As above in the proof of Theorem
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3.5, letR,, be a norm-one projection df,, onto [u,]. Then letEs, = [u,]

and Ey, 1 = R;!(0). Reasoning exactly as in Theorem 3.5 gives that
[un]n>1 IS complemented inX. But this subspace has an unconditional
basis and so Theorem 3.5 yields tltat,) is equivalent to the canonical

basis of?,. 0

Our next theorem completes the important counterexamples obtained by
Coulhon and Lamberton [2].

Theorem 3.6. SupposeX is a Banach space antl < p < oo. Then the
Banach spacd.?((0,1); X) has the (MRP) if and only if = 2 and X is
isomorphic to a Hilbert space.

Proof. We first note thaL?|0, 1] is complemented id”((0, 1); X') so that if
the latter has (MRP) then= 2 by Corollary 3.4. Assume thdt*((0,1); X)
has the (MRP); we will show thaX is isomorphic to a Hilbert space (the
opposite implication is due to de Simon [4]). By [, must have the UMD
property. In particular,X does not contain thé/’s uniformly. Hence by
Pisier’s theorem [18], the spaded(X) = [¢,],>1 ® X is complemented
in L2((0,1); X) (heree, is a standard Rademacher function). Therefore,
by Lemma 2.2Rad(X) has the (MRP). NOWE},),,>1 = (€5, ® X)p>1 IS
an unconditional Schauder decompositioiRefl(X). So, by Theorem 3.5,
Rad(X') must be isomorphic t@) @ (e, ® X))y, . Finally, it follows from
Kwapien’s theorem [8] thak is isomorphic to a Hilbert space. O

We now extend Theorem 3.3 and Corollary 3.4 to the setting of Banach
lattices. All the notions on Banach lattices that we will use can be found in
[13] Chapters 1.a and 1.b.

Theorem 3.7. An order continuous Banach lattice has the (MRP) if and
only if it is isomorphic to a Hilbert space.

Proof. Let X be an order continuous Banach lattice. By aresult of L. Tzafriri
(see for instance [13], Lemma 1.b.13), it is enough to show that every nor-
malized sequence of disjoint elements)fis equivalent to the canonical
basis ofly. So let (f,),>1 be such a sequence . ThenX admits an un-
conditional Schauder decompositioh,, ),,>1 such that theZ,,’s are ideals

of X and foralln > 1, f,, € E,. Now, by Theorem 3.5X is isomorphic

to (> ®E),)e, and(fy) is equivalent to the canonical basislef 0

Corollary 3.8. A separable Banach lattice has the (MRP) if and only if it
is isomorphic to a Hilbert space.

Proof. Let X be a separable Banach lattice which is not order continuous.
ThenX is noto-complete (see [13] Proposition 1.a.7) and by a result of P.
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Meyer-Nieberg ([15], see also [13] Theorem 1.a¥5xontains a subspace
isomorphic tocy. SinceX is separable, it follows from Sobczyk’s Theo-
rem [19] that this subspace is complemente&inSo, by Lemma 2.2 and
Corollary 3.2,X does not have the (MRP). Then, the preceding Theorem
concludes our proof. O

4. Final remarks

1) One can also consider the problem of fifemaximal regularity on the
half line [0, +00), which has in general a different answer (see [9] for an
example). But it follows from Theorem 2.4. in [5] that all our results remain
valid in this slightly different setting.

2) We do not know if there is a non-Hilbertian subspace ofl&rspace
(1 < p < o0) with (MRP).

3) We do not know if every space with a basis and (MRP) is isomorphic to
a Hilbert space.
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